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How to study topological materials?

What does theory say?

ARTICLE

https://doi.org/10.1038/s41586-019-0954-4

A complete catalogue of high-quality

topological materials

M. G. Vergniory"»3! L, Elcoro*!!, Claudia Felser’, Nicolas Regnault®, B. Andrei Bernevig’®“* & Zhijun Wang”10*

Using a recently developed formalism called topological quantum chemistry, we perform a high-throughput search
of ‘high-quality’ materials (for which the atomic positions and structure have been measured very accurately) in the
Inorganic Crystal Structure Database in order to identify new topological phases. We develop codes to compute all
characters of all symmetries of 26,938 stoichiometric materials, and find 3,307 topological insulators, 4,078 topological
semimetals and no fragile phases. For these 7,385 materials we provide the electronic band structure, including some
electronic properties (bandgap and number of electrons), symmetry indicators, and other topological information. Our
results show that more than 27 per cent of all materials in nature are topological. We provide an open-source code that
checks the topology of any material and allows other researchers to reproduce our results.




How to study topological materials?

Angle resolved photoemission spectroscopy ARPES

 We can identify SS and spin polarization
TIBiSSe - Nature Physics 7 840 (2011)

Bi, . Sb — Science 323 919
(2009)

TaAs — Science 349 613 (2015)




How to study topological materials?

Transport properties
Magnetic properties under high magnetic field
Optical properties

Quantum oscillations Landau level diagram
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How to study topological materials?

Transport properties
Magnetic properties under high magnetic field
Optical properties
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Nodal-line Dirac system under study:

ZrS1S

Square Nets of Main Group Elements in Solid-State Materials

Wolfgang Tremel' and Roald Hoffmann®

nee Center, Cornell

« Early band structure




Nodal-line Dirac system under study:

ZrS1S

O Nonsymmorphic symmetry
protected nodal lines
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Nodal-line Dirac system under study:

ZrS1S

O Nonsymmorphic symmetry

e Modern DFT calculations protected nodal lines

C2 protected nodal lines
SOC opens a gap
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Nodal-line Dirac system under study:

ZrS1S

O Nonsymmorphic symmetry
protected nodal lines

, C4 protected nodal lines
‘”W"f N SOC opens a gap
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Why 1s ZrS1S interesting?

 Tetragonal crystal structure
 Nonsymmorphic symmetry
* Van der Waals gap

Glide plane Screw axis
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Hidden spin polarization in inversion-symmetric
bulk crystals

Xiuwen Zhang1'2'3'i', Qihang Liu"*", Jun-Wei Luo®*, Arthur J. Freeman® and Alex Zunger'™*
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How does Fermi surface look like?

« Exact Fermi surface very sensitive to position of the parameters of DFT modeling

« Magnetoresitance is very sensitive
to FS shape and topology

Top view of the FS




Quantum oscillations and AREPS

ARPES measurements  Quantum oscillations (SdH, dHvA)
-at moderate magnetic fields-
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» 8.3 T pocket has also linear dispersion
« Early work indicated 236 T 1s q-2D pocket

. All pocket at the F'S have linear dispersion




Angular magnetoresistance measurements

 Magnetoresistance measurement are very sensitive to Fermi surface shape

v = Vi Ey

» It has been known that in plane magnetoresistance exabits unusual behavior

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICAL SCIENCE

Butterfly magnetoresistance, quasi-2D Dirac Fermi
surface and topological phase transition in ZrSiS

Mazhar N. Ali,"?* Leslie M. Schoop,” Chirag Garg,"? Judith M. Lippmann,’ Erik Lara,’
Bettina Lotsch,®* Stuart S. P. Parkin'?

Magnetoresistance (MR), the change of a material’s electrical resistance in response to an applied magnetic
field, is a technologically important property that has been the topic of intense study for more than a quarter
century. We report the observation of an unusual “butterfly”-shaped titanic angular magnetoresistance (AMR)
in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K
resistivity as low as 48(4) n&2-cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 x 10° percen

* Good for c-axis transport measurements
* Good for optical measurements




Angular magnetoresistance measurements

* Angular magnetoresistance in out-of-plane direction (detail mapping)

C




Angular magnetoresistance measurements

 Angular magnetoresistance in out-of-plane direction (detail mapping)
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Angular magnetoresistance measurements

* Angular magnetoresistance in out-of-plane direction (detail mapping)
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Angular magnetoresistance measurements

e Structurally similar compounds

ARTICLE

Unusual interlayer quantum transport behavior
caused by the zeroth Landau level in YbMnBi,

KFe2As2 SrMnBi2
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Isostructural to ZrSi1S




How can we understand present AMR?

* Approach:

DFT (ab initio)
Quantum model

Fermi Boltzmann transport
‘ surface ‘ equation
shape Semiclassical model
k -
—— My (k)™ (k) 27
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Origin of the butterfly AMR
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« Off-diagonal matrix elements
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Origin of the polar and azimuthal
anisotropy of AMR

 Hole pocket dominates AMR
* Open and closed orbits

0 90 180 270 360
0 (deg)

21



Origin of the polar and azimuthal

anisotropy of AMR

 Hole pocket dominates AMR
* Open and closed orbits
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* Origin of unusual AMR



High magnetic field measurements

« Magnetic field up to 35T
* Magnetic torque measurements
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Unconventional mass enhancement
around the Dirac nodal loop in ZrSiS

e S. PeZZ|ni et al.’ Nat. Phys. 14, 178 (2018). s. M. R. van Delft, L. M. Schoop, B. V. Lotsch, A. Carrington, M. I. Katsnelson, N.
(N1ymegen group)



https://www.nature.com/articles/nphys4306#auth-1

High magnetic field measurements

* Magnetic field up to 35T
 Magnetic torque measurements

 Low-F oscillation spectrum
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Summary:

 Magnetotransport properties as moderate B can be described by
the semiclassical theory
* Fermi surface shape 1s pinpointed

* Deviation for the semiclassical theory in high magnetic fields?
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