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Abstract Scaling relationships are proposed for the turbulent katabatic flow of a stably
stratified fluid down a homogeneously cooled planar slope—the turbulent analogue of a
Prandtl-type slope flow. The � Theorem predicts that such flows are controlled by three non-
dimensional parameters: the slope angle, the Prandtl number, and a Reynolds number defined
in terms of the surface thermal forcing (surface buoyancy or surface buoyancy flux), Brunt-
Väisälä frequency, slope angle, and molecular viscosity and diffusivity coefficients. However,
by exploiting the structure of the governing differential equations in a boundary-layer form,
scaled equations are deduced that involve only two non-dimensional parameters: the Prandtl
number and a modified Reynolds number. In the proposed scaling framework, the slope
angle does not appear as an independent governing parameter, but merely acts as a stretching
factor in the scales for the dependent and independent variables, and appears in the Reynolds
number. Based on the boundary-layer analysis, we hypothesize that the full katabatic-flow
problem is largely controlled by two rather than three parameters. Preliminary tests of the
scaling hypothesis using data from direct numerical simulations provide encouraging results.

Keywords Direct numerical simulation · Katabatic flow · Planar slope · Stable
stratification · Turbulence

1 Introduction: Katabatic Flow in the Prandtl Formulation

When a sloping surface is heated or cooled, a temperature difference arises between the near-
surface air and the environmental air at the same altitude. The associated buoyancy force
projects in the along-slope direction and induces a downslope flow over cooled surfaces
(katabatic flow) or an upslope flow over heated surfaces (anabatic flow). Slope flows are
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2 A. Shapiro, E. Fedorovich

ubiquitous in regions of complex terrain (Atkinson 1981; Whiteman 1990, 2000; Egger
1990; Poulos and Zhong 2008; Zardi and Whiteman 2012). Compared to anabatic flows,
with well-mixed momentum and buoyancy profiles, katabatic flows have a more shallow,
boundary-layer character.

Katabatic winds have wide-ranging impacts on weather and climate. In mid-latitudes they
affect visibility, fog formation, air pollutant dispersion, agriculture, and energy use, as well
as aerial spraying, controlled burning, and fire-fighting operations (Lu and Turco 1994; Raga
et al. 1999; Whiteman 2000; Fernando et al. 2001; Hunt et al. 2003; Lee et al. 2003; Brazel
et al. 2005; Fernando 2010; Steyn et al. 2012). Katabatic winds arising over the ice sheets
of Greenland and Antarctica affect the weather and climate of the polar regions (Parish and
Waight 1987; Parish 1992; Gallee and Schayes 1994; Oerlemans 1998; Heinemann and Klein
2002; Renfrew 2004; Renfrew and Anderson 2006). Katabatic flow from Antarctica drives sea
ice offshore, exposing open water to the much colder atmosphere (Bromwich and Kurtz 1984;
Bromwich 1989; Cotton and Michael 1994; Woert 1999). As this surface water refreezes,
brine is rejected, leading to the production of vast amounts of dense sinking Antarctic Bottom
Water, an important ingredient of the global ocean circulation (Adolphs and Wendler 1995;
Bromwich et al. 1998; Massom et al. 1998; Williams et al. 2010; Barthélemy et al. 2012;
Ohshima et al. 2013).

A major advance in the theory of slope flows was Prandtl’s (1942) analytical description of
the flow of a viscous stably stratified fluid along a uniformly heated or cooled planar surface.
Prandtl considered an equilibrium state in which the along-slope advection of potential tem-
perature balanced thermal diffusion, and the along-slope component of buoyancy balanced
the viscous stress force. The balances were described in a remarkably simple one-dimensional
framework1 in which the dependent variables are functions only of the slope-normal coor-
dinate Z . Prandtl’s solution yielded the characteristic flow depth Z P and jet speed UP as

Z P = (νT κT )1/4

(N sin α)1/2 , (1a)

UP = B|Z=0

Pr1/2
T N

, (1b)

where α is the slope angle, νT is the kinematic viscosity, κT is the thermal diffusivity, PrT ≡
νT /κT is the Prandtl number, N ≡ √

(g/�r )d�e/d Z∗ is the Brunt-Väisälä frequency,
B ≡ g[� − �e(Z∗)]/�r is the buoyancy, � is the potential temperature, Z∗ is the true
height coordinate (the relation between Z∗ and the slope-normal coordinate Z is depicted in
Fig. 1), �e is the environmental potential temperature, �r is a constant reference value of
potential temperature, and g is the acceleration due to gravity. The parameters α, νT , κT , and
N are assumed to be constant; from the constancy of N it follows that �e must vary linearly
with Z∗.

Although Prandtl originally presented his solution in terms of laminar-flow variables,
investigators who fit the Prandtl solution to data from real atmospheric flows invariably
interpret νT and κT as effective turbulent transport (exchange) coefficients rather than as
molecular coefficients. Because of this common usage, we have placed a subscript T (for
turbulent exchange) on the diffusivities in our discussion of the Prandtl model. We also note

1 The Prandtl solution for wind and buoyancy, together with pressure obtained from the quasi-hydrostatic
equation (the equation to which the slope-normal equation of motion reduces in the one-dimensional frame-
work), constitute an exact solution of the viscous Boussinesq equations of motion, thermal energy and mass
conservation (incompressibility condition).
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A Boundary-Layer Scaling 3

Fig. 1 Slope-following
Cartesian coordinate system: the
along-slope (X ) and slope-normal
(Z ) axes are inclined at an angle
α to the horizontal and vertical
(Z∗) directions, respectively. The
Y axis points into the page

that, although Prandtl considered the surface buoyancy to be specified, the solution is easily
modified if the surface buoyancy flux is specified (Axelsen and van Dop 2009b; Fedorovich
and Shapiro 2009a for Pr = 1; Mo 2013). In that case, Z P is still given by (1a), but UP

varies as N−3/2(sin α)−1/2.
The Prandtl model with tuned exchange coefficients has provided qualitatively reason-

able descriptions of mean-flow profiles in real katabatic flows (Defant 1949; Tyson 1968;
Hootman and Blumen 1983; Clements et al. 1989; Papadopoulos et al. 1997; Oerlemans
1998), with the prediction of an increasing flow depth with decreasing slope angle confirmed
by observations (Table 2.1 of Zardi and Whiteman 2012). However, because of the con-
stancy of the exchange coefficients, the Prandtl model tends to underpredict the near-surface
wind-speed and buoyancy gradients (Grisogono and Oerlemans 2001; Oerlemans and Griso-
gono 2002; Noppel and Fiedler 2002; Zammett and Fowler 2007; Axelsen and van Dop
2009b). In addition, a zone of weak return flow atop the katabatic jet in the Prandtl model is
stronger, relative to the jet strength, than in numerical simulations or observations. Indeed,
Zardi and Whiteman (2012) note that return flows associated with natural katabatic winds
can be difficult to identify. By modifying the Prandtl model to include specified slope-normal
variations in the exchange coefficients, Grisogono and Oerlemans (2001, 2002) and Parmhed
et al. (2004) obtained improved wind-profile estimates under the Wentzel–Kramers–Brillouin
(WKB) approximation.

Since microscale turbulent transport of heat, momentum, and moisture within katabatic
flows cannot be explicitly described in mesoscale to global-scale atmospheric models, the
effects of this transport are commonly parametrized. Unfortunately, the parametrization of
stably stratified turbulence remains a difficult problem from both conceptual and technical
standpoints (Mahrt 1998; Jiménez and Cuxart 2005; Mauritsen et al. 2007). The problem is
even worse for stably stratified turbulence in slope flows for which a near-surface closure
theory is still lacking (Burkholder et al. 2011).

Because of its conceptual compactness, the Prandtl model setting with uniform planar
slope of infinite extent, spatially homogeneous thermal forcing, and stable stratification rep-
resented by a constant Brunt-Väisälä frequency, is an ideal departure point for studies of tur-
bulent slope flows. In recent years, the powerful computational tools of large-eddy simulation
(LES) and direct numerical simulation (DNS) have been applied to such flows. By resolving
most of the energy-carrying motions, LES accounts for turbulence effects in a more accu-
rate and consistent manner than is the case in mesoscale models, although it is still affected
by the lack of a near-wall model that appropriately describes the interaction between shear
and buoyancy forcings at the sloping boundary. In DNS, the governing equations are solved
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directly, with turbulent motions simulated across all scales down to the dissipation scales,
thus bypassing the need for closure models. High-fidelity DNS can provide benchmarks
for many computational fluid dynamics problems, but involve a very high computational
cost (Pope 2000). The computational burden is generally prohibitive for realistically high
Reynolds numbers typical of geophysical applications. However, if one mitigates the cost
by working with reduced Reynolds numbers, DNS can provide useful descriptions of flow
structures within well-defined, albeit narrow, scale ranges.

The mean wind and buoyancy fields obtained in turbulent Prandtl-type slope flows via
LES (Schumann 1990; Axelsen and van Dop 2009a, b; Burkholder et al. 2011; Grisogono and
Axelsen 2012) and DNS (Fedorovich and Shapiro 2009a) were in good qualitative agreement
with the Prandtl predictions. In particular, a tendency for flow depth to increase with decreas-
ing slope angle was confirmed for both anabatic (Schumann 1990; Fedorovich and Shapiro
2009a), and katabatic (Axelsen and van Dop 2009b; Fedorovich and Shapiro 2009a) flows.
Interestingly, the mean fields in Schumann’s (1990) study exhibited temporal oscillations,2

with a frequency close to N sin α, as in McNider’s (1982) theory. Such oscillations were also
found in the katabatic-flow simulations of Axelsen and van Dop (2009a, b) and Burkholder
et al. (2011). In the latter study, several commonly used subgrid closure schemes for LES
were evaluated a posteriori against the filtered results of DNS. While the closure models
adequately reproduced low-order features such as mean winds and buoyancy, higher-order
turbulence statistics were not properly predicted.

This study is concerned with scaling relationships for a turbulent analogue of Prandtl-type
katabatic flows. In Sect. 2 we present the governing equations of the katabatic-flow problem
and note that the � theorem predicts a three-parameter space for their solution. In Sect. 3
we consider boundary-layer approximations to the problem and deduce scalings that reduce
the boundary-layer problem to one governed by only two dimensionless parameters. We
then hypothesize that the full katabatic-flow problem considered in Sect. 2 is essentially a
two-parameter rather than three-parameter problem. Preliminary tests of this boundary-layer
scaling hypothesis using DNS data are described in Sect. 4, with a summary and conclusions
following in Sect. 5.

2 Governing Equations

Quiescent stably stratified fluid overlies a planar slope when, at time T = 0, a spatially
homogeneous surface cooling is suddenly imposed and maintained thereafter. A turbulent
katabatic flow develops along the surface in response to this cooling. The motion is considered
in a slope-following right-hand Cartesian coordinate system (Fig. 1) with X, Y , and Z axes
directed, respectively, up the slope, across the slope, and perpendicular to the slope. The gov-
erning equations are the Boussinesq equations of motion, thermal energy, and mass conserva-
tion (incompressibility condition) in the following forms3 (Fedorovich and Shapiro 2009a),

∂U

∂T
+ U

∂U

∂ X
+ V

∂U

∂Y
+ W

∂U

∂ Z
= −∂�

∂ X
+ B sin α + ν

(
∂2U

∂ X2 + ∂2U

∂Y 2 + ∂2U

∂ Z2

)
, (2)

∂V

∂T
+ U

∂V

∂ X
+ V

∂V

∂Y
+ W

∂V

∂ Z
= −∂�

∂Y
+ ν

(
∂2V

∂ X2 + ∂2V

∂Y 2 + ∂2V

∂ Z2

)
, (3)

2 In Schumann (1990), as in the other LES/DNS studies cited above, the flow was generated from rest by the
sudden application of a surface thermal perturbation (buoyancy or buoyancy flux).
3 If the X -axis points downslope, the signs of the sin α factors in (2) and (5) must be changed.
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∂W

∂T
+ U

∂W

∂ X
+ V

∂W

∂Y
+ W

∂W

∂ Z
= −∂�

∂ Z
+ B cos α + ν

(
∂2W

∂ X2 + ∂2W

∂Y 2 + ∂2W

∂ Z2

)
,(4)

∂ B

∂T
+U

∂ B

∂ X
+V

∂ B

∂Y
+W

∂ B

∂ Z
=−U N 2 sin α−W N 2 cos α+κ

(
∂2 B

∂ X2 + ∂2 B

∂Y 2 + ∂2 B

∂ Z2

)
, (5)

∂U

∂ X
+ ∂V

∂Y
+ ∂W

∂ Z
= 0. (6)

Here, U, V , and W are the along-slope (X ), cross-slope (Y ), and slope-normal (Z ) velocity
components, respectively, � ≡ [P − Pe(Z∗)]/ρr is the normalized pressure perturbation,
P is the pressure, Pe(Z∗) is the environmental pressure, ρr is a constant reference value of
density, ν is the (constant) molecular kinematic viscosity and κ is the (constant) molecular
thermal diffusivity. Other quantities are as defined in Sect. 1. The first two terms on the right-
hand side of Eq. 5 arise from the decomposition of the environmental potential temperature
advection −W ∗N 2 (where W ∗ ≡ DZ∗/Dt is the true vertical velocity component) into
along-slope and slope-normal components.

On the underlying sloping surface we apply no-slip, U |Z=0 = V |Z=0 = 0, and imperme-
ability, W |Z=0 = 0, conditions, and impose either a spatially uniform buoyancy, B|Z=0 < 0,
or buoyancy flux, − κ(∂ B/∂ Z)|Z=0 = Fs(< 0). The latter can also be interpreted as a surface
energy production rate. All dependent variables are considered to vanish as Z → ∞.

We define a surface buoyancy scale Bs (> 0) either through the surface buoyancy or the
surface buoyancy flux as

Bs ≡

⎧⎪⎨
⎪⎩

|B|Z=0 , (buoyancy-forced case) (7a)

H
∂ B

∂ Z

∣∣∣∣
Z=0

= − Fs Pr1/4√
κ N sin α

, (flux-forced case) (7b)

where Pr ≡ ν/κ is the molecular Prandtl number and H ≡ (νκ)1/4/(N sin α)1/2 is the
molecular analogue of the Prandtl depth scale Z P . For future reference we also introduce the
molecular analogue of the Prandtl velocity scale UP : V ≡ Bs/(Pr1/2 N ).

The flow is governed by (2) to (6) and either (7a) or (7b). The dependent variables are
functions of four independent variables (X, Y, Z , T ) and five parameters (ν, κ, N , α, Bs).
Since length and time are the only dimensions in this problem, the � theorem (Langhaar
1951) predicts that any dimensionless (scaled) dependent variable is a function of the scaled
versions of X, Y, Z , T and a non-unique set of three dimensionless parameters that may be
chosen, for example, to be α, Pr , and ReU ≡ V H/ν.

3 Boundary-Layer Scaling

We suggest, tentatively, that scaling relationships for a turbulent katabatic flow, especially
along shallow slopes, might be deduced from the boundary-layer-approximated governing
equations. Our proposition is motivated by observational and theoretical studies pertaining to
the inhibition of vertical motions by strong stable stratification and the promotion of layered,
highly anisotropic flow structures with characteristic horizontal scales of motion being much
larger than the vertical scales of motion (Hopfinger 1987; Wong and Griffiths 1999,Riley and
Lelong 2000; Waite and Bartello 2004; Lindborg 2006). Remarkably, some experimental and
theoretical studies of stratified turbulence suggest that such anisotropies may persist across
the entire turbulence spectral range down to the smallest (dissipation) scales (Thoroddsen
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and Van Atta 1992; Thoroddsen and Atta 1996; Werne and Fritts 2001; Pettersson Reif and
Andreassen 2003; Godeferd and Staquet 2003).

We thus consider a set of approximations in which the X and Y derivatives in the vis-
cous/diffusion terms are neglected in (2), (3), and (5), and the quasi-hydrostatic equation,
0 = −∂�/∂ Z + B cos α, is used in place of (4). Analogous approximations are common in
laminar fluid dynamics problems of boundary-layer type, for example, in the analysis of heat
transfer in Blasius flow (Bejan 2013). It is important to note, however, that we are considering
these approximations for equations governing a turbulent flow rather than a laminar flow. We
will refer to the katabatic-wind problem subject to the above approximations as the boundary-
layer problem. As in the full problem, the � theorem predicts a three-parameter space for
a description of the boundary-layer problem. However, as we will see below, by exploiting
the structure of the boundary-layer equations, we may choose scales for the dependent and
independent variables that convert the scaled boundary-layer problem to one governed by
just two parameters. The scales are obtained by a formal procedure, and no claims are made
regarding the relative magnitudes of any of the terms in the scaled boundary-layer problem.

We denote dimensionless (scaled) variables by lower-case letters as

(x, y) ≡ (X, Y )

Xs
, z ≡ Z

Zs
, t ≡ T

Ts
, (u, v) ≡ (U, V )

Us
, w ≡ W

Ws
, π ≡ �

�s
, b ≡ B

Bs
, (8)

where Bs was defined in (7a) and (7b), and the scales Xs, Zs, Ts, Us, Ws , and �s have yet
to be defined. To obtain these scales, we write each of them as an ansatz consisting of the
product of powers of the dimensional parameters and also of powers of sin α and cos α. We
then apply (8) into the differential equations and boundary conditions for the boundary-layer
problem and seek the ansatz exponents that yield as few independent parameters as possible
in the scaled problem. From the � theorem we know that we can obtain a three-parameter
scaled problem, but we hope to do better than that by explicitly using the equations for
the boundary-layer problem. Remarkably, we found that exponents could be chosen so that
the slope angle α is completely removed as an independent parameter. In other words, the
boundary-layer problem admits solutions that vary with slope angle in a structurally similar
manner—α merely acts as a stretching factor. The scale-deduction procedure leads to the
following scales:

Xs ≡ (νκ)1/4 cos α

N 1/2 sin3/2 α
, Zs ≡ (νκ)1/4

(N sin α)1/2 , Ts ≡ 1

Pr1/2 N sin α
,

Us ≡ Bs

Pr1/2 N
, Ws ≡ Bs tan α

Pr1/2 N
, �s ≡ Bs(νκ)1/4 cos α

(N sin α)1/2 .

⎫⎪⎪⎬
⎪⎪⎭

(9)

These scales (except for Ts) were used in Shapiro et al. (2012) as formal non-
dimensionalization factors to yield the fewest parameters in a linear analysis of steady kata-
batic flow induced by a cold strip of finite width running across the slope. The scales Zs and
Us (which are the same as the scales H and V defined in Sect. 2) are the molecular coefficient
analogues of the characteristic flow depth and jet speeds Z P and UP in the Prandtl model.
The scale Xs can be interpreted as the along-slope distance along which the elevation changes
by the same amount as over the slope-normal distance Zs (see Fig. 2 in Shapiro et al. 2012),
although its relevance for characterizing the length of any flow feature is uncertain. Apart
from the Pr1/2 factor, 2π/Ts characterizes the natural frequency of internal gravity oscilla-
tions arising in linear and non-linear analytical slope-flow models (McNider 1982; Shapiro
and Fedorovich 2007). Frequencies close to this natural frequency have been observed in
nature and in numerically simulated slope flows (McNider 1982; Schumann 1990; Bastin
and Drobinski 2005; Shapiro and Fedorovich 2007; Princevac et al. 2008; Fedorovich and
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A Boundary-Layer Scaling 7

Fig. 2 Central X − Z -plane cross-sections of the along-slope (U ) velocity field in simulated katabatic flows
with α = 2.5◦ at T = 652 s (top left), α = 5◦ at T = 850 s (top right), α = 10◦ at T = 412 s (bottom left),
and α = 20◦ at T = 220 s (bottom right). Coordinates are expressed in m, U in m s−1

Shapiro 2009a; Axelsen and van Dop 2009a, b; Chemel et al. 2009; Burkholder et al. 2011;
Largeron et al. 2013).

The scaled boundary-layer problem incorporates the following differential equations,

∂u

∂t
+ ReW

(
u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂π

∂x
+ b + ∂2u

∂z2 , (10)

∂v

∂t
+ ReW

(
u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂π

∂y
+ ∂2v

∂z2 , (11)

0 = −∂π

∂z
+ b, (12)

Pr
∂b

∂t
+ Pr ReW

(
u

∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂z

)
= −u − w + ∂2b

∂z2 , (13)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (14)
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where ReW is a W -scale-based Reynolds number

ReW ≡ Ws Zs

ν
= ReU tan α = Bs sin1/2 α

Pr3/4ν1/2 N 3/2 cos α
, (15)

and the boundary conditions

lim
z→∞(u, v, w, b, π) = 0, (16)

u|z=0 = v|z=0 = w|z=0 = 0, (17)

b|z=0 = −1, (if the buoyancy is specified), (18a)

∂b

∂z

∣∣∣∣
z=0

= −1, (if the buoyancy flux is specified). (18b)

We thus see that the scaled boundary-layer problem is governed by just two parameters: Pr
and ReW . The slope angle α has been removed as an independent governing parameter and
appears only as a stretching factor in the scales (7b) and (9), and in the definition of ReW .
Had we used (7a), (7b) and (9) to scale the original problem, we would have obtained a
dimensionless problem involving three governing parameters: α, Pr, and ReW (or ReU ). We
also would have obtained a three-parameter problem if scalings other than (7a), (7b) and (9)
had been applied to the boundary-layer problem, for example, if Ws had been defined to be
the same as Us .

The preceding analysis leads us to offer a boundary-layer scaling hypothesis: the full
katabatic-wind problem of Sect. 2 is essentially a two-parameter rather than three-parameter
problem. Specifically, when non-dimensionalized using the boundary-layer scalings (7a),
(7b) and (9), the solutions of the full katabatic-wind problem should essentially depend only
on ReW and Pr; the scaled solution curves for the full problem should be largely independent
of slope angle.

4 Testing the Boundary-Layer Hypothesis

Since ν and κ in our study are intended to be molecular coefficients, and such coefficients have
only a weak temperature dependence at normal atmospheric conditions (Kundu and Cohen
2002), the Prandtl number can basically be regarded as fixed. In this case, our boundary-
layer scaling hypothesis is that the solution of the full katabatic-wind problem, when scaled
with (7a), (7b) and (9), is a function only of ReW . One may speculate that, for large enough
ReW , the solution curves become independent of ReW , but questions about the asymptotic
behaviour of the flow are beyond the scope of the present investigation.

We test the above scaling hypothesis by solving (2) to (6) using DNS for the surface
flux-forced case (7b) with different sets of values of α, ν, N , and Bs constrained by (15)
to yield the same ReW . Unfortunately, because of the heavy computational requirements
imposed by DNS and the need to run shallow slope simulations over very long periods of
time (since the frequency of oscillations varies as sin α), it was not possible to explore the
ReW dependence of the solution. Here, we fix the Prandtl number at Pr = 1 and the Reynolds
number at ReW = 4,243, and vary α, ν, N , and Bs (through Fs in (7b)) as indicated in
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A Boundary-Layer Scaling 9

Table 1 Governing parameters used in the DNS of katabatic flows for a fixed Reynolds number (ReW =
4,243) and Prandtl number (Pr = 1)

Simulation α (degrees) ν(= κ) (m2 s−1) N (s−1) Fs (m2 s−3)

Case 1 2.5 10−4 1.19 −0.6

Case 2 5 10−4 0.842 −0.3

Case 3 10 2 × 10−4 0.599 −0.3

Case 4 20 10−4 0.868 −0.3

Table 1. Because only one Reynolds number was considered, and it was relatively small, the
validation of our scaling hypothesis should be regarded as very preliminary.

The employed DNS procedures are similar to those described in Fedorovich and
Shapiro (2009a, b). The prognostic variables (U, V, W , and B) are updated with a hybrid
leapfrog/Adams-Moulton third-order timestepping scheme. Spatial derivatives are dis-
cretized using second-order finite-difference expressions on a staggered slope-following
Cartesian grid. On the surface we impose no-slip and impermeability conditions, and specify
the buoyancy flux Fs . Periodic conditions are imposed in the X and Y directions, and zero
normal-gradient conditions are imposed at the top of the domain. The normalized pressure
perturbation is obtained from the Poisson equation that results from taking the divergence of
the equations of motion. The Poisson solver uses fast Fourier transforms over X − Y planes
and a tridiagonal matrix inversion in the Z direction. The surface condition for pressure is
the Neumann condition inferred from the slope-normal equation of motion.

The computational grid consisted of 128 × 128 points on X − Y planes and 1000 points
in the Z direction, with grid spacings of 
X = 
Y = 0.005 m and 
Z = 0.003 m,
which roughly satisfy the spacing requirements for resolved DNS given the values of the
flow-controlling parameters indicated in Table 1 (Fedorovich and Shapiro 2009a, b). Each
simulation was run for the duration of at least five oscillations. The simulation with the
smallest angle, Case 1, required over six months of computing time to encompass five oscil-
lations. The other cases required less computing time per oscillation, and were run out to as
many as ten oscillations.

Sample cross-sections of the dimensional U and B fields for the four cases are depicted
in Figs. 2 and 3 for a lower portion of the computational domain that partially contains
the momentum boundary layer and fully contains the (much shallower) thermal boundary
layer.4 Both the intensity and depth of the boundary layers vary significantly between the
four cases, with the greatest depth obtained, as in the Prandtl theory, for the smallest slope
angle. Consistent with our expectations regarding the anisotropy of flow structures in stably
stratified flows, many (though not all) of the small-scale features evident in these figures tend
to be elongated in the along-slope direction.

The evolution of the dimensional (U ) and scaled (u) velocity components, averaged over
X − Y planes, is shown in Figs. 4 and 5, respectively. The corresponding evolution of
the dimensional (B) and scaled (b) buoyancy fields is shown in Figs. 6 and 7. To facilitate
comparisons between the four cases, the presentations are truncated at a common dimensional
time in Figs. 4 and 6, and a common non-dimensional time in Figs. 5 and 7 (for example, only

4 Results are shown at the (uncoordinated) terminal times of the individual simulations. In general, the end
times correspond to different phases of the temporal oscillation. However, the amplitudes of the velocity and
buoyancy oscillations decay with time and are small fractions of the mean characteristic velocity and thermal
disturbances at these later times.
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10 A. Shapiro, E. Fedorovich

Fig. 3 Central X − Z -plane cross-sections of the buoyancy field B in simulated katabatic flows with α = 2.5◦
at T = 652 s (top left), α = 5◦ at T = 850 s (top right), α = 10◦ at T = 412 s (bottom left), and α = 20◦ at
T = 220 s (bottom right). Coordinates are expressed in m, B in m s−2

the first of five simulated oscillations appears for Case 1 in the top left panels of Figs. 4 and 6).
Large differences between the four cases are seen in the dimensional intensity and depth of
the katabatic jet in Fig. 4, and in the dimensional intensity and depth of the thermal boundary
layer in Fig. 6. In contrast, the corresponding scaled fields are much more similar (Fig. 5
vs. 4, and Fig. 7 vs. 6). We also see that the large differences in the dimensional oscillation
periods (one, two, three, and ten periods) are greatly reduced when expressed in scaled time
(approximately five oscillations in all panels of Figs. 5 and 7, with the oscillations most
apparent in Fig. 7). Since the planar-averaged fields depicted in these figures still appear
fairly noisy, we did not explore the extent to which the higher-order turbulence statistics
follow scaling laws inferred from (9).

Figures 4 and 6 also show that the dimensional momentum boundary layer is much thicker
than its thermal counterpart.5 Qualitatively similar results are evident in recent DNS and LES
studies of Prandtl-like katabatic flows (DNS: Fedorovich and Shapiro 2009a; LES: Axelsen
and van Dop 2009b and Burkholder et al. 2011), in a LES of katabatic flow down a symmetric
mountain ridge with planar slopes (Smith and Skyllingstad 2005), and in a LES of katabatic
flow in a two-dimensional periodic mountain-valley system (Smith and Porté-Agel 2013). A

5 For the purpose of the present discussion we define the boundary-layer depths for momentum and buoyancy
loosely as the heights at which the magnitudes of the downslope velocity and buoyancy are reduced to some
small percentage (say, 10 %) of their peak magnitudes.
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A Boundary-Layer Scaling 11

Fig. 4 Evolution of the X −Y plane-averaged dimensional along-slope velocity component (U ) for α = 2.5◦
(top left), α = 5◦ (top right), α = 10◦ (bottom left), and α = 20◦ (bottom right). T is in s, U is in m s−1

Fig. 5 Evolution of the X − Y plane-averaged scaled along-slope velocity component (u) for α = 2.5◦ (top
left), α = 5◦ (top right), α = 10◦ (bottom left), and α = 20◦ (bottom right)

123



12 A. Shapiro, E. Fedorovich

Fig. 6 Evolution of the X − Y plane-averaged dimensional buoyancy (B) for α = 2.5◦ (top left), α = 5◦
(top right), α = 10◦ (bottom left), and α = 20◦ (bottom right). T is in s, B is in m s−2

Fig. 7 Evolution of the X −Y plane-averaged scaled buoyancy (b) for α = 2.5◦ (top left), α = 5◦ (top right),
α = 10◦ (bottom left), and α = 20◦ (bottom right)
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Fig. 8 Mean (averaged in time and over X − Y planes) profiles of the along-slope velocity component
(dimensional U , scaled u) and buoyancy (dimensional B, scaled b) in simulated katabatic flows with ReW (=
4,243) and Pr (= 1), for the parameter combinations given in Table 1: Case 1 (red line), Case 2 (blue line),
Case 3 (black line) and Case 4 (green line)

similar result is also evident in plots of tower data presented in the latter study. Consistent
with the Prandtl theory, weak return flow is found above the primary katabatic jet (upper part
of panels in Figs. 4 and 5), and small positive buoyancies are found above the cold thermal
boundary layer (middle and upper parts of panels in Figs. 6 and 7).

Finally, we consider the mean (averaged in time over several oscillations and in space over
X − Y planes) profiles of the dimensional and non-dimensional along-slope velocity and
buoyancy fields (Fig. 8). This figure shows that the large spread among the four dimensional
(U ) profiles is greatly reduced in the corresponding scaled (u) profiles. A similarly dramatic
reduction of spread is seen between the dimensional (B) and scaled (b) buoyancy profiles.

An additional simulation (not shown) was performed with a slope angle of α = 1.25◦.
Faced with the extreme computational burden associated with this very small angle, we ran
the simulation in a domain consisting of 64×64 points on X −Y planes, which was four times
smaller than was used in Cases 1–4. Consistent with the scaling hypothesis, the scaled wind
and buoyancy profiles in this case again tend to collapse on the other scaled profiles. However,

123



14 A. Shapiro, E. Fedorovich

the depth of the scaled thermal boundary layer, as defined by the location of an inflection
point, was somewhat larger than would be expected if there existed a tendency for results from
successively smaller slope angle simulations to converge. Although we cannot rule out that
some of the differences were due to differences in domain size, another possibility is that a
deepening of the dimensional thermal boundary layer with decreasing slope angle (consistent
with Prandtl’s theory and our DNS results) reduced the boundary-layer-like character of the
flow. Indeed, in the case of a zero slope angle, the concept of a katabatic boundary layer
breaks down.

5 Summary and Conclusions

The Prandtl model setting of flow of a viscous stably stratified fluid along a uniformly cooled
planar slope has provided a particularly simple framework for our study of scaling relation-
ships in turbulent katabatic flows. Motivated by studies suggesting that flow anisotropies in
stably stratified flows could extend over the major portion of the spectral range of turbulent
motions, we exploited a boundary-layer-approximated governing equation set to develop
such relationships. The scaled boundary-layer problem was controlled by just two parame-
ters: the Prandtl number Pr and a Reynolds number ReW . The slope angle did not appear
as an independent parameter, but merely served as a stretching factor in the scales for the
dependent and independent variables and appeared in the Reynolds number. Based on our
analysis of the boundary-layer problem, we hypothesized that the full katabatic-flow prob-
lem, non-dimensionalized using the deduced scales, would be largely controlled by just Pr
and ReW .

The scaling hypothesis was tested using DNS of katabatic flow with four different sets of
values for slope angle, viscosity, Brunt-Väisälä frequency, and surface buoyancy flux, with
values constrained to yield fixed values of Pr (= 1) and ReW (= 4,243). The mean-profile
results from these single Pr–ReW experiments were very encouraging, and suggested that the
hypothesis may have merit. We hasten to note, however, that since the results were obtained
for just one Reynolds number, one that was much smaller than would be typical of a real
katabatic flow, our results should be regarded as very preliminary. If the hypothesis can
be confirmed for larger Reynolds numbers, it would have the potential to yield significant
computational savings in future parametric studies of Prandtl-type turbulent katabatic flows.
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