Neutronska aktivacija antimona

Dunja Ivković

Mentor: dr. sc. Milivoj Uroić

29.01.2019.

Dunja Ivković Neutronska aktivacija antimona

э

- Neutroni nemaju naboj \to nema Coulomb interakcije \to važni za proučavanje nuklearnih sila
- Zbog manjka elektrostatske interakcije otežano je fokusiranje neutronskog snopa i energijska razlučivost
- Interakcije s elektronima su zanemarive \rightarrow izazov pri detekciji

IZVOR NEUTRONA

Bombardiranje α esticama:

$$^{4}\text{He} + ^{9}\text{Be} \rightarrow ^{12}\text{C} + \text{n}$$

Nastali neutroni nisu monoenergijski.

• γ reakcije:

$${}^{9}\text{Be} + \gamma \rightarrow {}^{8}\text{Be} + n$$

IZVOR NEUTRONA

$$^{3}\text{H+d} \rightarrow^{4}\text{He+n}$$

$$E_n \simeq 14.1 {\rm MeV}$$

KLASIFIKACIJA NEUTRONA PO ENERGIJI

- $E_n \simeq 0.025 \text{eV}$ termalni neutroni
- $E_n \simeq 1 \text{eV}$ epitermalni neutroni
- $E_n \simeq 1 \text{keV}$ spori neutroni
- $100 \text{keV} < E_n < 20 \text{MeV}$ brzi neutroni
- *E_n* > 20MeV ultrabrzi neutroni

Vrsta interakcije s materijom ovisi o energiji upadnih neutrona.

DOMINANTNE REAKCIJE TERMALNIH NEUTRONA:

- (n,γ) reakcija na parno-neparnim i neparno-parnim jezgrama
- (n,α) reakcije na laganim neparno-neparnim jezgrama
- \blacksquare p-neparna i n-parna jezgra \rightarrow neparno-neparna jezgra
- \blacksquare teke p-parne i n-neparne jezgre \rightarrow fisija

DOMINANTE REAKCIJE BRZIH NEUTRONA

- (n, 2n) reakcija na p-neparnoj i n-parnoj jezgri
- (n, p) reakcija na n-neparnoj i p-parnoj jezgri
- \rightarrow NEPARNO-NEPARNA JEZGRA

Figure: Udarni presjek brzih neutrona za ¹²¹Sb. Preuzeto iz [3].

NUKLEARNI RASPADI

Broj raspada proporcionalan je broju jezgara

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N(t)$$

 λ je vjerojatnost prijelaza (konstanta raspada)

$$N(t) = N_0 e^{-\lambda t}$$

Vrijeme poluživota:

$$T_{1/2} = \frac{\ln(2)}{\lambda}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NUKLEARNI BETA RASPADI

<ロ> <同> <同> < 回> < 回>

э

Apsorpcija upadnog zračenja preko interakcije gama zračenja sa materijom:

- Fotoelektrični efekt
- Comptonovo raspršenje
- Tvorba para

Prolazak elektrona \rightarrow elektron-šupljina parovi

GERMANIJSKI DETEKTOR

Energijske vrpce izolatora, poluvodiča i vodiča.

PREDNOSTI

- Visoka rezolucija mjerenja energije
- Odziv linearan s energijom i ne ovisi o tipu zračenja koje ga je uzrokovalo
- Zanemariva apsorpcija energije
- Male dimenzije detektora

EKSPERIMENTALNI POSTAV

Germanijski detektor

Neutronski generator

IZMJERENI SPEKTAR

Spektar izmjeren germanijskim detektorom nakon 32 dana mjerenja.

Spektar izmjeren germanijskim detektorom nakon 32 dana mjerenja s kalibriranom skalom energije. Prikazani su samo vrhovi antimona.

Table: Usporedba izmjerenih energija i tabličnih vrijednosti [5]. Navedene su srednje vrijednosti te pripadne devijacije u zagradi.

Izmjereno [keV]	Tablino [keV]	Izotop
89.78 (3)	89.8 (3)	¹²⁰ Sb
197.32 (4)	197.3 (3)	¹²⁰ Sb
511.3 (4)	511	¹²⁰ Sb
564.27 (4)	564.24 (4)	¹²² Sb
693.0 (1)	692.65 (4)	¹²² Sb
1023.3 (4)	1023.3 (4)	¹²⁰ Sb
1113.1 (5)	1113.4 (6)	¹²⁰ Sb
1140.7 (5)	1140.67 (4)	¹²² Sb
1171.4 (4)	1171.7 (3)	¹²⁰ Sb
1257.7 (6)	1256.93 (4)	¹²² Sb

3

Preuzeto iz [4].

æ

《口》《聞》《臣》《臣》

Preuzeto iz [4].

< ∃ →

P.

글▶ 글

Iz vrhova najvećeg intenziteta odredeno je vrijeme poluživota.

Napravljen je fit na funkciju

$$y = y_0 + Ae^{-x/B}$$

iz čega je iz parametra B odredeno vrijeme poluživota.

Energija [keV]	$T_{1/2}$ [dan]
564.27 (4)	2.720 ± 0.004
693.0 (1)	$2.80\ \pm0.04$

Tablina vrijednost poluživota [2]:

$${\cal T}_{1/2} = (2.7238 \pm 0.0002)\,$$
dana

Preuzeto iz [2].

P

3

-

э

Iz vrhova najvećeg intenziteta odredeno je vrijeme poluživota.

Figure: Prvi red: energijski vrh 1113.1 keV Drugi red: energijski vrh 1023.3 keV.

Dunja Ivković

A B > 4
 B > 4
 B
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문 🛌 문

Napravljen je fit na funkciju

$$y = y_0 + Ae^{-x/B}$$

iz čega je iz parametra B odredeno vrijeme poluživota.

Energija [keV]	$T_{1/2}$ [dan]
89.78 (3)	4.6±4
197.32 (4)	5.28 ± 0.07
1023.3 (4)	5.75 ± 0.02
1113.1 (5)	6.2 ± 0.2
1171.4 (4)	$5.74{\pm}0.02$

Tablina vrijednost poluživota [1]:

$$T_{1/2} = (5.76 \pm 0.02)\,{
m dana}$$

Figure: Histogram vrijednosti poluživota dobivenih u 1000 simulacija raspada. Dobivene vrijednosti su podijeljene u 50 binova širine 0.0163 dana.

$$T_{1/2}(^{120m1}{
m Sb}) = (5.8 \pm 0.1) \, {
m dana}.$$

[1] T. Tamura: Nuclear Data Sheets for A = 122, Nuclear Data Sheets Volume 108, Issue 3 (2007), 455-632 [2] K. Kitao, Y. Tendow, A. Hashizume: Nuclear Data Sheets for A = 120, Nuclear Data Sheets Volume 96, Issue (2002), 241-390 [3] A.B. Smith, A Fessler: Neutrons and antimony: measurement, interpretation and evaluation, Annals of Nuclear Energy Volume 28, Issue 6 (2001), 531-552 [4] R. B. Firestone, V. S. Shirley: Table of isotopes, 8th edition (1977)[5] National Nuclear Data Center: http://www.nndc.bnl.gov/nudat2/

Hvala na pažnji!

æ

A ►

(★ 문 ► ★ 문 ►