Bioenergetics and metabolism

Mitochondria

>Chloroplasts

➢ Peroxisomes

Chemiosmosis

 \checkmark common pathway of mitochondria, chloroplasts and prokaryotes to harness energy for biological purposes \rightarrow chemiosmotic coupling –

ATP synthesis (chemi) + membrane transport (osmosis)

- ✓ Prokaryotes
- plasma membrane \rightarrow ATP production
- Eukaryotes
- plasma membrane \rightarrow transport processes
- membranes of cell compartments *energy-converting organelles* \rightarrow production of ATP
 - Mitochondria fungi, animals, plants
 - Plastids (chloroplasts) plants

The essential requirements for chemiosmosis

✓ source of high-energy e⁻

membrane with embedded proton pump and ATP synthase

 ✓ energy from sunlight or the oxidation of foodstuffs is used to create H⁺ gradient across a membrane ✓ pump harnesses the energy of e⁻ transfer to pump H⁺ \rightarrow proton gradient across the membrane

✓H⁺ gradient serves as an energy store that can be used to drive ATP synthesis

Electron transport processes

- (A) mitochondrion converts energy from chemical fuels
- (B) chloroplast converts energy from sunlight

 \rightarrow electron-motive force generated by the 2 photosystems enables the chloroplast to drive electron transfer from H_2O to carbohydrate

 \rightarrow chloroplast electron transfer is *opposite* of electron transfer in a mitochondrion

Carbohydrate molecules and O₂ are products of the chloroplast and inputs for the mitochondrion

Figure 2-41; 2-76 Molecular Biology of the Cell (© Garland Science 2008)

Mitochondria

Structure and ultrastructure

- ✓ all eukaryotic cells
- → diameter 0,5 -1µm
- ✓ discovered in 19th century
- \rightarrow light microscopy
- ✓ 1948. isolated from liver cells
- key function in metabolic energy production

✓ double membrane

- outer membrane
- intermembrane space
- inner membrane

Mitochondria mobility

Figure 14-4 Molecular Biology of the Cell (© Garland Science 2008)

Animation http://il.youtube.com/watch?v=7Jqal35vqD4

extremely mobile and plastic organelles

- ✓ constant change of shape
- ✓ fisions and fusions

Ultrastructure

✓ Outer membrane

- porins (water channels)
- < 5000 Da free passage

✓ Inner membrane

- christae
- cardiolipin
- \rightarrow impermeability for ions

✓ Matrix

- enzymes for citric acid cycle
- DNA
- ribosomes (70 S)

Cardiolipin

- \rightarrow impermeability of the inner membrane for ions
- \rightarrow phospholipid with 4 fatty acid chains

Figure 14-65 Molecular Biology of the Cell (© Garland Science 2008)

Biochemical activity of mitochondria

 \checkmark Oxidative degradation of glucose and fatty acids \rightarrow the main source of metabolic energy in animal cells

- First step of glucose metabolism
- \rightarrow glycolysis (glucose \rightarrow pyruvate)
- \rightarrow cytosol
- \rightarrow 2 ATP molecules

✓ Pyruvate is transported to mitochondria
 → complete oxidation to CO₂
 → gain in energy is **15 x** higher than in glycolysis

Reactions that take place in mitochondrion

Figure 14-10 Molecular Biology of the Cell (© Garland Science 2008)

NADH - nicotinamide adenine dinucleotide

✓ coenzyme found in all living cells

✓ dinucleotide
 → consists of two nucleotides joined through their phosphate groups
 → one nucleotide contains an adenine base and the other nicotinamide

involved in redox reactions

found in two forms in cells:

 NAD⁺ - is an oxidizing agent → it accepts e⁻ from other molecules and becomes reduced
 NADH - reducing agent → donates e⁻

✓ the main function of NAD⁺ - e⁻ transfer reactions

***** FADH₂ - flavin adenine dinucleotide

✓ coenzyme found in all living cells

consists of riboflavine (vitamin B2)
 bound to the phosphate group of an ADP molecule

- involved in redox reactions
- ✓ found in two forms in cells:
 - FAD is an oxidizing agent → it accepts e⁻ from other molecules and becomes reduced
 - FADH₂ reducing agent → donates e⁻

- \checkmark mitochondria use both <u>pyruvate</u> and <u>fatty acids</u> \rightarrow acetyl CoA
- ✓ acetyl groups of acetyl CoA are being oxidized in citric acid cycle
- \rightarrow C-atoms from acetyl CoA converted to CO₂
- \rightarrow cycle forms high-energy e⁻ transferred by NADH and FADH₂

✓ hydride ion is removed from NADH and is converted into H⁺ and 2 high-energy e⁻

$$H^{-} \rightarrow H^{+} + 2e^{-}$$

Citric acid cycle (Kreb's cycle)

- ✓ Matrix
- ✓ Yield:
- 3 NADH molecules
- 1 FADH₂ molecule

• 1 GTP

Figure 2-82 Molecular Biology of the Cell (© Garland Science 2008)

Mitochondrium inner membrane

e⁻ transport in respiratory chain

Figure 14-12b Molecular Biology of the Cell (© Garland Science 2008)

Oxidative phosphorylation

Figure 14-14 Molecular Biology of the Cell (© Garland Science 2008)

Transport of electrons from NADH

2000. Cooper Figure 10.8

Transport of electrons from FADH₂

 \rightarrow they are then transferred to coenzyme Q and carried through the rest of the e⁻ transport chain

 $\rightarrow e^{-}$ transfer from FADH₂ to coenzyme Q is not associated with a significant decrease in free energy, so protons are not pumped across the membrane at complex II

Figure 10-9. 2000. Cooper

The mitochondrial ATP synthase (complex V)

consists of two multisubunit components, F_o and F_1 , which are linked by a slender stalk

 \checkmark **F**_o spans the lipid bilayer, forming a channel through which H⁺ cross the membrane

✓ F₁ harvests the free energy derived from H⁺ movement down the electrochemical gradient by catalyzing the synthesis of ATP

✓ return of protons through F_o induces rotation of F_1 → ATP synthesis

✓ flow of 4 H⁺ back across the membrane is required to drive the synthesis of 1 ATP

 \rightarrow oxidation of **1 NADH** leads to the synthesis of **3 ATP**

 \rightarrow oxidation of **1 FADH**₂, which enters the electron transport chain at complex II, yields only **2 ATP**

Figure 10-11. 2000. Cooper

ATP synthase can work in both ways

A – ATP synthesis

 \rightarrow energetically favorable return of protons to the matrix is coupled to ATP synthesis

B – ATP hydrolysis

 \rightarrow ATP-ase pumps protons against their electrochemical gradient

Net yield in energy

During oxidative phosphorylation:

- each e⁻ pair from NADH (citric acid cycle) \rightarrow 2.5 ATP
- each e⁻ pair from FADH₂ (citric acid cycle) \rightarrow 1.5 ATP
- each e⁻ pair from NADH (glycolysis) \rightarrow 1.5 2.5 ATP

A – 38 ATP

2 ATP (glycolysis) + 2 ATP (citric acid cycle) + 34 ATP (e⁻ transport)

B – 36 ATP

- in some cells \rightarrow 2 NADH (glycolysis) can not enter mitochondria directly

- their enter through "shuttle" system \rightarrow their e⁻ might enter the chain at complex II

Mitochondrial genome

 contain their own genetic system, which is separate and distinct from the nuclear genome of the cell

autoreduplicative and semiautonomous organelle

✓ circular DNA molecules (like those of bacteria); present in multiple copies per organelle

Figure 14-50. 2002. Alberts et al.

Mitochondrial and nuclear DNA in Euglena gracilis.

- genome red (ethydium bromide)
- multiple small mgenomes yellow
- mitochondrial matrix green fluorescent dye

Mitochondrial genomes

- ✓ variations in size:
- human mgenome cca 16 kb
- yeast *m*genom cca 80 kb
- plant mgenom cca 200 kb

Figure 14-57 Molecular Biology of the Cell (© Garland Science 2008)

- Iargest sequenced A. thaliana mgenom
 367 kb (32 proteins)
- ✓ greatest number of genes in mDNA protozoa Recclinomonas americana
- 69 kb \rightarrow 97 genes
- more like bacterial genomes

Human _mgenome

✓ 13 proteins involved in e⁻ transport chain and oxidative phosphorylation

✓ 16S and 12S rRNA

✓ 22 tRNA

Figure 14-60 Molecular Biology of the Cell (© Garland Science 2008)

_mgenomes

 \checkmark distributed in several clusters \rightarrow nucleoids

✓ DNA without histones (like bacteria and chloroplast)

 \checkmark dense gene packing \rightarrow very little room for regulatory sequences

✓ relaxed codon usage → many tRNAs recognize any of the 4 nucleotides in the third position → 22 tRNA

 \checkmark variant genetic code \rightarrow 4 of the 64 codons have different meanings form those in other genomes

 $\checkmark_{\rm m}$ protein synthesis starts with N-formyl methionin (like bacteria and chloroplast)

Differences between universal and mitochondrial genetic code

Table 14–3 Some Differences Betwee CODON "UNIVERSAL" CODE	en the "Universal" Code and Mitochondrial Genetic Codes* MITOCHONDRIAL CODES			
	MAMMALS	INVERTEBRATES	YEASTS	PLANTS
STOP	Trp	Trp	Trp	STOP
lle	Met	Met	Met	lle
Leu	Leu	Leu	Thr	Leu
Arg	STOP	Ser	Arg	Arg
	"UNIVERSAL" CODE STOP Ile Leu Arg	"UNIVERSAL" CODE MAMMALS STOP Trp Ile Met Leu Leu Arg STOP	Implication of the second sec	me Differences Between the "Universal" Code and Mitochondrial Genetic CodeMITOCHONDRIAL CODES"UNIVERSAL" CODEMAMMALSINVERTEBRATESYEASTSSTOPTrpTrpTrpIleMetMetMetLeuLeuLeuThrArgSTOPSerArg

- prokaryota and eukaryota at least 30 tRNA
- ✓ mitochondria 22 tRNA
- \rightarrow U can be paired with any of the 4 nucleotides in the third position
- \rightarrow 1 tRNA can recognize 4 different codons

Mitochondrial division

✓ resembles that of bacterial cell division

An electron micrograph of a dividing mitochondrion in a liver cell

Figure 14-54. 2002. Alberts et al.

A suggested evolutionary pathway for the origin of mitochondria and chloroplasts

 ✓ there is compelling evidence that mitochondria and chloroplasts were once primitive bacterial cells
 → endosymbiotic theory

 ✓ large host cell and ingested bacteria became dependent on one another for survival
 → permanent relationship

 ✓ over millions of years of evolution, mitochondria and chloroplasts have become more specialized and today they cannot live outside the cell

http://learn.genetics.utah.edu/content/begin/cells/organelles/

The production of mitochondrial and chloroplast proteins by two separate genetic systems

Figure 14-51. 2002. Alberts et al.

majority of the proteins encoded by nuclear genome

The origins of mitochondrial RNAs and proteins

✓ proteins encoded in the nucleus and imported from the cytosol → major role in creating the genetic system of the mitochondrion in addition to contributing most of the organelle's other proteins

✓ organelle contribution \rightarrow mitochondrion itself contributes only mRNAs, rRNAs, and tRNAs to its genetic system

Figure 14-66 Molecular Biology of the Cell (© Garland Science 2008)

Protein import pathways of mitochondria

Figure 10-4. 2004. Cooper and Hausman

✓ ATP-driven

✓ presequence at N-end (25-35 ak)

- ✓ cytosol chaperon Hsp70
- ✓ outer membrane receptors protein complex Tom
 (*Translocase of the Outer Membrane*)
- transfer through the outer membrane

✓ inner membrane receptors – protein complex Tim
 (*Translocase of the Inner Membrane*)

 transfer to matrix – presequence is cleaved by MPP (*matrix processing peptidase*)

 matrix chaperon Hsp70 facilitates protein folding

Chloroplasts

Plastid types

Figure 12-3a Molecular Biology of the Cell (© Garland Science 2008)

From Wikipedia, the free encyclopedia

Chloroplasts

Plants

- similarities with mitochondria:
 - produce metabolic energy
 - \bullet bounded by a double membrane \rightarrow chloroplast envelope
 - evolutionary origins from photosynthetic bacteria
 - contain their own genetic system
 - binar division
- But! Bigger in size and more complex than mitochondria

Processes:

- ATP synthesis
- conversion of CO₂ in carbohydrates (photosynthesis)
- synthesis of amino acids, fatty acids and lipids of their membranes

Chloroplast formation

Figure 12-3b Molecular Biology of the Cell (© Garland Science 2008)

Chloroplasts in plant cell

Figure 14-35a Molecular Biology of the Cell (© Garland Science 2008)

Structure and ultrastructure

✓ size 5 – 10 µm

 ✓ outer membrane
 ✓ inner membrane

✓ thylakoid membrane

Figure 14-36 Molecular Biology of the Cell (© Garland Science 2008)

Structure and ultrastructure

0.5 μm

Figure 14-35 Molecular Biology of the Cell (© Garland Science 2008)

3 membrane systems make chloroplasts more complex than mitochondria

- ✓ 3 membranes \rightarrow 3 different inner compartments:
- 1. intermembrane space
- 2. stroma
- 3. thylakoid lumen

Mitochondrion vs. chloroplast

✓ **outer membrane** \rightarrow similar to mitochondrial outer membrane (permeability, porins)

stroma equivalent of matrix (genome, metabolic enzymes)

✓ **thylakoid membrane** \rightarrow e⁻ transport and ATP synthesis (inner mitochondrial membrane)

✓ inner membrane → not involved in photosynthesis

Chemiosmotic generation of ATP in chloroplasts and mitochondria

Figure 10.14. 2000. Cooper

 \rightarrow mitochondria - e⁻ transport generates a H⁺ gradient across the inner membrane, which is then used to drive ATP synthesis in the matrix

 \rightarrow chloroplasts – H⁺ gradient is generated across the thylakoid membrane and used to drive ATP synthesis in the stroma

Photosynthesis

Algae, bacteria and archebacteria

- photosynthesis on the plasma membrane
- eg. bacteriorodopsin
- \rightarrow photosynthetic proton pump
- → Halobacterium cell membrane

Photosynthesis in chloroplasts

 \rightarrow energy from sunlight is harvested and used to drive the synthesis of glucose from CO_2 and H_2O

 \rightarrow the ultimate source of metabolic energy for all biological systems

 \rightarrow takes place in two distinct stages

1. Light reactions

- energy from sunlight drives the synthesis of ATP and NADPH
- coupled to the formation of O₂ from H₂O
- thylakoid membranes

2. Calvin cycle

- ATP and NADPH produced by the light reactions drive glucose synthesis
- reduction of CO₂
- stroma

Figure 14-38 Molecular Biology of the Cell (© Garland Science 2008)

Light reactions

energy from sunlight is used to split H_2O to O_2

 ✓ high-energy e⁻ derived from this process are then transported through a series of carriers and used to convert NADP⁺ to NADPH

 ✓ energy derived from the e⁻ transport reactions also drives the synthesis of ATP

Figure 2.38. 2000. Cooper

Absorption of sunlight

 \rightarrow photosynthetic pigments – **chlorophyll** *a* and *b* and **carotenoids**

http://plantphys.info/plant_physiology/light.shtml

✓ chlorophyll a – 430 and 662 nm
 ✓ chlorophyll b – 453 and 642 nm
 ✓ carotenoids – 400 and 500 nm

Organization of a photocenter

✓ each photocenter \rightarrow hundreds of antenna pigment molecules \rightarrow absorb photons and transfer energy to a reaction center chlorophyll

✓ reaction center transfers its excited e⁻ to an acceptor in the e⁻ transport chain

 \checkmark reaction center illustrated is that of **photosystem II**, in which electrons are transferred from the reaction center chlorophyll to pheophytin and then to quinones (Q_A, Q_B, and QH₂)

Electron transport and ATP synthesis during photosynthesis

photosystem II

energy derived from photon absorption is used to split H₂O within the thylakoid lumen

cytochrome *bf* complex

e⁻ transferred to a lower energy state -H⁺ are pumped into the thylakoid lumen

photosystem I

energy derived from light absorption generates high

energy e⁻

NADP reductase

reduce NADP+ to NADPH in the stroma

ATP synthase

uses the energy stored in the proton gradient to convert ADP to ATP

Calvin cycle

✓ ATP and NADPH produced from the light reactions drive the synthesis of carbohydrates from CO_2 and H_2O

 \checkmark 1 CO₂ at a time is added to a cycle of **reactions** – Calvin cycle

✓ enzyme Rubisco (Ribulose Bisphosphate Carboxylase)

 \rightarrow adds CO₂ to ribulose-1,5-bisphosphate

Calvin cycle

 \rightarrow synthesis of 1 glyceraldehyde-3-phosphate from 3 CO_2

 \rightarrow at the cost of 9 molecules of ATP and 6 molecules of NADPH

 \rightarrow 2 glyceraldehyde-3phosphate then used for synthesis of glucose

Chloroplast genome

- ✓ circular DNA (like mitochondria)
- more copies per organelle (like mitochondria)
- more complex than mitochondrial (120 150 kb; cca 150 genes)
- encodes:
- **RNA**: 4 rRNAs and 30 tRNAs (universal genetic code)
- 20 ribosomal proteins
- RNA polymerase subunits
- 30 photosynthesis proteins
- 30 proteins which need to be identified

Function	Number of genes	
Genes for the genetic apparatus		
rRNAs (23S, 16S, 5S, 4.5S)	4	
tRNAs	30	
Ribosomal proteins	21	
RNA polymerase subunits	4	
Genes for photosynthesis		
Photosystem I	5	
Photosystem II	12	
Cytochrome bf complex	4	
ATP synthase	6	
Ribulose bisphosphate carboxylase	1	

2000. Cooper

Import of chloroplast proteins

Figure 10-15. 2004. Cooper and Hausman

✓ ATP- and GTP-driven

✓ N-terminal presequence (30 – 100 ak)

 cytosol Hsp70 - keeps the protein in unfolded state

✓ guidance complex→ recognizes presequence

 \checkmark Toc complex \rightarrow receptor in the outer membrane

 \checkmark Tic complex \rightarrow receptor in the inner membrane

presequence cleavage by SPP (stromal processing peptidase)

stromal Hsp70 facilitates protein folding

Proteins with thylakoid signal sequence are imported into the thylakoid lumen or membrane

Figure 10-16. 2004. Cooper and Hausman

Peroxisomes

✓ small, membrane-enclosed organelles

- contain enzymes involved in a variety of metabolic reactions
- morphologically similar to lysosomes
- ✓ do not contain their own genomes

 mostly assembled from proteins that are synthesized on free ribosomes and then imported into peroxisomes as completed polypeptide chains

 similar to mitochondria and chloroplasts in that they replicate by binary division

Functions of peroxisomes

 \checkmark contain at least 50 different enzymes \rightarrow involved in a variety of biochemical pathways in different cell types

✓ contain the enzyme catalase \rightarrow decomposes H₂O₂ either by converting it to water or by using it to oxidize another organic compound

 • oxidation of fatty acids is a particularly important since it provides a major source of metabolic energy

- animal cells \rightarrow in peroxisomes and mitochondria
- yeast and plants \rightarrow only in <u>peroxisomes</u>

✓ biosynthesis of lipids \rightarrow in animal cells, cholesterol and dolichol are synthesized in peroxisomes as well as in the ER

✓ contain enzymes required for the synthesis of plasmalogens - a family of phospholipids in heart and brain

Two particularly important roles in plants

1. In seeds (glyoxysomes)

- responsible for the conversion of stored fatty acids to carbohydrates
- critical for providing energy and raw materials for growth of the germinating plant
- this occurs via a series of reactions termed the glyoxylate cycle, which is a variant of the citric acid cycle

Figure 10-27. 2000. Cooper

2. In leaves

\checkmark photorespiration \rightarrow adaptation on hot and dry environment

- serves to metabolize a side product formed during photosynthesis
- \checkmark Rubisco adds CO₂ = photosynthesis
- Rubisco sometimes catalyzes the addition of O₂ instead of CO₂
- \rightarrow result one 3-phosphoglycerate and one **phosphoglycolate**
- \rightarrow a side reaction, and **phosphoglycolate** is <u>not a useful metabolite!</u>

Role of peroxisomes in photorespiration

- phosphoglycolate is converted to glycolate
- \checkmark transfer to peroxisomes \rightarrow oxidation and convertion to glycine
- glycine is then transferred to mitochondria and converted to serine.
- serine is returned to peroxisomes and converted to glycerate
- glycerate is transferred back to chloroplasts

Peroxisome assembly

peroxins – peroxisome proteins

✓ matrix peroxisome proteins are translated on free cytosolic ribosomes

membrane peroxisome proteins synthesized on rough ER

- ✓ assembly starts on ER membrane:
- Pex3 (ER) i Pex19 (cytosol) interact
- initiates vesicle formation on ER

 other Pex proteins (ER) serve as receptors for import of matrix proteins (cytosol)

✓ import:

- signal sequence Ser-Lys-Leu on C-end (PTS1)
- 9 aa on N-end (PTS2)
- no cleavage of signal sequence!

 phospholipids are imported to peroxisomes, via phospholipid transfer proteins, from the ER

 ✓ import of proteins and phospholipids results in peroxisome growth, and new peroxisomes are then formed by division of old ones

Figure 11-32. 2013. Cooper