Magnetic torque in Dirac semimetal Cd₃As,

¹F. Orbanić, ¹M. Novak, ²A. McCollam, ²L. Tang, ¹I. Kokanović

¹Department of Physics, Faculty of Science, University of Zagreb, Croatia ²High Field Magnet Laboratory, Radbound Niversity, Nijmegen, the Netherlands

European Magnetic Field Laboratory

E-mail: forbanic@phy.hr

3D Dirac semimetal

Cd3As2 3D Dirac semimetal with symmetry protected pair of Dirac points at Z-Γ-Z line.

B-field along

Magnetization in the quantum limit

Energy levels in B-field for different types of electrons [1]:

$$E_{n,k} = \begin{cases} \frac{\hbar eB}{m} (n+\gamma) + \frac{\hbar^2 k_z^2}{2m} & \text{Trivial } (\gamma = \frac{1}{2}) \\ \frac{\hbar v_F}{2} 2B(n+\gamma) + k_z^2 & \text{Weyl } (\gamma = 0) \end{cases}$$

Magnetization in quantum limit $M_{n=0} =$

$$\hbar v_F \sqrt{2B(n+\gamma+C^2sin^2\theta)+k_z^2}$$
 Dirac ($\gamma=0$

 θ – angle between B and line connecting two Dirac points *C* – material dependent parameter

Dirac – B-field perpendicular to the symmetry axis \rightarrow massive fermion - B-field in the direction of the symmetry axis \rightarrow weyl

0,06

Quantum limit appears at

Magnetic torque measurements

Sveučilište u hrzz

Acknowledgments This work has been fully supported by **Croatian Science** Foundation under the project No. 6216.

- lower quantum limit (Cd₃As₂ usually has F around 45-50 T).
- From SdH oscillations Fermi surface is found to be spherical leading to very ulletsmall torque signal. In samples with higher charge concentration the Fermi surface is ellipsoidal [2].
- Anomalus and angle dependent behavior in the torque near the quantum limit has been found.

References:

[1] Moll, P. J. et al. (2016). Magnetic torque anomaly in the quantum limit of Weyl semimetals. *Nature Communications*, 7.

[2] Borisenko, S. et al. (2014). Experimental realization of a three-dimensional dirac semimetal. *Physical Review Letters*, 113(2).