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1. INTRODUCTION 
 

The analytical study of stratified airflow over hills began with G. Lyra in 
Germany (1943).  Lyra was recruited by L. Prandtl to investigate the 
pioneering 1933 wave-assisted 7000-meter glider ascent by J. Kuettner.  
Kuettner published his observations and interpretations of mountain waves 
and wave clouds in 1939.  P. Queney, then at the University of Chicago, 
joined the effort shortly thereafter (1947).  Their fundamental theoretical 
contributions showed how airflow over mountains could generate steady 
gravity waves; waves whose restoring force arises from the background 
gravitational stability of the atmosphere.  They established a consistent small-
amplitude theory of mountain waves.  In 1949, R. Scorer discovered that if 
the wind speed increased or the stability decreased with height, that a gravity 
wave "resonant cavity" could be formed between the jet stream aloft and the 
earth's solid surface.  In this situation, trapped periodic "lee waves" would be 
generated by the hills and extend downstream for a considerable distance.  
During the period 1940 to 1955, the mathematical and physical issues of 
energy radiation, causality and the appropriate upper boundary condition for 
solution uniqueness were hotly debated and finally resolved (Eliassen and 
Palm, 1954).  In the 1950’s, R. Long showed that under special 
circumstances, finite amplitude disturbances could be treated analytically 
(1953, 1955).  All of these remarkable early contributions were summarized 
in a technical note of the World Meteorological Organization (Queney et al., 
1960).  Since that time, research on the subject has expanded rapidly, 
encouraged by practical applications to aviation safety, severe wind damage 
and atmospheric mixing.  Mountain waves have also been studied to 
understand their contribution to the momentum balance of the atmosphere.  
Corresponding phenomena in the stratified ocean have also been studied.  
There is no doubt that the beauty of wave clouds and the intrinsic elegance of 
the mathematical analyses have also stimulated this work.  



In the development of lee wave theory, a great debt is owed to Rayleigh, 
Kelvin and other mathematical physicists from the previous century who 
showed that acoustic, electromagnetic and surface gravity waves could be 
treated analytically.  In spite of this solid foundation, the effort to understand 
lee waves has been challenging, due to the dispersive and anisotropic nature 
of internal gravity waves.  The study of complex linear and nonlinear wave 
dynamics has been aided by rapid advances in the numerical simulation of 
wave-like flows (Durran, 1998, Doyle et al., 2000).  Extensive reviews of 
mountain wave dynamics have been given by Smith (1979, 1989a), Durran 
(1990), and Wurtele et al. (1996).  Lee wave theory has also been discussed in 
textbooks on atmospheric dynamics (Gill, 1982), stratified flow (Turner, 
1973), mesoscale meteorology (Atkinson, 1981 and Durran, 1986a) and 
atmospheric waves (Gossard and Hooke, 1975).  The most complete treatment 
of this field is the monograph by P. Baines (1995).  Baines describes layered 
flow, 2-dimensional flow, upstream blocking and laboratory experiments 
among other subjects. 

In this Chapter, we present the basic theory of mountain waves, with an 
emphasis on newer developments.  We use a new more flexible linear theory 
model to illustrate the various physical attributes of lee waves.  We also 
discuss recent work on non-linear dissipative lee wave dynamics.  Special 
attention is placed on the subject of potential vorticity generation, an issue 
that has arisen in the last decade.  
 
 
2. INTERNAL GRAVITY WAVES AND GROUP 

VELOCITY 
 

The basic properties of internal gravity waves have been discussed 
elsewhere (e.g. Turner, 1973, Gossard and Hooke, 1975, Gill, 1982) and in 
other chapters of this book.  Here we give a brief review of the subject as a 
foundation for mountain wave theory.  The linearized Boussinesq equations 
for waves in a stagnant stably stratified fluid are: 
 
 

xp)(1/-  u 0t ρ=    x-momentum  (1a) 
 

yp)(1/-  v 0t ρ=     y-momentum  (1b) 
 

ρρρ ′−= )/()(1/-  w 00t gpz   z-momentum  (1c) 
 

0 w v u zyx =++    continuity   (1d) 
 



0)/( =+′ wdzdt ρρ    density conservation (1e) 
 
governing the five fluctuating fields u(x,y,z,t), v(x,y,z,t), w(x,y,z,t), p(x,y,z,t) 
and ρ'(x,y,z,t).  The "z" coordinate is directed upward, opposite to the gravity 
vector.  Subscripts indicate partial derivatives.  The Boussinesq formulation 
neglects density variations in the inertial terms and the kinematic divergence 
of the velocity field associated with compressibility.  Density variations play a 
role only through the action of gravity.  The buoyancy effect is proportional to 
the value of the buoyancy frequency N defined by 
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The quantity ρ0 is a reference density.  The quantity (dρ/dz) is the ambient 
vertical gradient in density.  A similar set of equations to (1) can be derived 
for a compressible atmosphere using scaled variables.  In this case, the 
buoyancy frequency is written 
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where the potential temperature is given by .  γγθ /)1(

0 )/( −= ppT
If the coefficients in (1) are constant, it has plane-wave solutions with 

each dependent variable written in the complex exponential form.  For 
example, the vertical velocity is written 
 
  w )]mzlyxexpi(ŵRe[ ),,,( tktzyx ω−++⋅=   (2) 
 
In (2),  k, l and m are the three components of the wavenumber vector,  
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whose magnitude is   
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The plane wave expressions satisfy (1) if the frequency ω(k,l,m) satisfies the 
dispersion relation 
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The three components of the group velocity vector can be computed by taking 
partial derivatives of (5) according to 

 
kCgx ∂∂= /ω       (6) 

 
lCgy ∂∂= /ω  

 
mCgz ∂∂= /ω  

 
Physically, the group velocity represents the propagation of wave energy 
through the fluid by the action of oscillating piston-like fluid motions 
correlated with pressure anomalies.  In simple terms, the part of the fluid 
where the wave is, does work on the part of the fluid where the wave will be, 
to propagate the wave energy. 

From these expressions (6), three important characteristics of internal 
gravity waves can be seen: 

 
• These waves are dispersive and anisotropic.  The wave speed depends on 

the wavenumber vector, in particular on its orientation relative to the 
vertical direction. 
 

• The frequency of the gravity wave is always less than the buoyancy 
frequency N.  Disturbances with higher frequency do not propagate. 
 

• The group velocity vector is perpendicular to the wavenumber vector.  
 

 
These results can be applied to the problem of stationary mountain waves 

by adding a mean flow (U) to the formulation.  A positive mean flow advects 
the waves to the right, adding a “Doppler” frequency component Uk.  We 
consider waves that propagate to the left relative to the fluid.  For simplicity, 
we reduce the problem to two dimensions (x,z) by setting l=0, so that (5) 
becomes. 
 

2/122 )/( mkNkUk +−=ω    (7) 
 
Using (6,7) the group velocity vector is 
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For the wave to be stationary, the rightward advection and leftward phase 
propagation must cancel so that ω=0.  From (7), this condition establishes a 
relationship between k and m.  
 

2/1222 )/( kUNm −=     (9) 
 
This relation can be substituted into (8) to determine the group velocity vector 
in fixed earth-relative coordinates 
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where    and NkUk /ˆ =
 

2k̂UCg x =       (11) 
 
The slope of the ray path is the ratio of the two group velocity components 
 

2/121 )ˆ1(ˆ// kkCgCgxzSlope xz −=== −   (12) 
 
as illustrated in Figure 1 (Bretherton, 1966; Bretherton and Garrett, 1968; 
Lighthill, 1978). 
 
 

 
Figure 1:  Schematic illustration of the group velocity vector associated with steady two-
dimensional mountain waves.  The "fluid relative" group velocity CgF   is directed upwards and 
upstream.  The "earth relative" group velocity CgE , including advection by the mean flow U,  is 
directed upwards and downstream. 

 
 

In the hydrostatic limit, k is small compared to N/U and the slope (12) 
increases towards infinity.  Thus, long waves are found directly above the 



terrain that generated them.  The essential lesson from (12) is that all steady 
gravity waves will be found either downstream or directly overhead from their 
source.  The nature of the gravity wave dispersion relation (5) is that steady 
waves will never be found upstream.  The term "lee wave" is consistent with 
this fact; i.e. waves are found on the leeward side rather than the windward 
side of their generating hills. 

 
 
3. LINEAR THEORY OF MOUNTAIN WAVES 
 

The equations of linear mountain wave theory, with the Boussinesq 
approximation, are: 
 

x0zyx )p(1/- w  U Vu  Uu ρ=++   x-momentum             (13a) 

y0zyx )p(1/-  wV  Vv  Uv ρ=++   y-momentum             (13b) 

ρρρ ′=+ )(g/-)p(1/-   Vw Uw 0z0yx  z-momentum             (13c) 

0 w v u zyx =++      continuity                   (13d) 

0)/(U =+′+′ wdzdV yx ρρρ    density conservation        (13e) 
 
where x and y are the horizontal coordinates and z defines the vertical 
coordinate; parallel to the gravity vector.  The functions u(x,y,z), v(x,y,z), 
w(x,y,z), p(x,y,z) and ρ'(x,y,z) are the perturbation velocity component, 
pressure and density fields.  U(z), V(z), ρ(z) are the background 
environmental wind and density profiles.  Subscripts indicate partial 
derivatives.  The derivation of (13) will not be given here, but is found in the 
references.  In (13), the non-linear advection of momentum and density are 
neglected under the assumption that the disturbance amplitude is small..  The 
time derivative terms are dropped under the assumption of steady state flow.  
The steady state assumption is an essential part of mountain wave theory, 
justified by the steadiness of the incoming flow and the fixed geometry of the 
terrain. 

All the coefficients in (13) are independent of x and y, suggesting that a 
Fourier transform method might provide a compact solution.  As seen below, 
the Fourier method has the additional advantage of identifying the up- and 
down-going wave solutions.  This identification is necessary for applying the 
upper boundary condition. 

Combining (13) into a single equation for w (x, y, z), and performing a 
Fourier Transform from physical space (x, y) to Fourier space (k, l) according 
to  
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we obtain a single equation for the transformed vertical velocity;  ),,(ˆ zlkw
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where σ is the intrinsic frequency  
 

VlUkU +=⋅= κσ rv
    (16) 

 
The intrinsic frequency is the frequency felt by a parcel of fluid moving 
through the stationary wave field.  In stationary waves, it plays the role of the 
temporal frequency ω seen in (2,5).  This transformed equation (15) governs 
mountain waves in three dimensions.  It was first analyzed by Scorer (1956), 
Wurtele (1957), Crapper (1962) and Sawyer (1962). 

In two-dimensional flow, we set l=0 and (15,16) become Scorer’s 
equation. 
 

0ˆ]//[ˆ 222 =−−+ wkUUUNw zzzz    (17) 
 
It is often convenient to use vertical displacement (η(x, y, z)) as the dependent 
variable, defined by  

 
yx VUzyxw ηη +=),,(     (18) 

 
In Fourier space, (18) is  
 

),,(ˆ),,(ˆ zlkizlkw ησ ⋅=     (19) 
 

The governing differential equation for η(k, l, z) combines (15, 16, 19) 
 

0ˆ))(()ˆ( 22222 =−++ ησησ Nlkzz    (20) 
 
Equations (15) and (20) differ slightly, due to the somewhat different effect of 
vertical shear on vertical velocity and displacement.  Note the similar 
formulation in Chapter 1. 

The properties of the solution of (20) depend on the sign of the bracket 
in the last term (N2-σ 2).  When this coefficient is positive, the solutions are 
approximately trigonometric in form indicating vertical propagation.  When 
negative, the solutions are approximately exponential.  This behavior is 



consistent with the idea from Section 2 that when the frequency, in this case 
the intrinsic frequency, is greater than the buoyancy frequency, the wave can 
no longer propagate. 

An interesting limiting case in mountain wave dynamics is the 
hydrostatic limit.  When the vertical acceleration in equation (13c) is 
neglected, the transformed equation (20) becomes 
 

0ˆ)()ˆ( 2222 =++ ηησ Nlkzz    (21) 
 
The coefficient of the last term is now positive definite, so vertical 
propagation is guaranteed. 

Another interesting situation is when the properties of the atmosphere 
(i.e. U(z), V(z), N(z)) vary slowly in the vertical.  In this case we can write the 
solution to (17) as 
 

))(exp()(ˆ)(ˆ zizazw φ=     (22) 
 

according to Bretherton (1966).  When U(z) and N(z) are constant, a(z) is 
constant and φ(z) increases linearly.  With slowly varying U and N, the “fast” 
terms in (17) are 
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so that the phase function (φ) is given by 
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For practical purposes, the term Uzz/U can usually be neglected in this 
situation. 

 
The “slow” terms in (17) give, neglecting the small a  term, zzˆ

 
0ˆˆ2 =+ zzzz aa φφ     (25) 

 
so that 
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In the physics literature, the quantity in (26) is referred to as an “adiabatic 
invariant”.  As the wave propagates into layers of increasing N(z) or 



decreasing U(z), φz  will increase (23) and the amplitude of the perturbation 
vertical velocity will decrease (26).  According to (19) however, the 
amplitude of the vertical displacements will increase as U(z) decreases, as the 
parcels spend a longer time in the updraft and downdraft regions.  In this 
scenario, upward changes in the wave field and basic state can promote the 
role of non-linearity (see Section 5). 

In the case when the wind speed decreases to zero at a so-called critical 
level, the intrinsic frequency (σ in 16) approaches zero and equations 
(15,17,20,21) become singular.  Analysis of the singularity by Booker and 
Bretherton (1967) showed that this could lead to nearly complete wave 
absorption. In most cases however, non-linear processes will occur near the 
critical level (Clark and Peltier, 1984, Winters and D’Asaro, 1994, Dörnbrack 
et al., 1995, Grubišic and Smolarkiewicz, 1997).  A closely related discussion 
can be found in Chapter 8. 

When the wind speed increases and N(z) decreases aloft, φz will 
decrease until it becomes zero (23).  The asymptotic method described by (22-
26) then breaks down.  Beyond this point, the wave structure is evanescent 
and wave energy will be reflected downward.  

Mathematical methods for solving (15) and (20) in sheared mean 
flows have been presented by Klemp and Lilly (1975), Wurtele et al. (1987), 
Smith (1989a), Grubišić and Smolarkiewicz (1997) and several others. For the 
present purpose, we return to Sawyer's three-layer formulation.  In this 
approach, the atmospheric profile of velocity and static stability is 
approximated by three layers with constant properties (U, V, N).  The 
interfaces between layers are at specified heights z1 and z2.  If wind turning is 
neglected, the three wind speed values, three stability values and two interface 
heights amount to eight control parameters.  This number of parameters is 
sufficient to illustrate several ways that wave structure depends on the mean 
flow.  Additional parameters enter the problem through the mountain shape 
specification. Three layer models have also been discussed by other authors 
such as Marthinsen (1980). 

Our three-layer three-dimensional formulation reduces easily to the 
two-layer two-dimensional formulation of Scorer and to the one-layer two-
dimensional formulation of Lyra and Queney.  Thus we can trace the full 
history of linear mountain wave theory with our model.  Our formulation does 
not include wind turning with height.  The turning of the wind gives rise to 
complex distributed critical layers.  Work has just begun on this problem 
(Broad 1995, Shutts and Gadian 2000)  

Within each layer (i =1,2,3) of constant wind and stability, σ z =0 and N 
and σ are constant so the solution to (20) is 
 

)exp()exp(),,(ˆ zimBzimAzlk iiiii −+=η   (27) 
 
where the vertical wavenumber m is given by 
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In (27), Ai and Bi are the amplitude coefficients for the up and down-

going wave respectively, provided that a consistent sign for "m" is given by 
sgn(σ).  The upgoing wave is characterized by an upwind phase tilt, an 
upward energy transport and a downward flux of horizontal momentum. 
When the magnitude of the intrinsic frequency is much smaller than the 
buoyancy frequency (i.e. |σ |<<N), the vertical wavenumber is nearly 
independent of σ, especially for l=0. The wave is hydrostatic and 
nondispersive.  When σ is close to N, the wave is dispersive due to non-
hydrostatic effects.  When the intrinsic frequency is greater than the buoyancy 
frequency (i.e. |σ|>N), the vertical wavenumber "m” in (28) is imaginary and 
the solutions (27) are exponential rather than trigonometric.  In this case, non-
hydrostatic effects are dominant and we describe the wave as “evanescent”.   

Across the interfaces between the layers, continuity of mass and 
pressure require 
 

0ˆ =∆η      (29) 
and 

0ˆ2 =∆ zησ      (30) 
 
assuming that there is no jump in density across the interface.  These jump 
conditions can be derived directly from (20) if desired, by integrating across 
the interface between layers, and assuming that η and ηz  are finite there. 

The upper boundary condition requires decay in the upper layer if “m3” 
is imaginary.  If “m3” is real, a radiation condition is applied in the top layer 
by setting the coefficient of the down-going wave equal to zero (i.e. B3  = 0).  
The linearized lower boundary condition is  
 

),()0,,( yxhyx =η    (31) 
 
which, in Fourier space, is written 
 

),(ˆ11 lkhBA =+     (32) 
 
In the mountain wave examples discussed in this Chapter, we use an ideal 
Gaussian hill shape given by  
 

))/()/(exp(),( 22 byaxhyxh m −−=    (33) 
 



as used by Smith and Grønås (1993).  In (33),  "a" and "b" are the minor and 
major axes of the elliptical mountain planform shape.  The Fourier transform 
(14) of (33) is  
 

))4/))()(((exp()4/(),(ˆ 22 lbkaabhlkh m +−= π  (34) 
 
Expression (34) has elliptical isolines.  When the topography is axisymmetric 
(i.e. a=b), these ellipses become circles and  decays equally fast with k 
or l.  When the topography is elongated (e.g. a<b), the forced spectrum decays 
faster in l than in k.  

),(ˆ lkh

To give the model more flexibility, we introduce a reflection coefficient 
(q) at the lower boundary to represent partial absorption of down-going waves 
(Smith et al., 2000).  Equation (32) is modified to become  
 

11 ),(ˆ qBlkhA −=     (35) 
 
Written in this form, the upgoing wave amplitude (A1) is the sum of the wave 
generated by the terrain (h) and the reflected, and phase reversed, down-going 
wave (B1).  Dissipation of the down-going wave by boundary layer turbulence 
or by critical layer absorption at the lower boundary can be parameterized by 
setting 0<q<1.  When q<1, conditions (31,32) are no longer precisely 
satisfied. Parcel displacements at the lower boundary can be considered to be 
fluctuations at the top of the boundary layer associated with the absorption 
mechanism.  The slight distortion of the mountain surface can be eliminated 
by an iterative correction. In practice, this correction may not be needed as the 
reflected waves return to the lower boundary well downstream of the hill.  

To display the linear theory fields, the parcel displacements can be 
quickly computed from 
 

dkdlilyikxzlkzyx )exp(),,(ˆ),,( += ∫∫ηη   (36) 

 
at one or several altitudes using an inverse Fast Fourier Transform (FFT). In 
(36), η(k,l,z) is given by (27) with A and B computed from (26,28,29,35), as 
shown in the Appendix.  For the purposes of this Chapter, evaluation of (36) 
is carried out on a 1024 by 1024 grid with a grid cell size of one kilometer.  
The hill (33) is centered in the domain (i.e. at 512, 512).  

In the FFT technique, solutions are forced to be periodic.  Thus waves 
that reach the downstream boundary will enter the domain on the upstream 
boundary.  Our large domain includes a significant buffer region to allow 
waves to decay before they reach the downstream boundary. Nevertheless, the 
parameters chosen for each case must allow some decay mechanism to 
operate if well-behaved solutions are sought (see Section 4.4).  For display, 



we select an interior region with upper left corner at (412,412) and the lower 
right corner at (712,612).  This subdomain thus has a size of 300 by 200 
kilometers.  Within the subdomain, the hill is located at a point (100,100) 
from the lower left corner. 

 
 

 
4. A CATALOG OF LINEAR THEORY SOLUTIONS 
 

A three-layer three-dimensional formulation allows us to reproduce, in a 
consistent way, most of the aspects of linear lee wave theory discussed by 
previous authors.  To demonstrate lee wave properties, we have carried out 
twelve wave field computations with different wind and stability profiles and 
different mountain shapes (Table 1).  All solutions are computed for westerly 
flow (i.e. U>0 and V=0).  The hill has a height of 1000m.  The wave fields are 
shown in planview in Figure 2.  The physics of each case is described below, 
with reference to figure 2 and the relevant literature.  
 
 
Table 1: Linear theory cases 
 
Fig Wind 

 U(m/s) 
Stability 
N(103s-1) 

Hill shape 
a/b/Θ 

q z 
 z1/z2 

N1a/U1 
N1z1/U1 

Comment 

2a 10 10 10/10/  5  10 UP, hydrostatic 
2b 10 10 10/50/0  5  10 UP, hydrostatic, ridge 
2c 10 10 2/2/  5  2 UP, dispersive 
2d 10 10 2/50/0  5  2 UP, dispersive, ridge 
2e 10/22/22 12/8/8 2/2/ 0.93 2 2/ 2.4/2.4 Trapped 
2f 10/22/22 12/8/8 2/50/0 0.90 2 2/ 2.4/2.4 Trapped, ridge 
2g  18/22/22 12/8/8 2/2/ 0.90 2 2/ 1.3/1.3 Trapped, no transverse  
2h 10/22/10 12/8/12 2/50/0 1.00 2 2/5 2.4/2.4 Leakage 
2i 10/22/22 12/8/8 2/50/0 0.50 2 2/ 2.4/2.4 Partial bottom absorp. 
2j 10/22/22 12/8/8 2/50/0 0.00 2 2/ 2.4/2.4 Total bottom absorp. 
2k   8/22/22 12/8/8 2/50/0 0.93 2 4/ 3.0/6 2 modes 
2l 10/22/22 12/8/8 2/50/45 0.90 2 4/ 2.4/4.8 Skewed ridge, 2 modes 
(UP indicates Upward Propagating waves only.  If only one value is given, it applies to all 
three layers. Distances are given in kilometers). 
 

Blank cells in Table 1 indicate that the solution is independent of this 
value. For example, the interface altitudes (z1, z2) have no meaning if the 
layers have identical properties.  The hill rotation (θ) has no meaning if the 
hill is axisymmetric.  The value of q is irrelevant if there are no layer contrasts 
to reflect waves downward.  The value “z” is the height of the displayed wave 
field. 

While we have chosen to use dimensional quantities in our discussion, 
the non-dimensional parameter Na/U is given in Table 1 for each case.  This 
parameter is a measure of the degree of hydrostatic balance in the flow. When 
the parameter is as large as 10, the flow is nearly hydrostatic in all respects.  



For smaller values, non-hydrostatic effects, such as dispersion, evanescent 
behavior and wave trapping occur. 

The nondimensional parameter N1z1/U1 is also given in Table 1, when 
relevant.  This parameter provides an estimate of the phase shift across layer 
#1 for N/U>k>l.  First mode trapped lee waves require a phase shift between 
π/2 and π (i.e. between 1.55 and 3.1 radians).  Second mode lee waves require 
a phase shift between 3/2π and 2π. 
4.1. Vertically  propagating waves; hydrostatic 
 

To illustrate a hydrostatic field of mountain waves, we choose a 
mountain width "a" such that the parameter Na/U >>1.  Due to the rapid 
decay of the wavenumber spectrum forced by broad smooth hills (33,34), 
little energy is put into waves with k>a-1.  The energetic waves then satisfy 
k<<N/U so that σ << N, and the wave motion becomes hydrostatic. In this 
limit, the vertical wavelength depends only on the orientation of the 
horizontal wavenumber component, independent of its magnitude.  Such 
waves are dispersive in the aximuthal angle only (28).  They have less of a 
tendency to separate into their components as they propagate.  The group 
velocity vector for normal waves (l=0) is vertical, while for oblique waves, it 
is oriented to the side and downstream.  

Two examples of hydrostatic flow in a uniform environment are shown 
in Figures 2a and b.  In Figure 2a, the disturbance is forced by an 
axisymmetric Gaussian hill.  The spectrum generated by such a hill is 
aximuthally isotropic (34).  Extending the ray path argument in Section 2 to 
hydrostatic 3-D flow, Smith (1980) showed that in each horizontal plane, the 
wave energy is confined to downstream-trailing parabolic regions given by  
 

2)/( yNazUx =      (37) 
 
This parabolic wave energy zone is evident in Figure 2a. 

The second example of the hydrostatic limit is flow over a ridge. In this 
case, the forcing is anisotropic.  The dominant waves have k>>l.  Equation 
(28) becomes 
 

22 )/( UNm =      (38) 
 
The group velocity for all the wave components making up the disturbance is 
directed vertically (12).  Thus wave energy is found only in the region above 
the hill.  At the level sampled (z=5000m), the wave has been phase shifted by 
about 3/4 of a wavelength so the parcels first fall and then rise as they cross 
the ridge.  An x-z cross section through this wave field would be similar to 
Queney's celebrated diagram for 2-D hydrostatic waves (see also Section 5.1).  



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



Figure 2:  A twelve-part figure with planform views of various linear mountain wave patterns. 
The vertical displacement of fluid parcels in meters is shown. The conditions for each case are 
given in Table 1. The fields are computed with a three-layer three-dimensional Fast Fourier 
Transform model with a 1000m Gaussian hill. The domain shown (300 by 200 km) is part of a 
larger computational domain (1024 by 1024). The first four diagrams (a-d) show upward 
propagating waves. The final eight diagrams (e-l) show various trapped or reflected waves. 

 
Other hydrostatic wave patterns are possible.  Contrasts between layers 

allow partial downward reflections not seen in Figures 2a,b. The reflected 
waves will reflect again from the solid lower boundary (Klemp and Lilly, 
1975, Blumen, 1985).  A layered representation of the atmospheric profile, 
such as our three-layer model, may exaggerate these reflections.  

The hydrostatic assumption simplifies the derivation of closed form 
mountain wave solutions such as (37).  The drag caused by the pressure 
difference between the windward and leeward slopes can also be given in 
closed form. For an axisymmetric Gaussian hill (i.e 33 with a=b) with 
uniform wind and stability, the drag is 
 

2
0

2/3)2/(
2
1

mNUahD ρπ=      (39a) 

 
For a long ridge (33 with b>>a) the drag per unit length is 
 
         (39b) 2

0 mL NUhD ρ=
 
where  is the local ridge height. If the ridge height varies slowly along its 
length, (39b) can be integrated along the ridge to obtain the total drag. If the 
ridge is skewed with respect to the wind direction, U in (39b) should be the 
wind component perpendicular to the ridge. 

mh

 
 
4.2. Vertically propagating waves; non-hydrostatic 
 

When the parameter Na/U is near to unity, the wave field will contain 
both hydrostatic and non-hydrostatic components.  The non-hydrostatic 
components have a group velocity vector with a more downstream 
orientation.  In an elevated horizontal plane therefore, we will see these 
shorter components downstream of the hydrostatic components.  Two 
examples of this pattern are shown. In both cases we use a uniform wind and 
stability so that wave components do not change their propagation 
characteristics as they enter the next layer aloft.  Figure 2c shows a 3-D field 
generated by an axisymmetric Gaussian hill with a=b=2km.  Figure 2d shows 
the wave field from a long ridge.  An x-z cross-section through Figure 2d 



would be similar to Queney's figure for 2-D dispersing non-hydrostatic 
waves. 

 
4.3. Trapped lee waves : Diverging and transverse  
 

As shown by Scorer (1949), if the lower layer is slower and/or more 
stable than the upper layers, waves propagating upward through the lower 
layer may become evanescent aloft.  This will result in the downward 
reflection of the wave.  If the down-coming wave reflects from the earth's 
solid surface, a resonant cavity will form and a trapped lee wave may exist.  
The wavelength of the trapped stationary wave will be that which allows the 
wave's phase propagation upstream to balance the downstream advection, so 
that the wave is steady.  The group velocity is directed downstream when 
expressed in fixed earth coordinates. As shown by Sawyer (1962), Gjevik and 
Marthinsson(1978), Marthinsson (1980), Simard and Peltier (1982) and 
Sharman and Wurtele(1983), trapped lee waves are of two types, diverging 
and transverse.  Diverging waves splay outward from the downstream 
centerline while the transverse waves are nearly perpendicular to the flow 
direction.  

The resonant condition associated with lee waves can be derived from 
(27-30) with a homogeneous condition at the lower boundary 
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For a two-layer profile in three dimensions, the result is compactly described 
by the transcendental condition 
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The positive sign conditions in (41) and (42) require that the Scorer 
Parameter, N/|U|, must decrease aloft. This requirement is called the Scorer 
Condition.  The sets of (k,l) pairs that satisfy (40-42) form families of curves 
in (k,l) space (Fig 3).  These branches lie between the reference lines given by 
the Scorer Parameter values in the two layers, N1/U1 and N2/U2.  The branch 



with the highest wavenumbers is the fundamental mode, with the simplest 
vertical structure.  If a solution branch crosses the l=0 axis, there exist 
transverse lee waves.  If no branch crosses the l=0 axis, only diverging lee 
waves exist.  

In the original 2-D treatment of lee waves (Scorer, 1949) only 
transverse waves were considered.  In fact, diverging waves may be more 
common as they encompass a wider parameter range.  They require a trapping 
mechanism, but they do not have to stand steady against the full incoming 
flow.  Their oblique orientation requires them to stand against only a reduced 
component of the flow speed.  

The appearance of a lee wave field depends sensitively on the existence 
of transverse modes and the forcing of the two lee wave types by the terrain.  
Here, the forcing ellipse in (k,l) space (34) is a central concern (see Fig 3).  If 
the hill is circular, it will force diverging and transverse waves alike. In the 
absence of a transverse lee wave mode, diverging waves will still exist.  For a 
ridge oriented across the flow, the forcing is concentrated into waves with 
small l.  Diverging waves are not forced. If no transverse mode exists, no lee 
wave will be found. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The lee wave singularities (40-42) for a two-layer atmosphere are shown 
schematically for two cases of westerly flow: a) transverse and diverging waves, b) diverging 
waves only. Dashed lines indicate the Scorer parameter in the upper and lower layer, 
delimiting the range of possible lee waves. Two forcing ellipses (34) are also shown; one for an 
axisymmetric hill and one for a ridge. Only portions of the singular curves that lie inside the 
forcing ellipse will appear as lee waves. When the forcing ellipse is large and circular, the loss 
of transverse waves leaves diverging waves. When the ellipse is narrow (i.e. for a ridge) the 
loss of the transverse wave singularity leaves no significant lee waves. (after Sawyer, 1962). 
 



In Figure 2e, we show a wave field for a simple two-layer atmosphere 
with a strong enough decrease in Scorer parameter so that both wave types 
exist.  The mountain is circular so both diverging and transverse waves are 
forced.  The diverging waves are easy to identify in the figure.  The transverse 
waves along the centerline are more difficult to see, because of their longer 
wavelength (i.e. about 25km), but they are substantial.  In Fig 2f, we force the 
same atmosphere with a long ridge.  The transverse waves are now strong.  
They exhibit a slow decay due to dispersion laterally. As the forcing ellipse 
(34) is narrow, no train of diverging waves is seen.  In figure 2g, we return to 
the small circular hill, but we increase the flow speed so that only diverging 
waves exist.  No waves are seen on the centerline.  A Gaussian ridge would 
generate no lee waves at all with this mean flow. 

 
 

4.4. Lee wave decay 
 

In the inviscid linear mountain wave problem, there exist three 
mechanisms of lee wave decay: lateral dispersion, leakage aloft and 
absorption at the lower boundary.  Decay by lateral dispersion was seen in 
Figures 2e and 2f. No leakage is possible in these cases as the upper layer is 
infinitely deep and the value of q is taken so large that it only has a decaying 
influence in the outer domain (not shown).   

In Figure 2h, we reduce the depth of layer #2 to 3000m so that lee wave 
energy can leak through and resume propagating in layer #3. The energy lost 
in this way results in the downstream decay of wave amplitude.  The value of 
q=1 is chosen in this case so that no absorption occurs at the lower boundary.  
The wave decays rapidly; only about four crests can be seen before the wave 
disappears.  

In Figure 2i, we return to the deep upper layer but reduce the reflection 
coefficient at the lower boundary to q=0.5.  Every time a downward reflected 
ray hits the lower boundary, it loses a portion of its energy. The wave 
amplitude decays rapidly downstream.  Only about five wave crests can be 
seen.  The rate of downstream decay depends on the value of q, the depth of 
the trapping layer and the ray path angle.  A shallow layer and steep rays will 
cause more rapid decay as the waves impinge on the bottom more frequently. 

While Figures 2h and 2i look very similar, a detailed analysis of the 
wave field would reveal significant differences.  In the case with leakage 
aloft, the pressure (p) and vertical velocity (w) are positively correlated in the 
wave field giving an upward propagation of energy.  Likewise, the u and w 
oscillations are in negative correlation giving a downward flux of horizontal 
momentum.  Mountain drag is carried upward, just as in the vertically 
propagating examples.  With absorption at the lower boundary, both these 
phase relationships reverse.  Energy in the wave train moves downward and 
the wave drag is returned to the lower boundary from whence it came. 



A striking kinematic difference is the tilt of the lee wave structure. 
Non-decaying trapped lee waves have no vertical tilt of the crest and trough 
phase lines.  Leakage establishes a  slight upstream tilt. Low level absorption 
establishes a downstream tilt. 

In Figure 2j, we show a ridge flow with the reflection coefficient q=0. 
The Scorer Condition is well met, but the downward reflected waves are 
completely absorbed at the lower boundary.  No resonant cavity exists and no 
trapped lee waves are seen.  The wave field includes only dispersing vertically 
propagating waves (like Figure 2d) and a set of waves reflected downward 
from the evanescent layer aloft.  These two wave trains interfere to give a 
weak and irregular train.  According to Smith et al. (2000), total absorption of 
the down-going wave will occur when there is a stagnant layer near the 
surface of the earth.  

 
 

4.5.   Second lee wave mode 
 

To illustrate a second transverse lee wave mode, we deepen the stable 
layer from 2 to 4 km and decrease the wind speed from 10 to 8 m/s.  The non-
dimensional number N1z1/U1 rises to 6.  The function  η(k,l,z) for the second 
mode has a node in the first layer.  Using a long ridge we can compare the 
pure single mode in Fig 2e with double mode in Fig 2k.  The short wave in 
Figure 2k (i.e. λ=10km) is the fundamental mode.  A second mode has a 
longer wavelength. It beats against the fundamental mode giving an irregular 
appearance to the lee wave.  

As the higher order mode generally has a smaller propagation speed 
than the fundamental mode, it must compensate by having a longer 
wavelength.  Like the first mode, it must have a sufficient speed to stand 
steady against the mean flow. 
 
 
4.6.   Left-right asymmetry 
 

Finally, we consider an example without left-right symmetry.  We 
choose a simple two-layer configuration, similar to Fig. 2k, with two 
transverse modes.  The ridge is rotated clockwise by 45 degrees (Figure 2l).  
For reasons to be explained, we increase the wind speed slightly from 8 to 10 
m/s.  The new wave field has two wave trains, a longer wavelength train with 
a ray path angle of about 30 degrees north of east and a shorter wavelength 
train with a ray angle about 10 degrees north of east. 

In the proximity of the ridge, the flow can be considered to be two-
dimensional; independent of distance along the ridge.  In this local 2-D 
problem, the incoming flow speed perpendicular to the ridge is reduced by a 



factor cosine(45)=0.707 below the actual speed 10m/s.  This speed reduction 
allows a second transverse lee wave mode to exist, as in Figure 2k. 

The far wave field in Figure 2l is particularly interesting. Both lee wave 
families are found in the northeast quadrant of the diagram, indicating that 
they have a northward component of group velocity.  This was anticipated 
because in the x-y plane the group velocity is normal to the wave crests.  Thus 
the lee wave mode with NE-SW oriented crests has a NW-ward oriented 
group velocity.  The westward component of group velocity is overcome by 
the mean flow.  Its northward component is unopposed by the mean flow and 
thus the wave train propagates into the NE quadrant.  The longer waves have 
a larger northward component of group velocity than the short waves. The 
shorter waves barely show their northward component.  Because of their 
different group velocity orientations, the waves separate nicely downstream 
so that we see each one without interference from the other.  

From this example, one can imagine what would happen to a wave field 
behind a N-S oriented ridge as the wind slowly turned from westerly to 
southwesterly. Initially of course, the wave field would be located east of the 
ridge.  As the wind turned, the wave field would rotate counterclockwise 
faster than the wind.  When the wind reached SW, the waves would be found, 
not NE, but NNE of the ridge. 

 
 

4.7. Applications of Linear Theory 
 

To conclude this Section, we note that linear theory is more than just an 
idealized model of mountain waves.  There are a growing number of 
observational studies in which linear theory compares well with direct 
measurements of the atmosphere.  Examples include lee waves over western 
England (Vosper and Mobbs, 1996) and over Mt. Blanc (Smith et al. 2000).  
The types of patterns shown in Figure 2 are common in satellite images of 
clouds in the atmosphere.  Nevertheless, there is evidence that under certain 
conditions, non-linearity and dissipation play a role in stratified flow over 
topography.  Examples of nonlinear flow are found over large mountains, e.g  
downslope winds over the Front Range (Lilly and Zipser, 1972) and waves 
over the Pyrenees (Bougeault et al., 1997), and over smaller mountains, e.g. 
lee waves over the Appalachians (Smith, 1976) and the Adriatic Bora 
(Smith,1987 ). We review these aspects in the next Section.  
 
 
5. NONLINEAR AND DISSIPATIVE EFFECTS 
 

The study of nonlinear effects in mountain waves began with R.R. Long's 
laboratory experiments and his mathematical formulation of a finite amplitude 
wave equation; the so-called Long's Equation. Long's Equation was elegantly 



used by Huppert and Miles (1969) to predict the onset of wave breaking. 
Long (1955) and Houghton and Isaacson (1968) considered one and two layer 
hydraulic formulations.  Dissipative effects are also important, sometimes 
forced by non-linearity.  In the Section below, we summarize current 
knowledge of non-linear and dissipative phenomena such as flow splitting, 
gravity wave breaking, severe downslope winds, hydraulic jumps, rotors and 
turbulent boundary layers.  Some of these subjects have been reviewed in 
Smith (1989a), Durran (1990), Baines (1995) and Wurtele et al.(1996).  
 
 
5.1. Flow splitting and gravity wave breaking 
 

One of the most important predictions of mountain wave theory is the 
onset of flow splitting and gravity wave breaking.  Flow splitting is defined as 
the horizontal splitting of the incoming flow so that it passes around rather 
than over the mountain peak.  Streamline splitting requires that the low-level 
flow first be decelerated to a stagnation point.  Gravity wave breaking, in a 
uniform background state, begins by the steepening of the wave front and 
decelerating the flow, leading to overturning.  Work on this problem has 
mostly been confined to the hydrostatic limit where the parameter Na/U is 
large. In this case, the non-linearity parameter Nh/U plays a dominant role, 
along with parameters describing the mountain planform shape.  We define 
H= Nh/U as the non-dimensional mountain height.  The mountain width plays 
no role, so intuitive ideas about mountain steepness and splitting must be 
discarded. 

The mechanism of flow deceleration is the same for both flow splitting 
and wave breaking.  In the regions of upward parcel displacement, a positive 
density anomoly is created by the ascent of denser or potentially cooler air 
(Figure 4).  According to the hydrostatic law, areas of high pressure will exist 
at the base of these dense fluid anomalies. According to Bernoulli's Law 
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as parcels approach a high pressure region, the speed decreases due to the 
adverse pressure gradient (Smith and Grubišić, 1993; Vosper and Mobbs, 
1997). The height term (ρgz) in (43), once thought to be dominant, plays little 
role (Smith, 1988, 1990). As the non-dimensional mountain height (H) 
increases, the strength of the high pressure regions increases at two special 
locations in the flow; on the windward mountain slope (point B) and at a point 
directly above the hill at an altitude of approximately z=(3π/2)U/N (point A).  
The relative magnitude of these two deceleration points determines whether 
flow splitting or gravity wave breaking occurs first (Smith, 1989b; Stein, 
1992; Smith and Grønås, 1993; Baines and Smith, 1993; Olafsson and 
Bougeault, 1996).  



For a long ridge, or in strictly two dimensional flow (i.e. x,z), the 
deceleration at point A is stronger than at point B.  Thus wave breaking 
occurs first, starting approximately when H=0.85.  For an isolated hill with 
circular contours, the two points (A and B) are similar in their deceleration 
potential.  Splitting and wave breaking begin approximately when H=1.2. In 
3-D flow, the lateral dispersion of waves aloft weakens the density anomalies, 
so a larger hill is required to stagnate the flow. 

Once flow splitting begins, the wake region takes on a complex vortical 
structure which has been investigated in the laboratory (Brighton, 1978, 
Snyder et al., 1985, Gheusi et al., 2000) and with numerical simulation 
(Rotunno and Smolarkiewicz, 1991; Miranda and James, 1992).  The 
mechanism of vorticity generation will be discussed in Section 6. 

This relatively simple picture for splitting and wave breaking can be 
modified considerably when the ambient atmospheric profile has vertical 
structure or a turbulent boundary layer.  For example, strong shear or a 
shallow stable layer aloft may promote wave breaking by a Kelvin-Helmholtz 
mechanism without requiring deceleration and overturning (See Chapter 8). 

 
a   b 
 

 
  
Figure 4.  The mountain waves generated by a axisymmetric Gaussian hill, computed with a 
numerical model. The parameters of the flow are h=600m, a=10km, U=10m/s, N=0.015s-1.  
The airflow is from left to right.  The non-dimensional mountain height is H= 0.9. The left 
panel (a) shows the vertical displacements of the potential temperature surfaces.  The right 
panel (b) shows the horizontal wind speed. The leftward phase-line tilt shown in Figure 1 is 
evident in both panels.  The displacement field at z=3.3km in panel a resembles that shown in 
Figure 2.1.  Two zones of strong deceleration are seen in panel b.  Each zone lies at the base of 
a region of positive displacement.  
 
 
 
 



5.2. Severe downslope winds 
 

In 1977, Clark and Peltier showed in a numerical simulation that when 
mountain wave breaking begins in a two-dimensional setting, the entire flow 
field would transform itself into a new configuration, quite different than the 
pre-breaking wave field.  This new configuration includes spilling or plunging 
flow down the lee slope, leading to the name "severe downslope wind".  This 
flow also has a magnified mountain drag, turbulence in large region above the 
lee slope, weaker waves in the stratosphere and some unsteadiness. Peltier and 
Clark (1985) showed that a similar severe downslope wind structure can be 
found with smaller mountain heights (i.e. H<0.85) if there is a wind reversal 
or critical layer at certain altitudes.  

A self-consistent theory of downslope winds was put forward by Smith 
(1985), using Long's Equation for finite amplitude disturbances and an 
assumption that the low level flow would decouple from any waves which 
might exist aloft.  This model predicts the shape of the isentropes and 
isotachs, the location of the turbulent flow aloft, the mountain drag, the depth 
of blocking and the special critical layer heights that can trigger severe winds 
with small mountains.  The theory has been tested in numerical studies 
(Durran and Klemp,1986,1987; Bacmeister and Pierrehumbert,1988; Crook et 
al., 1990; Miranda and James, 1992) and limitations have been noted.  
 
 
5.3. Hydraulic jumps 
 

According to atmospheric observations and numerical simulations, at 
the downstream limit of the severe downslope wind, the flow speed drops 
quickly and the streamlines zoom skyward (e.g. Doyle et al., 2000).  Such 
structures have often been equated with the phenomena of the hydraulic jump.  
This flow structure has been seen both in flows with and without layered 
profiles upstream.  Yet, the hydraulic jump is primarily thought to be layered 
fluid phenomena.  Possibly, when layering is absent upstream, the severe 
wind descent can create a layered flow where none existed.  

The occurrence of a hydraulic jump is related to the fact that a layered 
flow, with a given flux of mass and momentum, can exist in two so-called 
conjugate states.  Typically, one of these states is subcritical and the other is 
supercritical (i.e. slower and faster than the long wave speed). When a 
supercritical flow decelerates, non-linear steepening tendencies act to create a 
jump, which almost discontinuously converts the fast flow to its slower 
subcritical conjugate state.  An essential property of a jump is that energy is 
dissipated and the value of the Bernoulli function (43) decreases.  This can 
have consequences for vorticity generation and for the flow pattern further 
downstream.  Baines (1995) gives a thorough treatment of the dynamics of 



layered flows, including jump dynamics.  The discussion of gravity currents 
in Chapter 4 is also relevant to this issue. 

When the jumps are weak, they can take on a wave-like form, similar to 
the Morning Glory phenomenon discussed in Chapters 1 and 3.  The lee-side 
hydraulic jump then becomes a mechanism for creating finite amplitude lee 
waves (Rottman et al, 1996, Nance and Durran, 1998). 

Recent work, not included in Baines (1995), is the resolution of the 
existence and uniqueness problem for jumps in two active fluid layers (Yih 
and Guha, 1955; Mehotra and Kelly, 1973).  New analysis  has provided a 
closed form expression for the Bernoulli loss in each layer resulting from  
energy dissipation, (Jiang and Smith, 2000).  A surprising result was that even 
when both layers are active in the jump, Bernoulli loss is concentrated in one 
of the layers. An equal sharing of dissipation seems to be impossible. 
 
 
5.4. Rotors 
 

The concept of a rotor was put forward in the early papers on mountain 
waves (i.e. Kuettner, 1939, Queney et al., 1960).  According to common 
usage, the term refers to a compact low level vortex with horizontal axis, 
downstream of a mountain ridge.  The vortex axis lies normal to the mean 
flow and the sense of rotation is clockwise, if the mean flow is from left to 
right.  The vortex lies underneath, and is causally related to, the first crest of a 
trapped lee wave.  To be defined as a rotor, the vortex must be strong enough 
to cause reverse flow at the ground. In extreme cases, the reverse flow can be 
intense and damaging.  It can be easily distinguished from a severe downslope 
flow by its opposite flow direction.  

There may be some confusion between a rotor and a hydraulic jump. 
Both exhibit strong deceleration and upward jumping streamlines.  Perhaps 
rotors may be identified by the reversal of flow near the ground, the 
reattachment of the flow or the existence of a trapped lee wave. 

Numerical models have been shown to capture rotor-like structures, but 
little theoretical or numerical work has been done to understand the rotor or to 
more clearly define its character.  Derzho and Grimshaw (1997) used Long’s 
Equation to establish a connection between waves and rotors. 
 
 
5.5. Turbulent Boundary layers 
 

The action of a turbulent boundary layer at the earth's surface has been 
shown to decrease the amplitude of topographically generated gravity waves 
(Richard et al, 1989; Olafsson and Bougeault, 1997).  Boundary layer waves 
and turbulence can interact (Carruthers and Hunt, 1990).  The separation of 
the boundary layer by adverse wave-generated pressure gradients may play a 



role in rotor formation.  A stagnant boundary layer may also absorb waves 
which have been reflected downward from evanescent layers aloft (Smith et 
al. 2000).  Welch et al. (2000) discusses the blocking and stagnation of 
boundary layer air in complex terrain. 
 
 
5.6. The onset of turbulence in breaking gravity waves 
 

The onset of turbulence in breaking gravity waves is a difficult problem 
involving multiple space and time scales.  In spite of frequent aircraft 
encounters with wave-induced turbulence, the time sequence of turbulence 
evolution has never been observed.  Most numerical models do not resolve 
smaller scales of motion and so they tell us little about turbulence cascade of 
energy.  Many models simply parameterize the diffusive and dissipative 
effects of turbulence with an assumed eddy viscosity and diffusivity.  These 
transport coefficients are usually assumed to be strong functions of the 
resolved Richardson Number or shear magnitude to replicate some properties 
of shear instability.  Other models include a turbulent closure scheme 
involving a prognostic equation for turbulent kinetic energy (Mellor and 
Yamada, 1974,1982; Zilitinkevich and Laikhman, 1965, Schumann 1977; 
Duynkerke, 1988, Trini Castelli and Anfossi, 1997, Xu and Taylor, 1997).  
These schemes however do not distinguish different scales of turbulence, so 
they tell us nothing about turbulent cascades.  Also, with their current state of 
development, there is no evidence that their mixing length formulations are 
appropriate for gravity wave breaking (private communication: Dr. Branko 
Grisogono).  They have been tested only in cases of developed boundary layer 
turbulence. 

The advance of high-speed computers has offered another way forward 
in this problem.  Several authors have recently reported progress using large 
and/or nested grid arrays that are capable of resolving  the first decade of  
turbulent granulation (Bacmeister, and Schoeberl, 1989, Andreasson et al., 
1994, Afanaseyev and Peltier, 1998, Fritts and Isler, 1994, Winters and 
d’Asaro, 1994; Dörnbrack et al. 1995; Fritts et al. 1996, Schmid and 
Dörnbrack, 1996, Scinocca 1996, Gheusi et al. 2000).  They have been able to 
identify a sequence of instabilities as the gravity wave steepens.  Eventually, 
the sequence leads to a "three-dimensionalization" of the flow, followed by 
full cascading turbulence.  The resulting turbulent fluxes of heat and 
momentum can generate macroscopic potential vorticity, as discussed below.  

 
 
6. THE GENERATION OF POTENTIAL VORTICITY 

(PV) 
 

The Ertel Potential Vorticity (Ertel, 1942) for compressible flow  
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becomes 
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for Boussinesq flow. Potential vorticity satisfies parcel conservation 
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in the absence of  heat and momentum diffusion.  With the Coriolis term 
neglected, PV provides a useful diagnostic quantity for gravity wave studies 
and a possible tool to link gravity wave breaking with downstream 
phenomena such as wakes, eddies, jets and convection (Smith, 1989a,c).  Its 
usefulness arises from the fact that PV remains zero, even in the most non-
linear of mountain waves, until wave breaking begins.  In laminar waves, the 
baroclinically generated vorticity vectors lie parallel to density (or isentropic) 
surfaces and thus the dot product of vorticity and density (or potential 
temperature) gradient vanishes.  Only turbulent transport of heat or 
momentum or mixing to destroy parcel identity can significantly alter PV in a 
dry atmosphere (Haynes and McIntyre, 1987, 1990, McIntyre and Norton, 
1990).  Danielsen’s (1990) argument that PV is conserved even in mixing 
flow is probably incorrect. Once generated, potential vorticity’s conservation 
property (45) allows it to be carried downstream. PV “banners” downstream 
contain fluid parcels which have passed through the dissipative regions over 
the mountains.  Existing theorems concerning potential vorticity inversion 
indicate that when balanced flow is reestablished downstream, the PV field 
can be used to compute the velocity and density anomalies (Blumen, 1972, 
Hoskins et al., 1985, Raymond, 1993). 

The plausibility of PV generation by breaking gravity waves has been 
established theoretically by detailed investigation of the shallow water system  
by Schär and Smith (1993a,b), Grubišić et al (1995), Smith and Smith (1995) 
and Pan and Smith (1999). Samelson (1992), Tjernström and Grisogono 
(2000) and  Jiang and Smith (2000) have examined the shallow water 
solutions in cases with small or no PV generation.  In the shallow water 
system, the potential vorticity is given by 
 
    HPV /ξ=      (46) 
 
where ξ is the vertical vorticity and H is the layer depth.  In this framework, 
Bernoulli losses in hydraulic jumps induce lateral gradients in the Bernoulli 
function (43) which are related to vorticity according to 
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in steady flow. In (47), “n” is the direction perpendicular to the streamline.  
Thus, complex flows with jumps of varying strength will have patterns of 
potential vorticity downstream.  If the generation is weak, these anomalies 
will advect directly downstream in PV-banners (Figure 5).  If the generation is 
stronger, the PV can wrap itself into stable leeside eddies or alternating 
drifting vorticies.  The merging of two airstreams with differing histories can 
also generate PV. 

A number of field programs have given some support to the potential 
vorticity generation hypothesis. Smith and Grubišić (1993) showed that large 
stationary eddies in Hawaii's wake may contain vorticity generated in shallow 
jumps on the flanks of the island. Smith et al (1997) showed that the stable 
300km long wake behind the mountainous island of St. Vincent, can be 
attributed to wave breaking over the lee slopes (Figure 5). Radar-observed 
wakes behind the Aleutians have been explained by wave breaking and 
Bernoulli loss (Pan and Smith, 1998).  The recent Mesoscale Alpine 
Programme, from September to November 1999, verified the predicted PV 
banners arising from features along the complex crestline of the Alpine 
massif, particularly in the Rhone Valley and near the Gotthard and Brenner 
passes (Bougeault, 2000). 

Numerical models have shown that they can capture PV generation in 
continuously stratified flows (Thorpe et al. (1993), Schär and Durran (1995), 
Smith et al (1995), Aebischer and Schär (1998).  The diagnostic evaluation of 
how PV is generated in numerical models has been more difficult.  Schär 
(1995) provided a theoretical framework. Rotunno et al.(1999) used a 
numerical model to examine how the conventional viscous terms act to 
generate PV in dissipating gravity waves. 

Examples of the importance of orographic PV generation to 
downstream weather are appearing in the literature.  Hawaii's lee eddy returns 
volcanic gases to the lee shore, and by weakening the influence of the trade 
winds there, allows a diurnal sea-land breeze cycle to operate (Smith and 
Grubišić, 1993).  An eddy from the Palmer Divide near Denver controls the 
spread of urban smog (Crook et al., 1990).  Bernoulli loss in breaking waves 
and PV banners control downstream "gap winds" in the Aleutians (Pan and 
Smith, 1998).  Eddy formation by the mountains of Taiwan is so strong that it 
can deflect approaching typhoons (Smith and Smith, 1995).  South of the 
Alps, a strong PV eddy can interact with the larger scale baroclinity to trigger 
cyclogenesis (Aebischer and Schär, 1998).  PV generation may also provide a 
framework for analyzing the influence of wave drag on the general 
circulation. 

 



 
 
 
Figure 5:  Numerical simulation of PV generated by wave breaking over the 
mountainous island of St Vincent (from Smith et al., 1997). a) in a y-z cross section 60 
km downstream of the island, b) in the x-y plane at an altitude of 1100m.  Note that 
PV=0 upstream of the ridge.  PV banners occur as the PV created over the island is 
advected downstream by the mean flow.  The long wake of St Vincent was confirmed 
by satellite, boat and  aircraft surveys. 



We conclude this Section by outlining the mechanisms that can 
generate PV.  The question of which mechanism dominates is still 
unanswered.  The analysis of PV generation in a continuously stratified fluid  
begins with the basic vorticity equations for a Boussinesq fluid.  The vector 
vorticity   

v 
 is influenced by advection, stretching and tilting, and is created by 

baroclinic and viscous terms according to 
ξ 
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Dt
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1
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∇ ×
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where  is a viscous force.  The potential vorticity (44) is unaffected by 
stretching, tilting or baroclinic terms and is created and destroyed by viscous 
and heating terms according to  
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where H  is the rate of heating per unit mass. 

According to Haynes and McIntyre (1987), the generation of PV in a 
compressible flow can be written in flux form according to 

 

0=⋅∇+ NJ
Dt

DPV r
     (50) 

 
where 
 
    HFJ N

&
vv

ξθ −∇×−=     (51) 
 
is the non-advective flux of P.  The first term on the right hand side of (49) or 
(51) represents viscous torques  

v 
T  acting with a component perpendicular to a 

θ-surface.  The second term acts if there is a gradient in the heating rate H 
along the vorticity vector (  

v 
ξ ). 

Another view of PV dynamics is given by expressing the total flux of 
PV in steady flow as  
 
    BJ ∇×∇= θ

r
     (52) 

 
after Schär (1993).  In ideal steady flow, with 0=∇⋅=∇⋅ Buu rr θ , the 
r

vector lies parallel to the flow direction and the PV flux is purely advective 
(i.e.
J

)(PVuJ ⋅=
rr

).  In the presence of heating ( H& ) or viscous force ( F
r

), 



J
r

may have an additional component representing a dissipative non-advective 
flux. For example, in a wave breaking region, B∇  is directed upstream while 

θ∇  is directed upward.  According to (52) the PV flux vector is directed 
laterally, resulting in a pair of positive and negative PV banners or eddies 
(Figure 5).  

∆δ ij
 
 

r
∇⋅ ξ

Constraints on the generation of vorticity by viscous stresses (τij) can 
be analyzed using the stress tensor for an isotropic Newtonian fluid. 
 

   τ ij = −pδ ij + 2µ eij −
1
3

 
     (53) 

 
where τij is the total stress tensor, “p” is the pressure (i.e. usually the 
thermodynamic pressure), eij is the rate-of-strain tensor 
 

   eij =
1
2

∂ui

∂xj

+
∂uj

∂xi

 

 
  

 
      (54) 

 
and ∆ ≡ ekk is the rate of volume change (Batchelor, 1967).  The Newtonian 
model can be formally extended if the viscosity µ  (in 53) is allowed to be a 
function of any rotation-invariant scalar state variable such as the local 
instantaneous strain rate or Richardson number, or an inherited quantity like 
turbulent kinetic energy (TKE).  This flexibility for µ, encompasses most of 
the turbulence parameterization schemes proposed in the last 35 years; for 
example Zilitinkevich and Laikhtman (1965), Lilly (1962), Smagorinsky 
(1963), Mellor and Yamada (1974, 1982), Schumann (1977), Duynkerke 
(1988), Dörnbrack (1996), Ying and Canuto (1996), Xu and Taylor (1997), 
Castelli and Anfassi (1997), Afanaseyev and Peltier (1998). 

Using (53,54) and 

    
j

ij
i x

F
∂

∂
=

τ
      (55) 

the torque in (49) is 
 

 LFT
rrrr

+∇+∇=×∇≡ µξµ 2    (56) 
 

In (56), the first two terms diffuse vorticity.  The third term can create 
vorticity when none was present before.  We write it schematically as 
 
  )/,/( 2

jiii xxxuLL ∂∂∂∂∂= µ
rr

     (57) 
 



indicating that each term in  
v 
L  is a product of a first spatial derivative of 

velocity and a second spatial derivative of viscosity.  For convenience, we 
introduce the term “internal boundary” (IB) to represent all subregions in the 

domain where 
∂2 µ

∂xi∂x j

≠ 0

L 

.  An internal boundary is a gradient zone between 

regions with different viscosity or different turbulent eddy viscosity.  Within 
IB, it is possible for vorticity to be created by viscous stresses where there was 
none before.  If   

v 
 is oriented with a component perpendicular to a θ-surface, 

its action will generate potential vorticity. 
To illuminate the generation of PV by mountains, we consider the 

simplest prototype problem; uniform wind and stability approaching a hill in 
the absence of background rotation.  In this case, 0=ξ

v
 and  for 

each incoming fluid parcel.  Using (56,57), four distinct PV generation 
pathways can be identified.  Pathway #1 involves the direct creation of 
vorticity with a cross isentrope component.  This can only occur by the action 
of   

0=PV

v 
L  in (56), within internal boundary regions IB. Pathway #2 and #3 are two-

step processes.  First, vorticity is created by the baroclini mechanism (in 48) 
as part of the gravity wave propagation mechanism, so 

c 

 
v 
ξ ≠

 

0 while PV = 0.  
Then, through the action of heating (Pathway #2; 

v 
ξ ⋅∇H ) or vorticity 

diffusion (Pathway #3; ∇ 
2
v 
ξ ⋅∇θ ) the vorticity is “converted” to potential 

vorticity.  The last possibility, Pathway #4, is that vorticity diffuses in from 
the lower boundary of the domain. 

Rotunno, et al. (1999) have investigated some of these Pathways 
numerically by using various sets of assumptions about the form of 
dissipation.  To remove P4, they used a free-slip lower boundary and argued, 
from scale analysis, that curvature effects at the boundary (Batchelor, 1967) 
are insignificant. P1 and P3 can be eliminated by setting viscosity equal zero, 
but allowing the diffusion of heat.  Th  assumption isolates P2; the thermal 
reorientation of the θ-surfaces, so that 

is

 
v 
ξ ⋅∇H ≠ 0. 

In another simulation, constant non-zero values of viscosity and 
thermal diffusivity were used, allowing  Pathways P2 and P3.  In both 
simulations, conditions were set to give steady flow with weak wave 
breaking.  They concluded that PV generation in 3-D mountain waves occurs 
primarily by Pathways 2 and 3; i.e. the “conversion” of baroclinic vorticity to 
potential vorticity.  It remains to be learned whether Pathway #1 needs to be 
considered in fully turbulent wave breaking.  P4 will be important in real 
flows near a no-slip lower boundary. 
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APPENDIX 1  
 

The up and down-going wave amplitude coefficients of the 3-layer 
model, Ai(k,l) and Bi (k,l) ,  are computed from the transform of the terrain 
h(k,l)  and the parameters that define each layer (mi, σi, zi). The expressions 
are:  
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All these quantities are complex.  Note that when the atmospheric conditions 
are uniform with height, R21=R32=1 and the down-going wave amplitudes 
B1=B2=0. (Equations from Smith et al., 2000) 
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