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ABSTRACT

Lagrangian equations for momentum and buoyancy are developed for idealized turbulent fluid elements.
The resulting formulation of transport can be viewed as a generalization of mixing length and parcel theories
of mixing for application to gridded Eulerian models. This formulation of transport recognizes the mean gradients
on the scale of the main transporting eddies and avoids problems with existing methods due to parameterization
of fluxes in terms of local gradients between adjacent grid levels.

The modeled fluid elements develop relative horizontal motions due to mean vertical shear. Shear-produced
horizontal kinetic energy is converted to vertical kinetic energy through modeled pressure adjustments. The
fluid element is decelerated through nonlinear pressure drag and small scale diffusion with the ambient fluid
while vertical motions are constrained by stable stratification.

The linearized version of the equations reproduces classical shear instability governed by a critical Richardson
number. With nonlinear pressure drag and small scale diffusion, the element motion adjusts to limit cycle
conditions which transport heat and momentum. The limit cycle motion varies from a buoyancy oscillation
for large Richardson number to a bimodal limit cycle for small Richardson number. Due to momentum transport
by pressure fluctuations, the eddy Prandtl number for stable stratification is generally greater than 1 and increases
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with stability.

1. Introduction

Atmospheric mixing by turbulence and convection
is normally formulated in terms of a local flux-gradient
relationship typically involving eddy diffusivity or
mixing length formulations. With higher moment the-
ory, the application of the eddy diffusivity closure oc-
curs in the budget equations for the covariances rather
than directly in the flux-relationship. Most models of

turbulent transport are posed in terms of gridded nu-
" merical models. _

Stull (1984), Wyngaard and Brost (1984), Wyngaard
'(1984), Fiedler (1984) and others have generically
criticized such models in that the eddy flux is related
to the local gradient between adjacent grid levels,
whereas the actual eddies transport according to gra-
dients on their own scale. In the heated boundary layer,
it is necessary to apply corrections to the heat flux pa-
rameterized in terms of temperature gradients between
adjacent grid levels, since, in reality, the thermals
transport according to the bulk gradient across the en-
tire boundary layer (Deardorff 1966). Failure to correct
the local grid parameterization of the flux can even
lead to the wrong sign in the relationship between the
local flux and the local gradient. Deardorff ’s correction
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specifies an empirical parameter while the approach of
Wyngaard and Brost (1984 ) is based upon the distinc-
tion between local flux due to upward transport from
near the surface and local flux due to downward trans-
port associated with entrainment at the boundary-layer
top. The transilient approach (Stull 1984 ) specifies a
matrix of mixing coefficients representing transport
between all the different combinations of grid levels.

The present study pursues the problem of nonlocal
mixing by constructing Lagrangian equations for
idealized turbulent motions in order to estimate tur-
bulent fluxes and other turbulence quantities. Previous
Lagrangian or parcel models of turbulent or convective
motions include Priestley and Ball (1955), Priestley
(1959), Mason and Emig (1961), Lin and Reid (1963),
Csanady (1964), Simpson and Wiggert (1969), Telford
(1970), Krasnoff and Peskin (1971) and Pearson et al.
(1983). A recent example of a Lagrangian or parcel
approach for estimating mixing in Eulerian gridded
models is the formulation of transport by thermals be-
tween the surface and other layers in the boundary-
layer model applied in Zhang and Anthes (1982). As
in the transilient method, the Lagrangian approaches
can provide an estimate of the variation of the flux on
the scale of the transporting eddies. The profile of this
flux can then be transposed to the grid levels of a nu-
merical model.

The present approach deviates from previous La-
grangian approaches in that it explicitly models the

" generation of vertical motions by pressure fluctuations

induced by shear-generated horizontal velocity fluc-
tuations. The turbulent length scale and eddy diffusivity
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need not be specified with the present approach, but
can be computed a posteriori as a product of the model.
Previous models of mixing generally specify a mixing
" length or an eddy diffusivity either directly in the flux
relationship, or, indirectly to close higher moment
equations. Commonly used turbulence length scales
include the depth of the boundary layer, distance from
the ground, and w/N where w is a vertical velocity
scale for the turbulence and N is the buoyancy fre-
quency. This length scale is the vertical distance a parcel
with initial vertical velocity w could travel before losing
its kinetic energy to potential energy in the absence of
pressure effects and mixing with the environment. After
this vertical excursion, mixing length theory would then
assume that the parcel completely mixes with the en-
vironment. However, this parcel argument is used only
to justify the mixing length hypothesis which is then
used to compute the eddy diffusivity. The flux is com-
puted with this eddy diffusivity and the gradient be-
tween adjacent grid levels, not the gradient on the scale
of the mixing length.

In these terms, the present approach can be' viewed
as a generalization of the mixing length to include more

complete Lagrangian physics and to relate the flux to.

the gradients on the scale of the transporting eddies.
With the present development, explicit specification of
a vertical length scale or eddy diffusivity are replaced
by the task of formulating the Lagrangian equations
and interaction between the Lagrangian fluid element
and mean vertical profiles as interpolated from the grid
of the larger scale model. The formulation of the La-
grangian equations are not trivial because present par-
cel approaches do not accomodate the generation of
eddy vertical motions from shear instability, a major
task of the present approach. This process involves
conversion of horizontal kinetic energy to vertical ki-
netic energy through pressure fluctuations, a process
which is not completely understood.

The present development may be most useful in the
stratified free atmosphere where present simple ap-
proaches are thwarted by the inability to estimate the
turbulence length scale. In free turbulence, organization
is no longer provided by a material surface such as the
earth’s surface. The behavior of the turbulent length
scale is also poorly understood in strongly stratified
boundary layers where relationship to the surface is
uncertain and the transporting eddies may be inter-
mittent and confined to thin layers. Therefore, this
study will concentrate on the case of stably stratified,
shear-generated turbulence in the absence of a material
boundary although application to other cases w111 be
of future interest.

The system of equations will be restricted to just a
few degrees of freedom and therefore will still represent
rather incomplete physics. This restriction allows ex-
plicit mathematical analysis of the model and eluci-
dation of the various physical regimes. For example,
we wish to establish the sensitivity of model results to
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initial conditions and parameter values. Furthermore,
simplicity of the mixing model is absolutely necessary

for formulation of fluxes within larger-scale models.

Speziale (1987) has noticed that most modelers have
shunned higher moment theory in favor of simple
models of mixing for practical considerations.

Here, adequate mathematical simplicity will require
omission of explicit representation of the internal
structure and distortion of fluid elements. In many ac-
tual turbulent flows, it is not practical to observe fluid
elements even approximately defined by material sur-
faces. Therefore the modeled Lagrangian elements can
be viewed only as representation of the statistical in-
fluence of the-turbulent eddies without consideration
of the generation and decay of individual eddies. In
other terms, the présent development can be viewed
as an extension of existing Lagrangian approaches to
mixing and in fact includes some previous treatments
as special cases (Section 2f).

The application of the modeled Lagrangian element
to gridded models involves a number of decisions which
depend on specific characteristics of the model. Such
details are not included in this study which assumes a
more general scope. In fact, the intention here is that
the modeled Langrangian motion may also be suitable
for a wider range of applications such as dispersion
problems where the Lagrangian equations map a fre-
quency distribution of fluid elements into a new fre-
quency distribution at a later time.

2. Basic equations

We now formulate simplified equations for variables -
of fluid elements intended to represent the statistical
behavior of transporting turbulent eddies. For sim-
plicity we will consider only eddy motion in the plane
of the shear, here the x—z plane. This assumes height-
independent mean shear in which case there is no pre-
ferred direction for horizontal fluctuations perpendic-
ular to the mean shear. For application to gridded
models, it was necessary to add the second horizontal
equation,

We begin with the basic equations for momentum
and temperature for shallow motions without rotation
(Dutton and Fichtl 1969; Mahrt 1986). We partition
the flow into a basic state ambient flow & = (U, W,
0, P), deviations of fluid element variables from the
basic state flow ¢ = (u, w, 0, p) and smaller scale tur-
bulence whose effect will be parameterized as a diffusive
influence. We assume the basic state to be hydrostatic
with negligible vertical motion (W = (). The basic
state horizontal flow U depends only on vertical height
z. The derivative of the total flow can then be expanded
as

d(¢ + ®)/dt = 8¢/t + (u+ U)d¢p/dx
+ wdg/dz + wdd/dz = do/dt + wdd/dz



15 APRIL 1989

where the Lagrangian time derivative is defined as
d( )/dt=0( )/t + (u+-U)d( )/dx + wd( )/0z.

Noting the above simplifications for the basic state flow,
we obtain the following equations for the deviation of
the fluid element motion from the basic state flow:

(1a5

dw/dt = g0/0® — (1/po)dp/dz — F,,
dujdt = —wU, — (1/py)dp/dx — F, (1b)
db/dt = —wS — F, (1¢c)

where 6 is the potential temperature replaced by virtual
potential temperature in a moist atmosphere, or density
in an incompressible fluid, © is its constant-scale value,
S the vertical gradient of © in the basic state ambient
flow, p the pressure, U, the mean vertical shear of the
horizontal flow, F represents the flux divergence due
to diffusion by turbulence which is smaller scale than
the fluid element, and p, is a constant basic state den-
sity. The above Lagrangian equations for w and 6 of
individual fluid elements can be found in Csanady
(1964) and elsewhere. The equation for horizontal
momentum # (1b) contains an additional term wU,
due to the presence of mean vertical shear in the present
flow problem. The mean flow (U, and S) might be
specified or supplied by a coupled large scale model in
which case the present development would serve as a
submodel of turbulent transport.

The above three Lagrangian equations contain four
unknowns. Since there is no mass continuity equation,
an additional relationship for pressure is sought in sub-
sections 2b and c below. The formulation for the small-
scale diffusion terms is considered in the following
subsection.

a. Small-scale turbulent diffusion

A Lagrangian fluid element will be modified due to
the diffusive action of smaller-scale turbulence. That
is, the total turbulent motion is superficially partitioned
into the main coherent eddies responsible for most of
the transport (modeled fluid elements) and the smaller
scale turbulence which leads to diffusive exchange be-
tween the fluid element and its environment. In par-
ticular, we formulate the exchange of property ¢ be-
tween the fluid element and its environment according
to the format

Ued

where u, is a velocity scale representing the small scale
diffusion between the fluid element and ambient fluid,
and ¢ = (u, w, 8) is again the deviation of the fluid
element variables from the basic state flow. The vari-
ables (u, w, 8) could be assumed to be average values
over the fluid element. On the other hand, if the spatial
variations within the fluid element are concentrated at
the boundaries as a “jump” in properties, then u, be-
comes an entrainment velocity.
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The small-scale flux divergence appearing in (1) is
then -

Fy = u.¢/L (2a)

where L is the length scale assumed to represent the
smallest dimension of the fluid element which is in the
expected direction of the maximum flux divergence.
For example, in the heated boundary layer, L might
be the average half width of the thermals. Note that
the size of the fluid element 2L is probably much
smaller than the vertical depth of the motion of the
element determined by solution of the basic equations
(1). For mechanically driven motions, the length scale
L becomes less familiar compared to the case of ther-
mals. In subsequent sections, we will study the role of
the diffusion time scale L/u, without concern for the
numerical value or meaning of L.

The small-scale diffusion velocity #, may approach
one of two limits. In one limit, the small-scale turbu-
lence is generated by the motion of the fluid element
with an adjustment time scale which is small compared
to the circulation time scale of the fluid element. Then
the small scale turbulence is in equilibrium with the
motion of the fluid element and the diffusion velocity
is linearly proportional to the relative velocity of the
fluid element. For this limiting case, (2a) becomes

F,=CJV¢/L

V= (u?+ w?)'? (2b)
where C, is a nondimensional coeflicient. This asymp-
totic case is the usual self-similar case (Priestley and
Ball 1955; Turner 1973; and others), and leads to an
expression for the momentum flux which depends
quadratically on the velocity of the fluid element.

In the other asymptotic limit, the velocity scale for
small-scale diffusion u, appearing in (2a) is approxi-
mately constant during one circulation time scale of
the fluid element. This limit might be a reasonable
approximation if the small-scale turbulence is mainly
associated with the ambient fluid or the time scale for
the adjustment of the small-scale turbulence is long
compared to the circulation time scale of the fluid ele-
ment. In this case, the small-scale diffusion velocity is
probably related to the overall velocity scale of the main
eddies rather than their instantaneous velocity at a
given level. With constant diffusion velocity . and ele-
ment size L, the formulation for small-scale diffusion
(2a) becomes linearly proportional to the deviation
value of ¢ of the fluid element. The assumption of
constant u./L is equivalent to specifying a constant
diffusion time scale as invoked for momentum in the
Lagrangian models of Csanady (1964 ) and for heat in
Lin and Reid (1963) and Krasnoff and Peskin (1971)
and others. The damping time scale in these models
represent the effects of molecular diffusion, whereas
the present approach requires formulation of diffusion
by small scale turbulence. It is mathematically impor-
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tant that the relationthip between the momentum dif-
fusion and the relative speed of the fluid element is
linear for this case.

Of course, the most appropriate formulation for the
diffusion time scale L/u, may vary between flow sit-
uations. In fact, Pearson et al. (1983) assume that the
diffusion time scale for the momentum of fluid ele-
ments in stratified flow is proportional to the buoyancy
time scale by arguing that the diffusion is accomplished
primarily by internal gravity waves. They also assume
that the diffusion time scale for heat is proportional to
the buoyancy time scale.

If the time scale of the smallscale turbulence is com-
parable to the circulation time scale of the fluid ele-
ment, then asymptotic simplifications corresponding
to constant diffusion time scale L/ u, or corresponding
to self-similarity (2b) are not possible and a turbulence
energy equation for the evolution of the small-scale
turbulence is needed as in Telford (1970). This pos-
sibility becomes too complex for present requirements.
We will proceed with relationship (2a) for the case of
constant diffusion time scale.

b. Pressure drag

The influence of pressure gradient forces on the fluid
element is quite complicated and involves the pertur-
bation hydrostatic contribution as well as nonhydro-
static contributions due to pressure drag, shear-induced
pressure fluctuations leading to conversion from hor-
izontal momentum to vertical momentum and pres-
sure perturbations induced by neighboring eddies. In
some models, the pressure gradient force on the fluid
element has been formulated in terms of a specified
stationary random process (see Csanady 1964; Pearson
et al. 1983 and references therein). In the present anal-
ysis, we will formulate the pressure drag and shear-
pressure effect explicitly, but as simply as possible. This

. formulation will mark an important deviation of the
present approach from the above approaches and from
the Lagrangian theories noted in the Introduction and
section 2f. ' .

Pressure drag decelerates pulses of motion due to
self-induced pressure gradient forces. More specifically,
positive pressure perturbation (pressure head) develops
at the leading edge of the motion (Fig. 1). This positive
pressure perturbation is usually formulated as a qua-
dratic function of the speed of the element as argued
from scale analysis. As one example, such scaling ar-
guments are used to justify the usual formulation of
the pressure-work term in the turbulence energy equa-
tion (e.g., Tennekes and Lumley 1972, Eq. 3.2.33;

Hinze 1975, sec. 3.8). The quadratic dependence of

the pressure drag on relative flow speed is also argued
by making an analogy between pulses of motion and
the relative motion of solid objects in a fluid (Levine
1959 and others). Similar statistical results can be de-
duced from the divergence of the Navier-Stokes equa-
tion (Batchelor 1951). A quadratic relationship be-
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. F1G. 1. Conversion of kinetic energy between velocity components
due to pressure fluctuations induced by a vertical pulse of momentum
(upper diagram ), induced by a horizontal pulse of momentum (lower
diagram ).

tween the relative flow of a fluid element and the pres-
sure force on the fluid element can also be derived by
integrating the horizontal equation of motion for the
internal structure of the element (List and Lozowski
1970, Eq. 6). .

With the above arguments, the pressure drag con-
tributing to the pressure gradient terms in the vertical
and horizontal equations of motion (1a~b) are of the
form

CwV/L
CuV/L ?3)

where C, is a nondimensional coefficient thought to

- be O(1) (see references in Mahrt 1979) and assumed

to be applicable to the pressure drag formulation for
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both velocity components. In reality, C, is probably
quite variable and differs between flow components,
especially in the presence of significant stratification.
As the fluid element is distorted by the shear, the drag
coefficient C, may decrease. Although this effect will
be referred to as pressure drag, this term can lead to
absolute horizontal acceleration when the horizontal
motion of the fluid element is slower than the ambient
fluid. We will assume constant C,/L.

Note that the pressure drag formulation (3) is the

same mathematical form as the momentum diffusion
term for self-similar turbulence where the diffusion ve-
locity is proportional to the relative speed of the fluid
element (2b). Therefore, self-similar diffusion could
be included by augmenting the pressure drag coefficient
C,. Linear and quadratic “drag” forms arise in a wide
variety of physical problems. In fact, some investigators

have even proposed drag with a fractional exponent -

between the linear and quadratic forms (see, for ex-
ample, Nayfeh and Mook 1979). As in previous situ-
ations, the linear and nonlinear drag effects in the pres-
ent flow model will qualitatively exert quite different
influences on the motion.

c. Generation of vertical motions by pressure fluctua-
tions

The vertical shear of mean horizontal flow generates
horizontal fluctuating motions in the direction of the
mean shear. Such fluctuating motions induce pressure
perturbations which, in turn, generate motions per-
pendicular to the mean shear (Fig. 1). Thus, the mean
shear generates vertical motions indirectly through
pressure fluctuations. In the Reynolds stress equation,
this effect can occur through the so-called return-to-
isotropy term involving correlations between fluctua-
tions of pressure and velocity gradients.

An impression of how to formulate generation of
vertical motion of the fluid element is provided by early
conceptual views of shear instability. See, for example,
Fig. 12 in Monin and Yaglom (1971) and Fig. 2a in
this section. Perturbing the interface between two layers
of fluid of different horizontal velocity leads to motion
changes consistent with the Bernoulli relationship. The
associated pressure changes act to further displace the
interface and so on leading to instability.

The relative motion of any fluid element will gen-
erate pressure perturbations. If we consider the motion
within the fluid element to be well mixed, the relative
motion at the top of the fluid element will be different
from that at the bottom of the fluid element due to the
vertical variation of the mean horizontal flow (Figure
2b). We define the relative speed of the fluid element
u with respect to the mean flow at the instantaneous
mid-level of the fluid element, U,,. With this notation,
the mean flow is U,,, + (Az/2) U, at the top of the fluid
element of thickness Az and U,, — (Az/2) U, at the
bottom of the fluid element. With the usual Bernoulli

L. MAHRT
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(b)

P<<0

P=0 :

FIG. 2. Shear instability and associated pressure fluctuations for
(a) an idealized interface and (b) an idealized fluid element.

argument, the perturbation pressure at the instanta-
neous top (z7) of the homogeneous element is assumed
to be quadratically proportional to the difference be-
tween the speed of the fluid element and the ambient
flow speed at zr and therefore of the form

p(zr)/p o (=/+)(u — U,Az/2)2. (4a)

The minus sign (pressure drop) is chosen if the ambient
horizontal flow at z; is faster than the speed of the
fluid element and vice versa. For.example, if the fluid
element is rising in positive mean shear U, > 0, then
u < 0 leading to a relatively large pressure drop. At the
instantaneous bottom (zz) of the element, the pertur-
bation pressure is

-p(zp)/p oc (—=/+)(u+ U,Az/2)*.  (4b)

With these estimates U, is the mean shear assumed to
be constant in the neighborhood of the fluid element.
Using (4a-b), the vertical pressure gradient acting
on the element is of the form
—(1/p0)dp/dz = —CulU., )

where the nondimensional coefficient C is proportional

.to the thickness of the element and proportional to a

coefficient linking the perturbation pressure to the
square of the relative velocity difference. This simple
relationship recognizes that the perturbed pressure field
is generated by the relative motion of the fluid element
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u and that the vertical variation of the relative flow
and perturbation pressure around the well-mixed fluid
element is proportional to the mean shear.

The above Bernoulli arguments (4a-b) are not nec-
essary in that formulation (5) can also be argued from
dimensional analysis. In fact, the latter argument may
be preferable in the stable case where it is hard to vi-
sualize a fluid element which is well mixed in momen-
tum yet large enough to ‘““see” the mean shear. Since
relationship (5) represents a significant extension of
the usual formulation of Lagrangian motions, it will
require close scrutiny in subsequent sections.

d. Other pressure effects

The above treatments of the pressure field are still
incomplete as can be seen by consulting Moeng and
Wyngaard (1986). Here we note two additional effects
which can be posed in a Lagrangian frame of reference.
First, some have argued by analogy to the motion of
solid objects that the element motion induces a pressure
field which accelerates additional mass in the imme-
diate environment of the element. This effect is for-
mulated in terms of a virtual mass coefficient yv* for
the net acceleration (see references in Mahrt 1979).
In this case, the sum of the virtual mass-pressure effect
and the net acceleration becomes

dw/dt + virtual mass effect = y*dw/dt
du/dt + virtual mass effect = y*du/dt

where the nondimensional coefficient is somewhat
greater than unity.

Second, the present formulation of the vertical
equation of motion also fails to explicitly consider the
hydrostatic contribution associated with the buoyancy
field of the fluid element (Moeng and Wyngaard 1986)
which might be included by specifying a coefficient
which reduces the buoyancy term in the vertical equa-
tion of motion so that

—(1/p0)8ps/0z = —A(g/®)0

where A is some fraction probably less than 2 (M.
Hadfield, personal communication ) and p, is the part

of the pressure associated with the buoyancy field. This:

pressure effect could involve initiation of internal
gravity waves which propagate energy out of the neigh-
borhood of the fluid element. The buoyancy-reduction
pressure effect and the above virtual mass-pressure ef-
fect are not independent. The inclusion of these two
effects in the present development is somewhat aca-
demic since each of the remaining terms in the vertical
equation of motion contain coefficients with uncertain
behavior.

We will therefore neglect these two pressure effects, -

. in which case the pressure terms in the equations of
motion reduce to the drag effect (3) and generation of
vertical momentum from shear-induced pressure fluc-

tuations (5). However, in contrast to the usual parcel |
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theory, Egs. (3) and (5) do allow the fluid element
model to predict classical shear instability in the linear
case (section 3) and predict fluxes and the eddy Prandtl
number which depend on the Richardson number in
qualitative agreement with the limited observational
evidence (section 6).

e. Total equations

The above scaling arguments are indeed tentative
but can be shown to be energetically consistent with
prevailing interpretation of the turbulence energy
budget. This is easily seen by beginning with the equa-
tions of motion of the fluid element. Using (2)-(5),
neglecting reduction of buoyancy by pressure effects
so that 4 = 0 and neglecting any virtual mass effect so
that v* = 1, the basic Egs. (1) become

1 2 3 - 4
dw/dt = g6/® — CuU; — (u,/LYw—(C,/L)Vw
| (62)
du/dt = —wU, — (u,/LYu—(C,/L)Vu
(6b)
dojdt = —wS - (u/L)8 (6¢)

where, again, all variables are deviations of the element
values from the ambient value. Equation 6 can be par-
titioned into several different physical mechanisms
which lead to coupling between w, u and 6. The buoy-
ancy mode (column 1) involves the buoyancy gener-
ation or destruction of vertical motion and production
of buoyancy by the vertical motion acting upon the
mean stratification. The shear mode (column 2) in-
volves generation of horizontal momentum by vertical
advection acting upon the mean shear and simulta-
neous production of vertical motion through the shear-
induced pressure term (last term, Eq. 6a). The gen-
eration of element buoyancy and momentum is coun-
teracted by linear diffusion of element properties by
the smaller-scale turbulence (column 3) and nonlinear
pressure drag (column 4). The representation of pres-
sure corresponds to terms 2 and 4.

f. Comparison with previous models

If we neglect the pressure-shear generation of vertical
velocity (C = 0), and exclude consideration of the hor-
izontal velocity, the system (6) becomes analogous to
penetrative convection model of Mahrt (1979). If we
also neglect pressure drag (C, = 0), the system (6)
becomes analogous to the one-dimensional models of
Priestley (1953, 1959). If we eliminate the pressure-
shear term and small-scale diffusion terms (C = u, = 0)
but retain nonzero C,, (6) becomes mathematically
equivalent to the models of parcel motion with self-
similar quadratic drag ( Priestley and Ball 1955; Mason
and Emig 1961, Eq. 5; Simpson and Wiggert 1969).
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If we neglect the pressure-shear term, the small-scale
diffusion and pressure drag, then system (6) reduces
to a simple buoyancy oscillation, which, in the absence
of initial parcel buoyancy, yields the vertical length
scale w(0)/N where w(0) is the initial parcel vertical
velocity and N is buoyancy frequency (gS/0)'/2.

g. Kinetic energy budget

Using (6), the equation for the kinetic energy of the
element for the vertical component and the horizontal
component in the mean shear direction are, respec-
tively, '

(1/2)3(w?)/ ot
= (g/0)w8 — u,w?/L — (C,/LYVw? — CwuU, {(7a)

(1/2)3(u?)/8t = —uwU, — uu*/L — (C,/L) V.
(7b)

The energy equations are most familiar when summed
over many fluid elements. In (7), vertical kinetic energy
is generated or suppressed by the buoyancy flux while
horizontal kinetic energy is generated by the usual
mean shear term proportional to the Reynold’s stress.
The loss of kinetic energy due to terms containing u,
corresponds to transfer of kinetic energy to smaller
scales where it is eventually dissipated by viscosity. A
formal analogy to dissipation can be made by equating
the three-dimensional analogy of these terms to the
usual formulation of dissipation of kinetic energy, in
which case we obtain

u(u® + 02+ w?)/L ~ C(1® + v2 + w?)*?/L

where C, is a nondimensional coefficient thought to be
O(1). This suggests that u, be of the form

U, = const(u? + v? + w?)!/2

which would correspond to the three-dimensional
analogy to the self-similar formulation of diffusion
(2b). Note that the dissipation terms in (6) involving
the small-scale diffusion velocity u, are completely dif-
ferent from the turbulent transport of kinetic energy
by itself which is often parameterized as a diffusion
term. The latter effect corresponds to spatial redistri-
bution of turbulence energy and not transfer to smaller
scales. Such transport terms do not explicitly occur in
(6) because the total derivative on the left-hand side
is defined with respect to a moving fluid element.

Noting that wuU, is the shear generation of the total
turbulence kinetic energy, the coefficient C can be
viewed as the fraction of the rate of shear generation
of horizontal kinetic energy which, in turn, is converted
to vertical kinetic energy via pressure effects. This con-
version and associated loss of horizontal kinetic energy
in the present model would be identified with the pres-
sure drag term in the horizontal kinetic energy equation
as can be visualized with the lower part of Fig. 1.
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For neutrally stratified turbulent flow, the two ve-
locity components perpendicular to the shear each
typically contain about % of the total turbulence kinetic
energy with the remaining half of the variance occur-
ring in the component parallel to the shear vector
(Tennekes and Lumley 1972, and others); i.e., the ratio
[w?]/[u?] maintains an approximate value of 0.5
where the brackets indicate some sort of averaging. The
present model (6) with equilibrium conditions and
vanishing stratification, allows an analytical solution
which predicts that the above velocity ratio is equal to
C (section 4, Egs. 14-15). Then, the above observa-
tions tentatively suggest that C = 0.5 for neutral strat-
ification. :

In the linear version of (6) where the pressure drag
is neglected but the stratification is nonzero, C becomes
approximately equal to the critical gradient Richardson
number (section 3). Then with the approximate choice
of C = 0.25, the linear system predicts the classical
critical value and provides some support for formu-
lation of the shear-pressure term (5).

In passing, we note that in Hinze (1975, Chapter 4),
the conversion of turbulent kinetic energy from the
shear-generated component to the other components
is related to the difference between the kinetic energies
(here u®> — w?). However, closure of this argument

.would require additional formulation of a time scale.

We will evaluate the performance of the present model
(6) in terms of prediction of fluxes in section (6).

3. Vanishing pressure drag

Some of the different flow regimes and dependence
on the nondimensional parameters can be identified
in terms of analytical solution by omitting the nonlin-
ear pressure drag term from (6) in which case we obtain

dw/dt = g8/0 — (u./L)w — Cul, (8a)
. dujdt = —wU, — (u./L)u (8b)
de/dt = —wS — (u./L)8. (8¢c)

As the shear vanishes, (Eq. 8) describes a linear,
damped buoyancy oscillation. As the diffusion velocity
vanishes, (8) describes a shear-driven buoyancy oscil-
lation.

Equations (8a)-(8c) are linear in that they can be
written in the form

de/dt = F(¢)

¢ =[w,uf (8d)

where F is a constant matrix independent of the vector
of unknowns ¢. The linear solution for ¢ is of the gen-
eral form

A; exp(\it) 9

where A\; (i = 1, 3) are the eigenvalues for the three
solution modes, and A; are the amplitudes of the three
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modes which are dependent on initial conditions. The
complete linear solution which satisfies initial condi-
tions is easily obtained but not needed here. Our in-
terest is confined to the stability criteria for the linear
equations to insure that the linear version of the present
model is consistent with classical theory of shear in-
stability.

The cubic characteristic equation for the eigenvalues
is homogeneous and reduces to an easily solved qua-
dratic equation with two independent roots. Two ei-
genvalues yield exponential decay while the remaining
eigenvalue is of the form

A =—(u,/L) + U(C — Ri)'/? (10)

where the gradient Richardson number (Ri) is defined
as

Ri = (g5/0)/(U2?).

For vanishing diffusion velocity, the critical Richardson
number separating exponential growth from exponen-
tial decay is simply C. Classical linear stability analysis
indicates a critical gradient Richardson number of 0.25
which would correspond to C = 0.25 in relation-
ship (10).

For nonzero diffusion velocity, three regimes can be
identified based on the Richardson number. In the very
stable case (Ri > C), the eigenvalue is complex with
negative real part (damping) and nonzero imaginary
part (oscillation) corresponding to damped harmonic
oscillation. More specifically, the motion is a buoyancy
oscillation modified by shear and damped by small-
scale mixing. This flow behavior is plotted in the usual
phase space in Fig. 3. With vanishing diffusion velocity
u.and vanishing mean shear, the motion for this regime
becomes a pure buoyancy oscnllatlon with frequency
(g5/0)'".

Simple dampmg without oscnllatlon (Fig. 3) corre-
sponding to real negative eigenvalues (10) occurs for
a narrow range of Richardson numbers

C- (u/U.LY<Ri<C. (12)

Therefore the coefficient C becomes the value of the
Richardson number separating two stable regimes. In-
stability (Fig. 3) corresponding to a real positive ei-
genvalue occurs when the Richardson number becomes
less than the following critical value:

' Ri < C—(%/U:L)* =Re. (13)

That is, the small scale diffusion velocity «. reduces
the critical Richardson number for instability (right-
hand side of 13) to values slightly less than C. Stronger
shear is needed for instability with small-scale diffusion.
However, the influence of u, in (13) for expected geo-
physical values is small so that the critical Richardson
number for instability defined by (13) is approximately
C. In other terms, the range of Rlchardson numbers
for simple decay (12) is small
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dw
dt unstable
( Ri<Rc<C,Re(3)>0 )
-
stable fixed
point attractor
w
neutral
damped osc.
/ RiC
.. Re())<0
limit cycle stable Im(3)=0
(Re<Ri<C,Re())<0)
Im())=0 .

FIG. 3. Flow trajectories for different stability regimes for the linear
case (8a)-(8c). Here Im(X) = O unless otherwise specified, and Rc
is the critical Richardson number defined by (13).

The influence of the coefficient C can be examined
further by combining equations (6a)-(6c) into the
simple form

dH/dt = =2(u.,/LYH
H=w?— Cu?+ (g/50)62.

For vanishing diffusion velocity, H is conserved. Here
H is not a Hamiltonian since the shear-generation term
wl, is not a conservative ‘“force”. With nonzero dif-
fusion, H damps to zero. This does not correspond to
vanishing flow or even finite flow since H is propor-
tional to the difference between the vertical and hori-
zontal velocities. In fact, in the linearly unstable case
both velocity components approach infinity as H van-
ishes.

It is of more interest that the ratio of the vertical
velocity component to the horizontal velocity com-
ponent is governed by the coefficient C. In the case of
equilibrium flow where H vanishes, the ratio w?/u?
approaches C with vanishing stratification; i.e., with
larger values of C, pressure effects generate vertical
motions more efficiently, We will return to the depen-
dence on C in section 4 where nonlinear pressure drag
is restored and the unrealistic possibility of exponential
growth is eliminated.

4. Fixed points

With the complete equations (6a)—-(6c), any initial
instability is soon controlled by nonlinear pressure drag
as the relative motion of the fluid element becomes
significant. Such control may lead to limit cycle motion
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about a fixed point or evolution to a fixed point at-
tractor depending on the mean shear and stratification
and values of model coeflicients. The fixed point so-
lutions correspond to equilibrium conditions where the
Lagrangian time derivative d¢/dt vanishes. Constant
vertical velocity implies infinite vertical length scale.
That is, height-independent stratification and mean
shear may possess no natural vertical length scale as is
most obvious in the case of neutral stratification. In
actual geophysical flows, near-neutral layers occur over
finite depths embedded within stronger stratification
which provide a limiting vertical length scale for the
motion. However, the fixed point solutions exert im-
portant influences on the more realistic height-depen-
dent solutions and therefore warrant examination.

a. Vanishing stratification

The fixed point solution for the complete system
~ (6a)-(6c¢) is mathematically obtainable but far too
complex to extract obvious physical interpretation. For
the case of vanishing stratification representing a bal-
ance between shear effects, small-scale diffusion and
pressure drag, the fixed point selution for (6a)-(6c)
simplifies to

u=(+/-)C"*U; = u,/ LI/ I(Cp/ LY(1 + C)'12]
(14)

w=—C"%u. (15)
As expected, the magnitude of the equilibrium vertical
velocity is proportional to the shear and inversely pro-
portional to the pressure-drag coefficient. The ratio w?/
u?is equal to C in agreement with the linear case (sec-
tion 3) in the limit of vanishing stratification. With
vanishing pressure drag (C, = 0), the fixed point so-
lution approaches infinity in agreement with the un-
stable linear solution occurring with vanishing strati-
fication (section 3). '

For the limit of vanishing pressure-drag (C, = 0),
but nonzero stratification, the fixed point solution rep-
resents the following balance:

g5/8 + (u./L)* = CU;? (16)
which, in turn, implies that the Richardson number is
exactly equal to the critical value defined by (13); i.e.,
with vanishing nonlinear drag, stationary solutions are
possible only when the neutral linear stability require-
ment is exactly satisfied corresponding to vanishing
eigenvalues and no growth or decay. Then the fixed
point solution is simply the initial conditions. With
infinitesimal change of the Richardson number in this
case, the solutions diverge from the equilibrium point
so that (16) represents a bifurcation point correspond-
ing to structural instability.
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b. Stability of fixed points

The fixed point solutions are most relevant to the
total dynamics only if they act in some sense as at-
tractors for the solution trajectories. In this subsection
we study the stability of the flow with respect to the
fixed points by expanding the nonlinear operator, cor-
responding to the right-hand side of (6), about the
fixed point solutions of the nonlinear system (6a)-
(6¢) analogous to traditional analyses of the stability
of fixed points (e.g., Hirsch and Smale 1974; Bergé et
al. 1984; Thompson and Stewart 1986).

We write (6a)-(6c¢) in the form

deo/dt = F(¢)
¢ = [w,u,0]
and consider a perturbation solution trajectory

op(1) = (1) — ¢*

where ¢* is a fixed point solution. Expanding the func-
tional matrix F(¢) in a Taylor series about the fixed
point solution, we obtain

de/dt = F(¢) = F(¢*) + DF(¢*)[8¢] + O(6¢2)
(18)

where DF(¢*) is the first variation of the functional
matrix F with respect to the dependent variable ¢ eval-
uated at the equilibrium fixed point and of the form

(17)

DF(¢)
[—u./L -~CU. g/0
- (C[)/L)W*]
—-U. [~u./L —(C,/L)u*) 0
-S 0 —u./L
(19)

where w* and u* are defined as
w* = V(1 + w2/V?)
u* = V(1 +u?/V?)
V= (u®+ w?)'/?

where u and w in these relationships are evaluated at
the equilibrium fixed point. Noting that

d(¢*)/dt = F(¢*) =0, (20)
(18) becomes approximately
d(d¢)/dt = D[F(¢*)][é¢]. (21)

This system is linearized in that DF(¢*) is a function
only of the known vector ¢* and independent of ¢(¢).
The linearization of (21) has reduced the stability
problem to finding the eigenvalues of the first variation
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DF(¢*) which satisfy the following cubic characteristic
equation:

N3 4 %2 (C,/L)(w* + u*) + X“[(C,,/L)Zu"w"' .
— C(U;)* + g5/0] + 2(gS/0)(C,/Lyu* = 0 (22)
A=A+ u/L (23)

The coefficient of the A* term with zero pressure drag
vanishes when the gradient Richardson number equals
the critical value of C. Only in the case of vanishing
pressure drag, does the above eigenvalue relationship
for stability of the fixed point reduce to the traditional
stability requirements of the linear system (section 3)
where the solution is stable when the Richardson num-
ber exceeds a critical value of C.

Since the case of large Richardson number is con-
trolled by damping to the motionless fixed point at-
tractor, we wish to study the other limiting case where
“buoyancy effects vanish and the flow trajectories might
be controlled by the fixed points (14)-(15). For van-
ishing buoyancy, the cubic equation for the eigenvalue
(22) reduces to the following quadratic form:

N*2 4 N*(C,/L)[w* + u*]
+(Co/LY*w*u* — C(U.)* =0 (24)
in which case, . »
* = —(1/2)0(Cy/LY(u* + w*){1(+/-)
[1 +4(CU? — (Cp/ L) u*w*)/
(/LY (u* + w¥)D)] /DY, (25)

For instability to occur (A > 0), the argument of the
square root must be greater than 1 in which case the
negative root leads to a positive eigenvalue. The ar-
gument of the square root is greater than 1 if

4CU;? > (Cp/L)*u*w*.

Substituting the equilibrium solutions (14-15) into u*
.and w* (23) and then substituting into (26), we see

that the right-hand side is categorically larger than the .

left-hand side so that the nonzero fixed point solution
(14)-(15) is stable with respect to perturbations re-
gardless of the values of the shear and coefficients C,
C,, and u,. The fact that the eigenvalues are negative
and not close to zero allow the fixed point to be stable
with respect to perturbations of finite size. In fact, in
the next section, we will see that the fixed points cor-
responding to (14)—-(15) act as attractors to limit cycle
solutions for a wide range of values of the Richardson
number and model coeﬂicxents

5. Limit cycle solutions

For a wide range of conditions, the solutions to (6a)-
(6¢) correspond to limit cycle motions influenced by
two attractors defined by the equilibrium states (14—

-15) in addition to the motionless fixed point attractor
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for the simple buoyancy oscillation. The limit cycle
motions can be viewed as idealized elements partici-
pating in shear-driven overturning as would occur with
transverse vortices. This conceptual possibility is ap-
propriate only in a statistical sense since actual indi-

.vidual eddies have finite lifetimes.

To obtain solutions of the nonlinear system, (6a)-
(6¢c) was solved using a fourth-order Runge-Kutta
scheme. Initial conditions are zero temperature per-
turbation, no initial horizontal flow, and an initial ver-
tical velocity of 0.001 m s™!. For the parameter regions
examined and small initial values of the element mo-
tion and buoyancy, the final state for w, u and 9 is
insensitive to the exact values of the initial conditions.

Numerical evaluation of (6a)-(6c) for expected
geophysical values of the diffusion velocity (lower part
of Figure 4), limit cycle motion is established for an
intermediate range of Richardson numbers with near-
motionless fixed point solutions at large Richardson
number and nonzero fixed point motion at small
Richardson numbers. The amplitude of the near-mo-
tionless fixed point is negligible from a geophysical
point of view and decreases with further increases of
the Richardson number. Large values of the diffusion
velocity shrink the range of Richardson numbers which
permit limit cycle motion (Fig. 4) and the limit cycle
motion vanishes altogether for very large values of the
diffusion velocity. That is, large diffusion velocity acts
to damp the time-dependent deviation from fixed pomt
solutions.

From another point of view, the value of the critical
Rlchardson number separating near-motionless flow
from the limit cycle motion increases with decreasing
diffusion velocity (Fig. 4) and the critical Richardson
number becomes infinity with vanishing diffusion ve-
locity. In the latter case, the limit cycle moétion becomes
a simply buoyancy oscillation at large Richardson
numbers. This critical Richardson number is physically

1.2 ~ - T
Fixed point solutions

0.8

T

pressure-drag

limit cycle

near motionless
fp

04+

1

(ue/L)x102 (s'1)

buoyancy 0sc. ~—_3\
0.0 . 01 0.2 0.3

Gradient Richardson Number

FIG. 4. The main eddy regimes as a function of diffusion velocity
and gradient Richardson number for C,/L = 0.005. These regimes
are insensitive to the value of C,/L for the expected geophysical
range of parameter values. The ]ower part of the graph is most relevant
to geophysical flows.
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different from that for the linear case since unlimited
exponential growth is now removed by the nonlinear
pressure drag and the flow at Richardson numbers
higher than the critical value does not completely van-
ish. Therefore, the critical Richardson number for the
nonlinear case represents a transition between two
nonzero finite flows instead of a transition between
exponential growth and exponential decay. In the
nonlinear case, the dependence on the Richardson
number is no longer unique even with fixed values of
the other coefficients. For example, with stronger strat-
ification, the critical Richardson number is somewhat
larger; i.e., the nonlinear flow depends on the magni-
tude of the shear and stratification in addition to their
ratio, although the occurrence of the basic flow regimes
depend mainly on the Richardson number and diffu-
sion velocity.

Although the general location of the above flow re-
gimes in the diffusion velocity-Richardson number
phase space (Figure 4) does not depend significantly
on the value of the pressure drag coefficient, the am-
plitude of the both the limit cycle motion and the fixed
point flow decrease with increasing pressure drag coef-
ficient as predicted by (14)-(15). As the pressure drag
coeflicient becomes hypothetically large, the amplitude
of the limit cycle motion eventually becomes geo-
physically negligible and thus indistinguishable from
near-motionless fixed point conditions.

The amplitude of the vertical motion, W, and
the vertical depth of the limit cycle motion £ are related
as .

Z = CgWamp/N

where N is the buoyancy frequency and C, is a coef-
ficient whose value is between 3 and 4 for the range of
parameter values examined. This coeflicient becomes
about one-third smaller if the amplitude of the vertical
motion is replaced by the root mean square of the ver-
tical velocity. For cases of height-dependent Richardson
number, the depth of the layer of small Richardson
numbers permitting motion development becomes the
main vertical constraint if it is smaller than the depth
£. The period of the limit cycle motion is longer than
the buoyancy period due to the increase of the depth
of the motion associated with the mean shear.

As the Richardson number decreases, the limit cycle
motion becomes more influenced by the two nonzero
fixed points representing a balance between shear-gen-
eration, pressure-drag, and diffusion (14)-(15). The
influence of these fixed points distorts the limit cycle
motion (Fig. 5) from the sinusoidal buoyancy oscil-
lation occurring at large Richardson numbers. With
sufficiently strong shear and weak buoyancy, the two
lobes of the limit cycle break apart and the solution
collapses to one of the two fixed points. The transition
from the bimodal limit cycle to the nonzero fixed point
flow defines a second transitional Richardson number
whose value increases with increasing diffusion velocity.
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FI1G. 5. Bimodal limit cycle in (a) w — w, phase space and (b) x-
z space for u,/L = 0.002 and C,/L = 0.005 for height-independent
mean shear [6 m s~ (100 m™')] and stratification [2 K (100 m)].
The fixed point solutions from Eqs. (14)-(15) (plus symbols) ov-
erpredict the motion strength because of neglect of stratification. With
weaker stability, the limit cycle motion becomes more bimodal in
phase space and becomes less flat in x~-z space.

These nonzero fixed point solutions in pure form
are only of academic interest since in geophysical flows
additional length scales are imposed by the height de-
pendence of the Richardson number. With more re-
alistic vertical structure, the vertical thickness of layers
of small Richardson number constrains the vertical
development of the motion. This leads to limit cycle
motion even when the Richardson number is locally
smaller than the transitional value for the case of height-
independent shear and stratification. The behavior of
the limit cycle motion for the more general case be-
comes difficult to summarize further since the vertical
mean profiles may assume an infinite variety of forms.
When the direction of the mean shear varies with
height, an additional equation analogous to (6b) is
needed for the other horizontal component of mo-
mentum. In spite of these complications, the shear-
drag fixed point solutions predicted by height-inde-
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~pendent shear remain an important influence on the
more complicated limit cycle motion.

The aspect ratio of the limit cycle motion is sensitive
to the choice of the parameter C which controls the
rate at which horizontal kinetic energy is converted to
vertical kinetic energy through implied pressure fluc-
tuations (section 2¢). The influence of the value of C
on the aspect ratio of the limit cycle eddies can be
concisely predicted by multiplying (6a) by w and (6b)
by u, integrating over one limit cycle, using the fact
that the variables return to their same values after one
limit cycle, and finally noting that integrated time de-
rivatives vanish. We then obtain for the velocity com-
ponents:

P(w?) = (g/©)[wh] — Cluw]U.P(u?) = —[uw]U,
(27)
where square brackets indicate integration over one
limit cycle and the operator P defines integration over
one limit cycle in the following form:

P=lwsn [+ [v]. v
Then, we obtain
P(w?)/P(u*) = (C — Rf) (29)
where the flux Richardson number is defined as
Rf = (g/0)[w0]/[wu]U.. - (30)

As the flux Richardson number approaches the value
of C, the vertical motions vanish even in the linear
case of vanishing C,. The vertical kinetic energy is
larger for larger values of C since this coefficient rep-
resents the efficiency at which vertical motions are
generated from shear-induced pressure fluctuations.

6. Eddy transport

With vanishing diffusion velocity, the heat flux av-
eraged over one limit cycle also vanishes. In this case,
the limit cycle motion is just recirculating the same
fluid. However, distortion of the limit cycle motion by
pressure effects leads to net momentum flux even with
vanishing diffusion velocity.

With nonzero small scale diffusion, limit cycle mo-
tions lead to net heat transport since mixing occurs
between the element and the ambient fluid at all levels
and the element is no longer recirculating the same
fluid. For example, in a stratified ambient flow, the
downdrafts of the elements will be warmer than the
updrafts. In still other terms, the small-scale diffusion
alters the phase between vertical motion and other
variables leading to net vertical transport even when
averaged over one limit cycle.

The vertical fluxes and eddy diffusivities predicted
by the modeled Lagrangian element are of considerable
practical interest. With the present approach, a priori
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constraints are not imposed on the eddy diffusivity or
the length scale of the vertical mixing. Instead, the
pressure drag coefficient and diffusion velocity must
be specified. We therefore need to evaluate the behavior
of the eddy diffusivities predicted by the limit cycle
model as they relate to the Richardson number, dif-
fusion velocity and pressure drag coefficient. To study
the dependence on the Richardson number, we choose
plausible values of «,/L = 0.002 and C,/L = 0.005.

The eddy diffusivities computed from the limit cycle
motions exhibit the expected decrease with increasing
Richardson number (Fig. 6) and drop to negligible
values as the Richardson number exceeds the critical
value. At small Richardson numbers, the diffusivity
for heat may become comparable to cr larger than the
eddy diffusivity for momentum (Prandtl number O(1))
depending mainly on the value of the diffusion velocity.
At larger Richardson numbers, the diffusivity for mo-
mentum exceeds that for heat (Prandtl number > 1)
due to momentum transport by pressure fluctuations
associated with nonzero C,,.

At very small Richardson numbers, the vertical
length scale of the limit cycle motion and the eddy
exchange coefficients become unrealistically large in
the present artificial case of height-independent shear
and stratification. With more realistic profiles of shear
and stratification, the layers of small Richardson num-
ber are of limited thickness which constrains the depth
of the modeled limit cycle motions (séction 5) which,
in turn, reduces the eddy diffusivities resulting from
the limit cycle motions. The “best” values for these
coeflicients probably also depend on the grid defining
the mean profiles, whether from data or from a larger-
scale model. For example, with crude vertical resolu-
tion, the Richardson number for the layer between grid
levels may be large while, in reality, turbulence still
occurs but on smaller scales. This possibility suggests
use of a smaller value of u, than in the present study.

The dependence of the flux and diffusivities on the
values of the pressure-drag coefficient and the diffusion
velocity can be seen by multiplying (6b) by ¥ and (6¢)
by 6 and integrating over one limit cycle. Again, using
the fact that a given variable returns to the same value
after one limit cycle, we obtain

[wul = —(1/LU) {u[u?] + C,[u’V1}
[wh] = —(u./LS)[8°]

(3D
(32)

where the brackets [ ] indicate averaging over one
limit cycle. The fluxes not only vanish as C, and u,
vanish (simple buoyancy oscillation), as explicitly re-
vealed by (31)-(32), but also vanish as C, and u, ap-
proach very large values where the motion is completely
damped, and dependent variables on the right-hand
side of (31)~(32) vanish. Numerical solution of (6a)-
(6¢) for expected geophysical ranges of the diffusion
velocity and pressure drag coefficient, indicates that
the magnitude of the eddy diffusivities depend inversely
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FIG. 6. (a) The vertical depth of the motion £ for the limit cycle
eddies and parcel depth scale w,,, N™' and (b) the eddy diffusivity
for heat (K;) and Prandtl number (Pr) as a function of Richardson
number for C,/L = 0.005., u,/L = 0.002 and C = 0.25. The critical
Richardson number for this case occurs at approximately 0.24 above
which the limit cycle motion collapses to near zero fixed point motion.
The critical Richardson number increases with increasing C and de-
creasing u,.

on the pressure drag coefficient through reduction of
motion amplitude while the dependence on the dif-
fusion velocity depends on situation.

Relationships (31)-(32) verify that only the heat
flux vanishes with vanishing diffusion velocity while
the momentum flux remains nonzero with nonzero
pressure drag C,. More specifically, the eddy Prandtl
number : :

Pr=K,/K; = {[wul/U.}/{[w8]/S}
corresponding to (31)-(32) is of the form
Pr = {S2/ U2} {(Cplu)[Vi®] + [u?]}/16°].  (33)

The dependence of the eddy Prandtl number on the
ratio (C,/u,) reflects the transport of momentum by
the modeled pressure term. However, the amplitude
of the limit cycle motion is inversely related to the
pressure drag coefficient in such a manner that the net
influence of the pressure drag coefficient on the Prandtl
number (33) is small. The Prandtl number decreases
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with increasing diffusion velocity corresponding to the
relative increase of heat transport; i.e., with large dif-
fusion velocity, the transport by pressure effects is no
longer as important.

Relationship (33) also indicates the expected in-
crease of the Prandtl number with increasing Richard-
son number as can be seen from the first factor on the
right-hand side. With large Richardson number, the
flow becomes more like a shear-modified buoyancy os-
cillation which transports momentum through pressure
effects but does not efficiently transport heat. Numer-
ical evaluation of (6a)-(6c) indicates that the increase
of the Prandtl number with Richardson number tapers
off as the Richardson number approaches the critical
value (Fig. 6).

The model can therefore be “tuned” by adjusting
the pressure drag to produce the expected magnitude
of the eddy diffusivity for heat, and adjust the value of
the diffusion velocity to produce the expected magni-
tude of the Prandtl number. This adjustment must rec-
ognize that the critical Richardson number increases
with decreasing u, and increases with increasing C.

While the measurement of eddy diffusivities from
geophysical and laboratory data are vulnerable to var-
ious measurement and sampling problems, we briefly
compare the eddy Prandtl number predicted by the
limit cycle model with that inferred from data. The
eddy Prandtl number in the atmosphere appears to be
as large as O(10) in very stable conditions (Kondo et
al. 1978; Mahrt 1985) and on the order of 2 or 3 above
the surface layer with modest stability (Lenschow et
al. 1988, their Fig. 12). Laboratory studies also indicate
an increase of the Prandtl number with increasing
Richardson number (Webster 1964; Arya 1975; Mi-
zushina et al. 1978; Rohr et al. 1988) although the
above studies disagree on the magnitude of the Prandtl
number. The decrease of the Prandtl number with in-
creasing gradient Richardson number is presumably
due to the transport of momentum by pressure fluc-
tuations possibly associated with internal gravity waves.

The above results are based on constant diffusion
velocity. One might iteratively relate the magnitude of
the diffusion velocity to the velocity of the element
motion averaged over one limit cycle and adjust L to
be proportional to the depth scale of the limit cycle
motion. However, this possible improvement is too
complex for present goals.

7. Conclusions

The Lagrangian equations for idealized turbulent
motions (6a)-(6¢) determine the fluxes in terms of
gradients on the scale of the transporting eddies. As
with the approaches of Stull (1984) and Fiedler (1984),
the present approach avoids -problems encountered
with the usual gridded models where modeled fluxes
are related to the gradients computed between adjacent
grid levels regardless of the scale of the transporting



1074

eddies. The present approach also avoids specification
of mixing lengths or eddy diffusivities but does require
specification of several other coefficients and is more
complicated than mixing length theory even with the
restrictions imposed in this study.

A key formulation in the present limit cycle mixing
model is the generation of vertical motions by pressure
fluctuations induced by shear-driven horizontal veloc-
ity fluctuations. This formulation leads to consistency
with the usual simple energy arguments and, in the
linear case, predicts the usual critical gradient Rich-
ardson number. In the nonlinear case, the critical
Richardson number may be considerably larger de-
pending on the value of the small-scale diffusion ve-
locity and represents the transition between limit cycle
motions (steady periodic) and very weak flow.

For large Richardson number, the limit cycle is con-
trolled by the fixed point solution corresponding to
motionless flow. As the Richardson number decreases,
the element motion becomes distorted by the attraction
of two additional fixed points associated with shear
and drag.

The amplitude of the motion and values of the dif-
fusivities decrease with increasing pressure drag coef-
ficient. The eddy diffusivities predicted by the limit
cycle motion decrease smoothly with increasing Rich-
ardson number and then decrease sharply at the critical
Richardson number. The eddy Prandtl number in-
creases with Richardson number since the transport of
momentum by pressure effects remains important
while the heat and mass transport is reduced by the
stability.

Obvious improvements to the model mclude exten-
sion to three dimensions, generalization of the mixing-
entrainment formulation allowing for changing size
and diffusion velocity of the fluid element, adoption
of a more complete formulation of the pressure terms
and application to shallow moist convection. However,
these improvements would compromise the physical
and mathematical simplicity of the present model. The
details of application of the limit cycle equations to
formulate mixing in larger scale models, including the
“best” choice of values of the coefficients, will probably
depend on the specifics of the larger-scale model in-
cluding vertical resolution. The model might also be
applied to dispersion problems where equations (6a)-
(6¢) map an initial distribution of parcels into a new
distribution at a later time. In this case, random forcing
as in Csanady (1964 ) and Pearson et al. (1983) might
be appropriate.
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