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Topological insulators
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How to study topological materials? 

What does theory say?
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How to study topological materials? 

Angle resolved photoemission spectroscopy  ARPES

• We can identify SS and spin polarization

TlBiSSe - Nature Physics 7  840 (2011)

TaAs – Science 349  613 (2015)

Bi1-x Sb – Science 323  919 

(2009)
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How to study topological materials? 

Transport properties

Magnetic properties

Optical properties    

under high magnetic field

Quantum oscillations Landau level diagram

𝐴𝒌 𝜖𝒌 = 𝑛 + 𝛾 2𝜋𝑒𝐵/ℏ

Osanger’s relation Berry phase
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How to study topological materials? 

Transport properties

Magnetic properties

Optical properties    

under high magnetic field

Kuzmenko et al. Nature nano.

𝐸𝑁 = ∆2 + 2𝑣𝐹
2𝐵𝑁

Landau levels in (masive) Dirac system

6



Nodal-line Dirac system under study:

Year 1986!

ZrSiS

• Prototypical nodal-line Dirac semimetal

• Early band structure

𝐸𝐹
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Nodal-line Dirac system under study:

ZrSiS
• Modern DFT calculations 

Nonsymmorphic symmetry

protected nodal lines 

C2 protected nodal lines

SOC opens a gap 
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Nodal-line Dirac system under study:

ZrSiS
• Modern DFT calculations 

Nonsymmorphic symmetry

protected nodal lines 

C2 protected nodal lines

SOC opens a gap 
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Nodal-line Dirac system under study:

ZrSiS
• Modern DFT calculations 

Nonsymmorphic symmetry

protected nodal lines 

C4 protected nodal lines

SOC opens a gap 
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• Tetragonal crystal structure

• Nonsymmorphic symmetry

• Van der Waals gap

Why is ZrSiS interesting? 

IC
Glide plane Screw axis
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• P4/nmm SG
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How does Fermi surface look like?

• Magnetoresitance is very sensitive

to FS shape and topology

Nature Physics 14, 178 (2018) Our calculations

Top view of the FS

• Exact Fermi surface very sensitive to position of the parameters of DFT modeling 
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Quantum oscillations and AREPS

• ARPES measurements

• 𝑘𝑧 =
𝜋

𝑐

Z

R

A

• Quantum oscillations (SdH, dHvA)

-at moderate magnetic fields-

• 8.3 T pocket has also linear dispersion

• Early work indicated 236 T is q-2D pocket

• All pocket at the FS have linear dispersion
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Angular magnetoresistance measurements

• It has been known that in plane magnetoresistance exabits unusual behavior

• We manage to synthesized crystals of bigger lateral size and thickness  

• Good for c-axis transport measurements

• Good for optical measurements 

• Magnetoresistance measurement are very sensitive to Fermi surface shape
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Angular magnetoresistance measurements

• Angular magnetoresistance in out-of-plane direction (detail mapping)

𝜑

𝜃
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Angular magnetoresistance measurements

• Angular magnetoresistance in out-of-plane direction (detail mapping)
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Angular magnetoresistance measurements

• Angular magnetoresistance in out-of-plane direction (detail mapping)
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KFe2As2 SrMnBi2

Isostructural to ZrSiS
YbMnBi2

• Structurally similar compounds

Angular magnetoresistance measurements
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How can we understand present AMR?

• Approach:

DFT (ab initio)

Quantum model

Fermi 

surface 

shape

Boltzmann transport 

equation 

Semiclassical model

𝜎𝑖𝑗
(𝑛)

= 𝑒2න
𝑑𝒌

4𝜋
𝜏 𝑛 𝑣𝑖

𝑛
𝒌 𝑣𝑗

𝑛
(𝒌) −

𝜕 𝑓

𝜕𝜀
𝜀=𝜀(𝒌)

෍ 𝜎𝑖𝑗 ⇒ 𝜌𝑖𝑗 • Model which worked 

excellently for the Q-2D

organics 
4+4 independent elements

Calculations done by Shengnan Zhang at EPFL
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Origin of the polar and azimuthal 

anisotropy of  AMR
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• Hole pocket dominates AMR

• Open and closed orbits
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Origin of the polar and azimuthal 

anisotropy of  AMR
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• Hole pocket dominates AMR

• Open and closed orbits

• Origin of unusual AMR

Open orbits
Effect of compensation



High magnetic field measurements

• Magnetic field up to 35T

• Magnetic torque measurements

• Magnetic breakdown usually occurs between SO-split bands

• S. Pezzini et al., Nat. Phys. 14, 178 (2018). 
23(Nijmegen group)

https://www.nature.com/articles/nphys4306#auth-1


High magnetic field measurements

• Magnetic field up to 35T

• Magnetic torque measurements

• Low-F oscillation spectrum 

𝛼 𝛽
𝛽

𝛼

𝛽/2

(𝛽 − 𝛼)/2?
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• Magnetotransport properties as moderate B can be described by 

the semiclassical theory

• Fermi surface shape is pinpointed

• Deviation for the semiclassical theory in high magnetic fields?

Summary:
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