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1. AN INTRODUCTION TO MOUNTAIN EFFECTS

It is often said that if the Earth were greatly reduced in size while
maintaining its shape, it would be smoother than a billiard ball. From this
viewpoint the mountains on our planet seern insignificant, and it makes
us wonder how they manage to have such a strong influence on our wind
and weather. One answer to the dilemma is that the atmosphere itself is
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very shallow—a density scale height of about 8.5 km—so that many
mountains reach to a significant fraction of its depth. This argument,
however, underestimates the mountain effect. The real answer is that our
atmosphere is exceedingly sensitive to vertical motion—and for two rea-
sons. ‘

First, its strong stable stratification gives the atmosphere a resistance
to vertical displacement. Buoyancy forces will try to return vertically
displaced air parcels to their equilibrium level even if. such restoration
requires a broad horizontal excursion or the generation of strong winds.
Second, the lower atmosphere is usually so rich in water vapor that slight
adiabatic ascent will bring the air to saturation, leading to condensation
and possibly precipitation. As an example, the disturbance caused by a
500-m high mountain (i.e., a very small fraction of the atmospheric depth)
could well include (a) broad horizontal excursions of the wind as it tries
to go around rather than over the mountain, (b) severe downslope winds
as air that has climbed the mountain runs down the lee side, and (c)
torrential orographic rain on the windward slopes.

The intention of this article is to review the meteorological phenomena
that are associated with topography. This topic is of course only one of
several subdisciplines within physical and dynamical meteorology, but it
is one which scientists should be familiar with as they struggle to under-
stand the workings of the atmospheric system. This review will not
supersede previous works such as ‘‘The airflow over mountains’’ by
Queney et al. (1960) as it is in many ways less detailed. On the other
hand, the range of phenomena and scales included here is broader than
in previous reviews. Because of the lack of detail, the experts in the
various areas will probably find little for them except a widened aware-
ness which comes from seeing their specialty placed into a broader
setting.

The study of airflow past mountains is complicated by the wide range
of scales that must be considered. The nature of the disturbance caused
by a narrow hill will be quite different from that caused by a broad
plateau, even if the terrain height and other factors are the same. This is
so because there are several natural length scales in the atmospheric
system with which the mountain width (say, L) can be compared. These
include (with scale increasing):

1. the thickness of the atmospheric boundary layer

2. the distance of downwind drift during a buoyancy oscillation

3. the distance of downwind drift during the formation and fallout of
precipitation

4. the distance of downwind drift during one rotation of the Earth

5. the Earth radius
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The ratios of the mountain width to each of the natural length scales are
important in determining the physical regime of the flow. This idea is
emphasized in the present article by treating the effects of boundary
layers and buoyancy (length scales 1 and 2) in Section 2, the effect of the
Earth’s rotation (length scale 4) in Section 3, and the effect of the Earth’s
curvature (length scale 5) in Section 5. The section on orographic rain
(Section 4) includes mountain scales both shorter and longer than the
natural cloud physics length scale (length scale 3).

In the past several years there have been some remarkable advances
in the understanding of mountain flows and yet there are many outstand-
ing problems. A partial list of these will serve to illustrate the vigor and
breadth of the subject. Theoretically and observationally the distinction
between trapped lee waves and vertically propagating mountain waves
is now clear. In most cases, however, it has still proved impossible to
predict these waves accurately. In spite of recent work on large-amplitude
waves and wave breaking, the connection with downslope wind storms
is still unclear. The studies of flow around realistic mesoscale mountains
(L ~ 100-500 km) has just begun. New theoretical results have invalidated
the “‘textbook™ descriptions of vortex stretching over broad mountains.
The strong variation in rainfall amount between the top and bottom of
small hills now has been demonstrated but the physical cause is unde-
termined. There is mounting evidence that much of the presumed stable
orographic rain may in fact be generated by closely spaced convection,
triggered by orographic lifting. Nurerical simulations indicate that the
general circulation of the atmosphere may be strongly influenced by the
major mountain systems. The midlatitude westerlies are deflected into
standing waves which produce zonal variations in climate and, by trans-
porting heat northward, reduce the frequency and strength of cyclonic
storms.

2. THE FLow OVER HILLS AND THE GENERATION OF MOUNTAIN
WAVES

The flow over small-scale mountains or hills (100 m to 50 km wide)
can be considered without including the Coriolis force. One would expect
however that the influence of buoyancy forces and the turbulent Reynolds
stresses acting in the boundary layer will be important. Two natural
length scales thus arise: first, the distance of downwind drift during a
buoyancy oscillation (U/N) = 1 km, and second, the thickness of the
boundary layer, 6 = 300 m. Of course, all these parameters U,N,6
depend ultimatelv on the Coriolis force, but the local problem is usually
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considered to be well posed if these parameters are known. For a narrow
hill (say, L = 1¢0 m < U/N) the characteristic time for the flow, that is,
the time it takes an air parcel to cross the hill, is much less than the
buoyancy period, and the buoyancy forces can be neglected. If there
were no boundary layer or if the boundary layer were very thin, this
“‘narrow hill”’ flow would be closely analogous to the irrotational (i.e.,
potential) flow much studied in engineering aerodynamics. In fact, in the
atmosphere, there is a thick preexisting boundary layer, and the disturb-
ance caused by a narrow hill is for the most part confined within the
boundary layer. Thus the aerodynamic analogy is not a good one.

For wider hills (L ~ 1 km and greater) the boundary layer thickness
becomes smaller in relation to the scale of the flow. At the same time,
the buoyancy force associated with the atmosphere’s static stability be-
comes more important. The flow outside the boundary layer cannot be
considered irrotational, and internal gravity waves become possible. For
still wider mountains (L ~ 10 km) the boundary layer seems vanishingly
thin, and the buoyancy forces dominate to the extent that the vertical
accelerations become relatively small and the pressure field is nearly
hydrostatic. Finally, for mountains wider than about 50 km (depending
on the wind speed) the Coriolis force begins to become important. This
added complication will not be considered in this section but will be
treated in some detail in the following section on mesoscale flows.

The cornerstone of this subject seems to be the huge body of literature
on the theory of inviscid mountain waves. There have in fact already
been several reviews of this subject (e.g., Queney et al., 1960; Miles,
1969; Musaelyan, 1964; Eliassen, 1974; Vinnichenko et al., 1973; Kozh-
evnikov, 1970), and the existence of these somewhat lessens the demands
on this section. In response to this we will back off and attempt a less
detailed overview of the subject. A more detailed discussion will be
necessary only on matters of continuing controversy or points that have
only recently been clarified.

It 1s also important to keep in mind that a theoretical understanding of
the inviscid problem is probably not sufficient. The interaction of the
inviscid flow with the turbulent boundary layer and the turbulent regions
of wave breakdown aloft could completely change the flow just as in
aerodynamics where the separation of a thin boundary layer completely
invalidates the potential flow solution. More on this point later.

2.1. Buovancy Forces

In order to understand the transition from small-scale irrotational flow
to larger scale, buoyancy-dominated hydrostatic flow, we examine the
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vertical momentum equation for an inviscid fluid

Dw  dp

2.1 —_—= -
(2.1) th dz

P8
Consider a parcel of fluid of density pp surrounded by a fluid of density

p. If the surroundings are not accelerating, the pressure field will be
hydrostatic

(2.2a)

¥ls

=P8

(2.2b) pP=Ppo— P8z

where p, is an arbitrary reference pressure. ‘Any object placed in such
a linear pressure field feels a net force equal to its volume times the
pressure gradient [this follows from the derivation of (2.1) or from Ar-
chimedes Law]. The net force on the parcel is the sum of the net pressure
force and the gravitational force

(2.3) pg=prg =8P — Py

and this is the so-called buoyancy force. If the parcel is less dense than
its surroundings, the buoyancy force will act upward and vice versa.

One important property of the buoyancy force is that it can create
vorticity in the fluid by applying a torque about the center of mass of a
fluid parcel. It is well known that the gravitational force cannot create
vorticity as it is a “‘potential’’ force field and always acts through the
center of mass. The buoyancy force, however, includes a pressure force
term and it is this, that can create vorticity.

The alert reader will have already noticed a weakness in the above
parcel agreement. If there is a net buoyancy force acting on the parcel
then it will be accelerating and the fluid nearby the parcel will also be
accelerating to keep out of the way. Thus our assumption that the sur-
rounding fluid is hydrostatic is incorrect and the clear definition of buoy-
ancy force fades slightly. If the parcel could be persuaded to hold its
shape (e.g., a sphere), the effect of the accelerations could be easily
accounted for by using the hydrodynamic theory of “*added mass’’ but
this too is an abstraction. The best way to resharpen our view of buoy-
ancy is to consider its effect on a consistent field of fluid motion, and
this will be done later when we consider the motion field induced by
mountains.

The generation of density differences can occur in two ways, either by
a local heating or cooling, or by moving an air parcel from one environ-
ment to another. In the latter case, the resulting density variation can be
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associated either with the differing properties of the ‘‘source’’ environ-
ment or with density alterations during the displacement, for example,
adiabatic expansion. For either of the above mechanisms (i.e., heating/
cooling or displacement) the resulting density variation can be computed
easily by assuming that the parcel has come to pressure equilibrium with
its new environment. Any pressure imbalance would be quickly elimi-
nated by the generation and propagation away of acoustic waves. The
potential temperature

2.4 6 = T(P/Py)~

(P, is an arbitrary reference pressure, « is the ratio of R/c, for the gas
in question) is especially useful as it is conserved during adiabatic lifting
or sinking. Any parcel A having a higher potential temperature than some
remote environment B (0, > 65) will, when brought into environment B
(i.e., brought to the pressure Pg), be warmer (T, > Tg) and less dense
(p4 < pp) than its environment and will experience an upward buoyancy
force. This parcel argument can also be used to show (as is done in most
meteorology texts) that an environment in which potential temperature
increases with height (d6/dz > 0) is stable since any vertical displace-
ment will result in a restoring buoyancy force.

2.2. The Theory of Two-Dimensional Mountain Waves
2.2.1. The Governing Equations. The theoretical description of moun-

tain waves begins with the following set of equations (restricted here to
two dimensions):

the horizontal momentum equation:
(2.5 p—=——

the vertical momentum equation:

Dw ap
2.6 —_— ==
(2.6) P Dy Py pg
the equation of continuity:
2.7 Dp _ —pV-u

Dt

an equation describing adiabatic, reversible changes (derived from the
first law of thermodynamics, the definition of specific heat, and the
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perfect gas law):
Dp_ . Dp

2.8 , 2=9vR

(2.8) Dt ¢ Dt ¢ yRT
the perfect gas law:

(2.9) p = pRT

With these equations we can examine the small perturbations produced
by a mountain on a basic state of horizontal hydrostatic flow described
by

U(z), T(z) specified

W(z) =0
and p(z), p(z) determined from
(2.10) dp/dz = —pg
and
(2.11) p = pRT

Each variable will be represented as a sum of the basic value and a
perturbation

u(x,z)=Uz) + u'(x, 2)
w(x,z) =0+ w'(x, z)
(2.12) p(x,z) = p(z) + p'(x, 2)
p(x,z) = p(z) + p'(x, 2)
T(x,z) = T(z) + T'(x, z)

We have assumed further that the flow will eventually come to a steady
state and it is this state that we seek.

Upon substituting (2.12) into the governing equations and linearizing,
we obtain the following equations for the perturbation quantities:

From (2.5):

_ du’ dU ap’

2.13 0 —_—t W —) = —

( ) p(U 0x e dz) d9x
From (2.6):

_ow' ap’
(2.14) p(U——) - - g
0z
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From (2.7):
- dp’ dp _fou’ aw’
2.15 — +tw—=—5 — 4+ —
( ) v ox i dz p(ax az)
From (2.8):
_9p’ _adp’ dp
(2.16) UL—i- w’-@=52 U_L+ w 2P
ox z ox dz

which can be written as

Uap' ,(—ldp g) U ap’
—_—— =W ___+_ —_—
p dx
(2.17)

(a) (b) (c) (d)

This last equation warrants special attention as it describes the formation
of density anomalies which in turn [through Eq. (2.14)] produce buoyancy
forces. The left-hand side (a) is the rate of change of density encountered
by an observer moving horizontally downstream at a speed U(z). The
right-hand side represents the causes for the observed density variations.
Term (b) represents the lifting of denser air into a less dense environment,
but this is strongly modified by term (c), the adiabatic expansion of the
parcel as it is lifted. Terms (b) and (c) can be combined to read

1d6
(2.18) 5, B
which is a measure of the static stability. The final term (d) is a correction
for any lack of pressure equilibration. For fast acoustic waves this term
is of central importance, but for lower frequency motions, such as con-
sidered here, it is negligible. That is not to say that there are no pressure
variations but only that these variations are not important in the gener-
ation of density anomalies. As shown by Queney er al. (1960) the reten-
tion of term (d) substantially complicates the analysis, but if /2 <
c*(e.g. 10* < 300% it many be neglected. In this limit the continuity
equation is simplified [substitute (2.17) into (2.15)] to
ou + ow g

2.19 U
(2.19) ax o9z 2"

so that the divergence in the velocity field is clearly associated with the
adiabatic ascent of air parcels.
The previous equations can be reduced among themselves to obtain a
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single equation for the vertical velocity w(x, z)

C 502 _ZZ
(2.20) u)},+w;2—5w;+<%+ _v ) w' =0

v U U
with the subscripts denoting differentiation. The coefficient S is defined
by

(2.21) S

ll

L in 5

and has been called the heterogeneity by Queney (1947). § is not related
to the generation of buoyancy forces as it does not include the effect of
adiabatic expansion but instead describes the effect of density variations
in the divergence of the velocity field [Eq. (2.19)] and the vertical vari-
ation in inertia in the momentum equations (2.13) and (2.14). The first
term involving S in (2.20) cannot be neglected even if S is small as it will
always result in an amplification of the disturbance in the far field. It can
be neatly accounted for by introducing the new dependent variable

(2.22) w = [p(z)/p0)]"w’

The square of this new variable is proportional to the energy of the wave
disturbance (see Eliassen and Palm, 1960). Equation (2.20) then becomes

(2.23) W W, 4 220 =0
with
Bg SU, 1. 1. U..
12 E_—+ = _—S‘+—SZ_ —
D=7+t F 3 2 U

This equation is the central tool for theoretical studies of smali-amplitude,
two-dimensional mountain waves. In practice, the coefficient /2(z) is
usually dominated by the first term, that is, the buoyancy force term B8g/
U? : although in regions of strong shear the term U,,/U may become
important. The neglect of the § terms is equivalent to making the Bous-
sinesq approximation—that density variations are only important as they
effect the buoyancy. In this case Eq. (2.23) may be easily interpreted as
a vorticity equation with (upon multiplying through by U) U(w,, + w,;)
being the rate of change of vorticity following a fluid particle; Bgw/U
being the rate of vorticity production by buoyancy forces; and — U,,w
being the rate of production of perturbation vorticity by the redistribution
of background vorticity (~U,). In the case of /2(z) = 0, we have

(2.24) Viw =0

which states that the flow is irrotational.
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2.2.2. The Flow over Sinusoidal Topography. 1t is helpful at this point
to examine the flow of a semi-infinite stratified atmosphere over sinu-
soidal topography (see Queney, 1947). The choice of sinusoidal topog-
raphy simplifies the solution, thereby clarifying the underlying physics,
and also paves the way for the use of Fourier methods in the next section.

Consider the flow of uniform incoming wind speed U(z) = U and
Brunt—Vaisala frequency N? = Bg, over terrain described by z = h(x)
= hp sin kx, where h, and k = 27/wavelength describe the height and
spacing of the ridges. At the ground the flow is assumed to follow the
terrain so that the streamline slope equals the terrain slope

(2.25) %=%=% at z= h(x)

For small amplitude topography (and disturbance «') this simplifies to
(2.26) w' =W = U(dh/dx) atz=0

S0

2.27) w(x,0) = h,kcos kx

We will look for solutions (here using real functions and variables) of the
form

(2.28) w(x, z) = ¢,(z) cos kx + ¢,(z) sin kx
so the equation for these ¢ functions becomes from (2.23)
(2.29) b..+ (12— k¥)dp =0

The k in (2.29) will be the same as the terrain wave number in (2.27), in
order to satisfy (2.27).

In this equation the sign of the term in parentheses is of central im-
portance. We must consider two cases: first, the case of closely spaced
ridges (together with weak stability and high wind speed) such that

(2.30) k2> [?

For example, if N and U are chosen to have typical values of 0.01 sec™!
and 10 m/sec respectively, then condition (2.30) will be satisfied for
topographic wavelengths

A=27/k<6.3km

In this case the term in parentheses in (2.29) is negative and the solution
is

(2.3D) d(z) = Aexp[(k? — [2)V2z] + B exp[— (k2 — 12)12]
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The first term represents an unlimited growth of the disturbance energy
away from the terrain, which should be considered as source of the
disturbance. This runs counter to our intuition and to laboratory expe-
rience and must be regarded as unphysical. Therefore we set A = 0 and
the solution becomes [from (2.31), (2.28), (2.27)]

(2.32) wi(x, z) = hpk exp[—(k* — [%)V2z] cos kx

The other variables u’, p’, T, p can be easily determined from w(x, z)
by using the original equations (2.13)-(2.17). The streamline pattern cor-
responding to (2.32) is shown in Fig. la.

The other possibility is

(2.33) k2 <|?

which corresponds to more widely spaced ridges or alternatively, greater
stability and slower wind speed. Here the term in parentheses in (2.29)
is positive and the solution is

(2.34) ¢(z) = A sin(I2 — k%)2z + B cos(I® — k2)'2z

Combining this with (2.28) and using a trigonometric identity gives the

Fic. 1. The steady inviscid flow over two-dimensional sinusoidal topography. (a) Little
or no influence of buoyancy, Uk > N. The disturbance decays upward with no phase line
tilt. (b) Strong buoyancy effects, Uk < N. The disturbance amplitude is constant with
height while the lines of constant phase tilt strongly upstream.
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vertical velocity in convenient form
w(x, z) = Ccos[kx + (1?2 — k?)2z]
+ D cos[kx — (12 — k?)'2z]
+ Esin[kx + (12 — k?)'2z]
+ Fsin[kx — (12 — k?)1?Z]

where the upward and downward propagating waves are now recogniz-
able. The lower boundary condition (2.27) requires E + F = 0 as well as

(2.36) C+ D= huk

and as before, the remaining indeterminacy between E and F, and C
and D requires the use of an upper boundary condition.

As shown by Eliassen and Palm (1960), disturbance energy can be
transferred from one region of the fluid to another by doing work at the
boundary between the two regions. In an inviscid electrically neutral
fluid, as we have here, this work is done by pressure forces acting
together with displacements across the boundary. Thus the vertical flux
of energy across a horizontal surface is

(2.35)

2.37) f p'w’ dx

Eliassen and Palm also show that for U? < ¢2 the vertical flux of energy,
averaged over a wavelength, can be written in terms of the field of
vertical velocity

’.
o))

(2.38) p'w' =

N~

Wow

P
(3]

A comparison of this with the solution (2.35) shows that the C and E
terms, with phase lines tilting to the left, produce an upward energy flux
(i.e., p' in phase with w'). The opposite is true for the D and F terms.
Physically we regard the irregular terrain as the source of the disturbance
energy so in the absence of energy production or reflection aloft, terms
D and F must be regarded as unphysical and we set D = F = 0. This
gives E = 0 and C = h,k so that

(2.39) W(x, z) = hkcos[kx + (12 — k?)V27]
The streamlines for this are shown in Fig. 1b. Note that in the above

argument it is not sufficient to require that the net energy flux be upward,
as this only demands C + E > D + F. Instead we must require that
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there be no components of the flow which radiate energy downward.
This “‘radiation condition’ will be discussed again in the next section.

The difference between the two types of flow k2 > [Z or kZ < [%is
striking and deserves discussion. In the case of closely spaced topography
the flow is qualitatively similar to irrotational flow (i.e., [* = 0) in that
the phase lines are vertical and the disturbance decays with height. This
flow is inherently nonhydrostatic as the w',, term in (2.20) carries the
influence of the vertical accelerations and it is this term which allows the
disturbance to decay vertically. In fact there is a crude balance between
the vertical decay of the pressure disturbance and the vertical accelera-
tions. As k2 — [ this balance is increasingly altered by buoyancy forces
and the vertical penetration of the disturbance increases.

When k2 < [? the intrinsic frequency of the motion Uk (i.e., the
frequency experienced by a fluid parcel moving through the stationary
pattern) is less the N, the Brunt-Vaisala (or buoyancy) frequency, and
internal gravity waves are therefore possible. These waves propagate
vertically and thus the disturbance does not decay upward. The phase
lines tilt forward into the mean wind, and as we have seen this is con-
nected with the propagation of energy vertically away from the topo-
graphy that produces the wave.

Vertical accelerations play only a modifying role in this wave motion.
For the case I2 > k% we can ignore the k2 term in (2.29) and this is
equivalent to making the hydrostatic assumption in (2.14). In this case
the vertical wave number of the disturbance is

(2.40) (12 — k2)1e = |

which depends only on the characteristic of the airstream, not on k.

Note that with /2 > k? the flow near the hills is asymmetric with low
speed and high pressure on the windward side and high speed and low
pressure on the leeward side. Thus there is a pressure drag on the ridges
and this momentum is transported vertically by the waves. The amplitude
of this “*wave drag’’ averaged over a wide area is

(2.41) pu'w' = pU2k(I? — k?)"2h% per unit area

2.2.3. Isolated Topography. Although much of the interesting physics
of mountain waves was captured in the foregoing constant /2, sinusoidal
terrain model, there are still new concepts which arise in the flow over
a single ridge and still more when we allow /%(z) to vary. Following Lyra
(1943), Queney (1947), and Queney er al. (1960), we express all disturb-
ance variables in terms of a one-sided Fourier integral. For example, the
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vertical velocity is written as

oo

(2.42) w(x, z) = Ref w(k, z)e ¥z dk

0
substituting this into (2.23) gives an expression for w(k, z)
(2.43) W, + [12(z) — k*lw =0
’The lower boundary condition (2.26) becomes
(2.44) w(k, 0) = U(0)ikh(k)

where /1 (k) is the Fourier transform of the mountain shape,

- | O )
(2.45) h(k) = —f h(x)e %z dx
T J o
For the case of /2 = const, the solution to (2.43) is for k2 > |2
(2.46) w(k, z) = w(k, 0) exp[— (k? — [2)¥27]
and for k2 < /2
(2.47) w(k, z) = w(k, 0) exp[i(I%2 — k?)'2z]

In each case the arbitrariness in the sign of the exponent allowed by
(2.43) has been eliminated by using an upper boundary condition. In the
evanescent case the solution is assumed to decay rather than grow as z
— o, while in the propagating case the positive sign is chosen in the
exponential so that the phase lines tilt upstream and energy is propagated
upward. In this case of constant U, it is slightly more convenient to solve
directly for the vertical displacement of a streamline 7 (x, z) where

(2.48) w' = U(dn/ox)
Then using (2.42), (2.44), (2.46), and (2.47)

l
n(x, z) = [po/p(z)]" Ref h(k) exp[i(I* = k*)'*z] exp(ikx) dk

(2.49)
+ f h(k) exp[— (k% — 12)V2z] exp(ikx) dk
i
For the purpose of illustration it has become standard practice (after
Queney, 1947) to consider a bell-shaped mountain described by
(2.50) h(x) = hpa?/(x% + a?)
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which has a particularly simple Fourier transform
(2.51) h(k) = hpae™

The height of the ridge is h,, and « is a measure of its width. The
function # (k) happens to be real because the ridge Is symmetric. The
type of flow predicted by (2.49) with (2.51) depends on the dimensionless
quantity al/ which is proportional to the ratio of the time it takes for a
fluid particle to cross the ridge, to the period of a buoyancy oscillation
277/ N. Even with the choice (2.50) the exact evaluation of (2.49)is readily
done only for the two limiting cases al > 1 or al < 1.

For the narrow mountain, weak stability, and strong winds, al is small
and the first integral in (2.49) becomes small; while the second becomes

n(x, z) = [po/p(2)]"* Re[hma f e ~ka g —kz gikz dk]
(2.52) 0

—(a+z)+i

= [po/p(z)]Phna Re[ - x]

and taking the real part

1/2
(2.53) n(x, z) = [ Po] fimala + 2)

p(z) (a + z)*+ x?

Note that as z — 0, 1 (x, z) = h(x) given by (2.50) as it should. In this
al < 1 limit, the buoyancy force is not important and the flow is irrota-
tional. This same flow field could have been constructed from potential
flow theory by placing a doublet slightly below the ground. The stream-
line pattern is shown in Fig. 2.

In the opposite extreme case, al > 1, buoyancy effects dominate and

the flow is hydrostatic. Mathematically, i (k) is small in the range [ <

FiG. 2. The steady flow of a homogeneous fluid over an isolated two-dimensional ridge,
given by (2.53). From the spacing of the streamlines, it is evident that the highest speed
and the lowest pressure will occur at the top of the ridge.
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k < =, so the second integral in (2.49) makes no contribution. Then

n(x, z) = [po/p(z)? Re[hmaf e—ka pilz pikz dk]
0

(2.54) |
— 12 g R —
| lpo/p(2)] ? e[—a + i(lz + kx)]
taking the real part
1/2 .

Po (acoslz — xsin lz)
2. =
( 55) 7)(-", Z) [p(z)] hma a2 + xZ .

This flow (shown in Fig. 3) is best described as a field of nondispersive
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Fi1G. 3. Buoyancy-dominated hydrostatic flow over an isolated two-dimensional ridge,
given by (2.56). The disturbance is composed of vertically propogating internal gravity
waves of the sort shown in Fig. 1b. The evident upstream tilt of the phase lines indicates
that disturbance energy is propagating upward away from the mountain. The maximum
wind speed and minimum pressure occur on the lee slope of the ridge. The mountain height
hyn = 1 km, the half-width ¢ = 10 km, the mean wind speed U = 10 m/sec, the Brunt-

Vaisala frequency N = 0.01 sec™, and the vertical wavelength L, = 2aU/N = 6.28 km.
(From Queney, 1948.)
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vertically propagating waves. The flow is periodic in the vertical so that
at z = «/l the streamline shape is the inverted ridge shape h(x) and at
z = 2/l the ridge is reformed upright. This is true for any ridge shape,
not just h (x) given by (2.50). The upstream tilt of the phase lines, which
we required of the individual Fourier components, is still very noticeable
in the composite flow. This asymmetry to the flow, which is associated
with the vertical propagation of wave energy, has a number of implica-
tions. From the distance between the streamlines in Fig. 3 it is apparent
that the wind speed is low on the windward slope of the ridge and faster
on the leeward slope. From Bernoulli’s equation, this requires a pressure
difference across the ridge—high pressure upwind and lower pressure
downwind. The primary reason for windward-side high pressure is the
thickened layer of dense cool air just above the mountain, but this in turn
is related to the radiation condition aloft.

The pressure difference results in a net drag on the mountain which
can be computed either as the horizontal pressure force on the mountain

* dh
(2.56) D= f P'(x,z=0)—dx
o dx

or equivalently, as the vertical flux of horizontal momentum in the wave
motion

(2.57) D = p(z)f u'w’ dx

For the bell-shaped mountain, the drag per unit length is (using 2.55 and
2.56)

(2.58) D=%p0NUhfn

This momentum is transferred to a level where the wave breaks down—
a process not included in the linearized model. Mountain wave drag is
discussed in more detail by Sawyer (1959), Eliassen and Palm (1960),
Blumen (1965), Miles (1969), and Bretherton (1969) among others. Direct
measurements of mountain drag using (2.56) or (2.57) have been at-
tempted by Lilly (1978) and Smith (1978a).

The increase in wind speed on the lee slope is an especially interesting
facet of the model. It has been invoked as an explanation for severe
downslope winds found occasionally in the lee of mountain ranges. Fre-
quently the strong lee-side winds are warm and dry, replacing colder air,
and in this case it is proper to call the wind a féhn or foehn (chinook is
the local name ir the northwest United States; it is called the Santa Ana
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in California). There has been a good deal of work concerning the rela-
tionships between the fohn, the downslope wind storm (these two are not
necessarily the same), and the generation of mountain waves. Descrip-
tions of the fohn phenomena can be found in Defant (1951), Stringer
(1972), Godske et al. (1957), Brinkman (1970, 1971), Holmes and Hage
(1971), and Beran (1967). The application of mountain wave theory to
this problem can be found crudely treated in Holmes and Hage (1971),
Beran (1967), and in more complete form in Vergeiner (1971, 1976) and
Klemp and Lilly (1975). Other theories of the generation of strong lee-
side winds, such as the hydraulic theories of Kuettner (1958) and Hough-
ton and Isaacson (1970) and the trapped lee-wave theories (see- Holmes
and Hage, 1971), appear to be less well founded—but will be discussed
later.

It is clear from the discussion above that the qualitative description
and interpretation of mountain wave theory hinges crucially on the use
of the correct radiation condition aloft. In 1949, R. Scorer wrote what is
now considered to be a classic paper describing the physics of trapped
lee waves (a subject that will be treated later in this review). As a sidelight
to his treatment he computed the vertically propagating wave field—just
as we have done here—but using an incorrect radiation condition. In the
controversy that followed (see Scorer, 1958; Corby and Sawyer, 1958;
Palm, 1958a) the physical arguments of Lyra (1943) and Queney (1947)
involving friction, of Palm (1958a) concerning the approach to steady state,
and of Eliassen and Palm (1954, 1960) concerning the vertical flux of
energy, clearly carried the day. The use of the radiation condition pro-
hibiting downcoming energy is now standard among researchers of this
subject. Unfortunately there is still some confusion on this point among
researchers in other fields who wish to use the results of mountain wave
theory. One of Scorer’s (1949) figures, showing downstream (and there-
fore incorrect) phase line tilt has been reproduced in reviews such as
Queney et al. (1960), Vinnichenko er al. (1973), Kozhevnikov (1970),
Stringer (1972), and Scorer (1978). Confusion on this point is also evident
in studies of the fohn (Beran, 1967; Holmes and Hage, 1971), orographic
rain (Atkinson and Smithson, 1974), and blocking (Scorer, 1978). Re-
cently the wider understanding of the concept of group velocity and the
favorable comparison of theoretical solutions with numerical and labo-
ratory experiments have eliminated most of the remaining confusion.
Scorer (1978), however, seems to cloud the issue by discussing the ra-
diation condition as if it were only one of several equally plausible
choices.

The calculation of the inverse Fourier integral (2.49) for the solution
of stratified flow over a bell-shaped ridge is more difficult in the case of
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al ~ 1. In this case buoyancy forces are important but they do not
dominate to the extent that the flow can be considered hydrostatic. This
problem has been studied in detail by Queney (1947) using the asymptotic
properties of Bessel functions and by Sawyer (1960) using numerical
integrations. In this section we will apply directly the asymptotic tech-
nique of stationary phase to determine the nature of the flow far from
the mountain.

The second integral in (2.49) containing the evanescent components
will rapidly tend to zero as z — o« because of the exponential decay of
the integrand. At large | x | this integral will again tend to zero as the
rapid oscillations in e’** will cause cancellation of the contributions from
the different wave numbers. The same kind of cancellation will occur in
the first integral in (2.49) with one important difference. This integral can
be written as

(2.59) 1 =f h(k)e'®® dk
0

where the phase function

(2.60) b(k) = (I* — k®¥)'"*z + kx

For the most part, with either large | x | or z, ¢ (k) is a rapidly varying

function, but there is an obvious exception to this. Taking

o —kz

= 4+ =
ak ([2_ k2)1/2 X 0

(2.61)

shows that ¢ (k) is approximately constant in the region near k* defined
by (2.61)

2 __ *231/2
(2.62) z_ - MH7
X kq.

Thus, far from the mountain, at any specified point (x, z), there i1s a
range of wave numbers near k* given by (2.62), whose contributions to
the disturbance will not cancel themselves out. The noncanceling wave
number k* is constant along a straight line with slope given by (2.62),
emanating from the origin where the mountain is located. The physical
interpretation of this is that waves of that wave number & * are generated
by the mountain and are propagating away in the direction given by
(2.62). Note from (2.62) that as z > 0, kK > 0 waves will only be found for
x > 0, that is, downstream of the obstacle. To evaluate the integral (2.59)
we expand ¢ (k) in a Taylor series near £~

(2.63) (k) = d(k*) + b ck®
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where kK = k — k*. The only contribution to the integral (2.59) comes
from k near k* so approximately

Qo) 1= hk) expliok")] [ expl(i/2)6 wk?] dk

The definite integral in (2.64) can be simplified by the change of variable
(this is equivalent to using the method of steepest descent)

o 1/2’\
(2.65) B = <—2-' qbkk) k
with the result that
I = }'I(k*)eidﬂk") \/;
(2 66) [(_i/2)¢kk]1/2
' e O N
RN YW
then
Q.67 nx 2) = [po/p(2)]7 Re| K pioun(y )
(b i)'

together with (2.45), (2.62), and ¢y = —1%z/(1* —k*?)3* | For the sym-
metric bell-shaped ridge (2.50), (2.67) becomes

172 2 *2)3/2 1/2

_ _[_ro e [ (2= K72

n(x, z) [p(z)] (27) [ = h.a.
e %" cos [ (17 = k**)'2z + k*x — %]

(2.68)

with k*(x, z) given by k* =1/[(z/z)? + 1}'2. This approximate form is
not useful near the mountain or directly above the mountain (large z/x
and small k*) because of the assumptions used to obtain (2.68). It does
however clarify the nature of the nonhydrostatic waves which trail behind
the vertically propagating hydrostatic waves discussed earlier in the al
> 1 case (see Fig. 3). As we look up along a sloping line of fixed z/x we
find waves of constant wave number and decreasing amplitude. As we
look further downwind at a given level (fixed z, decreasing z/z) we find
shorter waves with k approaching [ (i.e., = 27 U/N). The upstream tilt
of the phase lines is obvious just as it was for the long hydrostatic waves,
but the tilt decreases as we move downstream to shorter waves. The
decrease in wave amplitude with height 1/4/z is associated with the fact
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rhat the wave energy is progressively dispersed over a wider horizontal
area.

These results are consistent with the concept of group velocity. In a
stagnant stratified fluid the dispersion relation for (time varying) internal
gravity waves is (see, for exampile, Turner, 1973)

(2.69) a?— N2k%/| k|3, | k| = (k* + m®)1?
where o, &, m are the frequency and horizontal and vertical wave num-
bers. The horizontal phase speed 1s

(2.70) Cp, = FN/| k|

and the group velocity, which describes the direction and efficiency of
wave energy propagation, is

> /! N Nk2\ . Nkm
.71 T = F + |+ k
270 €% +(|kl Ikl3)' E

In the study of steady mountain waves we are interested in the waves
that first, have a component of their group velocity directed upward
away from the mountain and second, have a phase velocity (relative to
the fluid) equal and opposite to the mean flow U (see Fig. 4). Only in
this way can the waves stand steady against the stream. This second
condition requires that

(2.72) Cp. =-U

F1G. 4. A diagram illustrating the nature of steady mountain waves. The upstream phase
speed of the wave is exactly equal and opposite to the freestream speed. The wave energy
propogates upward and upstream relative to the air, but is advected into the lee by the
mean wind. Relative to the mountain, the disturbance energy propagates upward and
downstream.
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With this choice, and going into a mountain fixed reference frame, the
vertical and horizontal components of the group velocity become

k
(2.73) U— and U—
m

The ratio of these two expressions is the slope along which a packet of
waves produced at the mountain would propagate

(2.74) slope = m/k

and using m =(I2 — k%) this is exactly what was derived using the
method of stationary phase (2.62). The purpose of the preceding analysis
was to give a physical interpretation to the train by nearly periodic waves
found aloft (Fig. S). It is appropriate to consider these as a “‘dispersive
tail’’ of nonhydrostatic waves with k less than, but not much less than
l. If the mountain is too broad and smooth to create any of these shorter
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F1G. 5. The flow over a ridge of intermediate width (al = 1) where the buoyancy forces
are important, but not so dominant that the flow is hydrostatic. The dispersive character
of the nonhydrostatic waves (k less than, but not much less than N/U) is evident as they
trail behind the ridge. Parameters are as in Fig. 3 except a = 1 km. (From Queney, 1948.)
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where the parameter /2(z) decreased rapidly with height, the atmosphere
could support a new kind of mountain wave—the trapped lee wave or
resonance wave. This realization triggered a decade of active theoretical
research on the effect of [? variations and provided a framework for
understanding the atmospheric observations.

As before, we consider the equation governing the field of vertical
motion w(x, z) =[po/p(z)]'?W(x, z)

(2.75) Wop + W+ 1220 =0
with

N2 U
2.76 12(z) = —= - ==
(2.76) (2) T,

and use the Fourier representation

oc

2.77) wix, z) = Ref w(k, z)e** dk

0
Then w must satisfy

(2.78) W+ [12(z) — k2w =0
The linearized lower boundary condition is
(2.79) w(k, 0) = ikU oh(k)

where A (k) is the Fourier transform of the mountain shape. We wish to
consider waves that do not propagate vertically but instead obey the
upper boundary condition

(2.80) w(k,z)—>0 as z—>w®
Combining (2.77) and (2.79) gives

w(k, z)

ikxr k
k0 ¢

1/2 )
_| Po . ~
(2.81) w(x, z) = [p(z)] Ref0 ikU gy h(k)

where ratio w(k, z)/w(k, 0) is to be determined from (2.78) and (2.80).
In general, with a nonconstant /%(z), w(k, z) is so complicated that it is
impossible to perform the integral (2.81) exactly. Nonetheless it is still
possible to obtain an expression for the flow far from the mountain by
using asymptotic techniques. In fact we can proceed quite far without
having to specify the mountain shape 4 (x) or the structure of the incom-
ing atmosphere N (z), U(z). According to the Riemann-Lebesgue lemma
the integral (2.81) will go to zero as x — « if the kernel is well behaved.
It follows that the only nonvanishing disturbance as x — © must come
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from portions of the integral nearby to where w (k, 0) = 0. Just as in the
previous section, this allows (2.81) to be approximated by

1/2
wix, z) = [ Po ] Re [ianofz(kn) explik nx) W(k,, z)
(2.82)
1

p(z)
dw N = exp(ikx) :
(ak k) f_m k dk]

where k, is any of the special wave numbers such that

(2.83) w(k, 0)=20

and nearby to k,, w(k, 0) has been expressed as a Taylor series
aw

2.84 v(k,0) =0+ —

(2.84) wi(k, 0) ik |

n

with & = k — k,. The integral in (2.82) can be evaluated by closing the
path of integration at infinity and then computing the residues of the
singularities inside. For x > 0 the contributions from the extended path
will vanish if the path is taken upward enclosing the first and second
quadrants. For x < 0 it must go downward enclosing the third and fourth
quadrants. The final result can now be seen to depend crucially on
whether the integral path along the real axis is taken just over or just
under the singularity at k,. The former choice will result in waves up-
stream of the mountain and none downstream. The latter choice will put
all the waves downstream. Scorer correctly chose to put the wave down-
stream, and the physical basis for this choice will be discussed shortly.
We have then, at large | x |

(2.85) w(x,z)=0 upstream

1/2
_ 1 Po
(2.86) wix,z)= [p(z)]

W

- Re[ ik Uoh(ky,) exp(ik,x)w(ky, z)( >— 27ri]
. kn

ok

. downstream
or taking the real part

w(x,z>={—[p‘z;’)] 2wuokn(%" ) |iz(kn>|}
kﬂ

- wiky, z) - cos(k,x + @)

1/2

(2.87)
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where

(2.88) | (k)| = [h(kn) - h(k,)*]"
The phase angle ¢ given by

(2.89) ¢ = —tan~'(h,/h,)

is zero if the mountain is symmetric making / (k,) real.

The contributions to the amplitude (i.e., term in braces) in (2.87) are
physically clear (see Corby and Wallington, 1956) except for the (9w/
dk) factor. This term can be reexpressed by multiplying (2.78) both for
k and k,, by w(k,) and w(k), respectively, and integrating from z = 0
to ». Integrate by parts once, subtract the two equations, and take the
Iimit as k — k, to obtain

Iw, ) 3 “w2(k,, z) dz
2.90 = 3 8 = —_
( ) ok k, 2k, z o (Bw/oz 'z=0)2

In this way the sensitivity of the airstream to topographic forcing from
below is represented solely in terms of w (kn, z). Computational experi-
ence has shown (see Smith, 1976) that the length z is roughly the distance
from the ground to the height where the lee-wave energy is concentrated,
which in turn is close to the level of maximum [2(z). Thus lee waves
associated with a stable layer near the ground are sensitive to topographic
forcing. Other interpretations of z are also possible.

The remaining part of the theoretical lee-wave problem is the deter-
mination of the lee-wave wavelength (or k) and the associated vertical
structure function W (k,, z). The simplest cases in the literature are the
two-layer model of Scorer (1949), the Couette linear shear flow model
(I ~ 1/z) of Wurtele (see Queney et al., 1960), the exponential model
(I ~ %) of Palm and Foldvik (see Foldvik, 1962), and the sharp inversion
case (see, for example, Smith, 1976). With the advent of computers,
more realistic [*(z) profiles can be treated (see Sawyer, 1960; Vergeiner,
1971; Smith, 1976).

Theoretically there is one obvious requirement for the existence of true
trapped lee waves. Looking at (2.78) we note that at any level where k
> [ the vertical accelerations dominate over the buoyancy forces and the
function w(k, z) will behave exponentially. Conversely, where k < [,
buoyancy dominates and w (k, z) will be trigonometric—always curving
back toward zero. If k < [ at high levels, the upper boundary condition
Ww(k, ©) = 0 cannot be met as the solution will continue to oscillate.
If kK > [ at all levels, the exponential form of the solution cannot satisfy
the w(k, z) = 0 condition at both z = 0 and z = «. Thus the necessary
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(but not sufficient) condition for a wave number k to be a k, with w (k,,
0) = 0, is that k2 > [2(z) aloft but k% < [%*(z) over some lower levels.
This is the basis for Scorer's condition for the existence of lee waves,
namely, 12(z) decreasing strongly alo ft. In practice this is associated
with [looking now at (2.76)] a strongly stable layer in the low atmosphere
and/or strongly increasing wind speed with height.

There are two helpful ways to think about lee waves. The first is to
consider the analogy with the standing waves found downstream of an
obstacle in a running river or stream. The stable air-water interface is
equivalent to the stable layer required by lee-wave theory. With this
analogy in mind we can attempt to understand why the waves are found
only downstream of the obstacle. Just as in the vertically propagating
waves, the key is to consider the obstacle as the source of the wave
disturbance. For water waves it is known that the phase velocity (i.e.,
speed of crest motion) is greater than the group velocity (rate of energy
propagation). Now in a standing wave the phase velocity must be equal
in magnitude and opposite in direction to the mean stream U. It follows
that the speed U will be greater than the group velocity and the transport
of wave energy will be dominated by the advection due to the mean
velocity U. Then, with the obstacle acknowledged as the source of the
wave energy, the wave energy must be found downstream. Note that this
last result is not universally true. Some types of wave motion, for ex-
ample capillary waves on the surface of a liquid, have a larger group
velocity than phase velocity, and standing waves of this sort will be
found upstream of the obstacle.

Another way to help understand the lee wave is to consider the move-
ment of wave packets in an atmosphere with a decreasing [%(z) (see
Bretherton, 1966). In the stable lower atmosphere the generated wave
(with k2 < [?) propagates up and to the right as discussed before. Even-
tually it reaches a level where k% > [2. The wave cannot propagate in
such a region, and the wave energy is totally reflected back toward the
Earth. The wave energy bounces up and down between the ground and
the low /%(z) region aloft, forming a standing wave pattern in the vertical
(i.e., no phaseline tilt).

Both the vertically propagating waves and the trapped lee waves can
occur together. An example of this is shown in Fig. 7. The clear distinc-
tion between these two wave types begins to fade as we consider atmos-
pheres with more complicated structure. Two examples of mountain
waves with intermediate qualities were found in the solutions of Sawyer
(1960), and both of these are associated with the presence of a stable
stratosphere aloft. If /2 in the stratosphere is greater than anywhere
below, Scorer’s criterion cannot be satisfied and trapped lee waves, in
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‘he strict sense, are impossible. Still, if there is a thick middle-upper
tropospheric layer with small [? above a stable layer, it is possible to
have a partially trapped or ““leaky’’ jee wave with a structure very similar
1o that obtained without a stratosphere (see Corby and Sawyer, 1938;
Bretherton. 1969). Such a wave will. however, decay slowly downstream,
and in the stratosphere the disturbance will have the form of a small-
ampiitude vertically propagating wave with a nonzero energy flux. Math-
ematically the singular wave number &, has moved slightly off the real
axis. and this ailows for the decay downstream and for the vertical
propagation of wave energy through the low {* middle-upper troposphere.

The second way in which a stratosphere can result in a wave with
intermediate characteristics does not require a low-level stable layer. If
the change in stability across the tropopause is abrupt, a vertically prop-
agating wave will be partially reflected back toward the Earth. The
reflected wave energy wiil continually rebound between the Earth and
tropopause, losing a certain fraction of its energy each time, because the
downward reflection is only partial. If this process occurs in the disper-
sive part of the spectrum (i.e., 2 ~ J?) the result will be a periodic-
looking lee wave which decays downstream.

2.2.5. Other Effects of Variable [*(z). One effect of [2(z) variation
has been described in the previous subsection—the trapping of waves in
a high 2 waveguide. Others will be considered in this subsection.

If the Scorer parameter i%(z) is a slowly varying function of z, then we
can expect to find a solution to (2.78) in the form

(2.91) wik, z) = a(k, z)e®*?

where ¢ is the phase function and a (k, z) is a slowly varying amplitude
function (Bretherton, 1966). Substituting (2.91) and (2.78) gives, for the
rapidly varying part

(2.92) —a- ¢+ [1%(z) — k*la =0

or

(2.93) ok, 2) =f [12(z") — k*]'* dz
0

Fi1G. 7. The flow over a ridge where the background wind speed and stability vary with
height. High above the mountain, the disturbance is composed of vertically propagating
waves with tilted phase lines as in Fig. 5. In the lower atmosphere, trapped lee waves are
evident extending well downstream. These waves have no phase line tilt. Trapped lee
waves occur in this case as the Scorer condition—that [2(z ) decrease strongly with height—
is satisfied by the incoming flow. (From Sawyer, 1960.)
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and for the slowly varying parts

(2.94) 2a,6,+ ad,. =0
or
(2.95) atd, = a*[l1*(z) — k?]'? = const
For long hydrostatic waves the above relations are simplified to
(2.96a) d(2) =f I(z') dz’
0
and
(2.96b) a?l = const

An alternative way to derive these relationships is to use the result of
Eliassen and Palm (1960) that the vertical flux of energy is proportional
to U(z), together with the expression for the energy flux in a upward-
going wave in a uniform medium [see the expression for the group ve-
locity (2.71)]. From this second derivation, the special characteristics of
the slowly varying medium are more clearly revealed. Locally, the wave
must behave as it would in a uniform medium, and the changes in /2 must
be so gradual that no down-going waves are produced by reflection. A
further condition for the validity of (2.96) is that [2 > k2 everywhere. If
I* drops below k2, strong reflection (and trapping) can occur even though
I* is slowly varying. The solution in the neighborhood of these /2 = k?
"“turning points’’ can be expressed in terms of Airy functions.

Qualitatively [from (2.96b)] the amplitude of the vertical velocity a in
a mountain wave is reduced in regions of strong static stability (e.g., the
stratosphere) and increased in regions of high wind speed (e.g., the jet
stream). The amplitude of the vertical displacement [~a/ U(z)] is reduced
in regions of high wind speed as the fluid particles spend less time in the
updraft and downdraft regions. This behavior is evident in the measure-
ments of streamline patterns over the Rockies by Lilly and Zipser (1972).
The wave activity appears strong above and below the jet stream and
weakest in the jet core, in spite of the fact that the vertical energy flux
1s largest there.

When appreciable changes in /2(z) occur over a height comparable or
smaller than a vertical wavelength, partial reflection will occur. Eliassen
and Palm (1960) computed the fraction of energy reflected by discontin-
uous changes in /2. Blumen (1965) and Klemp and Lilly (1975) have
shown how partial reflections from the tropopause can considerably alter
mountain drag and the severity of the lee side downslope winds. These
phenomena will either be amplified or attenuated depending on the height
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to the tropopause in relation to the vertical wavelength of the mountain
wave.

A most interesting and important situation occurs when the component
of the mean wind perpendicular to the ridge [i.e., U(z)] reverses above
some height z = D. Near z = D the mean wind U (z) approaches zero,
sending the Scorer parameter to infinity. Booker and Bretherton (1967)
were able to show that a small-amplitude wave would be absorbed at
such a critical level if the local background Richardson number were
large. Bretherton ef al. {1967) showed experimentally that little, if any,
wave energy reaches the region of reversed flow aloft. Jones and Hough-
ton (1971) compute the time development of the mean flow as it is
influenced by the absorption of wave momentum. The acceleration of the
mean flow near z = D appears to decrease the Richardson number
locally. Breeding (1971) and Geller er al. (1975) have studied the local
structure of the critical levels. Their results. and the estimates of Smith
(1977) using the “slowly varying™’ solutions (2.96), suggest that nonline-
arity may be important at or just before the critical level even if the
incident wave is of smail amplitude. The possibility of getting significant
reflection from a critical level was suggested by Breeding (1971), and this
has been confirmed by the numerical experiments of Klemp and Lilly
(1978). This whole issue must be considered unsolved, and the simple
results of Booker and Bretherton (1967) cannot be accepted yet as rep-
resentative of real flows.

2.3. Observations of Mountain Waves

There have been a large number of observations of mountain waves
and in particular lee waves. Reviews of some of these observations can
be found in Queney et al. (1960), Nicholls (1973), Musaelyan (1964),
Vinnichenko et al. (1973), and Yoshino (1975). A partial list of some of
the most easily available studies is given in Table 1.

A number of authors have attempted to verify aspects of linear theory
by comparison with observations. In regard to lee waves, the use of
Scorer's criterion has proved successful, at least in a statistical sense,
for predicting the occurrence of lee waves. On a case-to-case basis,
however, there are still many discrepancies. The lee-wave wavelength
has been used as a basis of comparison by many authors (see Corby,
1957; Corby and Wallington, 1956; Wallington and Portnall, 1958; Saw-
yer, 1960; Foldvik, 1962; Pearce and White, 1967; Berkshire and Warren,
1970; Vergeiner, 1971; Smith, 1976; Cruette, 1976). Such comparisons
have been generally successful but not completely convincing because
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TABLE I. OBSERVATIONS OF MOUNTAIN WAVES

Lee Waves
England
Corby (1957)
Cruette (1976)
Foldvik (1962)
Manley (1945)
Starr and Browning (1972)

United States (Appalachians)
Colson et al. (1961)
Fritz (1965)

Fritz and Lindsay (1964)
Lindsay (1962)
Smith (1976)

(Cascades)

Fritz (1965)

(Rockies)

Vergeiner (1971)
Vergeiner and Lilly (1970)

(Sierras)

Holmboe and Klieforth (see Queney er al. 1960)
Nicholls (1973)

Viezee et al. (1973)

Scandinavia
Dé6s (1961)
Foldvik (1954)
Larrson (1954)
Smirnova (1968)

Alpine Region and France
Cruette (1976)
Forchtgott (1957, 1969)
Gerbier and Berenger (1961}
Kuettner (1958)

South America
Do66s (1962)
Fritz (1965)
Sarker and Calheiros (1974)

Soviet Union
Kozhevnikov er al. (1977) the Urals
See Vinnichenko ef al. (1973)

Middle East and India
De (1971)
Doron and Cohen (1967)

Mars
Leovy (1977)

(continued)



THE INFLUENCE OF MOUNTAINS ON THE ATMOSPHERE 119

TaBLE I.— Continued

Larger Scale Vertically Propagating Waves
United States (Rockies)
Lilly er al. (1974)
Lilly and Kennedy (1973)
Lilly and Lester (1974)
Lilly (1978)
For other areas in the United States see Nicholls (1973)

Canada (Rockies)
Lester (1976)

Orographic Clouds (in General)
Conover (1964)
Hallet and Lewis (1967)
Ludlam (1952)

the lee-wave wavelength seldom varies by more than a factor of two or
three (i.e., 6 km to 20 km) and it is always difficult to obtain a [%(z)
profile at the same place and time of the lee-wave observation. The
general tendency for the wavelength to increase with wind speed has
been confirmed by observation (see Corby, 1957; Sawyer, 1960; Fritz,
1965: Cruette, 1976) and is now being used to estimate wind speed from
satellite pictures of lee-wave clouds. Trains of lee-wave clouds have also
been observed behind craters in the atmosphere of Mars and may even-
tually be used to estimate the wind speed and stability of that atmosphere.

The comparison of predicted and observed lee-wave amplitudes 1s
more difficult. The prediction requires knowledge of the size and shape
of the mountain that is generating the wave, and in mountainous terrain
this is not always obvious (see Smith, 1976). The empirical estimation of
lee-wave amplitude cannot normally be done from wave cloud observa-
tion alone, but requires direct aircraft or balloon measurement. Such a
comparison has been completed by Holmboe and Klieforth (see Queney
et al.. 1960), Vergeiner (1971), Foldvik (1962), and Smith (1976). The
first two of these studies concerned very large mountains (Sierra Nevada
and Front Range) where the linear theory would not be expected to hold.
Foldvik studied the waves over complex terrain, and the wave source
could not clearly be identified. Smith measured the waves produced by
a low straight section of the Blue Ridge in the Appalachians, and reported
amplitudes four times larger than theoretically predicted. This discrep-
ancy is confirmed in the laboratory and explained by the early onset of
nonlinearity in [2(z) profiles with thin, strongly stable layers.

Certainly the most extensive measurements of the longer, vertically



120 RONALD B. SMITH

propagating waves are those by Lilly and collaborators (1973, 1974, 1978)
in the Rocky Mountain Front Range region. Using aircraft measurements
(Fig. 8), the qualitative predictions of linear theory—that is, penetration
of the disturbance to great height, forward tilt of the phase lines, down-
ward flux of momentum—have been confirmed. Some observations of
the breakdown of waves to turbulence have also been described. The
great vertical extent of the disturbance is also evident in the formation
of orographic cirrus (Ludlam, 1952) and mother-of-pearl clouds (Hallet
and Lewis, 1967). The outstanding qualitative questions concern the
degree to which the flow is two-dimensional and steady and the degree
of upstream low-level blocking. The question as to the steadiness and the
three-dimensional structure of the wave field can now be treated using
the remote sensing methods of Reynolds et al. (1968), Starr and Browning
(1972), and Viezee et al. (1973).

The theory of mountain waves also predicts mountain drag. Lilly and
Kennedy (1973) have indirectly measured this drag by computing the
vertical flux of momentum in the observed waves. They find that during
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Fic. 8. Cross section of the potential temperature field (K) along an east-west line
through Boulder, as obtained from research aircraft on 11 January, during a downslope
windstorm in Boulder. To the extent that the flow is steady and adiabatic, these isentropes
are good indicators of the streamlines of the air motion. Note that while the predicted
vertically propagating nature of the disturbance is evident from its great vertical extent and
from its tilted phase lines, the amplitude is much larger than predicted from linear theory
(see Fig. 3). (From Lilly and Zipser, 1972.)
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severe downslope wind events, the mountain drag on the Colorado Front
Range can be an appreciable fraction of the total surface drag around the
Earth in a latitude belt. Direct measurements of mountain drag have
recently been accomplished (Lilly, 1978: Smith, 1978) by recording the
surface pressure on each side of a mountain.

2.4. The Three-Dimensional Flow over Isolated Hills

2.4.1. Three-Dimensional Vertically Propagating Waves. All of the
foregoing discussion has been concerned with the two-dimensional prob-
lem of flow over an infinitely long ridge. Most mountains on the Earth,
however, are of a more irregular shape, and even the naturally occurring
long ridges do have finite length. Furthermore it appears that there may
be some fundamental theoretical differences between the two- and three-
dimensional flows. Thus for both practical and theoretical reasons, we
must attempt to understand the three-dimensional mountain flow prob-
lem. There has been much less theoretical and experimental work on the
three-dimensional mountain wave problem, and at the present time there
are still a good many unanswered physical questions.

One approach to the problem has been to extend the small-amplitude
linearized theory to three dimensions. This approach has been used by
Wurtele (1957), Scorer (1956), Crapper (1959, 1962), Trubnikov (1959),
and Blumen and McGregor (1976) to study the orographic disturbance :n
an atmosphere with little vertical structure. Probably the most straight-
forward analysis is the study of Wurtele (1957; see also pp. 88-91 in
Queney et al., 1960). The field of vertical velocity w(x, y, z) is written
as a double Fourier integral according to

(2.97) w(x, v, z) = Re ff wik, I, z)e!**+¥ dk dl

For the case of constant Scorer parameter k, = N/U
(2.98) wik, 1, z) = w(k, 1,0)e'™

where magnitude of the vertical wave number m is given by

ket

m? = 2 (k2 — k?)

and the correct sign is chosen to prevent downward radiation; sgn(m)
= sgn(k). As in the two-dimensional theory, the vertical velocity near
the ground can be written in terms of the mountain profile z = h(x, y)
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according to
(2.99) w(x,y,z=0)= U(h/ox)

Waurtele simplified his problem by choosing topography in the form of
semi-infinite plateau of height & with narrow width 2b in the cross-flow
(i.e., *y"’) direction. In this case the vertical velocity vanishes near the
ground except near the origin x = y = 0 and

(2.100) w(x, y,z=0)=2Uhb &x) 8(y)

Even with this choice, the integral (2.97) is still intractable, and Wurtele
resorts to the method of stationary phase to investigate the region far
from the mountain; kx, k,y, k¢z all large. At the level kz = 2, the
theory predicts that the regions of updraft take on a horseshoe shape and
are located some distance downstream of the mountain. Wurtele points
out the relationship between this result and the observation of horseshoe-
shaped wave clouds in the lee of Mt. Fuji (Abe, 1932).

Crapper (1959, 1962) has extended the work of Wurtele by allowing
for more realistic mountain shapes but is again forced to use asymptotic
techniques which are valid only in the far field of flow. Crapper (1962)
finds that the nature of the far-field flow depends in an intricate way on
the presence of curvature in the mean velocity profile, but no clear
physical explanation for this is evident. Trubnikov (1959) has a similar
approach to the three-dimensional mountain flow problem, but his results
are expressed only formally, in terms of unevaluated integrals. Scorer’s
(1956) solutions for the stratified flow over an isolated mountain should
probably be disregarded as the incorrect radiation condition was used.

One fundamental difference between the two- and three-dimensional
problems is the direction in which wave energy propagates away from
the mountain. It was shown earlier that in two dimensions, as the moun-
tain becomes wider and the flow more nearly hydrostatic, the gioup
velocity (relative to the mountain) becomes directed vertically with the
result that the wave energy is found directly above the mountain. This
result does not carry over to three dimensions. Some of the hydrostatic
waves generated by an isolated mountain lie downstream of the mountain
and to the side, tending to form trailing wedges of vertical motion. This
is shown in Fig. 9.

2.4.2. Three-Dimensional Trapped Waves. The three-dimensional
problem, just like the two-dimensional problem, changes considerably
when the Scorer parameter decreases with height rapidly enough to
permit the existence of trapped lee waves. This situation was first studied
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by Scorer and Wilkinson (1956) and later by Palm (1958), Sawyer (1962),
Crapper (1962), and more recently by Gjevik and Marthinsen (1977).

The three-dimensional development of trapped waves in the atmos-
phere is similar in many respects to the occurrence of surface waves
behind a ship moving in calm water. The wave pattern is generally
contained within a wedge with apex at the mountain. The waves within
the wedge are of two types. The transverse waves lie approximately
perpendicular to the flow direction and physically are composed of waves
that have attempted to propagate approximately into the wind but have
been advected to the lee. These waves are analogous to the trapped lee
waves found in the two-dimensional problem. When, for example, the
wind is faster than the phase speed of the fastest trapped wave, lee waves
disappear in the two-dimensional problem and the transverse waves will
disappear from the three-dimensional problem.

The other type of wave—the diverging wave—has crests that meet the
incoming flow at a rather shallow angle. These crests are composed of
waves that have not attempted to buck the stream but have propagated
laterally away from the mountain and have been advected into the lee.
At high wind speeds these waves continue to exist and respond only by
aligning their wave crests more closely with the free stream direction in
order to keep their upstream phase speed equal to the free stream veloc-
1ty.

Both types of waves are evident in Fig. 10 which shows the cloud
patterns associated with flow past Jan Mayen.

2.4.3. Three-Dimensional Flow at a Low Froude Number. Another
approach to the problem of stratified flow past an isolated three-dimen-
sional mountain is to consider the limit of very slow speeds and strong
stratification so that the Froude number

(2.101) Fr=U/(N-L)

is small. Intuitively it is clear that in this limiting situation there will be
little vertical motion and the fluid particles will deflect horizontally to
move around the mountain while remaining in horizontal planes. As the
Froude number is increased, vertical deflections will occur, and Drazin
(1961), using an expansion in Fr, has devised a method of computing
these vertical deflections. According to Drazin, the cause of the deflec-
tion is the vertical difference in the pressure field associated with the
two-dimensional potential flow occurring in each horizontal plane. On an
object with fore-aft symmetry, the potential flow pressure field will be
symmetric (i.e., high pressure of the front and back, low pressure on the
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Fi1G. 9. The buoyancy-dominated. hydrostatic flow over an isolated mountain with cir-
cular contours [A(x, y) given by (3.19)]. (a) The topographic contour of the mountain (solid
lines) and the surface pressure field (dashed lines) C, = p’'/pUNhy = —u'/Nhq. (b)-(e)
Contours of the vertical displacements of the isentropic surfaces at the heights Iz = 7/8,
w/4, w/2, 7, determined by evaluating (2.97) numerically using a two-dimensional Fast
Fourier Transform algorithm. (f) A schematic representation of the disturbance far from
the mountain at [z = 2, determined by asymptotically evaluating (2.97) using the method
of stationary phase. The wave crests and troughs (solid lines) point back at the mountain,
while the wave energy at each level is confined to the region near the parabola y* =
(kR ,z)x (shown dashed). This parabola becomes progressively wider at higher levels.
(From Smith. 1980.)
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sides), and this is also true of the vertical deflection computed by Drazin’s
method. Riley er al. (1975) have checked these theoretical predictions in
the laboratory by slowly towing obstacles through a stratified fluid. They
find that as soon as the Froude number is increased enough that vertical
deflections are noticeable, those deflections are strongly asymmetric.
Slight lifting is observed upstream and strong sinking in the lee.

There are two possible explanations for this discrepancy between the-
ory and experiment. Riley ¢r al. suggest that one should take into account
the fact that in a slightly viscous fluid the potential flow solution is often
replaced by separated flow with low pressure in the lee. The lee-side low
pressure causes drag on the obstacle (the resolution of D’Alembert’s
paradox) and in the stratified model would cause a drawing down of flow
surfaces in the lee. The other explanation is just to realize that the
laboratory observation is qualitatively consistent with the predictions of
linear theory for inviscid flow over small-amplitude topography, as dis-
cussed earlier. In that case the lee-side low pressure and downward
deflection are associated with the generation of mountain waves and
wave drag. The inviscid wave drag mechanism is not described by Dra-
zin's Froude number expansion. One way to explain this is to note that
mathematically the drag turns out to be exponentially small for small
Froude number and thus cannot be described by a power series expan-
sion. Alternatively, note that while the full equations can describe wave
motion, the equations generated from the expansion in Froude number
cannot.

There is one other interesting phenomenon that can occur when the
Froude number is low—the periodic shedding of vortices. The resulting
vortex ‘‘streets’’ have been observed in the cloud patterns downstream
of isolated islands. This subject has been reviewed by Chopra (1973). For
more recent work on this phenomena the reader can refer to descriptions
and laboratory results of Brighton (1978).

Recently there have been a number of attempts to model numerically
the three-dimensional flow over and around mountains, for example,
Onishi (1969), Zeytounian (1969), Vergeiner (1975, 1976), Danard (1977),
Mahrer and Pielke (1977), Warner ¢t al. (1978), and Anthes and Warner
(1978). A detailed description of the techniques and results of the studies
would take us too the far afield—especially so because for the most part
(1) the numerical models are full of complex and interrelated parameter-
izations: (2) the boundary conditions are not the same as in the theoretical
studies: and (3) little attempt has been made to compare the numerical
results with the earlier theoretical results. Still there seems to be rapid
progress occurring which soon will make an impact on our understanding
of three-dimensional stratified flows.



2.5. Large-Amplitude Mountains and Blocking

The earlier discussion in this section has been based on the assumption
that the linearized equations of motion give a satisfactory description of
the flow. This assumption may seem to gain some support from the fact
that most of the Earth’s terrain features are rather gentle, that is, with
small slope (h/L). In a stratified fluid, however, there are length scales
other than the mountain width (L) with which the mountain height (h)
can be compared. It turns out that linear theory begins to break down
when h becomes comparable to either the inversion height, if one exists,
Or in a continuously stratified atmosphere, the vertical wavelength of
hydrostatic disturbances \, = 20 U/N. In practice this usually means
that any mountain greater than 0.5 to 1.0 km in height will produce
disturbances too large for linear theory, even if the slope of the surface
1s quite small. The breakdown of linear theory is significant because it
may be associated with new phenomena, for example, wave steepening
and breaking and possibly blocking—the stagnation of low-level air ahead
of the mountain. The present discussion of finite amplitude effects will
be brief and rather cursory. This is partly because there have already
been a number of reviews of this subject (Yih, 1965; Miles, 1969; Gutman,
1969; Kozhevnikov, 1970; Long, 1972) and partly because many of the
available studies are of questionable relevance due to either a restriction
to two dimensions or the imposition of a rigid-lid upper boundary con-
dition.

The recent interest in finite-amplitude mountain waves originated with
the three papers of R. R. Long (1953, 1954, 1955). In the first and third
of these papers, Long discussed the steady flow of an incompressible,
continuously stratified fluid and pointed out that there is a special class
of upstream profiles for which the governing equations become exactly
linear. The simplest of these cases is when the dynamic pressure $p U2
and the vertical density gradient dp/dz are constant with height. Within
the accuracy of the Boussinesq approximation this reduces to the case
of constant wind and stability which was studied earlier using linear
theory (e.g., Queney, 1947). This special case, together with the belief
that the upstream flow can be specified a priori, constitutes “*Long’s
model.”” Long’s approach has been extended by Yih (1960) to widen the
class of exactly linear flows and by Claus (1964) to allow compressibility,
but most interest has centered on obtaining solutions for Long’s simplest
case. The difficulty here is that while the equation for the interior motion
is of a simple type, the boundary condition at the mountain surface is
still of a difficult nature. Long (1955) obtained solutions using an inverse
method and compared the theoretical derived flow fields with laboratory
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observation. The agreement showed by Long stands as one of the cor-
nerstones of the subject even though the rigid upper lid, used in his
experiments and theory, prevents direct application to the atmosphere.

The rigid-lid problem, however, has continued to receive considerable
attention as a fundamental problem in fluid mechanics (Yih, 1960; Drazin
and Moore. 1967: Grimshaw, 1968; Davis, 1969; Benjamin, 1970; Segur,
1971: Mclntyre, 1972: Baines, 1977). The basic thrust of this research
has been to investigate the way in which Long’s model breaks down,
either by the occurrence of instability and turbulence or by the alteration
of the upstream flow (i.e., blocking). These phenomena are of consider-
able importance for the atmosphere, but much of this work may have to
be extended, by eliminating the rigid lid, before it can be applied to the
atmosphere.

Solutions to Long’s model in an unbounded atmosphere (using a ra-
diation condition) were first obtained by Kozhevnikov (1968) and Miles
(1968), and later by Huppert and Miles (1969), Janowitz (1973), and Smith
(1977). The nature of these solutions are reviewed by Miles (1969). As
the height of the mountain is increased, the basic structure of the flow
field remains the same. In the regions of up motion, the streamlines
steepen (see Fig. 11) more rapidly than predicted by linear theory. This
steepening has been linked to the nonlinecar lower boundary condition by
Smith (1977). Eventually when the mountain height reaches a critical
value the streamlines become locally vertical. Further increase in moun-
tain height will cause overturning—regions where denser fluid is tempor-
arily lifted above lighter fluid. This, it is thought, will allow convective
instability to occur locally. and the rigid-lid experiments of Long (1955)
and Baines (1977) seem to confirm this idea. The wave drag also increases
more rapidly than predicted by linear theory (Miles, 1969). There does
not seem to be a strong tendency for blocking of the flow upstream. The
flow speed just ahead of the mountain is much reduced, just as in linear
theory. but it resists going to zero until long after reversed flow regions
have formed aloft (as an example, see Miles, 1971). The surface level
flow thus does not seem to encounter any special difficulty in surmount-
ing the obstacle.

It would be a mistake to try to generalize these qualitative results of
Long’s model. It is now widely recognized that the special cases for
which the governing equations are exactly linear are not only mathemat-
ically special, they are also physically special. In flows with variable U (z)
and N(z), new nonlinear effects may arise just as new phenomena ap-
peared in the linear theory of lee-wave flow in structured atmospheres.

The only other case for which analytic finite-amplitude mountain flow
solutions are available is the situation where the incoming flow is com-
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FiG. 1l. The finite amplitude flow over a semielliptical ridge computed from Long's
model. The intense nonlinear forward steepening of the streamlines is due to the fact that
the parameter h,! = h,N/U (= 0.93 here) is approaching unity. (From Huppert and Miles,
1969.)

posed of a finite number of layers (usually one or two), each of constant
density (Long, 1954; Houghton and Kasahara, 1968; Houghton and Isaac-
son, 1970; Long, 1970). The effect of stable stratification is modeled by
the decrease in density going upward from layer to layer. In the case of
a single layer, this decrease in density (in the laboratory this is water to
air) is extreme, leading to a free surface condition. The model is made
tractable by assuming hydrostatic balance throughout each layer as they
pass over the mountain. The hydrostatic assumption is not terribly re-
strictive as (i) many atmospheric flows are nearly hydrostatic and (ii) the
qualitative nature of the Long’s model solutions discussed above are
rather insensitive to this assumption. The major drawback of this ap-
proach is that with a finite number of layers there must always be a
homogeneous uppermost layer of infinite thickness preventing any ver-
tical radiation of wave energy. Thus all waves are totally reflected back
toward the surface just as they were in the rigid-lid models discussed
earlier. Knowing the importance of the radiation condition, this aspect
of the layered models may seem fatal, but it can be argued that it is
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equally important to model correctly the discontinuous nature of N(z)
at, for example, a thin subsidence inversion, and its associated nonlinear
effects. Thus for some upstream profiles the layer models may give a
better representation of the flow than the unbounded Long’s model.
Furthermore, some new phenomena arise in layered models such as
upstream influence and internal hydraulic jumps. The internal hydraulic
jumps (see Yih and Guha, 1955), in fact, play a central role in the layered
models because lee-wave radiation and vertical radiation have been elim-
inated by the hydrostatic and the reflective conditions. Thus the dissi-
pation within the jump is the only way the system can be irreversible
and this in turn allows for flow asymmetry (e.g., strong downslope winds)
and mountain drag.

The hydraulic approach to the mountain flow problem has been pur-
sued quite vigorously in the Soviet Union. Most of those studies have
included the effect of Coriolis force (Khatukayeva and Gutman, 1962;
Sokhov and Gutman, 1968; Gutman and Khain, 1975; Ramenskiy et al.,
1976).

The final and perhaps potentially the most powerful method for un-
derstanding nonlinear mountain flow is the direct numerical solution of
the governing equations. Recent attempts to model the two-dimensional
flow over a finite-amplitude ridge include Foldvik and Wurtele (1967),
Granberg and Dikiy (1972), Furukawa (1973), Mahrer and Pielke (1975),
Deaven (1976), Clark and Peltier (1977), Klemp and Lilly (1978), and
Anthes and Warner (1978). Along with the advantages of this technique
come a series of drawbacks which have plagued investigators. Because
of limited computer memory and speed it is impossible to calculate the
flow in a semi-infinite domain, leading to the necessity of specifying
nearby boundary conditions—both inflow and outflow conditions and an
upper “‘radiation’” condition. The upper radiation condition can be di-
rectly applied only when the flow variables are expressed as additive
Fourier components. In the finite difference models then, this condition
can only be simulated by adding a **sponge’’ region above the region of
interest in which the vertically propagating waves are dissipated—hope-
fully without reflection—by a gradually increasing viscosity (see Clark
and Peltier, Klemp and Lilly, and Warner and Anthes). Other limitations
on the numerical models are imperfect spatial resolution and the possi-
bility of coding errors and numerical instability. Perhaps the strongest
limitation is that while solutions and understanding often go hand in hand
in analytical work, this is seldom the case with numerical simulation.
The numerical solutions must be cleverly diagnosed to reveal the under-
lying processes.

The recent numerical work of Clark and Peltier (1977) and Klemp and
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Lilly (1978) have shed some light on the problem of what happens when
a vertically propagating mountain wave becomes so steep that it causes
a local reversal of the flow aloft. By parameterizing the small-scale
turbulence, which apparently occurs by local instability, the larger scale
mountain wave flow can continue to be calculated even after the critical
breaking criterion is exceeded. Both pairs of investigators find that a
region of slowly moving turbulent air is generated aloft and that this
region seems to cause a partial reflection of the vertically propagating
wave energy. This partial reflection increases the intensity of the moun-
tain-induced disturbance in the lower atmosphere and increases the
mountain drag. The details of this process are still unclear. It seems
likely that this or some closely related phenomena may be the important
factor in producing severe downslope wind storms such as reported by
Lilly and Zipser (1972) and as shown in Fig. 8. The numerical models
have also reproduced some of the aspects of low-level blocking, but the
two-dimensional restriction probably prevents a true simulation of the
blocking phenomena.

The blocking of low-level air is one of the most important ways in
which mountains affect the air flow. The tendency for the surface level
flow to slow as it approaches a mountain is described by the linearized
theories of mountain flow. It is probably fair to say that this windward-
side slowing is due to the difficulty that the heavy surface air has in
running upslope. This, by the same token, explains the large velocities
on the lee side as heavy air runs downhill. At the same time we must
remember that according to linear theory, this upslope-downslope asym-
metry also requires the generation of waves that propagate away to
infinity. Thus the blocking phenomena cannot be considered a strictly
local phenomena.

The linear theory cannot, of course, be used to Investigate complete
blocking as this immediately implies that the disturbance has become as
large as the mean flow. This aspect of the finite-amplitude mountain flow
problem has attracted a good deal of attention theoretically and in the
laboratory. A brief list of the different types of “*blocking” or more
generally “‘upstream influence’’ is as follows:

1. Sheppard (1956) used Bernoulli’s equation to estimate the speed
that an incoming flow must have to overcome the background stability
and reach the mountain top. To close the system of equations Sheppard
had to assume that the pressure of a parcel as it rises is always equal to
the environmental pressure far from the mountain. This leads to the
approximate condition

(2.102) U> Nh
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if the flow is to reach the top. It is interesting to note that the parameter
hN/U appearing in (2.102) is the same parameter that enters as a measure
of the nonlinearity in hydrostatic mountain flows (Smith, 1977; Miles,
1969). Miles finds that a lower value of AN/U = 0.67 as opposed to
(2.102) marks the onset of overturning above a broad mountain of ellip-
soidal cross section.

Sheppard’s condition (2.102) seems physically reasonable but there is
little else to recommend it—especially as it contains no information as to
what form the blocking will take. A further problem is that in practice it
is difficult to determine the appropriate values of N and U as these are
likely to vary quite strongly near the surface.

2. One conception of the blocking phenomena is to consider it as the
separation of the boundary layer or as the reversal of the slow moving
flow in the boundary layer by the adverse pressure gradient upstream of
the mountain (Scorer, 1955, 1978).

3. In the fully three-dimensional flow near an isolated mountain or a
ridge with ends or gaps, absolute blocking of the low-level flow is not
possible. The layer of dense air may pile up slightly ahead of the moun-
tain. but this can be relieved by airflow around the mountain or through
gaps in the ridge. The tendency for the flow to go around is described
both in the linear theory and in the low Froude number model of Drazin
(1961) described earlier.

4. 1n two-dimensional flow with a rigid lid, there is the possibility that
for specified upstream conditions [i.e., U(z), N(z)] there may be no
steady-state solution to the governing equations. There is an analogy
between this problem and the “choking’’ phenomena in the one-dimen-
sional flow of a compressible gas into a strongly converging nozzle. In
both cases a transient flow occurs in which a wave front moves upstream,
altering the incoming flow in such a way as to make a steady state flow
possible near the mountain. This situation has been investigated for
continuous stratification by Long (1955), Drazin and Moore (1967), Grim-
shaw (1968), Benjamin (1970), Baines (1977), and in layered flows by
Long (1954), Houghton and Kasahara (1968), Houghton and Isaacson
(1970), and Long (1970). The ‘*choking’’ seems to be associated with the
reflective upper boundary condition and occurs when the Froude number
of the flow is near unity. It is not then simply that the incoming flow is
too slow to run up the mountain.

5. The last type of blocking to be described here is the upstream
influence that occurs naturally when the free stream is started from rest.
Even if a steady state flow may have been possible with the intended
upstream conditions, the start-up process can generate long waves which
move upstream, altering the flow that approaches the mountain (Mc-
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Intyre, 1972). Like the choking phenomena this type of upstream influ-
ence seems to depend on a reflective upper boundary condition and thus
may not be important for the atmosphere. It has been observed in the
laboratory by Baines (1977) and A. Foldvik (personal communication),
although there is the possibility that the observed upstream wave may
have been generated by viscous or turbulent redistribution of momentum
near the mountain. -

2.6. The Observed Barrier Effect of Mountains—The Fohn and Bora

The barrier effect of mountains is well documented in several parts of
the world. In some regions the low-level flow is diverted horizontally
around or through gaps in the mountains. As an example, the strong
wintertime westerly winds in southern Wyoming (Dawson and Marwitz,
1978) probably represents air that was blocked by the Front Range. The
mistral—a cold wind blowing off the continent in southern France—is
able to avoid barriers by flowing down the Rhéne Valley. Cool, moist
Pacific air is able to move eastward through high passes in the Andes
(Lopez and Howell, 1967). Low-level air originating in North America
penetrates the central American highlands near Tehuantepec (Godske et
al., 1957).

In other situations the cold low-level air can be contained by an un-
broken mountain chain for several days. Examples including the trapping
of polar air north of the Brooks Range in Alaska (Schwerdtfeger, 1975),
the containment of the Scandinavian anticyclone by the Scandinavian
mountains, and the damming effect of the southern Appalachians (Rich-
wien, 1978). It occasionally happens that after the barrier effect has
persisted for some time, the large-scale pressure gradient will change,
forcing the air from one side of the mountain to move over the crest and
down the other side. When this happens, the lee slope environment may
experience a sudden change in temperature and humidity as the old air
mass is replaced by an air mass of different origin. Following Yoshino
(1975, p. 393) we can classify these overflow events according to the
change in temperature that accompanies the onset of the fall wind (i.e.,
heavy air moving downslope). “*In my opinion . . . the definitions of the
fohn and bora should be made in the simplest way as follows: The fohn
wind is a fall wind on the lee side of the mountain range. When it blows,
the air temperature becomes higher than before on the lee side slope.
The bora is also a fall wind on the lee side of a mountain range, but when
it begins, the air temperature becomes lower than before on the lee side
slope.”” The fohn phenomenon is common in the Alps (see, for example,



THE INFLUENCE OF MOUNTAINS ON THE ATMOSPHERE 135

Defant. 1951: Godske et al., 1957; Yoshino, 1975; Vergeiner, 1976), and
on the eastern slopes of the Rockies where it is called a chinook (see, for
example, Brinkman, 1970, 1971; Holmes and Hage, 1971). In California
it is an easterly wind and the local name is the Santa Ana (Serguis et al.,
1962).

The definition of the fohn as a warm downslope wind makes no attempt
to distinguish the reason for its warmth. It could be (1) a warm source
region, (2) warming by the release of latent heat as the air ascends over
the mountain (i.e., the Hahn mechanism), or (3) the blocking of low-level
air and the descent of higher potential temperature air from above (see
Critchfield, 1966, pp. 130-131). In many cases the condensation occurring
during stable lifting over a mountain is not sufficient to explain the large
temperature difference between the two sides of the mountain. This
suggests either that blocking is occurring or that the condensation is
increased by convection over the mountain, triggered by orographic as-
cent. In this regard the reader should refer to Section 4 on the subject of
orographic rain.

The most well-known occurrence of the bora is in the northern Adriatic
near Trieste and south along the Yugoslavian coast (Yoshino, 1975, 1976).
Air cooled over Eurasia spills over the highlands between the Alps and
the Balkans and descends to the sea. The mistral flowing between the
Pyrenees and Alps and the Tehuantepec fall wind south of the Sierra
Madres in Mexico are also bora-type fall winds (see Godske et al., 1957).

2.7. The Influence of the Boundary Layer on Mountain Flows

The theories of airflow past mountains assume for the most part that
the flow is inviscid, neglecting the presence of the thick turbulent at-
mospheric boundary layer. There have, however, been attempts to un-
derstand the nature of the boundary layer as it flows over simple topog-
raphy (Counihan er al., 1974; Taylor and Gent, 1974; Jackson and Hunt,
1975: Deaves, 1976; Taylor et al., 1976; Taylor, 1977a,b). These studies
have so far been restricted to small hills where the effects of buoyancy
forces could be neglected. It follows that this type of flow may have
something in common with the subject of potential flow.

In order to model the flow in the boundary layer it is necessary to take
into account (a) the shearing nature of the undisturbed flow; (b) the
turbulence, both as it influences and is influenced by the mean flow: and
(c) the degree of roughness of the surface (e.g., the roughness length z ).
The complexity of this situation requires that some form of numerical
computation be used to solve the governing equations.
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The results of these computations (see, for example, Fig. 12) show a
qualitative resemblance to potential flow. The wind speed (at a standard
level) reaches a maximum near the top of the hill and the pressure has
its minimum value there. This'is true in spite of the fact that Bernoulli’s
equation does not strictly hold. Similar computations done for flow across
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Fi1G. 12. The computed flow over a small ridge, immersed in a turbulent Ekman layer.
The skin friction (and the wind speed near the ground) reaches a maximum just upstream
of the crestline while the pressure has a minimum just downstream. To a first approximation
the flow resembles inviscid, irrotational flow (see Fig. 2), but upon close inspection, the
influence of the preexisting thick turbulent boundary layer is apparent. (From Taylor,
1977b.)
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shallow valleys show a strong reduction in wind speed and a pressure
maximum in the valley bottom. Qualitatively both the hill and valley
results are in agreement with the measurements reviewed by Yoshino
(1975, pp. 262-268) and with common experience; that is, hill tops are
more exposed to the wind, while topographic lows are sheltered.

A more quantitative examination of the computer results reveals, as
expected, some deviation from potential flow behavior. There is a slight
asymmetry to the pressure field on the ridge leading to a net drag. There
is also a sheltered region which extends a considerable distance down-
stream. The reduction in surface shear stress in this region partially
cancels the drag due to pressure forces as it affects the net areal drag.

The numerical models have not yet been extended to include cases of
abrupt topography, leading to separation. The great body of work on this
subject in engineering aerodynamics may not be applicable here because
of the lack of a thick turbulent boundary layer upstream. The laboratory
model of the flow around Mt. Fuji by Soma (1969) did include this effect
however. The modeling of the flow past a windbreak (see, for example,
Seginer, 1972) is also relevant here.

There has also been a good deal of speculation on the role of the
boundary layer in flows where buoyancy forces are obviously important.
One question is whether the rotor—a turbulent recirculating region found
under the crests in a train of lee waves—is an example of boundary layer
separation. This controversy is mentioned in Queney et al. (1960), and
since that time several other observations have appeared in the literature
(Gerbier and Berenger, 1961; Forchtgott, 1965; Lester and Fingerhut,
1974).

2.8. Slope Winds and Mountain and Valley Winds

Whenever the surface temperature differs from the temperature of the
air above (due to radiative heating and cooling, or horizontal advection),
heat will be transferred from one medium to the other. This will quickly
establish a layer of air near the surface which, while more closely match-
ing the soil temperature, will differ from the air still higher up. If this
occurs on a sloping surface, the buoyancy forces associated with the
temperature variations will cause the layer to accelerate up or down the
slope. The acceleration will continue until the frictional resistance be-
comes equal to the buoyancy forces and a steady-state slope wind is
established. A further requirement for steady state is that the rate of
heating or cooling the air parcels must be matched by the rate at which
these parcels move into regions of warmer or cooler environmental tem-
perature so that their temperature anomaly remains constant. This is
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possible if the lapse rate in the vicinity of the mountain slope is a stable
one. These requirements for steady state can be written as

. 0! 62 ] 1
(2.103a) g sin(a) 7 + v =0
and
- 020’
(2.103b) —6Ssin(a) u' + k FPD =0

after Prandtl (see Defant, 1951). In (2.103a) g is gravitational acceleration,
 and @' are the background and perturbation potential temperature, u’
is the induced slope wind, v and k are the diffusivities of momentum and
heat, § is the stability din6/dz, and the z coordinate in (2.103) is directed
perpendicularly to the slope a. If the temperature perturbation at the
ground can be specified as AT, then the boundary condition is

6' = AT at z=0
together with the no slip condition
u' =0 at z=0
and the condition that the disturbance decay far above the slope
', u' vanishas z— ®
With all coefficients taken as constant, the solution is
(2.104a) 6’(z) = ATe *" cos z/I
(2.104b) u'(z) = (g/N)(k/v)'2AT/6 e " sin z/1

with N2 = g§ and [/, a measure of the thickness of the layer of moving
air, given by

(2.105) | = (-—4—"”—)

1/4
N2 sin? o

This solution can be criticized on a number of grounds, for example,
the slope of the terrain (a) has been presumed to be constant both in the
downslope and cross-slope directions, and the transport of heat and
momentum have been parameterized by specifying the eddy diffusion
coefficients k and v. Nevertheless, the ‘‘slope wind’’ solution (2.104) is
useful as it illustrates the type of momentum and heat balance that might
be realized in nature.

Probably the best direct application of the slope wind solution is to the
nearly continuous katabatic winds which run down the slopes of the great
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ice domes of Greenland (Nansen, 1890) and Antarctica (Mawson, 1915).
Lettau (1966) has compared (2.104) against observations of an antarctic
katabatic wind and found reasonable qualitative agreement for suitably
chosen values of k and v. The profile he studied was characterized by a
wind maxima of 3 m/sec at 5 m above the surface corresponding to [ =
7 m and a temperature anomaly at the surface AT = —10°C.

The slope wind has also been observed locally in more complex terrain
(see, for example, Bergan, 1969).

When the slope changes in the downstream direction, the balances
described by Egs. (2.103) are altered and the horizontal advection of
momentum and heat [terms not included in (2.103)] become important.
Gutman (1969) has solved the nonlinear two-dimensional steady state
equations in a region of changing slope and finds, among other things,
that air is expelled from or drawn into the slope boundary current in the
vicinity of slope changes. This must occur of course, because the mass
flux in the fully developed boundary current depends on the local slope.
Using these ideas it is possible to understand how the air in a closed
valley can be cooled or warmed by a loss or gain of heat at the valley
walls. The divergences in the boundary layer cause slow vertical motion
in the interior which, because of the background stratification, results in
slow cooling or warming. This situation is closely analogous to the **spin-
up”’ of a rotating fluid by Ekman layer pumping.

If the change in surface slope occurs very abruptly and the katabatic
wind is strong, the local flow may be dominated by advection of mo-
mentum and heat leading to nonlinear phenomena such as a hydraulic
jump. Ball (1956) and Lied (1964) have investigated the abrupt transition
that occurs when the antarctic katabatic wind reaches the edge of the
continent. Locally they ignore the loss of heat and momentum to the
surface by turbulent diffusion. thereby reducing the problem to simple
hydraulics. He was able to show that the Froude number computed for
the katabatic wind upstream is supercritical and thus the deceleration of
the flow is expected to occur by means of an abrupt hydraulic jump—in
agreement with the observed flow.

In most mountainous regions the terrain is dissected by numerous river
or glacially cut valleys. The slope wind solution may be applicable to
some degree on the valley walls, but for the most part the flow is domi-
nated by the tendency of the currents to concentrate in the valleys. The
sides of the valley and smaller adjoining valleys then act as ‘tributaries,”’
swelling the current of cold air moving down the valley (the mountain
wind) or the warm air moving up the valley (the valley wind).

The dissected nature of the terrain is also important in decoupling the
winds in the valley from the synoptic-scale winds aloft, presumably
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through the mechanism of separation. Thus, in many deep valleys the
wind climate is almost totally determined by the mountain and valley
wind phenomena. (See, for example, Gregnis and Sivertsen, 1970, for
Norway; Jensen et al., 1976, for Greenland; MacHattie, 1968, for Alberta,
Canada; Defant, 1951; Yoshino, 1975, p. 276, for several other areas.)

Generally speaking it is the difference between the surface temperature
and the air temperature that determines whether a mountain or valley
wind will occur, and this in turn depends on the time of day, season of
the year, and latitude. In the midlatitude Alps there is often a strong
diurnal variation—mountain winds at night and valley winds during the
day. Farther north in Norway, the mountain wind blows for almost the
entire day in winter, while the valley wind dominates in the summer. In
valleys with modern glaciers, the surface temperature is nearly always
cooler than the air above, leading to the continuous ‘‘glacier wind”’
blowing downslope across the glacier or through downward-leading cre-
vasses and caves in the ice.

Because of its influence on local climate, the mountain-valley wind
cycle has received considerable attention, but there are still fundamental
questions concerning (1) the existence of a reversed wind above the
valley floor, and (2) the details of the transition between the valley wind
and mountain wind which may occur, for example, at sunrise and sunset.
A reversed current aloft could occur in many ways: (a) the weak return
current in (2.104b) caused by eddy momentum transport and excess
adiabatic cooling, (b) the continuation of the upper part of a deep valley
wind after the wind near the surface has reversed, (c) a true “‘return’’
current in which the air flows one way in the mountain or valley wind
and then returns aloft to satisfy the continuity equation, and (d) the
synoptic-scale wind which may happen to be opposed to the wind in the
valley.

Detailed models of the wind reversal at sunrise and sunset have been
put forth by Defant (1951), Urfer-Henneberger (1964), and Sterten (1963).
The observations of Wilkins (1955) also bear on this question. The com-
mon point in these models seems to be that the slope winds on the valley
sides respond rather quickly to the changes in solar insolation. The winds
in the central valley, especially away from the surface, respond more
slowly. This is shown in Fig. 13.

Another unanswered question is why the warm valley wind or a warm
upslope wind does not detach itself from the surface and rise vertically.
Certainly it could release potential energy faster if it did so. The answer
to this dilemma may be that the atmosphere above is stably stratified and
air must continue to receive heat from the surface if it is to rise. On the
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other hand, if the surface was strongly heated and of gentle slope, direct
parcel ascent (i.e., penetrative convection) could occur.

3. THE FLOW NEAR MESOSCALE AND SYNOPTIC-SCALE MOUNTAINS

In this section we will consider the perturbation to the wind flow
caused by a mountain of intermediate scale where the rotation of the
Earth cannot be neglected. As an example, let us say that a mountain
has a width of from 100 km to 500 km, so that an air parcel moying with
the wind at say 10 m/sec will take 10* sec (~3 hr) or 5 X 10¢ sec (~15 hr)
to cross the mountain. To estimate the relative importance of fluid ac-
celerations relative to the Earth to those associated with the Earth’s
rotation (i.e., the Coriolis force) we must compare the transit time of an
air parcel with the rotation period of a Foucalt pendulum located at the
appropriate latitude T = 27/2Q sin ¢. For midlatitudes on the Earth this
is about 12 hr, and we conclude that in the horizontal equations of motion
both types of accelerations may be the same order of magnitude. Moun-
tains in this size range are quite common on the Earth’s surface. Probably
any surface irregularity that would be called a large mountain or a moun-
tain range would be included. Examples include the Scandinavian moun-
tain range (width ~ 300 km), the Alps (width ~ 250 km), and the Canadian
Rockies (width ~ 400 km). In all these examples the influence of the
Coriolis force on the perturbed flow is too large to be ignored, yet too
small to allow the assumption of geostrophic balance.

Throughout this section we shall be working between two well-defined
limiting situations. With small mountains (width ~ 50 km) the Coriolis
force can be ignored while the hydrostatic assumption can still be con-
sidered as valid. The flow over synoptic-scale orography (width ~1000
km) may be assumed to be nearly geostrophic. The types of flow occur-
ring in these two situations are quite dissimilar, and one of the challenges
of this section is to see if we can understand how the flow transitions
from one type to the other as the Coriolis force becomes progressively
more important. In the first case (see Fig. 3) the flow is asymmetric (even
for a symmetric mountain), the perturbation extends to great altitude,
and there is a drag on the mountain. The perturbation caused by the
broad mountain on the other hand (see Fig. 17) is symmetric (if the
mountain is), decreases with height, and causes no drag on the mountain.
The mountain wave situation is discussed in another section of this
review, but the broad mountain, quasi-geostrophic limiting case must be
discussed here in detail before we can proceed further.
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3.1. Quasi- geostrophic Flow over a Mountain

Consider the steady flow of a stratified rotating fluid over a mountain.
This irregular surface of the ground will be assumed to be a stream
surface to the flow. That is, the flow cannot penetrate the ground. We
will assume also that the flow approaching the mountain is barotropic so
that the potential temperature is constant along the ground. Then, if the
potential temperature is constant following a fluid particle and if the
surface of the mountain is completely covered by fluid that has come
from upstream, it follows that the mountain surface will coincide with
the surface of constant potential temperature (see Fig. 14).

This result is of crucial importance to the nature of the flow field near
the mountain. Note that there are several ways that this condition could
be violated: (a) baroclinic flow upsiream, (b) transient effects or perma-
nent blocking which prevent the particles with upstream properties from
fully penetrating the region of interest, and (c) diabatic effects. Further,
the observational evidence does not strongly defend this assumption. The
lapse rate measured along a mountain slope is usually substantially less
(in magnitude) then the adiabatic lapse rate (see Yoshino, 1975; Peattie,
1936, for a review of these observations), indicating that 6 + const along
the surface. This criticism can be turned aside by arguing that this vari-
ation in 6 is due to heating of the air near the ground. There still might
be a surface just outside the boundary layer which closely parallels the
mountain shape and on which the condition § = const is satisfied.

More disturbing are the aerological observations which occasionally
seem to show isentropic surfaces, outside the boundary layer, intersect-
ing a mountain. For the most part, however, the radiosonde network is
not dense enough to determine the true shape of §-surfaces in mountain-
ous terrain. In the following analysis we will assume that the g-surfaces
follow the terrain. It is clear, however, both that the validity of this

(a)

Fi1G. 14. Two possible configurations for the isentropic surfaces near a mountain. (a) The
isentropic surfaces are pushed up. paralleling the ground surface. (b) The mountain pene-
trates up through horizontal 6-surfaces. If there is flow, it must be going around the
mountain. The former model is used as a lower boundary condition in most mathematical
models of mountain flow.
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assumption is doubtful and that the breakdown of the assumption will
fundamentally change the nature of flow.

The next important result involves the nature of the wind field near
the mountain. If the flow is geostrophically balanced

P
(3.1a) pfu=— of
ay
aP
3.1b - = -2
(3.1b) pfv Py

The hydrostatic assumption is written as

oP
(3.2) —pg=—

az
To simplify the analysis we will treat the air as a Boussinesq fluid by
neglecting its compressibility and neglecting the influence of density
variations on the inertia [i.e., the left-hand side of (3.1)] of a fluid particle
(see, for example, Batchelor, 1967). In the absence of compressibility the
density of a fluid particle is constant

(3.3) Dp/Dt =0

If the background flow is stratified p(z), Eq.(3.3) can be used to show
that a Jocal density perturbation p’ can be produced by raising or lowering
a fluid particle a distance 7 into a different density environment.

ap

3.4 = — —
(3.4 P az"

Now combining (3.1), (3.2), (3.4) gives

du ap

(3.5a) —pf—=g—m,
0z 0z
Jv ap

(3.5b) tpf =gt .
z 0z

which is a Boussinesq version of the more general thermal wind equation.
It displays the connection between the vertical wind shear (du/dz, dv/
dz ) and the slope of the surfaces of constant p (or 6 in the atmosphere).
This can be put in a more compact form by introducing the stream
function

(3.6) Ve

Il

v, Y, = —u
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and the integrating (3.5) to obtain

(3.7) Y. =—(N*/f)m
where
¥ 90
Nz = — E _p <= g7 in the atmosphere)
p 0z 0 0z

Near the mountain surface the distribution of uplift of #-surfaces 7 (x,
yv) is just equal to the orographic height / (x, y) so the pattern of vertical
wind shear is known immediately.

(3.8) U, = — (N hi(x, y) near the ground

To solve for the wind itself the entire flow field must be considered. We
can reason intuitively as follows: Near a region of raised @-surfaces in a
stable geostrophically balanced atmosphere, Eq. (3.8) requires that we
have either cyclonic motion which becomes stronger with height or an-
ticyclonic motion which weakens with height. Intuitively we feel that a
disturbance produced by a mountain ought to be strongest near the
mountain. so it is natural to choose the latter alternative. Thus the flow
around the mountain is identical to the textbook description of a **cold
anticyclone.”™ with the only difference being that it is the solid mountain
surface, rather than the cold air near the ground, that is responsible for
the upwarping of the ¢-surfaces (see Fig. 15). The expression *“mountain
anticyclone’" is chosen to refer to the qualitative aspects of the flow.
To understand the detailed structure of the mountain anticyclone the
concept of conservation of circulation is needed. Consider a column of
fluid at point a confined between two isentropic surfaces 6,, 6, (Fig. 16).
The absolute circulation I', =§$.04-dS. which can be written ({ + f)A,

/\ /"_\
X © & ©

(a) (b)

FiG. 15. The upwarping of isentropic surfaces near the ground caused by (a) a cold air
mass at the surface or (b) a region of high ground. If the unwarping decreases with height
and if the flow is geostrophically balanced, there must be an anticyclonic circulation—
either (a) a cold-core anticyclone or (b) a mountain anticyclone.
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6
A// S ::ela
n

a b

Fi1G. 16. Synoptic scale vorticity dynamics in a stratified fluid. As an air parcel moves
from a region of weaker stability (a) into a region of stronger stability (b), its vertical
dimension (8) decreases while its horizontal area (A ) increases. The Coriolis force, acting
during the horizontal divergence, produces anticyclonic vorticity.

is conserved, as is the volume A$ (if the fluid is incompressible). Thus
if the distance & between 6-surfaces decreases from point a to b, the
horizontal area A of the fluid column must increase as it moves toward
b and the absolute vorticity { + f must decrease. Quantitatively

dA 1
3.9 —=——d$§
(3.9) " 5
but the relative stretching of the column dé/6 is due to the different
vertical displacement 7 of the top and the bottom of the column so

dé adn

3.10 —_— = —
( ) 0 dz

The conservation of absolute circulation can now be written

——[(€+fA]~—[ [+ f)A, ( dA)]

A,
If {< f, f= const, dA/A < 1 and using (3.9), (3.10)

0 D
3.1 0——[€—f£-] - = la)

LR

The quantity in square brackets in (3.11) is the ‘‘potential vorticity
d

(3.12) g=(- [
Jz

It can be rewritten using the steam function defined in (3.6)

(3.13) qg=Viy— f—

Finally, using the geostrophic assumption in the form (3.7) and assuming
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N2 = const gives

f*
(3.14) q= Vi + 15 ¥

We shall call (3.14) the *"geostrophic form of the potential vorticity.” In
its more basic form (3.11), g will be conserved regardless of whether the
flow is geostrophic or not.

Using the geostrophic form (3.14) introduces a paradox which should
be mentioned before going further. If the flow were exactly geostrophic,
it could not undergo the horizontal divergence shown in Fig. 16. To see
this. use (3.1) to evaluate Vyu = (du/dx) + (0v/dy). We know from
observation that the large-scale winds are nearly geostrophic, but math-
ematically it can be shown that if the flow was exactly geostrophic, it
could not do any of the interesting things the atmosphere is observed to
do. The type of analysis used here and throughout much of dynamic
meteorology is called quasi-geostrophic theory (see Holton, 1972). Con-
ceptually, the flow is allowed to be slightly divergent (i.e., ageostrophic),
but close enough to geostrophy so that an equation like (3.7) gives a
sufficiently accurate description of the relation between the wind field
and the density field.

The simplest case of quasi-geostrophic flow over a mountain is the
case of ¢ = 0 upstream, for example, uniform wind approaching a moun-
tain. If the entire flow field is filled with fluid that has come from up-
stream. then from (3.11) and (3.14)

fZ
(315) qZV%lw+_N'_2d‘zz=0
Equation (3.15) must be solved subject to the boundary conditions at the
ground (3.8), and at large z where the solution must be bounded. Because
of the many simplifying assumptions (e.g., small perturbations, Boussi-
nesq. quasi-geostrophy, constant N and f, g = 0 upstream) (3.15) has a
simple form. If a stretched vertical coordinate is used Z = (N/ f)z, (3.15)
becomes Laplace’s equation
:%+82w+d2¢___0
ox%  9y* 9zt

(3.16) V2

This allows us to use all of the mathematical and conceptual techniques
of potential theory while keeping in mind that the vertical scale of the
motion is very much less (by a factor of f/N = 0.01) than the horizontal
scale. It turns out that we can construct interesting mountain flow solu-
tions, either in two or three dimensions, by analogy with the simplest
potential flow solutions.
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3.2.1. The Flow over an Isolated Mountain. The two simplest solu-
tions to Laplace’s equation in three dimensions are ¢ = Ux and ¢ =
—S§/4mr which correspond physically to uniform flow and a source of
strength § at the origin. With this as a guide we choose
(3.17) U(x, y, z) = Uy — (S/47r)

where _
r= [x2 + yz + (Nz/fz)zz]l/z '

~ as a solution (3.15). Using (3.7) the corresponding pattern of stream
surface (or #-surface) lifting can be determined ’

S N2 -3/2
(3.18) n(x,y,2)=—%tbzf—m(x”y”?zz) z

Using this form we can consider a whole family of bell-shaped mountains
with circular contours by placing the ‘*source’ at a distance z, beneath
the ground surface. Then for a mountain of shape

hom
(R?/R% + 1)

where R = (x* + y?) and R, = (N/f)z, is the measure of the mountain
width. The 6-surface displacement is

(3.19) h(x, y) =

n(x, y,z) (z/zo + 1)

(3-20) hm  [RYRE + (225 + 1%

The perturbation wind caused by the mountain blows around the moun-
tain in the anticyclonic (clockwise in the northern hemisphere) direction
with strength

_ —h.N(R/Ro)
" T IRY/RE + (22 + 17

(3.21)

One important aspect of this flow is that the maximum vertical dis-
placement of the isentropic surfaces [Eq. (3.20)] decreases with height,
but the lifting becomes much more widely distributed so that the volume
under the raised surfaces

(3.22) J’ f n(x, y,z)dxdy = 2mwh,, R}
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£16. 17. The vorticity dynamics in the stratified, quasi-geostrophic flow over an isolated
mountain. The magnitude of the lifting of #-surfaces aloft is less than the mountain height,
but the lifting is more widespread. As parcels near the ground approach the mountain, they
are first stretched producing cyclonic vorticity. Over the mountain. the parcels are short-
ened producing anticyclonic vorticity. The total amount of cyclonic and anticyclonic vor-
ticities are equal at each level and, as a result, there is no far-field circulation. (After Buzzi
and Tibaldi. 1977.)

equals the mountain volume at every level. The lifting of the stream
surfaces aloft extends far from the mountain. Thus as a fluid column
approaches the mountain it is first stretched due to the lifting of stream
surfaces aloft, then shortened due to the mountain elevation (see Fig.
17). This behavior is discussed by Buzzi and Tibaldi (1977).

The velocity field described by (3.17) is the vector addition of uniform
flow of strength U and the mountain anticyclone [described by (3.21)]
which weakens aloft (see Fig. 18). Near the ground z < z, and far from
the mountain R > R,, the perturbation velocity falls off like vy ~ 1/R2.
This decay is more rapid than in an irrotational vortex and accordingly
the circulation around the mountain will decrease as the radius of the

Fi1c. 18. The streamline pattern in quasi-geostrophic stratified flow over an isolated
mountain (see also Fig. 17). The incoming flow is distorted by the mountain anticyclone.
The perturbation velocity and pressure field decay away from the mountain.
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circuit is increased. This rapid decay is another facet of the weak cyclonic
relative vorticity surrounding the core of anticyclonic vorticity dlrectly
above the mountain.

Note that this description of a mountain anticyclonic in a rotating
unbounded stratified fluid is quite different from the flow over an isolated
hill in a homogeneous fluid with a rigid upper lid. In this latter case the
vertical displacement 7 and the relative vorticity { would be zero except
directly over the mountain, the volume under the raised stream surfaces
would decrease aloft, and the strength of the anticyclonic winds would
be constant with height and decrease as 1/R horizontally away from the
hill. :
A more general family of mountain shapes can be considered by using
a combination of *‘sources’’ in or slightly below the z = 0 plane. To a
large extent the qualitative nature of these more complicated flows can
be determined graphically. In any case, far away from the orographic
region the behavior will be as described above with the effective source
strength [in (3.17), (3.18)] being determined from the total mountain
volume according to § = —N X [mtn. vol.].

As an example, we could consider qualitatively the flow over a long
(but finite) narrow ridge. Near the center of the ridge the induced flow
is parallel to the ridge as it would be for an infinite ridge, while far away
from the ridge the streamlines for the induced flow become circular as in
(3.17).

One interesting feature of the flow over a finite ridge is that unlike the
circular mountain or infinite ridge solutions, the induced velocity has a
component across the height contours of the mountain. Thus, the vertical
velocity near the surface which to first order is U (dh/dx ) can be strongly
modified by the induced flow. This could have an important effect on the
distribution of orographic rainfall along the windward side of a mountain
range.

In general, the perturbation stream function and therefore the pertur-
bation pressure will be symmetric with respect to the topography. As a
result the net horizontal force on the topography due to the perturbation
pressure field (e.g., drag) vanishes identically. This result will, of course,
be altered if we introduce a viscous Ekman layer, the gB-effect, or if the
Rossby number was large enough to allow the generation of mountain
waves. Such forces, if they were present, would be proportional to the
square of the mountain height [i.e., O(h%)].

There is, however, an O (h,,) force on the mountain due to the back-
ground geostrophic pressure gradient. Looking downstream, the isolated
mountain finds itself in a pressure field increasing linearly to the right.
Thus, according to Archimedes Law, the mountain feels a net pressure
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force to the left given by

aP
F=-—"-V

ay
F=pUfV

where V is the volume of the mountain. This “ift”’ force acts perpen-
dicularly to the mean flow, regardless of the shape of the mountain. This
is true even for a long ridge because the large pressure difference at the
ends of the ridge will be just what is needed to make the net for perpen-
dicular to the mean flow direction, not the ridge. In the Boussinesq model
described above, the air passing over the mountain does not respond to
the lift force reaction (i.e., the force applied to the air by the mountain).
Instead the force is passed upward from layer to layer without decreasing.
This is so because the volume under each uplifted 6-surface and the
cross-stream pressure gradient are both independent of height. The influ-
ence of compressibility on this result is discussed by Smith (1979b).

322, The Flow over an Infinite Ridge. To construct a solution for
infinite ridge we can superpose a linear distribution of isolated mountains
or simply use the well-known two-dimensional source solution to poten-
tial flow theory, ¢ = (S/2#)In r. This latter method leads to a stream
function of the form

(3.23) Uix,z)=—Uy+ (§/2m)Inr

where r =[x2 + (N2/f?) z2]"*. This is a solution for flow over a ridge
of shape

(3.24) h(x) = hpa*/(x* + a?)

where a is a measure of the width of the ridge. The vertical displacement
1S

( ) = hn,a(z/zg + 1)
X BT ey a(z/zo + 1)

(3.29)

The induced velocity lies parallel to the ridge

ha,Nxa
x2+ a(z/zy + 1)

(3.26) vix, z) = —

As an example, the amplitude factor h,N might be 10> mx 0.01 sec™
= 10 m/sec.

This flow is in many respects similar to the three-dimensional flow
over a mountain with circular contours, discussed earlier. As before, the
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general sense of the induced circulation is anticyclonic and its structure
and strength is independent of the direction or strength of the incoming
wind. The lifting of the #-surfaces aloft n is again much more widespread
than the orographic height A (x). This means that as a fluid particle
approaches the mountain it is first vertically stretched, producing positive
relative vorticity, and simultaneously slowed to maintain constant mass
flux between streamlines. From its vorticity, or from the fact that the
slowed particle now feels a decreased Coriolis force, it is clear that the
particle will curve to the left. When the particle is directly over the
mountain, the -surfaces are closer together, the fluid moves faster and
has negative relative vorticity, and the particle paths curve strongly to
the right. Downstream of the mountain there is again stretching, slowing,
and curvature to the left. When averaged over the mountain and the
surroundings, the relative vorticity (or the circulation) is zero as the
vortex stretching adjacent to the mountain exactly cancels the vortex
shrinking over the mountain. Associated with this is the fact that the time
necessary for a particle to traverse the whole flow field is the same as it
would be without the mountain, thus the next impulse given to the fluid
by the Coriolis force is zero. The force to the right acting on the fast-
moving fluid over the mountain is exactly balanced by the force to the
left acting on the slower fluid adjacent to the mountain. The result of this
balance is that the infinite ridge causes no permanent turning of the flow.
This can be seen from (3.26), as the induced velocity associated with the
mountain anticyclone decays far from the mountain as v ~ x™1.

Having discussed the stratified, unbounded Boussinesq solution in
some detail we are in a position to evaluate critically the models of quasi-
geostrophic flow over a ridge which have appeared in the literature.
These are shown in Fig. 19.

(a) The flow of a homogeneous fluid with a rigid lid (see, for example,
Batchelor, 1967, p. 573). There is a “*permanent’’ turning of the flow

(3.27) A6 = tan™!

aU (cross-sectional area)

caused by vortex line shortening over the ridge. This is a useful model
to illustrate the nature of vorticity, but it has no application to the strongly
stratified atmosphere.

(b) The flow of a stratified, unbounded fluid described qualitatively in
the standard meteorology textbooks (see Haltiner and Martin, 1957, p.
357; Hess, 1959, p. 252; Holton, 1972, p. 70). The lifting of 6-surfaces
occurs only above the mountain and the lifting decreases with height,
presumably due to the stratification. This model is not a solution to the
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governing equations of quasi-geostrophic stratified flow and should be
discarded. This housecleaning will not be easy, however, as the textbook
model has influenced a generation of meteorologists.

(¢c) The flow of an unbounded stratified fluid (Queney, 1947) discussed
in detail above. There is a local baroclinic disturbance but no permanent
turning.

(d) The flow of a stratified fluid with a rigid lid (Robinson, 1960
Jacobs, 1964; Hogg, 1973: Janowitz, 1975: Merkine, 1975; Merkine and
Kalnay-Rivas, 1976. Mason and Sykes, 1978). This flow is characterized
by both a local baroclinic distance and a barotropic permanent turning
given by (3.27). The use of a rigid lid is sometimes defended by suggesting
that the great stability in the stratosphere will prevent vertical motion
above the troposphere, but this argument is incorrect (Smith, 1979b).

(e) The flow of a compressibie, unbounded stratified fluid (Smith,
1979b). In addition to the iocal baroclinic disturbance there is a barotropic
permanent turning [given by (3.27) with H replaced by the density scale
height] associated with the production of vorticity by volume changes as
the air parcels lift over the ridge.

3.2. The Effect of Inertia on the Flow over Mesoscale Mountains

The foregoing discussion was designed to show the relationship be-
tween the different quasi-geostrophic solutions to flow over a mountain.
These solutions are applicable only to very large orographic features with
their smallest horizontal dimension exceeding 1000 km or so. On this
scale it is exceedingly difficult to find a meteorological situation that
approximates a uniform steady wind approaching a mountain range. For
this and several other reasons, it is appropriate to study slightly smaller
mountains, with widths of a few hundred kiiometers, which quite fre-
quently produce identifiable steady state flow patterns lasting many hours
or even a few days. To do this we must not assume quasi-geostrophy but
allow inertial effects to be important.

One attempt to do this is to determine the first effect of inertia. Merkine
(1975) used the semi-geostrophic approximation (a slightly less restrictive
version of the quasi-geostrophic approximation) to examine the rotating
stratified flow over an infinite ridge with a rigid top lid. Merkine and
Kalnay-Rivas (1976) examine a similar problem but for an isolated moun-
tain. Buzzi and Tibaldi (1977) use an expansion in powers of the Rossby
number to solve for flow over an isolated mountain in an unbounded
fluid. These results show interesting differences with the quasi-geos-
trophic case, which increase as the Rossby number Ro = U/ fL ap-
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Fic. 19. Five models of quasi-geostrophic flow over a ridge. (a) Homogeneous flow with
a rigid lid. The flow is columnar, and relative vorticity is present only over the ridge. There
is a “"permanent’’ turning of the flow. (b) “Textbook” description of stratified unbounded
flow. According to this model, the flow is similar to (a) with the vertical displacements
decaying aloft due to the stratification. This is not a solution to the governing equations.
(c) Stratified unbounded flow as given by (3.25) and (3.26). There is no ““permanent’’
turning of the flow. (d) stratified flow with a rigid lid. In addition to the baroclinic disturb-
ance near the mountain, there is a barotropic **permanent’’ turning caused by the rigid lid.
(e) Compressible stratified unbounded flow. In addition to the baroclinic disturbance near
the mountain. there is a ““permanent’’ turning associated with an extra production of
anticyclonic vorticity caused by volume expansion as the parcels rise over the ridge.
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proaches unity. The flow, however, remains symmetric about the y axis
(i.e., windward vs. leeward side) and the disturbance decays rapidly with
height just as in the quasi-geostrophic case. It is clear then that the
mathematical techniques used in these studies (i.e., semi-geostrophic
approximation or an expansion in Rossby number) are not sufficiently
powerful to describe the propagation of inertia-gravity waves. We suspect
physically that these waves will become more and more important as the
Rossby number increases toward. and then exceeds unity.

The much earlier work of Queney (1947, 1948) on the flow over a
small-amplitude, infinitely long ridge is extremely valuable for clarifying
the role of inertia in these difficult mesoscale (Ro ~ 1) flows. Queney
considered the two-dimensional rotating stratified flow over a mountain
in an unbounded fluid. Using Fourier analysis he represents his solution
as an integral over the contributions from the different horizontal wave
numbers. For example, the vertical displacement of a fluid particle
n(x, z) is given by

(3.28) n(x, z) = eszfm h(k) exp{i[kx + k.(k)z]} dk

0

where (k) is the Fourier transform of the mountain shape h(x)
. 1 )
(3.29) hik) = —f h(x)e™ ™ dx
T Jo

and the vertical wave number k,(k) is a function of the horizontal wave
number k and the background wind, static stability and rotation rate
according to

k2 — k2 172
3.30 = k="
(3.30 L = k()

where
k= N/U and k;,= f/U

Equation (3.30) is derived from the equations of motion, the thermodyn-
amic equation, etc. The factor e in (3.28), with § = —(1/2p)/(@p/3z),
describes the tendency for the disturbance amplitude to increase aloft
due to the smaller density there.

The solution (3.28) will depend on the nature of the function k,(k) in
the range of k where A (k) has appreciable values. For rather wide moun-
tains (say, L > 50 km) (k) will be appreciable only for k < k, ~ 1073
and so for the purposes of evaluating (3.28) we can simplify (3.30) to

(3.31) k.(k) = kko(k? — k3?)~12
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This is equivalent to making the hydrostatic approximation.

To simplify the evaluation of (3.28) Queney chooses the familiar bell-
shaped ridge

hpa®
X2 + a2

(3.32) h(x) =

which has a particularly simple Fourier transform
(3.33) h(k) = h,ae™*

We are now in a position to investigate two interesting limiting situtions.
In the case of a mountain range that can be crossed in a few hours by
a fluid particle, we can neglect the Coriolis force reducing (3.31) to

(3.34) k, (k) = kg
Then using (3.33) and (3.44) in (3.28) gives

[e 3
'T)(_X, Z) = hma€sz€ikszf pikx—ka Jf
0

ikg

= hjae* -
a— ix
and taking the real part

a cos kyz — xsin kz

(3.35) n(x, z) = hpac™ 2%+ x°

This describes a field of vertically propagating hydrostatic internal gravity
waves excited by the mountain (Fig. 3). The disturbance is asymmetric
about the ridge and does not decay with height. There is a considerable
wave drag [D/l = (w/4)pUNH*].

The other extreme case is when the mountain is so broad that h(k) is
appreciable only for k& < k;. We can then reduce (3.31) to

kk,
C= ik
Ky f

This is equivalent to the quasi-geostrophic assumption. In fact (3.36)
could be derived immediately from (3.15). Now (3.28) becomes

. . N
n(x, z) = hmaes"f e ka exp[z(kx + z—f zk>:| dk
0

which gives

(3.36) k (k) =i

I
n(x, 2) = = hwae™ O T ix
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and taking the real part gives

hmeZa®[(N/ f)(z/a) + 1]
x*+ a’[(N/f)(z/a) + 1F

which is identical to the earlier a priori quasi-geostrophic solution (3.25)
if s is set equal to | consistent with the Boussinesq approximation (see
Fig. 17). Of course, the method of sources and sinks used to obtain (3.25)
is powerful since it can be used to determine the quasi-geostrophic flow
over isolated mountains. In the present context, however, Queney’s two-
dimensional formulation (3.28) is more useful as it allows us tQ investigate
the flow over mesoscale mountains where the flow is not quasi-geos-
trophic. By using asymptotic methods to evaluate (3.28) [with (3.31)
and (3.33)], Queney was able to plot solutions for intermediate cases
ak; = 1 where both inertia and Coriolis force are important. In particular,
he computed the flow over a mountain with a half-width @ = 100 which
corresponds roughly to the scale of the Alps (Fig. 20).

Note that the pattern of vertical displacement is distinctly wavelike
and, judging from the pressure difference across the mountain, the waves
are transporting considerable momentum. Just as in the nonrotating case,
the phase lines tilt upstream with height but unlike the nonrotating hy-
drostatic case, the wave energy disperses considerably aloft. The long
waves trail behind somewhat because of the influence of the Coriolis
force on their group velocity.

The influence of the Coriolis force is more evident in the horizontal
projection of the streamlines and isobars. These do not coincide near the
mountain as the flow is quite ageostrophic there. Far from the mountain
the flow becomes nearly geostrophic and Queney computes the velocity
induced along the mountain to be

(3.38) , v(x,z=0)=—h,,aN/x

(3.37) n(x, z) =

This is identical to the asymptotic behavior (3.26) which was derived
under the assumption that the flow field was quasi-geostrophic every-
where, even over the mountain. Thus, the fact that a mountain is narrow
enough to generate waves and wave drag has no influence on the far-field
flow, which behaves as if the flow is quasi-geostrophic everywhere. This
result follows immediately from the linearity of the small-amplitude equa-
tions as there is no interaction between the small-scale gravity waves and
the large-scale Fourier components which are quasi-geostrophic and
which dominate the far-field motion.

This result is not of great use because in reality there can be a rather
strong coupling between the gravity waves and the larger quasi-geos-
trophic scales of motion. Of the most obvious form for this interaction
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Fic. 20. The stratified rotating hydrostatic flow over a ridge with the parameter af/U
= 1. In this case the flow is strongly influenced by the Coriolis force but no dominated to
the extent that the flow is quasi-geostrophic. This flow is an intermediate type between
Fig. 3 and Fig. 19¢c. The influence of the Coriolis force is evident in the lateral deflection
of the streamlines (bottom of figure) and in the dispersive nature of the longer waves trailing
behind the mountain. (From Queney, 1948.)

is the breaking of waves and the deposition of their momentum into the
flow (see, for example, Bretherton, 1969). To estimate the magnitude of
this effect we must be able to predict the magnitude of the drag on the
mountain, know where the waves will break, and understand how the
mean flow will respond to the loss of momentum. If the wave drag is due
to shorter wavelength components which are not affected by the Earth’s
rotation, then the ideas discussed in the preceding section can be used
to estimate the wave drag and the location of breaking. The response of
the mean flow to the momentum loss is appropriate for discussion here,
but will be postponed until we investigate the possibility that the gravity
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waves may be long enough to be influenced by the Coriolis force (i.e.,
inertial-gravity waves) as, for example, in Queney’s intermediate-scale
solution.

Queney himself does not appear to have computed the mountain drag
associated with his flow field solution. Blumen (1965), using linear theory,
attempted to compute the flux of momentum in the disturbance over an
isolated bell-shaped mountain [Eq. (3.19)]. Blumen evaluated the expres-

sions
pff u'w' dxdy  and pff v'w dxdy ’

but, as discussed by Jones (1967) and Bretherton (1969), the correct form
for the momentum flux is

(3.39a) ff pu'w' dx dy + fff pnv’ dx dy

(3.39b) F, ff pv'w dxdy — ffj pnu’ dx dy

The second term in (3.39) accounts for the excess Coriolis force acting
between the undisturbed and the lifted stream surfaces and is necessary
so that (3.39) can be unambiguously interpreted as the mountain drag.
Using the equations of motion and integrating (3.39) by parts

0
=ffp’—ndxdy

) J ox

, 07
Fy='[fp a—}:dxdy

Near the ground where 7n(x,y) = h(x,y), (3.40) is the pressure force on
the mountain, while at any other level (3.40) is the horizontal force acting
on each material layer by the layer above. Blumen’s formulation leads to
the incorrect conclusion that the long, nearly geostrophic, nonpropagat-
ing wave components are responsible for a lateral drag force F, acting
on the mountain. In fact the pressure field for these components is
symmetric with respect to n or 4 and from (3.40), the drag forces are
zero. As an example, the flow described by (3.20), (3.21) has a rionzero

(3.40)
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v'w' but F, is zero as we know from the fact that the perturbation
pressure field is distributed symmetrically around the mountain. The
wave drag [Eq. (3.40)] on a mesoscale ridge with uniform incoming wind
and stability has been computed by Smith (1979a) and is shown in Fig.
21. The effect of rotation is characterized by af/ U and as this parameter
increases (i.e., progressively wider ridges) the wave drag decreases.

There has been some further theoretical work to understand the influ-
ence of a background shear 8 U/dz on the vertical propagation of inertial-
gravity waves. Jones (1967) has shown that the momentum flux as defined
by (3.39) or (3.40) will be independent of height in the absence of dissi-
pation.

Eliassen and Palm (1960) and Eliassen (1968) have investigated the
relationship between the vertical fluxes of momentum and energy. With
U = U(z), the interesting possibility arises that the singularity k = ks
= f/U(z) in (3.30) will occur only at a particular level (i.e., the critical
level) for each wave component. Preliminary studies of the structure of
this type of critical level has been carried out by Jones (1967) and Eliassen
(1968).

Observationally there is no question that large mountain ranges can
experience significant drag due to the development of high surface pres-
sure on the windward side and low pressure on the lee side. This phe-

PEag

Fic. 21. The influence of the Coriolis force on mountain wave drag. As the parameter P,
= af/U increases, gravity waves are suppressed and the drag F drops below its f = 0
value. Note. however. that even for broad mountains with low Rossby numbers, there is
still some wave drag. The point at af/U = 1 corresponds to the flow shown in Fig. 20.
(From Smith. 1979a.)
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nomenon is usually referred to as a ‘“‘féhn nose’’ in reference to its
association with the fohn wind and the characteristic “*nose’” shape to
the surface isobaric patterns.

Qualitative descriptions of the fohn nose can be found in Defant (1951)
and Brinkmann (1970). It is difficult to determine precisely the pattern of
surface pressure due to the wide spacing of surface microbarographs and
the problem of reducing the measured pressure to a standard level, but
approximate pressure differences across the mountain of 4 to 6 mbar are
not uncommon in the Rockies, Scandinavian Mountains, and the Alps.
The drag force associated with this Ap is considerable and must act on
the atmosphere somewhere. The response of the synoptic-scale flow to
this loss of momentum represents a new facet to the dynamics which is
not present in the linear theory of Queney.

Theoretically little is known about the response of the atmosphere to
a localized drag. The work of Eliassen (1951), however, is a valuable
conceptual guide. Eliassen used the w-equation (see Holton, 1972) to
compute the response of a geostrophically balanced wind to a localized
retarding force. He found that a secondary circulation (see Fig. 22) would
be produced in the transverse plane as the flow attempts to restore itself
to geostrophic balance. Qualitatively this transverse circulation has a
strong component down the pressure gradient in the retarded region and
a more widely distributed return flow. In this way the external force is
balanced locally by the excess downstream Coriolis force there. The

FiG. 22. The cross-stream circulation caused by a local retarding force acting on a
stratified geostrophically balanced stream. Such a force could be applied to a stream by the
breaking of mountain waves. Locally the retarded fluid is pushed to the left by the pressure
gradient force. The surrounding fluid is decelerated by the upstream Coriolis force acting
on the return branches of the circulation: (a) barotropic mean flow; (b) mean flow with
vertical shear and sloping isentropes: (c) force applied near the ground. (After Eliassen
1951.)
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weak return circulation has an excess Coriolis force acting upstream, and
this serves to spread the localized imposed force over a much broader
region of the flow.

The secondary circulation is altered slightly by the presence of a nearby
boundary or preexisting baroclinicity in the airstream. It is difficult to
apply these ideas to the mountain flow problem for several reasons. For
one thing it is difficult to predict where the mountain wave momentum
will be deposited. Another problem is that Eliassen’s theory is restricted
to two dimensions: that is, the external force acts everywhere along a
line parallel to the mean flow.

Observationally, Woolridge (1972), has noted that the equations of
synoptic-scale motion involving acceleration, Coriolis force, and pressure
gradient force do not balance in the upper troposphere and lower strat-
osphere over the mountainous terrain of Arizona and New Mexico. The
extra force needed to balance the momentum equation is usually a re-
tarding force and is interpreted by Woolridge to be the deposition of
mountain wave drag. He defends his interpretation by noting the simul-
taneous appearance of wave clouds in the satellite photographs of the
region.

3.3. Theories of Lee Cyclogenesis

Mountains have been observed to influence the weather in many ways.
The literature describing these observations has developed and remains
quite separated from the theoretical ideas discussed earlier. The difficulty
in connecting the observations and the theories is partly due to the
complexity of the problem and partly to the limited training and experi-
ence of the investigators. The following discussion will also, unfortu-
nately, fall short in this respect. There is a great need for detailed case
studies of the weather in mountainous areas using closely spaced and
frequent radiosonde releases, and with interpretation in terms of the
fundamental concepts of fluid dynamics.

The phenomenon of lee cyclogenesis has received far more attention
than any other aspect of the synoptic-scale mountain flow problem, and
for good reason. It is now known that a successful one-day or possibly
a two-day weather forecast can be achieved by simply predicting the
motion (using perhaps extrapolation or a barotropic numerical model) of
the existing cyclonic storms. To go further it is necessary to predict the
development of new cyclones, and from the statistical studies of Klein
(1957), or Reitan (1974), and Radinovic (1965b), and others, it has become
clear that the lee sides of the major mountain ranges are strongly pre-
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ferred sites of cyclogenesis. We note immediately that the usual expla-
nation of cyclogenesis in terms of baroclinic instability (see Holton, 1972)
makes no mention of orography. On the other hand, the simple prototype
problems of the flow around mountains discussed earlier show no evi-
dence of a developing lee-side cyclone. To explain the observed distri-
bution of cyclogenesis will require new and more complicated ideas.

The structure of cyclones developing in the lee of the Rocky Mountains
has been analyzed by Newton (1956), Petterson (1956), Hess and Wagner
(1948), Carlson (1961), Hage (1961), and Chung et al. (1976). Manabe and
Terpstra (1974) and Egger (1974) have shown that numerical models can
also be used to simulate lee cyclogenesis behind the Rockies and other
large mountain ranges. The results of Chung e al. are the most compre-
hensive but do not differ greatly from the earlier studies. They find that
it is important to distinguish between the weak depressions which form
and then remain just to the lee (25% of cyclogenetic cases) and the
stronger cyclones which form in the lee and then move away (75% of the
cases). This is similar to the discussion of Speranza (1975) in which he
emphasizes the difference between lee-side baric depressions and the
actual production of cyclonic vorticity. The local baric depression could
be associated with mesoscale mountain wave drag, whereas true cyclonic
vorticity, because of its conservation property, could move away down-
stream as a migratory cyclone. The development of the true migratory
cyclone can be described (following Chung er al.) as follows. An intense
“‘parent’’ cyclone approaches the Rocky Mountain cordillera from the
northwest. As it draws near, it turns slightly to the left and fills (i.e.,
weakens). Many hours later a cyclone is seen to form rapidly just down-
stream of the mountain range and initially move away to the southeast.
At the same time the upper level trough which was associated with the
parent cyclone has passed over the mountain and the eastern limb of the
trough lies over the mountain lee side, the new lee cyclone is seen to
develop (Fig. 23).

There are two ‘‘classical’’ explanations for this behavior. The first
would be called upper level or jet stream control of cyclogenesis. Ac-
cording to classical theory, surface cyclogenesis (not just lee cycloge-
nesis) is associated with divergent flow in the upper troposphere. The
upper level divergence is necessary both to cause the pressure to drop
at the surface and to allow rising motion in middle levels which in turn
produces cyclonic vorticity near the surface by low-level convergence.
The region of upper level divergence is usually associated with positive
vorticity advection, for example, a jet stream blowing out of a trough.
According to the vorticity equation this positive vorticity advection aloft
must be balanced by local divergence if the trough is only slowly moving.
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FiG. 23. An observational model of lee cyclogenesis, triggered by an approaching *'par-
ent” cyclone. The parent cyclone approaches from the west and weakens as it encounters
the high ground. Shortly thereafter a new cyclone forms and moves off toward the east. A
number of theories have been proposed to explain these occurrences including simple
conservation of potential vorticity and upper level "*jet stream’ control.

The argument of Newton (1956), Speranza (1975), and Chung er al.
(1976) is just to say that lee cyclogenesis will occur where and when the
low-level vortex stretching caused by divergence aloft is added to that
caused by downward flow at the surface on the mountain lee side. This
is precisely where the eastern limb of the upper level trough intersects
the mountain lee side.

One weakness of this type of argument is that it is difficult to tell
whether the upper level divergence caused the surface cyclogenesis or
whether there relationship is just a diagnostic association.

A simpler explanation of the phenomena involves the conservation of
potential vorticity. The potential vorticity of the parent cyclone is con-
served as it crosses the ridge, but the relative vorticity is temporarily
eliminated by vortex shortening while these air parcels are over the
mountain. Upon leaving the mountain the parcels are stretched to their
original length and the cycione reappears. If the upstream flow is partially
blocked, the lee cyclone can even be stronger than the parent.

This theory also explains the curvature of parent cyclone path to the
Jeft as it approaches the mountain and the initial motion of the new lee
cyclone to the right. The vorticity is moving with the fluid and therefore
is advected by the mountain anticyclone described earlier. Of course the
acid test of this theory is to determine if the lee cyclone is composed of
the same fluid particles as the parent cyclone. Unfortunately this trajec-
tory analysis has not been done.

There has also been considerable interest in the influence of the Alps
on the formation of cyclones in the Gulf of Genoa (Radinovié, 1965a,b;
Speranza, 1975; Egger, 1972: Buzzi and Tibaldi, 1977; Trevisan, 1976).
There seems to be a consensus that the nature of Alpine lee cyclogenesis
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is different than the Rocky Mountain variety previously discussed.
Whether this is due to the smaller horizontal dimension of the Alps,
different orientation, more complicated geometry, nearby warm sea, or
their different synoptic setting is not clear. The work of Radinovi¢ (1965a)
and Egger (1972) indicates that lee cyclogenesis is associated with south-
ward flow of cold air from central Europe and that the mechanism in-
volves the blocking of cold low-level air by the mountains. The details
as described by Radinovi¢ are rather complicated.

None of these arguments are so compelling that the matter can be
considered settled. The theoreticians have been going off in different
directions proposing a wide variety of mechanisms for lee cyclogenesis.
Some of these suggestions will be mentioned in the following:

(a) Buzzi and Tibaldi (1977) note that the introduction of Ekman layer
friction can alter the symmetric quasi-geostrophic flow discussed earlier
to an asymmetric flow with a significant (but fixed) lee-side cyclone. The
reason for this is apparently quite simple. The anticyclonic vorticity
above the mountain tends to decay due to friction, but this represents an
increase in potential vorticity. When the fluid columns leave the moun-
tain, their increased potential vorticity is realized in the appearance of
cyclonic relative vorticity. An extreme example of this is when the fluid
particles have spent so long over the mountain that their relative vorticity
has completely decayed. When dismounting the orography these particles
will develop a full measure of cyclonic vorticity. In this sense, elevated
regions with friction acting are generally sources of potential vorticity.
This same mechanism operates in the laboratory study of slightly viscous
flow of a rotating homogeneous fluid over an obstacle.

This mechanism also seems to be acting in numerical weather predic-
tion models. Whenever the mountain anticyclone is weaker than that
required by constant potential vorticity, cyclogenesis will occur in the
area where the air leaves the mountain. The weak anticyclone could be
caused by friction in the model or by an incorrect analysis of the input
data.

(b) Another possibility is that the formation of a lee cyclone is a
transient phenomena associated with rapid changes in the strength of the
incoming flow. If initially there is little or no wind, the isentropic surfaces
will not be parallel to the mountain surface but will be nearly horizontal.
In this case there is no mountain anticyclone. A sudden increase in wind
speed could cause the air near the mountain to be blown away down-
stream and replaced by upstream air. If the motion is adiabatic, the 6-
surfaces which intersect the ground must continue to do so: whereas in
the vicinity of the mountain, the #-surfaces lie parallel to the surface



THE INFLUENCE OF MOUNTAINS ON THE ATMOSPHERE 167

(Fig. 24). The intersection of the g-surfaces with the ground comprises
a warm-core cyclone caused by vortex stretching which moves off down-
wind. Such a “starting vortex’’ is commonly observed to be left behind
in Taylor column experiments in homogeneous fluids when the obstacle
is impulsively started from rest.

This transient mechanism is particularly appealing as it agrees with the
observation of Radinovié¢ (1965a) that cyclones form to the south of the
Alps soon after the onset of strong flow from the north. A difficulty with
the theory is that it is hard to know when the #-surfaces will intersect
the mountain and when they will go over. A test of this theory would be
to see if the lee cyclone is composed of air parcels that were originally
over the mountain.

(c) Merkine (1975), on the basis of a theoretical analysis of baroclinic
flow over a ridge, has suggested that the effect of the ridge is to increase
the baroclinicity of the atmosphere. This could lead to enhanced cyclo-
genesis through the classical mechanism of slantwise convection.

(d) If the growth of a cyclone is viewed as a self-sustaining process
which need only be triggered by low-level convergence then the lee side

74

mountain traveling / d
anticyclone warm-core
cyclone
(b)

F1G. 24. The generation of a surface-intensified cyclone associated with the onset of a
strong wind. (a) Initially there is no flow and the isentropic surfaces lie flat, intersecting
the mountain. (b) With the onset of a strong wind, the air over the mountain is blown away
and at the same time vertically stretched to form a traveling warm-core cyclone. The
isentropes that initially intersected the ground continue to do so. Near the mountain, the
uplifted #-surfaces indicate the presence of a mountain anticyclone.
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of a mountain would be a natural location for growth initiation. In a
barotropic inviscid atmosphere, however, the lee-side convergence acts
only to restore the vortex lines to their original length, not to create new
cyclonic vorticity. This triggering mechanism seems to be implicit in
several observational descriptions of lee cyclogenesis but apparently has
not been investigated theoretically.

(e) It is known theoretically from the work of Queney (1948) and
Johnson (1977) among others that if the Coriolis force is taken to be a
function of latitude, the generation of Rossby waves will introduce an
asymmetry in the flow. In fact the first trough of the wave system will
occur just downstream of the mountain. There is a certain fesemblance
between this flow and a lee cyclone except that this Rossby wave is a
standing wave and the trough will not move away downstream.

The effect of a nonconstant f(i.e., the B-effect) is not expected to be
important unless the mountain dimension L approaches the Earth radius.
The restoring force for Rossby waves is not just 8, however, but the
gradient in the background potential vorticity. Locally the horizontal
gradients in wind speed and temperature (or thickness) can cause a
restoring force much larger than that due to the variation of f. It follows
that the influence of Rossby waves could be important for much smaller
mountains. This may have had an influence on the numerical simulation
of lee cyclogenesis by Trevisan (1976).

(f) One simple way to explain lee cyclogenesis is to hypothesize that
the mountain blocks the low-level flow. The flow aloft must then descend
in a fohn-type wind producing warming and vortex stretching in the lee
(Defant, 1951). This is related to, but is not the same as, the effect of
blocking as described by Radinovi¢ (1965a) and Speranza (1975).

(8) Another possibility is that the mountain drag may act in some way
to create the lee cyclone. For example, near one flank of the mountain
the variable drag could produce a torque on the atmosphere which in
turn will produce vorticity.

This list of mechanisms is not meant to be inclusive but is merely
intended to illustrate the kinds of possibilities that may have to be con-
sidered. These proposals are certainly less precise than the mathematical
problems considered earlier in the section. The use of numerical models
appears to be one promising method for closing the gap between the
simple, but precise, analytical ideas and the reality of atmospheric flow.
Several authors (Egger, 1972, 1974; Manabe and Terpstra, 1974; Trevi-
san, 1976) have reported success in numerically simulating lee cycloge-
nesis. This represents a great step forward, but as of yet it is not known
exactly how these solutions can be used to understand the flow physi-
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cally. All of these models incorrectly model the dynamics of inertial
gravity waves and so cannot be compared with the analytical solutions
of Queney. Eliassen and Rekustad (1971) have taken more care to treat
these waves by using greater resolution in the vertical and a radiation
condition aloft. Their model, however, is restricted to two dimensions,
has dangerously close inflow and outflow boundaries, and has been eval-
uated only for very special upstream conditions. Clearly more work is
needed in this area.

4. OROGRAPHIC CONTROL OF PRECIPITATION

One of the most striking ways in which topography influences the
weather is in its strong local control of the rainfall distribution. The most
obvious examples are the rainfall maxima on the upwind side and the
corresponding dry, rain-shadow regions in the lee of major mountain
barriers at latitudes with consistent prevailing winds. The clearest case
of this is the wet—dry contrast across the Andes in South America which
reverse its orientation when passing south from the tropical easterlies to
the midlatitude westerlies.

On a much smaller scale, but equally striking, is the now well-con-
firmed observation that rainfall can often be a factor of 2 greater at the
tops of small (50 to 100 m) hills than in the surrounding valleys. This has
an especially large impact on the plant life of the region and also on the
scientist trying to construct regionally averaged rainfall data. Of course
we expect these two examples of orographic control of rain to be phys-
ically somewhat different, as between these two extreme scales there lie
several natural **cloud physics’’ length scales—especially the distance of
the downwind drift during (a) the lifetime of a cumulus cloud, (b) the
formation of raindrops from cloud droplets, and (c) the fall of hydrome-
teors to the ground, as well as the natural scales N/U and f/ U which
affect the dynamics of airflow over the hills. One of the challenges of
this section will be to investigate the effect of mountain size on the nature
of orographic rain. Some aspects of this problem have been reviewed by
Bergeron (1949).

4.1. Observations of Rainfall Distribution
4.1.1. Distribution of Annual Rainfall with Respect to Elevation. A

tremendous amount of information has been collected concerning the
distribution of precipitation in mountainous areas. These data are for the



170 RONALD B. SMITH

most part concentrated in the hydrological, geographical, agricultural,
and water resources literature—mostly in unpublished reports of govern-
ment agencies. As a first attempt to organize these data it has become
standard practice to correlate statistically the annual average precipita-
tion (mm/yr) against station elevation (meters above sea level). In most
cases it has been found that precipitation tends to increase with height.
This is also consistent with Longley’s (1975) observation that precipita-
tion decreases with depth down in isolated valleys. To easily represent
this trend, the linear regression slope is

dP(mm/year) _ . .

(4.1) -

computed where the coefficient a describes the rate of increase of annual
precipitation with height. An alternative description (Ryden, 1972) is the
relative increase of precipitation with height

logP 1dP
(4.2) g dlog P _1dP

Some typical examples of values for a and R are shown in Table II where
the height increment is taken to be 100 m, and R is expressed in percent.

The linear regression equations (4.1) or (4.2) are somewhat misleading
as in almost every case there is considerable scatter about the linear
regression representation. This is to be expected as the precipitation
should depend on many other factors, for example, the yearly pattern of
weather type, ground temperature, the size and shape of the surrounding

TABLE II. TyricAL EXAMPLES OF VALUES FOR ¢ AND R

mm
mm /4
a( yr/ 00 m) R(%/100 m)
United Kingdom

Bleasdale and Chan (1972) 250 25%
Pennines (UK)
Chuan and Lockwood (1974)

East Pennines 200 40

West Pennines 190 25
Western Canada, Mormot Creek

Storr and Ferguson (1972) 60 10

Northern Sweden
Ryden (1972)

Kamajokk (1967) 18 7
Kamajokk (1968) 7 6
Malmagen 22 9
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mountains, and the vertical profile of temperature, humidity, wind, speed
and direction, and possibly the aerosol distribution. Furthermore, there
are exceptions to the trend shown in Table II. On very high mountains
the rainfall may increase up to a certain height and then decrease. From
the wide variation of a between different regions (a factor of 40) it is
clear that « is not in any sense a fundamental constant. The variation in
R is somewhat less, indicating that regions with greater annual rainfall
have greater variation of rainfall with height, but R is still clearly not a
fundamental quantity. For the scientist trying to understand the nature
of orographic rain, the data in Table I1 are of little use. It cannot be
interpreted to mean that in a single rainfall event the precipitation in-
creases with height, which might, for example, be explained by the
evaporation of raindrops before hitting the ground. This method also fails
to describe the upslope rain-rain shadow contrast which we know is
important for broad mountains. If the region being considered has a
consistent prevailing wind, this latter effect is well represented by the
areal distributions of annual precipitation.

4.1.2. Rainfall distribution with Respect to Wind Direction and
Weather Type. In order to gain more information about the orographic
control of precipitation, while retaining the statistical approach, it is
necessary to classify the data according to weather type, wind direction,
or both. Some examples of this kind of analysis will be given here.

Wilson and Atwater (1972) studied the distribution of rainfall in the
state of Connecticut, a region of low (<300 m) hills. They restricted their
study to rainstorms of the large-scale stratiform type and classified the
cases according to wind direction. They conclude that the major part for
the spatial variation of rainfall can be explained by the influence of
topography. Generally there was greater precipitation in the hills, but
with the maximum shifted toward the upwind slopes.

Bergeron (1968, 1973) studied the rainfall distribution in the region of
low hills (<60 m) near Uppsala, Sweden. For the most part Bergeron
used monthly averaged data with each month classified according to
weather convective showers or continuous stratus rain was predominant.
With convective showers (typically summertime) the rainfall distribution
is characterized by swaths of rainfall corresponding to convective clouds
passing over the area. Topography appears to have little effect. In the
fall months, with primarily stratus rain, Bergeron found a remarkably
strong dependence of rainfall in height. For example, between Lake
Ekoln and Lunsen Hill, 60 m higher and only 5 km away, the rainfall
nearly doubled. Bergeron (1968) presents a conceptual model for this
effect which will be described later.
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On a larger scale, Nord¢ and Hjortnes (1966) and Andersen (1972)
considered the precipitation distribution over the broad mountains (width
~ 250 km, height ~ 1500 m) of southern and central Norway. Nordg¢ and
Hjortnas statistically relate the rainfall distribution to the component of
geostrophic wind directed against the mountain during the same period.
Andersen, on the other hand, uses monthly mean precipitation, with each
month being classified as to prevailing wind direction and weather type.
In spite of the differing technique the results of both studies are broadly
similar. The rainfall is strongly controlled by topography with the maxi-
mum occurring near or slightly upwind of the steepest surfage slope. At
the divide the rainfall is a small fraction of the upslope maximum and the
lee side is remarkably dry. There are some important exceptions to this
simple picture, for example, the strong precipitation maximum that some-
times occurs in the wintertime on the southeast coast of Norway. Ber-
geron (1949) noticed this same anomaly in a case study and has put
forward a possible kinematic explanation (see also Smebye, 1978).

Andersen (1972) and Utaaker (1963) appear to find that the smaller
scale mountains in Norway exhibit a quite different rainfall pattern with
the maxima occurring at mountain top or in the lee.

The use of rain gauge data, even from special networks, has so far
proved unable to provide a clear picture of the structure of orographically
induced cumulonimbus rain. This is not surprising as these cloud ele-
ments appear rapidly and apparently randomly over mountains terrain on
warm summer days and seem to move away downstream. Biswas and
Jayaweera (1976), using satellite observations, concluded that there can
be strong topographical control of air mass thunderstorms in the Alaskan
region. Kuo and Orville (1973) studied the climatology of convective
clouds in the Black Hills using radar. They also found strong topographic
control with the maximum cloud development appearing downwind of
the mountain peaks. Skaar (1976) indicates that in the summer over
Norway the prevalence of convective rain results in a much broader
distribution of rainfall although in detail, much more complex.

This sampling of observational results seems to suggest the importance
of two factors:

1. The weather type (or season) which can determine the relative
importance of stable versus convective rain.

2. The size of the mountain which determines whether the orographic
rain will occur on the upwind slope with a rain shadow in the lee (i.e.,
larger mountains L > 100 km), or with the maxima more nearly centered
on the mountain (i.e., smaller mountains L < 20 km).

There appear to be three rather independent mechanisms of orographic
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rain. These are (see Fig. 25):

|. Large-scale upslope precipitation. Orographically forced vertical
motion or convection triggered by smooth orographic ascent brings the
air to saturation and after some delay, raindrops form and fall to the
ground.

7 Enhancement of rainfall over small hills (after Bergeron, 1968).
Rainfall from preexisting clouds (either frontal or orographic) is partially
evaporated before hitting low ground, but over hills amplification occurs
by washout of cloud droplets from low-level pannus clouds.

3. Orographic control of the formation of cumulonimbus clouds in a
conditionally unstable airmass. Heating of the mountain slopes by inso-
lation causes upslope winds leading to thermals above the mountain peak
which trigger the formation of convective clouds.

In the following sections 4.2, 4.3, and 4.4, we will examine each of the
above mechanisms.

4.2. The Mechanism of Upslope Rain

4.2.1. A Protorype Model of Upslope Rain. We will derive a simple
model of upslope rain which will serve as a focal point for further dis-
cussion. Consider a reference volume V = 1 m? at some height z above
the surface in a saturated region of the atmosphere. The rate of conden-
sation (kg/sec) in the volume will be the rate at which the saturation
water vapor density p., = r¢pa; decreases following the parcels flowing
through the volume, »

Dp.
Dt

F1G. 25. Three mechanisms of orographic control of precipitation: (a) broad-scale upslope
rain, (b) small-scale redistribution of rain by hills, and (¢) orographic-convective showers.
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If the decrease in p,,_is caused by adiabatic lifting, then

Dpw, _ dpy,

4.3
(4.3) Dt dz

ad

If precipitation-size particles (raindrops or snowflakes) can form imme-
diately from the cloud droplets, and if these hydrometeors fall directly to
the ground with no downwind drift, then the rate of precipitation at the
ground (kg/m? sec) is just the vertical integral of (4.3).

kg fm dp
4.4 = T
4.4 R (m2/sec) 0 W dz

Equation (4.4) is still rather general in that w in (4.2) could be associated
with (a) large-scale frontal uplift, w ~ 10-50 cm/sec; (b) orographic uplift,
w ~ 10-50 cm/sec; or (c) convective updraft, w ~ 1-5 m/sec. In all of
these cases the precipitation rate will be closely associated with the
strength of the updraft. The intensity of orographic uplift can be estimated
by assuming the the flow at all levels is parallel to the sloping mountain
surface. Then

4.5) w(z) = U(2)a

dz

ad

where a is the surface slope and U(z) is the horizontal wind. With this
simplification (4.2) becomes

kg * dp «
46 = _S
(4.6) R (m2/sec) afo vz dz

To obtain a representative estimate for the intensity of orographic pre-
cipitation we can consider the special case (1) U(z) = U = const and
(2) the environmental temperature 7(z) lies along a moist adiabat, so
that

dz

ad

dp wy| _ dp

4.7
.7 dz Iad dz

This is nearly true in many cases of orographic rain (see, for example,
Douglas and Glasspole, 1947). With these, (4.6) becomes

k “dp
R( g ) = an —dz = aU[p.]§
0 dz )

m?2/sec
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and as p,, — 0 aloft

(4.8) R( ke ) = aUpy(0) or aUry(0)pa(0)
m?/sec

In this special case the general dependence of (4.6) on the temperature
and humidity structure reduces to a simple dependence on rg(0), the
mixing ratio at the ground. As an example, choose a = 1/100, U = 10
m/sec, r(P = 1000 mbar, T = 15°C) = 11 gm/kg = 0.011 kg/kg, pair =
1.2 kg/m3. Then R(kg/m sec) = R(mm/sec) = 1.3 x 1073, or R = 4.7
mm/hr. This value is not atypical of observed rates, but the analysis
above is intended only to illustrate the kind of assumptions which are
often used.

4.2.2. Efficiency of Release. A number of authors have made esti-
mates of the efficiency of precipitation release during orographic lifting.
These estimates require (1) rawinsonde profiles of the incoming wind,
humidity, and temperature: (2) a way to estimate the amount of lifting
that occurs at each level: (3) rain gauge measurements of precipitation
over the upslope area. Sawyer (1956) compared six examples of measured
precipitation on the windward slopes in Wales with the amount calculated
from an equation like (4.6). He found that when conditions are favorable
for heavy orographic rain, the efficiency (i.e., observed rainfall/computed
condensed water) is nearly 100%. On the other hand, when only shallow
layers of moist air is present, soO that less total condensation occurs, the
efficiency is reduced to 30-50%, and thus the rainfall is greatly reduced.

Browning er al. (1975) have computed the efficiency during four cases
of pre-cold-frontal upslope rain in the same area, i.e., Wales. They as-

Fi1G. 26. Two possible mechanisms of upslope precipitation: (a) stable upglide and (b)
orographic triggering of closely packed convective showers.
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sumed that the lifting was independent of height [as in (4.6)], but included
only the condensation occurring below z = 3 km, arguing that the liquid
water formed above that level would be blown downstream out of the
upslope control region. In two cases the efficiency was quite large, close
to 70%. These cases were characterized by (a) a strong, moist low-level
jet directed against the mountain slope; (b) incident airstream already
near saturation; (¢) some condensation occurring above the freezing line
allowing ice-phase process to aid in the release of precipitation.

The two other cases examined by Browning et al. (1975) had much
lower efficiencies—approximately 109% and 30%. These cases were char-
acterized by initially unsaturated air requiring some finite ascent before
condensation begins, and in one case, little or no condensation above the
freezing line.

A number of papers have been written concerning the efficiency of
orographic rain on the western side of the California mountain ranges
(Myers, 1962; Elliot and Shaffer, 1962; Elliot and Hovind, 1964; Colton,
1976). Myers computed an efficiency of 70% for the large Sierra Nevada
Range using a modified form of (4.6). Instead of taking « to be constant
with height, he assumes that a drops off linearly from the ground to a
presumed ‘‘nodal surface’’ at about z = 5 km. This somewhat reduces
the computed condensation and increases the efficiency. Elliot and Hov-
ind (1964) used a similar nodal surface assumption in the study of rainfall
on the smaller San Gabriel and the still smaller Santa Ynez mountains.
They classified each case according to the conditional stability of the
incoming air (Table 1II). They conclude (looking also at Myer’s data) that
efficiency tends to increase with mountain size. The increased efficiency
for unstable flows over the Santa Ynez could either be caused by an
improved release mechanism or by an increase in condensation over that
given by (4.6) due to the strong vertical motions in local convective
elements.

TaBLE II1
Mountains Number of cases Efficiency
San Gabriel
Stable 31 26%
Unstable 8 27
Total 39 26
Santa Ynez
Stable 21 17%
Unstable 22 26

Total 43 22
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Colton (1976) compared computed and observed rainfall rates on the
Sierra Nevada (130 km wide) and the Smith River Basin (70 km) using
the assumption of full release. The use of a flow model with w going to
zero at about z = 5 km, gives remarkably good resuits, suggesting nearly
complete release. As in the other studies, however, it is difficult to sort
out the efficiency of raindrop formation (a cloud microphysical process)
from errors in the assumed w-field.

We have seen that the precipitation efficiency depends both on the
assumed field of lifting and on the microphysical processes leading to the
formation of hydrometeors. In later sections we will discuss the former
problem both with regard to the mean flow and to the possibility of small-
scale convection triggered by the orographic lifting. Some insight into the
cloud physics problem associated with orographic precipitation is pro-
vided by Young (1974a.b). Using a specified flow field and upstream
sounding, Young computed the distribution of precipitation over the
Front Range in Colorado. His model included a wide variety of micro-
physical processes and the downwind drift of hydrometeors. The para-
meterization of artificial seeding by silver iodide was also allowed for.
The efficiency found by Young is

natural conditions 0.04%
with optimum seeding 20.00%

The natural efficiency found by Young (.04%) is so much smaller than
the observations discussed previously, that some attempt must be made
to explain it. Either Young's model is incorrect, or the mechanism of
Front Range orographic rainfall is entirely different than that of California
and Wales. The primary differences between these mountain flows are:

(a) Unlike the mountains of Wales and California, the Front Range is
set well inland and even its base is 1500 m above sea level. In the case
studied by Young, the bottom of the moist layer is at about 3400 m with
T = 0°C. Thus the amount of available water is much less than in the
case of a coastal range. We have already seen the suggestion (from
Sawyer and Browning et al.) that a decreased moisture content can lead
to a decreased efficiency.

(b) Another important difference is that the Front Range is only 40 km
wide— significantly narrower than the mountains of California or Wales
considered previously. One result of this is that the distribution of pre-
cipitation computed by Young is nearly symmetric with respect to the
ridge crest instead of having a maximum on the windward slope. Possibly,
by considering narrower mountains such as the Front Range we have
stepped into a new regime where the time for hydrometeor formation and
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fallout 1s the same or longer than the time for the air to pass over the
mountain. The condensed water aloft is never realized as precipitation at
the ground. The narrower mountains can cause precipitation only by the
introduction of seeding, either natural or artificial. Young finds that the
efficiency can be significantly increased by artificial seeding and this
agrees with results of the Climax experiment (Mielke ef al., 1971), which
found significant increases in wintertime precipitation by artificial seed-
ing.

The other possible way to get small-scale orographic precipitation is
that described by Bergeron (1960a, 1968), namely natural seeding from
above by a larger scale cloud system. This possibility will be discussed
in a later section.

Even if we accept the idea that large-scale orographic lifting a deep
warm moist air current can cause some release, it is still surprising, in
light of the difficulties in forming precipitation-size particles, to find
release efficiencies of 70% to 1009 such as reported by Sawyer (1956),
Myers (1962), and Browning er al. (1975). Is it possible to convert such
a high fraction of the condensed water into precipitation? If not, the
simple method of computing the vertical motion field (4.3) must be con-
siderably in error. Either the mean streamlines aloft are lifted by an
amount greater than the mountain height or the orographic lifting triggers
deep convection.

4.2.3. The Controversy concerning Stable versus Unstable Upslope
Rain. In a lecture before the Royal Meteorological Society, L. C. W.
Bonacina (1945) surveyed the regions of intense orographic rain around
the world and the possible mechanisms. He concluded that orographic
rain does not occur every time an airstream impinges on a mountain, but
rather that the airstream must have been conditioned by the prevailing
synoptic situation. In particular he emphasized the importance of con-
vective instability for the generation of intense orographic rain.

Two years later Douglas and Glasspoole (1947) refuted Bonacina’s
contention by examining several cases of warm-sector orographic rainfall
in the British Isles. They noted that the upstream surroundings showed
slight conditional stability rather than instability. Further, they showed
that simple orographic lifting could (assuming 100% release) account for
the observed rainfall amounts. They concluded that, at least in their
cases, the orographic uplift was a stable well-ordered process without
convection. The interested reader should also notice the controversial
discussion that follows Douglas and Glasspoole's paper. To a certain
extent Douglas and Glasspoole’s arguments seem to have carried the day
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as many subsequent authors have flatly assumed stable lifting in their
models. Recently, however, a much more detailed study of warm-sector
orographic rain in this same geographical area has been reported by
Browning et al. (1974). From frequent rawinsonde releases, a network of
continuously recording rain gauges, and radar observations of the pre-
cipitation-bearing clouds they were able to construct a remarkably com-
plete picture of precipitation mechanism. The distribution of precipitation
rate (mm/hr) in space and time is shown in Fig. 27. It is clear that while
there is continuous rain over the mountain, the rain is really due to a
coalescence and intensification of the rain from moving convective cells |
(called MPA's—mesoscale precipitation areas, by the authors). This
structure is also shown in Fig. 28. These MPA’s form upstream in a
middle-level layer of potentially unstable air—presumably triggered by
far-reaching orographic lifting. They move downstream at a speed char-
acteristic of the wind speed at midlevels. Note on Fig. 28 that the vertical
extent of the MPA’s is about 2000 m, and this is probably a fair estimate
for the ascent distance of air parcels within these convective elements.
This represents a great increase in lifting over the stable ascent hypothesis
as the mountain in this case is only 300 meters high.

Browning er al. also found small-scale convection occurring in a 2-km
thick, potentially unstable layer near the ground. Again the lifting in
these clouds probably far exceeded the height of the mountain, leading
to considerable condensation. If it were not for these low-level clouds,
the precipitation reaching the ground would have been considerably re-
duced and distributed more widely downstream. These low-level clouds
are responsible for the apparent coalescence and intensification of rainfall
over the mountain. The low-level clouds probably have insufficient time
to form precipitation by themselves before the lee slope descent begins.
Thus they would produce no rain. In the presence of precipitation from
above, however, their condensed water can be efficiently washed out,
greatly increasing the rainfall at the ground. This redistribution of rain
by low-level clouds will be discussed again later.

The contrast between stable and unstable rain has also been considered
in the frequent orographic rain on the west coast of Norway. In two
papers Spinnangr and Johansen (1954, 1955) attempted to use conven-
tional synoptic and radiosonde data to describe, and to distinguish be-
tween, cases of stable and convective orographic rain. Their 1955 paper
describes the approach of Maritime Polar (MP) air toward the mountains.
They show that the rainfall begins when the sounding just upstream has
become slightly unstable with respect to saturated lifting. They argue
that the cold MP air has been destabilized by its passage over the warm
Gulf Stream and the orographic lifting then triggers the shower activity.
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Occasional showers out at sea give additional evidence of the unstable
state of the atmosphere. In spite of this, the heavy orographic rain inland
was described as continuous rain by local observers—not rain showers.
The showers had apparently **been packed together and had amalgamated
into continuous rain.”” This is similar to the observations of Browning et
al. (1975) discussed earlier. The intense rainfall concentrated just inland
from the coast where the topographic slope is the greatest, with little rain
reaching the divide 100 km inland. This rapid decrease of rain down-
stream is attributed by the authors to the short lifetime of convective
clouds.

In the second paper Spinnangr and Johansen (1954) consider cases of
southwest flow of warmer Maritime Tropical (MT) air toward the west
coast of Norway. This air was contained in the warm sector of a devel-
oped cyclone just as in the case studies of Douglas and Glasspoole and
Browning et al. discussed earlier. They argue that the northward flow of
this tropical air should generate a stable air column. The soundings taken
well upstream (in England) are noticeably, but not strongly stable against
saturated lifting. The observed intense orographic rainfall was distributed
spatially in a similar way to their 1955 study of instability showers. The
observations of rain type was also similar with a predominance of con-
tinuous rain (although of temporally variable intensity) and reports of
rain showers near the beginning and end of the rain period. Spinnangr
and Johansen also show, using arguments similar to those of Douglas and
Glasspoole, that the observed intense rainfall can be explained by stable
upglide if 100% release is assumed.

Upon re-reading these two studies by Spinnangr and Johansen (1954,
1955), one is struck by the great similarity between them and with the
studies of Browning et al. (1975) and Douglas and Glasspoole (1947).
Certainly the reports of rain type cannot be used to distinguish reliably
between the two types of orographic rain as even the rain showers tend
to coalesce as shown in Browning er al. and 5Spinnangr and Johansen
(1955). The spatial distribution of precipitation may also be similar. Even
the observation of slight conditional stability in the approaching air, as
in Douglas and Glasspoole, and Spinnangr and Johansen (1954), does not
rule out instability showers because (as will be shown later) the oro-
graphic lifting aloft upstream of the mountain acts strongly to destabilize
the column. It seems possible then that even the events which were
presumed to be cases of stable rain [i.e., Douglas and Glasspoole (1947)
and Spinnangr and Johansen (1954)] may have been in fact instability
showers such as described in the more detailed observations of Browning
et al. (1975). This interpretation also offers an explanation of the rainfall
intensity found in these cases without requiring the assumption that all
of the condensate reaches the ground as rain.
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pearance of prefrontal '“pure’ orographic rain followed by the frontal
passage. As an example, the warm-sector orographic rain discussed by
Douglas and Glasspoole (1947) and Browning et al. (1974), ended with
the passage of the cold front. They found, however, that the frontal rain
itself was not much increased by the orography. Browning et al. (1975)
also discussed the interaction between a cold front and the Welsh hills.

A somewhat different view is expressed by Petterssen (1940, pp. 298-
302) and Bergeron (1949) who describe the orographic influence on frontal
characteristics. The most detailed case study of mountain—front interac-
tion is that of Hobbs er al. (1975). Using aircraft measurements, frequent
soundings, and a network of automatic rain gauges, they were able to
piece together a fairly complete picture of the passage of an occluded
front over the Cascade Mountains in Washington state. They find a
definite influence of the mountain on the front. The timing of the precip-
itation is strongly influenced by the front, but the location of the rainfall
is almost entirely on the windward slopes. This is shown in Fig. 30.
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F1G. 30. The passage of an occluded front over the Cascade Range in Washington state:
(a) the distribution of clouds 1 hr after the front crossed the mountain crestline; (b) the
precipitation rate (107! mm/hr) plotted as a function of the distance from the crestline (km)
and the elapsed time from local frontal passage (hr). Frontal precipitation occurs even
before the front reaches the mountain (region A on the figure). The mountain greatly
increases the frontal precipitation (region D), but this seems to ‘‘dry out’” the front as
frontal precipitation stops as the mountain is left behind (region F). In the upslope region,
rain continues for many hours after the passage of the front (region E). (From Hobbs et
al., 1975.)
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The relationship between orographic precipitation and synoptic situa-
tion in the central Rockies has been studied by Williams and Peck (1962).

4.2.5. The Dynamics of Airflow in Connection with the Problem of
Upslope Rain. The general dynamical problem of airflow over mountains
has been discussed in the other sections. Still there are some special
aspects to the problem which are associated with upslope rain and they
deserve attention here. First, there is the question of the dynamical influ-
ence of the latent heat of condensation. Second, the results of the earlier
sections should be re-examined to understand their implications for the
generation of orographic precipitation. For example, if conditional inst-
ability is important in orographic rain, we should see what destabilizing
influence the mountain may have.

It has become quite common to assume that the vertical velocities
above a mountain are confined to the region directly over the mountain
and that the slope of the streamlines is either constant with height [as in
Eq. (4.5)] or decreases to zero at some midtroposphere level (see Fig.
31). Dynamically such models are clearly incorrect as are the attempts
to derive them from the governing equations. Myers (1962) defended
such a solution using arguments taken from hydraulics—the study of
discrete fluid layers. Such arguments are not applicable to the continu-
ously stratified atmosphere, however, as in this latter case there is no
maximum long-wave speed. Atkinson and Smithson (1974) use a correct
set of governing equations (without moisture) to derive such a flow field,
but their solution violates the important upper radiation condition and is
therefore incorrect. On the other hand, the use of such a simplified model
as in Fig. 31 probably does not introduce very much error in the com-
pution of total condensation if the air is passing smoothly and stably over
the mountain. This is especially true in cases when most of the moisture

Fi1G. 31. The simple model of airflow used by several authors in their models of orographic
rain. The lifting of the air is confined to the region directly over the mountain, and the
slope of the streamlines decreases upward to zero at an undisturbed level. Such an airflow
pattern probably would not occur, but it is not known whether the use of such a model
would introduce appreciable error.
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is in the lowest layers as these layers must follow the ground regardless
of what model is used (unless there is blocking).

The primary point here is that all actual solutions to flow over an
isolated mountain or ridge show that the lifting aloft begins well upstream
of the mountain. This is true for hills and mountains of all scales regard-
less of whether the flow is dominated by inertia, buoyancy, or rotation,
but it is probably most marked for mountains from 10 to 200 km wide,
generating gravity waves which tilt strongly upstream. For example, the
flow over a I-km high mountain could well experience 500 m of lifting
aloft, say, at 600 mbar, before the ground surface begins to rise. In a
model of stable upslope rain, this effect would move the condensation
maxinmum some distance out ahead of the point of steepest surface slope.
Of course the delays associated with the formation of hydrometeors and
their fall to the ground could well push the rainfall maximum back to or
even beyond the steepest mountain slopes, depending on the horizontal
scale of the mountain.

The lifting of middle-level air ahead of the mountain has a stronger
implication if we consider the destabilization of the air by the mountain.
Consider the case where the incident airstream is slightly undersaturated
(relative humidity slightly less than 100%) and slightly conditional stable
(0, increases slowly with height). As the air approaches the mountain
there is lifting aloft, but not at the surface. The lifting by itself is impor-
tant, of course, as it brings the air closer to saturation, but, the fact that
the column is vertically stretched, may be just as important in the gen-
eration of showers. The lifting aloft is at first along a dry adiabat (see
Fig. 32) and acts strongly to destabilize the column. Then, when satu-
ration is reached, the column is conditionally unstable even if it was
conditionally stable way upstream. Such a destabilization cannot be de-
scribed by the simple models with an undisturbed nodal level as only
column shortening occurs in such a model.

Fic. 32. The destabilization of a nearly saturated, nearly conditionally unstable air mass
due to lifting aloft upstream of the mountain. The air parcels aloft rise dry adiabatically
thus decreasing the stability of the air column against moist convection.
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There have been a number of studies in which the governing equations
for fluid motion have been used to determine the airflow pattern over a
mountain for use in a orographic rain model. As a first step, Sawyer
(1956) discussed the application of the adiabatic linear theory solutions
to the orographic rain problem. He also estimated the amount of *spill-
over’’ of rainfall into the downslope area due to the delays in droplet
coalescence and fallout. A more complete model of this sort has been
presented by Gocho and Nakajima (1971). There must be some question
as to the validity of their flow solutions, however, as their streamline
patterns do not agree with those of other investigators. Their computation
of spillover shows that most precipitation falls downstreanr of the crest,
but this follows naturally from their model as the trajectory slope (droplet
fall speed/speed) was approximately 5 m sec™/20 m sec™ = 1/4 and the
mountain width was only 10 km. Actually, the small-scale orographic
rain pictured by Gocho and Nakajima would be unlikely without vigorous
seeding from above (Bergeron, 1960a). A more recent treatment is Gocho
(1978).

To form a consistent model of orographic rain, the latent heat released
by condensation should be included in the dynamics. Within the meth-
odology of linear theory this added heat can be accounted for by the use
of the saturated adiabatic lapse rate, in the definition of static stability,
at the levels that are saturated. This method was used by Sarker (1966)
in his model of flow over the Western Ghats in India—an area noted for
its torrential monsoonal rains (Ramage, 1971, p. 111). In Sarker’s case
the observed lapse rate was equal to the saturated adiabatic lapse rate I'
over a deep layer. Thus when T is replaced by I'g in the expression for
the Scorer parameter

_ —glT/9z) -T] 18U
B TU? U? 922

1*(z)

the buoyancy term (i.e., the first term) vanishes. Sarker concludes that
the restoring force due to the curvature in the mean velocity profile, a
term which is usually quite small, must dominate. This leads to a rather
peculiar flow field solution, partly because the profile curvature must be
evaluated from a sounding near the mountain which is strongly altered
by the mountain. Some alterations in the model are described in Sarker
(1967).

One problem with the use of linear theory is that in a nearly saturated
atmosphere, even slight lifting will bring the air to saturation and thus
change the effective stability of the fluid. This problem has been avoided
in the nonlinear models of Raymond (1972) and Fraser et al. (1973).
Fraser et al. introduced nonlinear corrections at the interface between
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saturated and unsaturated layers. Raymond used a more straightforward
model with a local heating function prescribed as a function of the vertical
velocity. A few iterations are necessary before a consistent solution is
found. Raymond finds that the heating makes only minor changes in the
flow field—a result which suggests that the adiabatic flow-field solutions
might be applicable, at least qualitatively, to the orographic rain problem.
This view is strongly contested by the observations of Hill (1978) who
measured precipitation-induced vertical motion in winter orography
storms in the Wasatch Range, Utah. In particular, Hill's observations
suggest that the role of heat release in condensation and cooling during
evaporation is to generate small-scale convective motion. These motions
locally control the rainfall intensity.

A fully numerical, finite difference solution to the two-dimensional,
orographic rain problem has been presented by Colton (1976). The com-
puted rainfall distribution over the Sierras and the Smith River Basin in
California agrees well with observations, but it is difficult to understand
completely why this is so. One would think that his assumptions of 100%
release of condensate with no delay and a reflective upper boundary
condition at 11 km would degrade his results. Such an incorrect upper
boundary condition requires the flow (except for the action of friction)
to be of a standing wave form with a level of no disturbance and with
lifting confined to the region directly over the mountain. Colton appears
to find no evidence of convective instability, but his coarse grid and
frequent numerical smoothing of the flow field probably rule out such a
possibility a priori.

The remaining dynamical problem concerning orographic rain is the
question of whether an incoming airstream will pass over the mountain,
or whether due to the mountain’s disturbing influence, it will slow, turn
aside, and either flow completely around the mountain or pass over at a
more convenient spot. Such a turning would surely influence the hori-
zontal distribution of precipitation. Two examples from the Scandinavian
mountains will serve to illustrate the point.

When a large-scale westerly flow crosses the west coast of Norway,
there is usually a local disturbance to the pattern of reduced sea level
pressure (see Spinnangr and Johansen, 1954). This pressure perturbation
has the form of a high at, or upstream of, the ridge crest and a trough in
the lee. This description roughly coincides with the theoretical solution
for the flow over a mesoscale mountain (see Section 3). The pressure
perturbation does not seem 10 be so strong as to suggest a complete
blocking of the flow, but at the same time the surface winds just upstream
are observed to be northward, parallel to the mountainous coastline. The
occurrence of upslope rain indicates that there is lifting aloft, so that the
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FiG. 33. Examples of the horizontal redistribution of precipitation by the blocking influ-
ence of the mountain. (a) The maxima of SE Norway occurring with SE winds. (After
Andersen, 1972.) Two possible models of the foehn wind; (b) with flow over the mountain
and upslope rain, and (c) with blocking and descent from aloft.

blocked air must be confined to a shallow layer (perhaps only the lower
part of boundary layer) near the ground.

When the wind approaches southern Norway from the east or south-
east, the surface winds may also turn to the left and run down the coast.
In this case, however, there appears to be an alteration to the horizontal
distribution of precipitation with a maxima occurring in southeast Nor-
way (see Fig. 33a). This maxima appears in case studies described by
Bergeron (1949) and Smebye (1978) and in monthly averaged rainfall
patterns described by Anderson (1972). According to the linear theory of
flow over mesoscale mountains, this local intensification could be ex-
plained by the increased wind at the left end of a mountain range by the
mountain anticyclone (see Section 3).

The horizontal deformation of the wind field is also important in the
warm, dry féhn wind that blows down the lee slopes of mountains such
as the Alps (Defant, 1951; Yoshino, 1975), and the Rockies (Brinkman,
1971). There seems to be two possible explanations for the appearance
of the dry, warm air. The first, shown in Fig. 33b, is connected to the
theory of orographic rain. If the incoming air is nearly saturated and if
it goes directly over the mountain, it will rise along a saturated adiabatic
to the top. If the condensed moisture has rained out, the air will be
warmed adiabatically as it descends—ending up warmer and with lower
relative humidity. There are many “'ifs’" in this "‘textbook™ explanation
and sometimes it is difficult to explain the extreme dryness of a fohn in
this way. The consideration of unstable upslope rain may be of some
help in this regard.

The other possibility (Fig. 33) is that the low-level air has been blocked
upstream by the mountain or has been diverted to the sides. Then the
potentially warm, dry air from aloft must descend generating a fohn
effect. This mechanism can produce drier air than the classical explana-
tion as the air need not be saturated at mountain tcp level.

The general relationship between the three-dimensional perturbation
of the flow by orography and the distribution of orographic precipitation
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is little understood. There seems to be a need for more synoptic studies
of this problem.

4.3. The Redistribution of Rainfall by Small Hills

Recent studies of the small-scale distribution of precipitation using
dense networks of precipitation gauges have revealed an important effect
due to small hills. Examples include Bergeron (1960b) for the hills around
Uppsala, Sweden; Skaar (1976) for the Sognefjord district of western
Norway; Wilson and Atwater (1972) for the state of Connecticut: Chan-
gnon et al. (1975) for southern Illinois. In general these studies reveal a
strong positive correlation between altitude and precipitation, although
in the case of a sudden rise to a plateau (Wilson and Atwater, 1972) the
precipitation decreases further in on the plateau in the downwind direc-
tion. The correlation is most marked in the case of stable frontal rain
from nimbostratus clouds, but Browning et al. (1974) found a similar
correlation in unstable rain.

This type of orographic control is clearly different than the larger scale
processes considered earlier. First, this control by small-scale hills results
in a rainfall maximum near the hill top instead of in the upslope region.
Second, the small size of the hills means that by themselves they could
not produce precipitation. As the air passes over the mountain, there is
insufficient time for raindrops or snowflakes to form from cloud droplets.

The simplest explanation for this would be called **differential evapo-
ration.”” The raindrops falling from cloud base to the ground experience
evaporation in the drier air beneath the cloud. This is sometimes visible
as virgae (i.e., fall-streaks) which occasionally terminate before reaching
the ground. Mason (1971, p. 313) estimates that drizzle drops falling from
1750 m through the air with 90% relative humidity would decrease in
radius from 250 um to 100 um. The rainfall (mm/hr), being proportional
to the radius cubed, would decrease even more strongly. Thus even if a
hill does not disturb the flow, it will experience a higher precipitation
rate than the surrounding valleys as it reaches up to intercept the droplets
before they evaporate. The full implications of this model have apparently
never been computed, but Bergeron (1968, p. 5) suggests that by itself
the **differential evaporation’ cannot account for the strong increase of
precipitation with height.

Bergeron (1968) suggested that there may actually be an enhancement
of precipitation over hills by washout of cloud droplets which have
formed as the low-level flow lifts over the hill. Thus over the valleys the
drops evaporate as they fall, but over the hills the drops expand as they
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fall through low-level pannus or skud clouds. The large-scale rain cloud
aloft—perhaps a frontal stratus cloud or an orographic upslope cloud
mass—plays a crucial role as (1) a moistener of low-level air bringing the
boundary layer near to saturation and (2) a seeder cloud providing a
mechanism for release of the low-level condensate. This is shown in
Fig. 25b.

Recently Storebe (1976) and Bader and Roach (1977) have estimated
the efficiency of the washout of low-level cloud droplets by raindrops
falling from above. These estimates are still rather crude, but they provide
a feeling for the magnitude of the effect. In a sample calculation Bader
and Roach considered the lifting of 1500-m thick layer of saturated air .
onto a 500-m hill. The rainfall rate from above is prescribed and the
growth of the raindrops as they fall is computed using a radius-dependent
collection efficiency. They find that the local precipitation rate can be
doubled or tripled by low-level washout. There is, however, one differ-
ence between Bergeron’s conceptual model and Bader and Roach’s com-
putation. Bergeron makes the consistent (although perhaps incorrect)
assumption that the seeder cloud aloft is unaffected by the hill. Bader
and Roach, on the other hand, use an ad hoc upper boundary condition
in which the rainfall from above is specified as constant along a surface
which parallels the irregular terrain. This means that the incoming rainfall
aloft varies along a level surface which could only occur if the upper
cloud is influenced by the hill.

4.4. Orographic—Convective Precipitation

The final mechanism of orographic control of rainfall to be discussed
is the local generation of cumulonimbus in a conditionally unstable air
mass. The classical description of this process is similar to that given by
Henz (1972) in his study of thunderstorms in the Rockies. Beginning in
the morning the mountain slopes are heated by the sun. The air near the
surface is heated by conduction and small-scale convection and begins
to rise buoyantly—first directly up the slopes and later, in a more organ-
ized way, up the valleys (Defant, 1951). At the mountain tops the warm
air breaks away from the surface to form rising thermals. When these
thermals reach the lifting condensation level, visible cumulus clouds are
formed, which can grow into cumulonimbus if the air mass existing in
the area is conditionally unstable. These developing clouds will generally
be carried with the local gradient wind: thus any showers that occur will
be located downwind of the mountain which triggered that particular
cloud. Tt is of course true that thermals, cumulus clouds, and convective
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rain can occur on warm days over flat land without the disturbing influ-
ence of mountains, but it is clear that such development tends to occur
sooner over mountains.

The transient nature and small scale of this type of orographic rainfall
means that the conventional rain gauge networks and radiosonde sound-
ings are of little use. The most useful methods for the study of this
phenomenon are:

(@) Aircraft measurements. Silverman (1960) and Braham and Draginis
(1960) have reported aircraft flights near the mountains of southwest
North America. Braham and Draginis were able to confirm the supposed
link between the thermally driven upslope winds and the observed cu-
muli.

(b) Satellite photography. The infrared motion pictures, which are
now being produced from geostationary satellite photography, show

clearly the diurnal cycle of cumulus activity in mountainous regions. In
the summertime over the Rockies, for example, the cumulus appear over
mountain peaks almost every morning. Biswas and Jayaweera (1976)
have combined satellite and synoptic observations in the study of thun-
derstorms in Alaska.

(c) Radar. The spatial and temporal distribution of precipitation-size
particles can be determined from the intensity of radar return. Ackerman
(1960) and Kuo and Orville (1973) have used this method in the study of
orographic convection in Arizona and South Dakota, respectively. Har-
rold er al. (1974) discusses the general problem of using radar to estimate
rainfall in hilly terrain.

(d) Surface wind measurements. The onset of orographic convection
is closely connected to the dynamics of slope and valley winds at the
surface. Defant (1951) reviews the observations of the diurnal cycle of
slope and valley winds. Examples of more recent observations include
MacHattie (1968) for Alberta, Canada, and Sterten (1963) for the fjords
of western Norway.

(e) Theory and numerical simulation. The dynamical problem of the
rising of fluid along heated boundaries was treated first by Prandtl (see
Defant, 1951). A more general treatment of buoyancy driven flow is given
by Turner (1973). Fosberg (1967) and Orville (1968) have specifically
attacked the orographic convection problem by using finite difference
techniques to solve the governing equations in two dimensions. Fosberg
concentrates on the formation of slope winds and convective plume
above the ridge, while Orville follows the development of the cumulus
clouds.
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S. PLANETARY-SCALE MOUNTAIN WAVES

The availability of a hemispheric network of regularly reporting radio-
sonde stations has made it possible to construct monthly averaged upper
air charts. From these time-averaged maps it is clear that in addition to
the transient disturbances in the atmosphere, there are planetary-scale
waves which remain stationary with respect to the Earth (see, for ex-
ample, Van Loon et al., 1973: Saltzman, 1968). It has also become clear
that these stationary planetary waves are partly responsible for the var-
iation in climate around a latitude circle. Reiter (1963), for example, has
compiled a good deal of evidence relating the meridional position of the
jet stream to the stormy cyclogenetic belts near the ground. The rela-
tionship is particularly evident when the stationary wave shifts its posi-
tion causing an anomalous pattern of climate around the globe. This
mechanism has been invoked by Namias (1966) to explain the drought in
the northeastern United States during 1962—1965 and by Wagner (1977)
to describe the abnormally cold 1976-1977 winter in the same region.
There has also been some success using monthly averaged upper air
patterns to predict the following months™ weather (Ratcliffe, 1974).

It is obvious that the existence of stationary disturbances must be
related in some way to the irregularities on the Earth’s surface. It is
much more difficult to determine whether it is the geographical distri-
bution of ground elevation, surface roughness, or surface thermal prop-
erties which is most important. The first theories of the stationary waves
by Charney and Eliassen (1949) and Bolin (1950) suggested that large-
scale orography, primarily the Rocky Mountains Cordillera and the Ti-
betan Plateau, could cause the observed disturbance. Soon after, Sma-
gorinsky (1953) showed that nonuniform heating could also produce such
a disturbance. Now, 25 years later, the numerical models of the atmos-
phere suggest that both orography and heating are influential but their
relative importance is still in doubt. Following the theme of this review
we will describe only the forcing due to orography.

Models of Topographically Forced Planetary Waves
The theoretical study of planetary-scale waves requires consideration
of two new aspects which were not included earlier, namely:

I. The influence of the spherical shape of the Earth. This requires
either the use of a spherical coordinate system or, if a local Cartesian
coordinate system is used, the waves must belong to a discrete spectrum
with an integer number of waves around the globe. Further, in such a
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Cartesian coordinate system the Coriolis parameter must be considered
a function of latitude to retain the dynamical effect of the Earth’s cur-
vature.

2. Unlike the mesoscale disturbances which has a vertical length scale
of a few kilometers, synoptic- and planetary-scale motions can have a
vertical scale equal to a scale height H or greater. Therefore full consid-
eration must be given to the variation of density. The Boussinesq ap-
proximation is no longer suitable. These new factors complicate the
analysis. On the other hand, the simple quasi-geostrophic theory, which
was questionable for mesoscale flows, should accurately describe this
larger scale of motion. .

A further complication is that we can no longer consider the effect of
the mountain on a uniform steady current. The description of the sta-
tionary planetary wave given, for example, by Van Loon er al. (1973), is
a time-averaged picture. Occurring at the same time are energetic smaller
scale eddies and storms. The incorporation of these smaller scale motions
in the planetary wave model is discussed by Saltzman (1968). For the
most part in this review we will ignore this problem and concentrate on
the direct topographic forcing of planetary waves. By neglecting the
forcing due to nonuniform heating, nonuniform friction, and smaller scale
storms, it is impossible for us to compute quantitatively valid results.
Instead we will review what is known about the natural resonances and
the response characteristics of the midlatitude westerlies. In any case, it
seems a bit premature to discuss the quantitative results of the different
published studies as there is still little agreement concerning the basic
nature of the physical system (for example, whether it is appropriate to
consider the atmosphere as vertically bounded).

A natural starting point for this discussion is the perturbation equations
of quasi-geostrophic flow as given by Charney and Drazin (1961)

D
(5.1) 5—[(€+f)=—fVH'V
.
(5.2) pVe -V + (g’zw) =0
Dy/dz) gwa Iné B
(5-3) ~Dr 7
(5.4 Vu =k x Vyy, {=Viy

The first equation states that the rate of change of vorticity is due to the
Coriolis torque caused by divergent motion. The influence of vortex
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twisting and baroclinic generation of vorticity are not important for these
large-scale, nearly horizontal flows. The second equation is a reduced
form of the continuity equation where the terms dp/dt + Vyu-Vp, which
can be important for higher frequency motions, have been eliminated.
The third equation, along with the definition
(5.5) v=p'/pSf
is the hydrostatic form of the thermodynamic equation. It states that
temperature changes are caused by vertical motion in the presence of a
variable background 6(z) in accordance with the conservation of poten-
tial temperature. Equation (5.4) is the statement of geostrophic balance.
This set of equations is not exact. Equation (5.2) is the anelastic form
of the continuity equation and (5.3) is exact only in the limit of vy, the

ratio of specific heats, going to one. The nature of these assumptions has
been clarified recently by White (1977).

5.1. A Vertically Integrated Model of Topographically Forced
Planetarvy Waves

If there is no need to understand the vertical structure of the disturb-
ance, then a reduced set of vertically integrated equations can be used.
Substituting (5.2) into (5.1) gives

D .o doen
(5.6) E(€+f)“p Py

which relates vorticity changes to the vertical motion field; either vortex

stretching
flow/dz)
or to the expansion of the particles as they rise

fwap

p 0z
Multiplying by p and integrating vertically

= D
(5.7) f b2+ pdz = flow

If either the vertical velocity or the background density (or both) ap-
proaches zero as z — «, then there is no contribution from the upper
limit of the integral. Taking w at the ground to be Uy(0h/dx) gives

dh

* D
5.9) [ o €+ Nz = =fpaliT:
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To help interpret the left-hand side of (5.8), define a mass-velocity
weighted average vorticity according to

fmmmm+ﬁw

(5.9) {+ f= =
f p(z)U(z) dz

where p(z) and U(z) are background density and wind speed. Then, in
the steady state, (5.8) becomes

dh
_fPoan_
X

a ——
(5.10) — L+ fl=—
ox f p(2)U(z) dz

In the simple case of U(z) = const = U,, the denominator on the right-
hand side of (5.10) is

mfpmMzUmH
0

where H is the density scale height and (5.10) is

(5.11)

The mathematical form of (5.11) is similar to the equation describing
columnar motion of a homogeneous fluid with a rigid lid at z = H. This
analogy helps to visualize the solution to (5.11) [or (5.10)] but is also
dangerous. The actual flow field may vary strongly with height and the
vertical motion probably does not vanish at z = H. As an example, the
integrated equation (5.10) or (5.11) continue to be valid even when the
disturbance takes the form of a vertical propagating planetary wave with
strongly tilted phase lines. Thus, while the integrated equations are easier
to solve than the full equations, the results are sometimes difficult to
interpret.

A vertically averaged perturbation velocity, vorticity, and stream func-
tion can be defined in a similar way to (5.9) so

V=7 b=

Y,

St
i
R

xI

(5.12)

<
Il
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Then with the B-plane approximation f = fo, + BY, By < fo, (5.11)

becomes

- B - f
5.13 Vi + == — =
( ) Y Utll Hh

Charney and Eliassen (1949) and Bolin (1950) used an equation of this
type in their pioneering studies of the influence of orography on the
midlatitude westerlies. Charney and Eliassen assumed that the pertur-
bation would vanish at certain bounding latitudes determined by the
meridional extent of the mountains. If the mountains are chosen of the
form

(5.14) h(x, y) = h, cos [ycos kx

where h,, is the amplitude of the topography, then @/l must be chosen as
the distance between the bounding latitudes, and k must be chosen
according to

(5.19 n(2w/k) = n\ =L

so that an integer (n) number of wavelengths (\) fit exactly into the
circumference of a latitude circle L = 27 a cos ¢, where a and ¢ are the
Earth's radius and latitude. The solution to (5.13) with (5.14) 1s

fhnl H
=B/

(5.16)  (x, y)=[ U] cos lycos kx  for —g-<ly<g

Here B8 = 2Q/a) cos ¢ and U is chosen to represent the strength of
the mean westerly current in midlatitudes. Mountains with a sufficiently
small longitudinal and meridional scale have k* + 2 > B/U. The brack-
eted coefficient in (5.16) is positive in this case and the streamlines will
be displaced northward over the regions of high ground—southward over
lower ground. When the mountain’s horizontal scale is so large that 8/
U > (k? + [?), the response is reversed with southward displacement
over the high ground (see Fig. 34).

In both cases the absolute vorticity { + fis decreased over the high
ground. In the so called “long™™ waves, k? + 2 > B/U, the decrease in
absolute vorticity is brought about by the generation of negative relative
vorticity. In the “‘ultralong’™ waves, B/U > k* + [, the decrease in
absolute vorticity is associated with the movement of air parcels south-
ward to a region of smaller planetary vorticity. Near B/U = k* + I?
these two tendencies nearly cancel and the amplitude given in (5.16)
becomes exceedingly large. This singularity associated with the fact that
there is a free solution to (5.13), that is, a solution with the forcing h =
0. Physically this is a standing Rossby wave with its westward directed



200 RONALD B. SMITH

|| A

T Ew E
ARG\
S \ / S
"ultra-lond' "long" waves
0 B/U K—

Fi1G. 34. The orographic perturbations to a westerly wind according to the vertically
integrated model. For k* = k2 + [ > B/U, the pressure disturbance and meridional
streamline displacement are in phase with the orographic height (so-callea long-wave be-
havior). For longer waves (k2 < B/U) there is southward displacement and-low pressure
over the mountain regions (so-called ultralong wave behavior).

phase speed exactly balanced by the eastward advection by the basic
current.

The actual topography of the Earth around a particular latitude circle
can be represented as a sum of Fourier components each similar to (5.14).
According to linear theory the atmospheric response is a superposition
of disturbances like (5.16), some acting like **long waves’’ and some like
““ultralong waves.’’ It is unlikely that there will be any forcing at the
singular wave number

(5.17) K2+ 12=8/U

as the possible wave numbers are strongly restricted by (5.15). Nonethe-
less, the flow may be dominated by the components which most closely
satisfy (5.17). This near resonance would presumably also be important
for other types of forcing, for example, heating.

Charney and Eliassen (1949) used the orographic distribution of 45°N
to compute the steady-state perturbation to the January westerlies. Con-
sidering the simplicity of their model, the results (Fig. 35) are remarkably
close to the observed pattern.

Bolin (1950), using the same integrated equations (5.13), considered
the perturbation to the westerlies by a large isolated mountain on an
infinite B-plane. He did not demand that disturbance vanish at **bounding
latitudes’’ nor that the solution join itself smoothly after once around the
Earth. He found that the mountain generates a standing Rossby wave in
its lee. Bolin found good agreement between his theory and the upper air
trough and ridge system observed to the east of the Rockies in winter.

To understand more about these topographically generated disturb-
ances and to understand the success of the vertically integrated models
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FiG. 35. The topographic profile (bottom) and the observed (solid line) and computed
(dotted line) 500-mb heights at 45°N (top). (After Charney & Eliassen, 1949.) Mean zonal
wind is chosen as 17° longitude/day and the north-south distance between bounding lati-
tudes is 33°.

we must investigate the full structure of these motions using the complete
set of governing equations.

5.2 The Vertical Structure of Planetary Waves on a B-Plane between
Bounding Latitudes

In this section we will investigate the vertical structure of topographic
disturbances following the treatments of Charney and Drazin (1961) and



202 RONALD B. SMITH

Hirota (1971). We will retain the assumption that the disturbance is
contained between two bounding latitudes on a B-plane and cannot prop-
agate meridionally. After describing this type of solution we can show
the connection to Queney’s (1948) work by making the Boussinesq ap-
proximation and the connection to the work of Saltzman (1965, 1968) and
Sankar-Rao (1965a,b) by imposing a reflective top lid on the system.

The quasi-geostrophic perturbations on a zonal flow can be described
using Eq. (5.1)-(5.4) given earlier. Combining (5.1) and (5.2) and assum-
ing steady state (8/0t = 0) flow on a B-plane gives

3 E 1
. — Vi + B—= —_———
(5.18) U= Vi + B2 f0<az H)w
Equation (5.3) can be rewritten as
3 oY\ N2
5.1 U——}+—w=0
(3.19) ax<az> fo "
At the ground
dh
(5.20) w=U;—
dx
so the lower boundary condition can be written in terms of Y as
ay N2
5.21 —+ —h= t =0
( ) oz T T h at z

To construct a simple prototype problem we will treat U(z) and N(z)
as constants. Then eliminating w between (5.18) and (5.19) gives

f3 U

The troublesome second term in (5.22) can be eliminated by introducing
the new dependent variable

2
(5.22) (//zz_7]1"~//z+i<V§,+£> W=0

(5.23) b = (p/po)**d
so that (5.22) becomes

(5.24) ¢t 2P =0
with

(5.25) n2=£( ;,,+ﬁ)—4#
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The transformation (5.23) can be motivated physically as the magnitude
of ¢?is directly proportional to the kinetic energy density of the disturb-
ance.

Because of (5.23) the lower boundary condition becomes slightly more
complicated

1 N2

5.26 +—p=—— t =

( ) d)z 'H d) fo h a Z 0
If

(5.27) h(x, y) = hycos lxcos kx

where k and [ are constrained by (5.15). The solution to (5.24), (5.29),
and (5.26) can be written as

(5.28) b(x, y, z) = Re{d(z) cos lye*}
If
N2T B
5.29 e DB e )| -
( ) n f%[U (k +l)] YY7E

1S positiye, for example with weak westerly winds and very broad orog-
raphy, ¢ (z) is given by

= (N?/fo)hm
in+ (1/2H)

(5.30) b(z) =

where a positive sign has been chosen in the exponent to satisfy the
radiation condition aloft. The substituting (5.30) and (5.28) and using
(5.23) gives

b(x, v, 2) = [po/p(2)]® [ —(N*/f)hn

(NI ROIBTU - (K + 12)]] s by

(5.31)

{2—1_H cos (kx + nz) + nsin (kz + nz)}
Equation (5.31) describes a vertically propagating planetary wave with
phase lines tilting westward with height. The phase of the disturbance
relative to the orographic highs and lows is determined by the relative
importance of the two terms in the curly brackets. The first term repre-
sents a pattern of high and low pressure which at the ground is exactly
opposite to the orography. This is similar to the ‘‘ultralong’’ behavior
discussed earlier. There is no vertical energy flux associated with this
term as the pressure and the vertical velocity are 90° out of phase. This
term vanishes in the Boussinesq limit.
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The second term in (5.31) represents a pattern of high and low pressure
which, at the ground, is shifted one-quarter of a wavelength westward
relative to the orography. The high pressure regions, for example, with
streamline displacement to the north, occur on the westward (i.e., up-
wind) slopes of the mountains. From this we can-see that the vertical
velocity will be in phase with the pressure and there will be an upward
flux of wave energy. \

If the mountains have a smaller horizontal scale or if the winds are
easterly, n?, given by (5.29), will be negative and the solution to (5.29)
and (5.26) with (5.8) is

532 32 = —— N/ S

——Inl+(1/2H)exp(_In'Z)

where the negative sign in the exponent has been chosen to keep the
solution bounded. Putting (5.32) into (5.28) and using (5.23)

—(N*/f)hm
|n|+ (1/2H)

- cos kx exp(—| n| z)

W(x, ¥, 2) = [po/p(@) ] [_ ] - cos Iy

(5.33)

This describes a perturbation which decays exponentially with height.
The phase is constant with height and is determined by the relative
magnitudes of the two terms in the denominator of the square brackets.
For smaller scale mountains, L ~ 1000 km or so, the | n| term will
dominate. In this case the square bracket is positive and the high and
low pressure regions are in phase with the highs and lows of the orog-
raphy. This is similar to the ‘‘long wave’’ dynamics discussed earlier.
This would always be the case if we made the Boussinesq approximation
in (5.33) by taking H — .

For broader mountains (but keeping n? < 0) the solution changes sign.
The high pressure areas lie over the orographic lows and vice versa. The
situation is similar to the *‘ultralong waves’’ discussed earlier. When k2
+ [2 — B/U = 0 the denominator of (5.33) vanishes and the solution is
infinite. This singularity clearly has the same physical origin as the sin-
gularity in the vertically integrated equations, namely, the existence of
a free standing Rossby wave characterized by a balance of relative and
planetary vorticity. This free wave has ¢ (w,y,z) independent of height,
while ¢ (x,y,z) decreases as ~e~*2% and so has a finite total kinetic
energy. To summarize this complicated variety of cases we can fix B,
H, U, f, N in our minds and consider the wave number | k| = (k2 +
[*)'% as a variable (see Fig. 36).

In 1948, Queney discussed the effect of a nonzero B on the flow over
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FiG. 36. The influence of wave number k? = k? + /2 on the phase and vertical structure
of the orographic disturbance. Short waves (k? > B/U) are in phase with the orography
(i.e.. “'long-wave’’ behavior) and are evanescent. Longer waves (k? < B/U) are out of
phase (“'ultralong wave'’ behavior) and evanescent. Still longer waves (n? > 0) are verti-
cally propagating with westward tilting phase lines. At k? = B/U there is a singularity (S)
in the response.

an isolated mountain. He obtained a simple solution by using the Bous-
sinesq approximation (see also Johnson, 1977, in this regard). To under-
stand this solution we must see how this approximation changes the
above result. Looking back to (5.6) see that changes in absolute vorticity
can be caused either by a term

foldw/az)

which would be interpreted as the vertical stretching of a vortex line, or
by a term

— folw/H)

which is best described as the effect of volume expansion as the fluid
particles move upward to a region of lower density. In the Boussinesq
approximation the volume expansion is neglected. The effect of this
assumption is easily seen by taking the scale height H to be very large
in the above analysis. The most striking simplification is that the bound-
ary between propagating and evanescent behavior now coincides with
the Rossby wave singularity. The range of scales where the solution is
evanescent, with ““ultralong” behavior, is gone (see Fig. 37). Unfortu-
nately, the vertical length scales associated with planetary motions are
the same order as the scale height H and the Boussinesq approximation
is not valid. Vorticity generation by volume expansion can play an im-
portant role.

A number of authors have attempted to model stationary planetary
waves using a system of equations similar to that used in the preceding,
but with the use of a reflective upper boundary condition. Examples
include Saltzman (1965) and Sankar-Rao (1965), while Saltzman (1968)
has reviewed several others. To understand these models we must in-
vestigate the influence of reflective condition aloft as opposed to the
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Fic. 37. The influence of wave number on the phase and vertical structure of the
orographic disturbance in a Boussinesq fluid. Unlike a compressible fluid (Fig. 36) the
evanescent “‘long’’ waves go directly over to vertically propagating waves as the wavelength
increases.

radiation condition used in Eq. (5.30). Out of a number of possibilities
the arbitrary choice of v = 0 at the top, or equivalently u = ¢ = ¢ =
0, has been made by Saltzman, Sankar-Rao, and others. This is quite a
strong condition as it requires the horizontal flow, not just the vertical
motion, to vanish at the top of the domain of interest. Applying this
condition at z = D gives instead of (5.30) and (5.32)

—(N?/fo)hm
—ncos nD + (1/2H) sin nD

for the case n2 (| k|, N, U, H, B, f) > 0 and

—(N*/f)hm
_I n l(eInID + e—ln]D) + (I/ZH)(e[nID — e—InID)

(5.34) é(z) = [ ] sin n(D — z)

(535 ¢(2) =

for the case n2 < 0. The nature of the flow for a given wave number and
the location of the singularities of (5.34) and (5.35) in wave number space
depend on the height D at which the upper boundary condition is applied.
The singularities in (5.34) and (5.35), respectively, occur at

(5.36) tan nD = 2nH
and
(5.37) tanh nD = 2nH

Qualitatively it is particularly important to know whether D is greater or
less than 2H. For the sake of illustration it will suffice to describe just
one case, and the D < 2H case seems to bear the closest relationship to
the solutions of Saltzman (1965), Sankar-Rao (1965), and others. In this
case there are no solutions to (5.37) so all the singularities occur with n?
> 0.

Referring to Fig. 38, note that there is no longer a singularity at k2
+ [? = B/U. This is explained by the fact that the upper boundary
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Fic. 38. The influence of wave number on the nature of the orographic disturbance in a
model with a particular reflective upper boundary condition (¢ = 0at z = D < 2H). The
small diagrams represent the variation of &(z) according to (5.34) and 5.35). The solutions
could be described as standing waves in the vertical with no phase line tilt. Positive ¢
implies “‘long-wave'’ behavior (L), while negative ¢ means ‘‘ultralong wave’’ behavior
(UL). The response characteristics of this unbounded model are fundamentally different
than the unbounded model (Fig. 36). The Rossby wave singularity is gone, while other
singularities (S) arise due to reflection at the upper boundary.

condition ¢, _ , = 0 has eliminated the free barotropic Rossby wave. The
first singularity occurs at a much longer wavelength where the form of
#(z) demanded by (5.24) has become oscillatory. Near this value the
amplitude of the solution becomes very large and upon crossing over the
singularity (to smaller wave numbers) the sign of the solution changes
from “‘long wave’’ behavior to “ultralong wave'’ behavior. At smaller
wave numbers the horizontal motion acquires a node at a certain height.
Above the node the high pressure regions lie directly over the topographic
lows (i.e., “‘ultralong behavior’"), while near the ground the pressure and
h(x,y) are in phase. At still smaller wave numbers another singularity
will be encountered.

Clearly the use of a reflective upper boundary condition has signifi-
cantly altered the physical characteristics of the system. It is still true
that each singularity can be associated with a standing free Rossby wave.
These free waves, however, are not the naturally trapped barotropic
wave with k% + [2 = B8/ U, but baroclinic waves trapped by the reflective
upper boundary. The description just given agrees remarkably well with
the more detailed computations of Saltzman and Sankar-Rao. Such a
comparison is not completely straightforward, however, as those com-
putations were carried out using pressure coordinates. The difficulty with
this is that pressure coordinates become strongly stretched at high alti-
tudes, while the vertical scale of the disturbance (e.g., the vertical wave-
length) remains about the same. Thus in pressure coordinates the dis-
turbance appears to oscillate rapidly at high levels. For this reason it is
advantageous to use Cartesian or log pressure coordinates (see Holton,
1975) which do not have this unwanted stretching. To avoid this problem
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Saltzman and Sankar-Rao use the somewhat unphysical device of choos-
ing an N?(z) which becomes vanishingly small at high altitudes. This
causes the vertical scale of the disturbance to increase with height and
thus to remain well behaved when described in pressure coordinates.

We have seen that a reflective upper condition can radically change
the response characteristics of the atmosphere. As an ad hoc hypothesis
such a condition should probably be avoided. There are, however, valid
reasons for interest in such a system. First, the numerical models of the
atmosphere invariably use a reflective condition aloft (usually w = dP/
dt = 0). If we wish to understand the results from these models we must
know about the influence of a reflective lid. Second, and ‘more to the
point, there are conditions that will naturally cause the reflection of
planetary waves. If the wind speed increases with height, then, as dis-
cussed by Charney and Drazin (1961), waves which can propagate at low
levels [n? > 0 in (5.25)] become evanescent (n%? < 0) aloft. In this
situation the wave energy will be totally reflected and resonant response
such as described by (5.34) and (5.35) becomes possible.

The validity of ¢ = 0 as an upper boundary condition cannot be
defended by arguing that the disturbance is absent high in the atmosphere.
This could occur either because the disturbance is dissipated or reflected
at lower levels. In the former case a radiation condition is appropriate,
while in the latter a reflective condition at the correct altitude is appro-
priate.

Since the study of Charney and Drazin (1961) there have been a number
of theoretical studies concerning the eventual fate of vertically propagat-
ing planetary waves. Dickinson (1968a) treated the problem in spherical
coordinates with the background westerly wind field assumed to be in
solid body rotation. He found that Charney and Drazin’s estimate of the
critical wind speed [i.e., the speed beyond which the waves become
evanescent, see Egs. (5.29)], may be too low. In 1969 Dickinson consid-
ered the decay of vertically propagating waves by preferential cooling at
the warm regions by radiation to space.

Geisler and Dickinson (1975) use a realistic vertical profile of back-
ground wind to determine the possible free waves of the system. They
found an *‘external’’ wave, which closely corresponds to the natural free
Rossby wave discussed previously, and four ‘“‘internal’’ modes which are
associated with reflection from levels of high wind speed.

Another interesting possibility arises if the background wind U(z)
decreases to zero at some level and then becomes easterly. Clearly from
(5.29) the wave cannot propagate above this critical level so it must either
be absorbed or reflected. From the analogy with small-scale mountain
waves (Booker and Bretherton, 1967) we note from (5.29) that as U(z)
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— 0, the vertical wave number n approaches infinity, making the dis-
turbance susceptible to viscous and radiative dissipation or to small-scale
instability. A further insight into this problem is given by Dickinson
(1970) and Beland (1976) who investigated the time development of a
Rossby wave critical level. The interested reader should also consult
Holton's (1975) recent review of stratosphere and mesosphere dynamics.

5.3. Models of Stationary Planetary Waves Allowing Meridional
Propagation and Lateral Variation in the Background Wind

Throughout the previous section we have retained two strong assump-
tions about the meridional structure of the mean flow and the perturba-
tions. First, we assumed that the mean flow was independent of latitude
(i.e., v). Second, we eliminated the possibility of meridional propagation
by requiring that the disturbance vanish at the walls of a fictitious zonal
channel. Both these assumptions are incorrect and they are clearly the
severest ad hoc hypothesis remaining in the model.

A more general three-dimensional approach has been tried by Dickin-
son (1968b), Matsuno (1970), Simmons (1974),and Schoeberl and Geller
(1976), and some of the results of these theories have been compared
with observation by McNulty (1976). A brief description of Matsuno’s
model will serve to explain some of these new results and concepts.

Matsuno (1970) derived the steady, linearized quasi-geostrophic poten-
tial vorticity equation in spherical coordinates and log pressure coordi-
nates

ad in? 6 4 o' 1 02¢’
(5.38) d)__l:sm (cos() d)) N b

gA | cos 6 96\ sin2 6 96 cos? @ 9A?

+ 4Q02%a?%sin® 0—6—<£§£>] + o _1 34" _ 0
pdz \ N? az 96 cos 6 oA
where

a radius of the Earth
Q rotation rate of the Earth
N Brunt-Vaisala frequency
d) angular speed of the basic flow

' perturbation height field

z —H In(p/ pe) vertical coordinate

A longitude

0 latitude

The physical meaning of each term in (5.38) is easy to establish. The
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square bracket is the perturbation potential vorticity and is composed of
the perturbation relative vorticity (the first two terms) and the Coriolis
torque caused by horizontal divergence. The last term in (5.38) is the
meridional advection of potential vorticity which is proportional to the
local gradient in background potential vorticity 0g/06. Matsuno gives

17 02 o
(5.39) —q=[2(9+ 3) - 22 4 3tan e-%

36 362 3
@ ® (b)

— 40%a%sin? 0 li La—w cos 0
paz\ N2 oz
(c)

This can be compared with the same quantity expressed in local Cartesian
coordinates on a B-plane (Simmons, 1974)

3¢ _ , 23U _f83 (podU
(b) (©)

The terms marked (a) in (5.39) and (5.40) represent the gradient in pla-
netary vorticity; those marked (b), the gradient in background relative
vorticity; and those marked (c), the gradient in background static stability
written in terms of the vertical shear.

The last term in (5.38), together with (5.39) or (5.40), is of crucial
importance as it represents the restoring force for Rossby wave motion.
In our previous models with U (y,z) = const this restoring force was due
soley to B, the gradient in planetary vorticity, and indeed this is the
classical view of Rossby wave dynamics. Matsuno uses the observed
Northern Hemisphere wintertime distribution of zonal winds (shown in
Fig. 39) to compute dG/d6 from (5.39). The most striking result of this
computation is that the contribution of the basic wind to 8G/d6 is com-
parable to or larger than B. This suggests that the propagation of Rossby
waves is not necessarily associated with the variation of f with latitude.
It is also interesting to note that the pattern of 4g/46 is quite nonuniform
with maxima just to the south of the tropospheric jet stream and the high-
latitude polar night jet. It is not surprising that it never goes negative in
this seasonally averaged picture as a negative value would lead to baro-
clinic instability which would tend to restore the stability of the system.

Matsuno avoided the question of what drives the stationary waves by
using the observed pattern at SO0 mbar as his lower boundary condition.
Then, Fourier transforming in x and using (5.38) and (5.39), he computed
the flow field aloft and the pattern of wave energy flux in the y,z-plane.
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F1G. 39. The basic state zonal wind distribution (m sec™) in the winter Northern Hemi-
sphere used by Matsuno (1970) in his model of stationary planetary waves. Note the jet
stream near the tropopause at 30-40° and the strong polar night jet.

Generally the flow of energy was found to be upward and southward,
but in detail strongly controlled by the nonuniform field of 9g/d6. In
particular the wave energy was drawn into regions of high mean wind
(Fig. 40). At high latitudes the wave energy is channeled upward along
the axis of the polar night jet until the mean velocity becomes so large
that the wave is reflected. Thus the distribution of 3g/d6 forms a partial
resonant cavity, and Matsuno finds the strongest response for a zonal
wave number between | and 2.

These results of Matsuno together with those of Dickinson and Sim-
mons have provided a more complete and possibly a more correct view
of the response characteristics of the atmospheric system. Matsuno’s
description of the ‘‘resonant cavity’’ may provide some qualitative jus-
tification for approach of Saltzman (1965) and Sankar-Rao (1965) who
used zonal walls and a reflective upper boundary condition. At the same
time it points out the arbitrariness of such ad hoc assumptions. The
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Fic. 40. The computed distribution of energy flow in the meridional plane associated
with the longest (i.e., one wavelength around the globe) stationary wave. Due to the
nonuniform distribution of U and dq/d#, the wave energy flux is guided into regions of
high wind speed—particularly the polar night jet. (After Matsuno, 1970.)

precise nature of the resonant activity, if indeed one exists, cannot be
specified a priori, but will depend, perhaps sensitively, on the structure
of the atmosphere at the time being considered.

Many questions still remain concerning the effects of nonlinearity and
the relative importance of forcing by topography, heating, and migratory
storms. Andrews and Mclntyre (1976) and Holton (1976) have investi-
gated the nonlinear interactions between planetary waves and the mean
flow. A more comprehensive treatment, including the vastly complicated
forcing and dissipation in the troposphere, requires the use of a numerical
model. The past few years have witnessed rapid progress in the numerical
simulation of planetary-scale atmospheric motions. The models range
from two-layer systems (e.g., Egger, 1978) with specified forcing, to
multilayer models with much of the forcing determined parametrically
within the model (e.g., Kasahara and Washington, 1971; Kasahara et al.,
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1973: Manabe and Terpstra, 1974). In these models the primary goal of
the investigator is to simulate the atmosphere, not to explain its behavior.
The analysis of model output is, however, significantly easier to diagnose
than is observational data since the spatial and temporal coverage is
complete and the investigator is free to do controlled experiments. The
primary difficulty with this approach is that, like the atmosphere itself,
the models are so complicated that the connection between the funda-
mental laws of physics and the model results cannot be clearly traced.
Unlike the atmosphere, there are also the uncertainties involving the
finite difference representation, the parameterization of subgrid scale
processes, and the arbitrary choice of a restricted vertical domain.

Probably the most valuable simulation with regard to the influence of
mountains on the atmosphere is the work of Manabe and Terpstra (1974).
This study is notable both for the comprehensiveness of the model and
for the detail in which the results are compared with observations. The
global climate under perpetual January conditions was computed both
with and without mountains. In this way the influence of the mountains
can be clearly identified. It would take too long to give a detailed de-
scription of Manabe and Terpstra’s model and results. We will mention
only three interesting points.

(a) The structure of the stationary disturbance. Both in the simulations
with (M) and without (NM) mountains the distribution of time mean
meridional winds is qualitatively similar to the observed winds (Fig. 41).
In the presence of mountains, however, the disturbance to the zonal flow
is much stronger and its dominance over the thermally induced disturb-
ance increases with height. In both models the phase of the disturbance
tilts westward with height, although it is not clear whether this is due
primarily to vertical propagation or to nonadiabatic effects associated
with the northward transfer of sensible heat. Manabe and Terpstra point
out that the description of stationary disturbances given by their model
is much more realistic than in the linear theory model of Sankar-Rao
(1965a). They suggest that Sankar-Rao’s model may have been unduly
influenced by the phenomenon of resonance. In the highly nonlinear and
dissipative atmosphere. they argue, resonances may not be important.
On the other hand, they have made no attempt to determine whether
their solutions were influenced by quasi-resonance. Furthermore, the
distribution of zonal winds, which is determined internally in the Manabe
and Terpstra model, is much stronger than the observed distribution.
Referring back to the work of Charney and Drazin (1961) and Matsuno
(1970), we know that this can have an important influence on the structure
of the stationary disturbances.
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(b) The distribution of cyclogenesis. Manabe and Terpstra’s numerical
model is quite successful at simulating the increased frequency of cyclo-
genesis in the lee of the Rocky Mountains and the Tibetan Plateau. As
in the atmosphere, the reason for this increase is not clear. One possibility
is that the increased baroclinicity in the southeastern side of the first
trough of the orographic planetary wave provides a preferred site for
frontal instability.

Cyclogenesis in the Alpine region is not simulated in the model as the
Alps are too small to be represented in the 250-km grid system.

(¢) Meridional heat transfer and midlatitude storms. The most dra-
matic difference between the mountain and no-mountain computer runs
is in the nature of the northward transfer of heat and the conversion of
available potential energy to kinetic energy in midlatitudes. Without
mountains the northward transport of heat is accomplished by transient
waves, especially wave numbers 5, 6, and 7. These transient waves are
also responsible for much of the conversion of available potential energy
into the kinetic energy of the winds.

With orography in the model the situation is quite different. The heat
transport is dominated by the meridional motions associated with the
stationary planetary wave, primarily with wave number 2. To a certain
extent this heat transfer is caused by orographically induced north-south
motion with air parcels gaining heat at low latitudes and losing heat at
high latitudes. At the same time, however, these standing waves are
responsible for the major part of the conversion of potential energy to
kinetic energy. Thus the standing waves are in part driven by the meri-
dional temperature gradient.

Apparently then the Earth’s orography is large enough to change com-
pletely the nature of the midlatitude dynamics. Without mountains the
midlatitudes would have many more energetic transient storms associated
with baroclinic instability of an intensified north~south temperature gra-
dient. With mountains the meridional heat flux is partially accomplished
by the stationary disturbances. The temperature gradient is weaker and
the transient storms less frequent and intense. The stationary waves are
now an interesting mix, being forced partly by orography and partly by
baroclinic instability.

Further insight into this problem is afforded by the much simpler two-
level model of Smith and Davies (1977). Without mountains, the midla-
titude flow is characterized by the recurring buildup of a strong meri-
dional temperature gradient and breakdown into transient baroclinic
waves. With mountains present in the model, large-amplitude standing
waves occur and the amplitudes of the transient disturbance are de-
creased.
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