1 JuLy 1992

NAPPO AND CHIMONAS

1075

Wave Exchange between the Ground Surface and a Boundary-Layer Critical Level

CARMEN J. NAPPO

Air Resources Laboratory, National Oceanic and Atmospheric Administration,
Atmospheric Turbulence and Diffusion Division, Qak Ridge, Tennessee

GEORGE CHIMONAS

School of Geophysical Sciences, Georgia Institute of Technology, Atlanta, Georgia

(Manuscript received 17 December 1990, in final form 21 August 1991)

ABSTRACT

Gravity waves induced by two- and three-dimensional terrain features are examined theoretically in the
planetary boundary layer (PBL) using a linear wave model that includes reabsorption at a critical level. The
PBL structure is characterized by a constant Brunt-Viisild frequency and a hyperbolic tangent wind speed
profile, which can be adjusted to produce critical levels. It is found that for typical values of wind speed and
thermal stratification in the stable PBL and for even mild terrain disturbances, the Reynolds stress and surface
drag caused by surface-generated waves can be at least as large as those conventionally associated with surface
friction. The wave drag will act on the PBL flow where wave dissipation occurs, for example, at a critical level
or in regions of wave breaking. The drag over a given crosswind section of a two-dimensional ridge is about
twice as great as that over a three-dimensional hill of approximately the same horizontal area. An entirely new
result is the prediction that over a three-dimensional hill the wave stresses may generate a horizontal layer of
counterrotating vortices immediately below a critical level.

1. Introduction

The parameterization of the flux of atmospheric
momentum to the ground surface is among the im-
portant objectives of boundary-layer meteorology.
Conventional boundary-layer theory is concerned
mainly with the vertical transport of momentum by
turbulence. However, it has been shown (Chimonas
and Nappo 1989) that internal gravity waves generated
by gentle surface irregularities also transport significant
amounts of atmospheric momentum to the ground
surface. The purpose of this paper is to evaluate the
magnitude of this wave-generated stress relative to the
turbulence-generated stress when the PBL flow absorbs
the wave at a critical level. Some associated peculiarities
of such flows in the case of waves generated by three-
dimensional hills are also examined.

Many papers have been published on the subject of
gravity waves in the atmosphere; however, only a small
percentage of these have been directed toward gravity
waves in the boundary layer, and almost no attention
has been paid to the role they may play in the dynamics
of the boundary-layer mean flow (but see Hines 1970).

Sawyer (1959) recognized that the generation of
gravity waves by a mountain requires a transfer of mo-
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mentum from the atmosphere to the ground surface.
This extraction of momentum should then act much
like a frictional stress somewhere on the atmospheric
flow. Sawyer assumed that about half of the wave drag
would be exerted on the lowest 3 km of the atmosphere,
and the remainder would be distributed over the upper
troposphere and stratosphere. Subsequently, Eliassen
and Pailm (1960) showed that unless these mountain
waves are absorbed they will transfer momentum ver-
tically at a constant rate; that is, the Reynolds stresses
associated with each wave will be constant. Obviously,
if the wave stress is to have an effect on the atmosphere,
the waves and the momentum they carry must be ab-
sorbed by the mean flow. Booker and Bretherton
(1967) showed that, according to linear wave theory,
when a wave passes through a level where the horizontal
phase velocity of the wave equals the background wind
speed, the wave Reynolds stress is reduced by a factor
exp[—2x(R, — 0.25)'/%], where R, is the local Rich-
ardson number. If R, is unity or larger, this is a sub-
stantial reduction; for example, 4 X 10~> when R,
=1 and 5 X 107 when R, = 4. Such a convergence
of the Reynolds stress across the “critical level” would
allow the wave drag generated at the ground surface
to act on the atmosphere.

How, or indeed whether, the wave momentum is
transferred to the mean flow at the critical level is not
certain. The linear wave theory suggests that the Reyn-
olds stress is reduced there. However, the theory also
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predicts that as the wave approaches a critical level
(z = z.), the horizontal velocity perturbation grows
as (z, — z)"'/2, where z. is the height of the critical
level and z is the height of the wave above the ground
surface; eventually, the velocity perturbation becomes
so large that the linear theory ceases to apply. It is as-
sumed that the wave becomes unstable and breaks
down into turbulence in the vicinity of the critical level.

Because the mountain waves are stationary, their
horizontal phase velocities are necessarily zero. Critical
levels for these waves will exist wherever the component
of the background wind in the direction of wave prop-
agation reverses direction. The basis of the research
described in this paper is that identical processes occur
in the stable planetary boundary layer; only the scales
of the problem will differ. For the mountain wave
problem, the horizontal and vertical length scales are
typically 10 km and 1 km, respectively; for the surface-
generated wave in the PBL, the horizontal and vertical
length scales are more likely 1000 m and 100 m, re-
spectively. The vertical displacements of air parcels by
these waves in the PBL will be quite small in compar-
ison to those generated by mountains; however, these
boundary-layer waves and their associated stress are as
important on the PBL scale as the mountain waves are
on the global scale.

Only a few studies have been made of vertically
propagating gravity waves launched by three-dimen-
sional obstacles. Blumen (1965) calculated the wave-
generated momentum flux and surface drag for a ro-
tating atmosphere. Bretherton (1969) calculated the
momentum transport by gravity waves launched from
a 90-km-square region in North Wales. Blumen and
McGregor (1976) examined the effects of crosswind
and vertical shear on wave drag over a three-dimen-
sional hill. Smith (1980) looked at several aspects of
the flow structure over a mountain, including the near
and far fields, the breakdown of linear theory, the cri-
terion for flow around the mountain, and the effects
of nonhydrostatic flow. Simard and Peltier (1982) cal-
culated the perturbation flow fields produced by iso-
lated islands in the Norwegian and Barents seas; also,
their model included critical levels. Hines (1988) de-
veloped analytical expressions for the wave drag and
average Reynolds stress for the case of uniform, hy-
drostatic flow over a mountain. Lin and Li (1988) used
linear theory to examine the three-dimensional re-
sponse of a shear flow to elevated heating resulting in
thermally forced gravity waves. All of these studies are
cast in terms of disturbances on the tropospheric scale.
On the PBL scale, a majority of the terrain disturbances
are three-dimensional, for example, bluffs, buttes, hills,
and broken ridges; thus, it can be expected that the
wave perturbations generated by these obstacles will
be an important part of the PBL dynamics.

The wave-turbulence processes discussed above have
no simple counterpart over flat terrain, yet almost all
studies of turbulence in the PBL have been made over
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nearly flat surfaces (Businger et al. 1971; Clarke et al.
1971; Izumi and Caughey 1973; Kondo et al. 1978;
Yamamoto et al. 1979; Mahrt et al. 1979; Garratt
1983). From these observations, flux—-profile relation-
ships have been developed that formed the basis for
model studies (see, for example, Delage 1974; Wyn-
gaard 1975; Brost and Wyngaard 1978; Rao and Snod-
grass 1979). Basic to these studies is the assumption
that the upper-level flow does not directly sense the
presence of the ground surface (Nieuwstadt 1984).
However; there are few truly flat ground surfaces of
significant extent in nature. Even small undulations in
terrain elevation generate gravity waves that lead to
Reynolds stresses not accounted for in these flux-profile
formulations. Current PBL parameterizations under-
estimate the momentum flux over regions of even
moderately complex terrain (Chimonas and Nappo
1989).

In the absence of critical levels, wave dissipation is
quite weak, so if waves are to significantly affect the
mean state of the PBL, critical levels are probably es-
sential. Critical levels occur where the component of
the background wind in the plane of the wave vanishes,
that is, where this component reverses direction. Over
regions of complex terrain, wind reversals within the
PBL are quite common, Above sloping terrains, down-
slope drainage winds with an upslope return wind aloft
are often observed (see, for example, Hootman and
Blumen 1983; Clements et al. 1989). Figure 1, taken
from Mahrt (1985), shows the wind and temperature
fields in the PBL constructed from instrumented air-
craft flights over moderately complex terrain in central
Oklahoma. During these flights, a northerly surface
flow undercut a less stable southerly flow. It is inter-
esting to note in Fig. 1 that regions of high turbulence
as measured by the vertical velocity variance are con-
centrated in regions of wind reversals. The above ex-
amples represent wind reversals in two-dimensional
flows; however, when the horizontal wind direction
varies strongly with height, it is possible that an azi-
muthal component of the surface wind normal to a
terrain feature will reverse its direction somewhere
aloft.

Over flat uniform terrain, wind reversals within the
PBL are unlikely, but over flat terrain surface-generated
gravity waves are also unlikely. There are many con-
centrations of population and industry in regions with
complex terrain. Thus, the present study is relevant
especially if more reliable models of complex terrain
flow fields are to be developed.

2. Mathematical framework and model equations

a. The wave equations

The starting point in the analysis is the Taylor-
Goldstein equation (Gossard and Hooke 1975), which
describes the propagation of gravity waves [see Smith
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(1979) for a detailed discussion of mountain waves].
Assuming horizontally uniform and steady background
flow, U(z), the Taylor~Goldstein equation for waves
generated by a two-dimensional ridge is
. N U
ot |

where W(k, z) is the Fourier transform of the wave-
perturbation vertical velocity, N the Brunt-Viisili
frequency, & the horizontal wavenumber, and subscript
z the vertical derivative. The Brunt-Viisild frequency
is given by

-—kz]w=0, (2.1)

_ 8 %%
0062’

where g is the acceleration of gravity, 6 the potential
temperature, and 6, its unperturbed value. It is under-
stood that U is directed normal to the ridge line, and
the flow is in the positive x direction. The vertical ve-
locity in physical space is given by

N? (2.2)

=]

w(x, z) = 1 Wik, z)e**dk.

277' —c0

(2.3)

It is useful to introduce a nondimensional shape func-
tion ¢(k, z) defined by

wi(k, z) = ikUph(k)¢(k, z), (2.4)

where Uy = U (z = 0), and A(k) is the Fourier trans-
form of the terrain height profile, that is,

(k) = f h(x)e **dx. (2.5)
At the bottom boundary, we require ¢(k, 0) = 1, which
renders the kinematic boundary condition for w. At
the top of the model, we impose the radiation condition
on ¢; that is, only upward propagation of energy is
allowed.

For the case of flow over a three-dimensional hill,
the Taylor-Goldstein equation is

o+ (k* + I)N* (kU + IV.;)
2 (kU + IV)? KU+ IV

— (k* + 12)]W

=0, (2.6)

where Vis the background velocity component and /
is the wavenumber in the y direction. A shape param-
eter ®(k, [, z) defined by

Wik, 1, z) = i(kUy + IVo)h(k, D®(k, I, z)

is introduced, where Vy = V' (z = 0) and

(2.7)

h(k, 1) = f f h(x, y)e ‘e Wdxdy.  (2.8)

At the bottom boundary we require ®(k, /, 0) = 1,
and at the top boundary impose the radiation condition
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on ®. The wave amplitudes of the horizontal pertur-
bation velocities are given by

) ik [WIAU,— kV,) 9w
ok, 1, z) k2+12[ KU V) az] (2.92)
A =il k(U — kv, o%
ok, l’z)"k2+12[ (kU + V) az]' (2.9b)

Note that by setting / = 0 in (2.9a, b), the solutions
for the two-dimensional ridge problem are obtained.

A nondimensional form of (2.1) is obtained by in-
troducing the dimensionless variables

Uy =UlUy, zyo=2z/H
ke =kH, N,=NH/Uy, (2.10)

where H is the maximum ridge height. Then (2.1) along
with (2.4) becomes

F? 1 4%U.
SR b=l LG

where F = Uy/ NH is the Froude number.

b. Wave drag

The drag per unit crosswind direction over a two-
dimensional ridge, D, is obtained by integrating the
Reynolds stress at the ground surface over all x,

_ o0 . _ ooi . ,
D J:OO puwdx J; - [ Uoh(K)1%k
X Im[¢(k, 0) _déz o*(k, O)]a’k, (2.12)

where p is the average PBL air density, an asterisk rep-
resents the complex conjugate value, and Im[ ] selects
the imaginary part of the expression in braces. In the
absence of wave dissipation, the wave Reynolds stress
is constant with height; however, at a critical level where
wave absorption occurs, the stress acts on the mean
flow. This provides the fluid deceleration that is the
reaction to the drag exerted by the mean flow at the
surface. While details of wave absorption are not con-
tained in linear theory, the response of the mean flow
can be estimated with a simplified analysis. Let the
wave be absorbed over a distance & below the critical
level. The deceleration of the layer of fluid that absorbs
the stress obeys

*® DU,
-0 Dt

where U, is a second-order perturbation flow generated
by the first-order wave perturbations (Booker and
Bretherton 1967). The advective term is approximated
in the mean by the zero-order advection associated with
the mean field U, so

—pd dx =D, (2.13)
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FIG. 1. Two cross sections of low-level airflow constructed from aircraft data taken with two
similar undulating flight tracks (Mahrt 1985). Lower solid line marks the terrain surface. Potential
temperature (°C, solid lines); dotted lines enclose regions of vertical velocity variance greater

than 0.0l m?s™2,

D d

Dt~ Yaxe
and the total change of flow across the ridge, AU,,
becomes
© 8U,

—=dx = —D/(psU).

A =
U2 —o OX

(2.14)
The appropriate value to associate with U is the mean
speed of the fluid layer that does the absorbing, say
U(z.— 8/2) = U,. However, it is now seen from (2.14)
that if (D/pd) = U2, then the second-order flow builds
to the point where it is equal and opposite to the zero-
order mean flow, at which point continued passage
across the ridge ceases. In the sense described by Hines
(1988), we take this to be a blocking condition. Because
U(z.) = 0, the nearby value U, can be expected to be
small, making blocking likely for quite moderate values
of the drag D.

Over a three-dimensional hill, the Reynolds stress
in the along-wind direction, 7, and in the crosswind
direction, 7, are given by

7x(X, ¥, 2) = —pu(x, y, 2)w(x, y, z)

7(x, ¥, 2) = —pv(x, ¥, 2)w(x, y, z). (2.15)

For the case of flow over a symmetric hill, v(x, y,
z) = —v(x, ~—y, z); hence, the drag components are

Dx=~5f dyf uwdx

D,=0. (2.16)

¢. Wave-induced vorticity

Over a three-dimensional obstacle, horizontal vari-
ations in the Reynolds stresses absorbed into the flow
lead to the creation of mean vorticity. The process is
illustrated in Fig. 2. Wave amplitudes, and hence
Reynolds stress, maximize on the line of symmetry
through the height profile and fall to zero at large dis-
tances from the obstacle. Since the horizontal layer of
fluid that absorbs the stress is near a critical level and
hence advects only at a very slow speed, the torques
associated with the stress have time to cause a signifi-
cant spinup of the fluid. The outcome of such gener-
ation of circulation appears to be the formation of a
pair of counterrotating vortices, as depicted in Fig. 2.
The process can be analyzed by equating the second-
order terms in the wave-perturbation amplitude; the
horizontal momentum equations yield



{ JuLy 1992

TOP VIEW IN CRITICAL LEVEL PLANE

M\ding Vortices

Wave Momenta
Absorbed By
Background Flow
4 }
|
!
|
l
l
] P Critical Level
I o — Maximum
Wave Amplitude

DOWNWIND VIEW

Mountain
Waves

Wave Propagation

Cross Wind Direction

FI1G. 2. Schematic illustration of wave-induced vorticity
at a critical level above a three-dimensional hill.

DU, 9P 91y
P"or T T x T ez (2.17)
and
_DV, 8P, or,
e R 1
P "D dy | oz’ (2.18)

where some second-order wave-pressure gradients have
been ignored. A similar equation is discussed by Booker
and Bretherton (1967). An equation for the evolution
of the vertical component of vorticity, ¢,

sy AU,

{=—-—

ox ady’
is now obtained from (2.17) and (2.18) as

(2.19)

D¢ 10s
— == 2.20
Dt paz’ ( )
where
dry, O7y
=== - — 2.21
s ox Oy ( )

is the stress couple acting in the horizontal plane in
the wave-absorbing layer. The simplest solution to
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(2.20) is obtained near a critical level where the hori-
zontal wind speed is small. In this case, (2.20) is ap-
proximately
o _1as
o padz’
Because the wave stresses are time-independent, (2.22)
can be immediately integrated to yield

1ds
g—='__——(f‘-l0),
p 0z

(2.22)

(2.23)

where f; is the time at which the upward propagating
gravity waves first reach that height near the critical
level where absorption begins. If this absorption is taken
to be complete over a distance 6 below the critical level,
then the perturbation vorticity is

F=—=(t—t), (2.24)
po

where s is evaluated at distance é below the critical
level. In this case, the perturbation vorticity is predicted
to increase linearly with time, but this can only con-
tinue as long as the total mean state maintains the con-
ditions that allow wave absorption without significant
advection of vorticity out of the region.

d. The critical level

The mathematical treatment of critical levels in at-
mospheric dynamics is presented by Booker and
Bretherton (1967), who follow an analysis given by
Miles (1961). Detailed descriptions of the computa-
tional techniques for integrating the Taylor-Goldstein
equation across the singularity at the critical level can
be found in, for example, Lalas and Einaudi (1976),
Simard and Peltier (1982), Craik (1985), and Nappo
(1989). A brief description of the technique is given
in the Appendix.

e. The model parameters

The two-dimensional ridge is modeled by a Gaussian
distribution

h(x) = He ™%, (2.25)

where H is the maximum elevation of the ridge and
b is the scale of the ridge width. The half-width of the
ridge is given by 0.83b. The finite Fourier transform
of 2(x) over the interval —L < x < L is
- HoVr o, v H
= WA SLbt 1 1 (2.26
h(kn) 3L € Ole L (2.26)

n

where L is chosen large enough to include all the im-
portant features of the disturbed flow and all the effec-
tive displacement associated with the ridge so that the
correction O( ) in (2.26) can be ignored. We find
that the finite Fourier series converge in a satisfactory
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way with L/b = 20. The three-dimensional isotropic
hill is also Gaussian,

h(x,y) = Hge™ *x*+y0? (2.27)

with Fourier transform

h Hgb*n 2412152
h(kn, In) = — 5 e~ (kitlm)b®(4
AL

H
+ o(e-“/"’ m) . (2.28)

The background wind V = XU(z) is modeled by a
hyperbolic tangent profile

2U(z) = (Ug + Ur)
— (Up — Ur) tanh{(z — z;)/z]. (2.29)

The inflection point, z;, is fixed at 200 m above the
ground surface, z = 0, and the scale of the wind shear,
Z,, is fixed at 50 m. Accordingly, the ground-level wind
speed, U(0), is essentially Uy, while for all heights
above 300 m, the wind is very close to the constant
value Ur. Note that when U and Uy are of opposite
sign, a critical level exists. For most of the calculations,
the background thermal stability is held constant at
0.025 K m™', which gives a Brunt-Viisild frequency
0f 0.03 s~!. The upper boundary of the model is set at
1000 m.

The wavenumbers used in the calculations are given
by

(2.30)

where the maximum value of integer » is 50, which
makes the smallest Fourier wavelength, A5, equal to
0.8b. This truncated spectrum includes all the Reyn-
olds stress, since examination of (2.12) and (2.26)
shows that the stress spectrum peaks at wavenumber
k such that (kb/2)? = 1 and then falls off exponentially
as e~ */2? Thus, by wavenumber 50 the Gaussian has
fallen to 107 of its peak value and this, and higher,
wavenumbers are not significant in the drag compu-
tations.

3. Results
a. Two-dimensional ridge

The wave drag per unit length of ridge, D, was ex-
amined by Chimonas and Nappo (1989) for the special
case when no critical levels are present in the PBL. In
Fig. 3, we plot the curves of average Reynolds stress
over a ridge when critical levels are allowed. Three ridge
widths are considered: & = 150, 300, and 600 m; Up
is the wind speed at the bottom boundary, and Uris
the wind speed at the top boundary. The average stress
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FIG. 3. Average Reynolds stress above a two-dimensional Gaussian-
shaped ridge as a function of upper-level wind speed, Uy, for five
values of lower-level wind speed, Up. Values are normalized by the
square of the maximum ridge height.

is obtained by dividing D by 2.545, which is the width
of the ridge at height 0.2H. The terminations of these
curves in the negative Uy regions of the graphs mark
the points where the Richardson number at the critical
level becomes less than 1/4. The curves pass smoothly
through Ur = 0, which divides the critical and non-
critical level regimes. The wave stress is seen to be a
complicated function of the wind structure, that is, Uy
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and Uyr. Wave stress generally decreases with increasing
ridge width, but this is not a significant effect. It is
apparent from Fig. 3 that for sufficiently wide ridges,
the wave stress approaches a constant value for small
values of Up when a critical level is present, for ex-
ample, when » = 300 m and Uz = 2 m s~!. In these
instances, an acceptable estimate of the wave drag can
be obtained by setting Ur to a small positive value,
thus avoiding the need to consider the critical level.
However, this is generally not possible, for example,
when Ug = 5Sms™.

The average Reynolds stress as a function of Uy for
the three different ridge widths is plotted in Fig. 4 for
the case when Uy = —1 m s™'. The stresses over the
three ridge sizes are not greatly different. More inter-
esting is the tendency for the stress maxima to occur
at about the same values of Uy. This behavior is also
seen when critical levels are not present (see, for ex-
ample, Fig. 7 of Chimonas and Nappo 1989). We at-
tribute this behavior to the background wind structure.
The Scorer parameter, /2, defined as

¥ U,

v v’
partitions the gravity waves into external type, /2 < k?,
and internal type, /2 > k2. Whenever /2 decreases with
height, some waves will change from internal to exter-

nal type waves. External waves cannot propagate mo-
mentum vertically; however, if the external wave

2=

(3.1)

0.6

=1
Ur=-1ms$

Average Reynolds Stress / HZ x 10% (Nm'?)

FI1G. 4. Average Reynolds stress above a two-dimensional Gaussian-
shaped ridge as a function of surface wind speed for various ridge
widths.
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FIG. 5. Profiles of Scorer parameter for various values
of surface wind speed Uy with constant Uz = —1 ms™',

changes back into an internal wave, it will again prop-
agate momentum upward, but at a reduced value. Fig-
ure 5 shows vertical profiles of /2 for various values of
Up with Uy = ~1 m s™'. As the critical level is ap-
proached, U(z = z.) = 0 and /2 > . For Up greater
than about 4 m s™!, /2 decreases with height below the
critical level and the high wavenumber gravity waves
switch to external waves. As Up increases in value, more
of the waves become external. However, because [
becomes quite large near the critical level, all of the
gravity waves must return to the internal type before
they are absorbed, but they will have decreased am-
plitudes. Because of this the wave stresses reach max-
imum values at about the same values of Up regardless
of the ridge width, as shown in Fig. 4.

To compare the relative magnitudes of wave stress
and friction stress, we plot, in Fig. 6, the wave stress
as a function of surface wind speed for three different
values of N. The friction stress is given by 3pCpU3,
where Cj, is the aerodynamic drag coefficient; we use
Cp=0.005;also b= 150mand H = 15 m. Thisis a
gentle ridge with an aspect ratio a = H/(0.83b) of
0.12, yet for typical PBL conditions, the wave stress is
as important as the friction stress.

In the hydrostatic limit, Nb/U > 1, Hines (1988)
shows that, for the case of uniform wind speed, U, and
constant Brunt-Viisidld frequency, N, the average
Reynolds stress over a Gaussian-shaped ridge is given
by

7 = 0.4pUH*N/b. (3.2)

If 7 is expressed in terms of a drag coefficient for waves
following Blumen and McGregor (1976), that is, 7
= %Z’CDWU:Z, then

Cpw = 0.8NH?/Ub = 0.662/F, (3.3)
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FIG. 6. Average Reynolds stress above a two-dimensional Gaussian-
shaped ridge as a function of surface wind speed for various values
of N.b=150m, Ur=~1 ms~}, and H = 15 m. Also shown is the
friction stress for Cp = 0.005.

where F = U/NH is the Froude number. Unlike the
surface drag coefficient, Cp;-is not independent of wind
speed. Typically, @ ~ 0.06 and F ~ 10 so that Cpy
= 0.005, which is similar to typical values of surface
drag coefficient.

A useful result is obtained if we perform our cal-
culations in nondimensional space. In this case, (2.11)
is used for the dimensionless wave solution. The non-
dimensional drag is obtained by using the dimension-
less parameters (2.10) in (2.12). The dimensionless
drag is then given by D/ipHU%. Curves of dimen-
sionless wave drag are given in Fig. 7 for aspect ratios,
o, 0of 0.06, 0.12, and 0.24, respectively. The curves in
each graph are scaled by the inverse square of their
respective Froude number F~2 = (NH/Ujg)?, and the
terminations of these curves for F~2 = 0.001 and 0.01
mark the points where R, < 0.25. For the same con-
ditions leading to (3.2), Hines (1988) shows that the
wave drag is D = pUH’N. Dividing this by 45 HU?
gives the dimensionless wave drag

D, =2F", (3.4)
Thus, in the hydrostatic case, the dimensionless wave
drag is constant. This is observed in Fig. 7 for U/ Uz
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< 1l and F2 = 0.1. It is also seen in Fig. 7 that the
wave drag is maximum in the hydrostatic case.

b. Wave breaking and flow blocking

Where the horizontal velocity component of a
standing wave is equal and opposite to the background
wind speed, the flow streamlines become vertical and
a blocking condition exists. Further increase in wave
amplitude results in convective instability and wave
breaking. Numerical simulations of airflow over
mountains by Clark and Peltier (1977), Peltier and
Clark (1979), Durran (1986), and Bachmeister and
Pierrehumbert (1988) suggest that wave breaking leads
to a reorganization of the flow field, resulting in severe
downslope winds and large surface drag. Within the
wave-breaking region a wave-induced critical layer is
generated, and because the Richardson number is nec-
essarily less than 1/4 (since this is a region of convective
instability ), wave reflection rather than wave absorp-
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tion occurs. If this critical layer is near certain distinct
heights, a resonance is established between the upward-
propagating and downward-propagating reflected
gravity waves. Wave breaking is an important process
in the deep troposphere, and it is reasonable to expect
that it is equally important in the boundary layer.
Wave breaking cannot be realized in a linear model
since the wave fields and the background flow fields
are independent. However, regions of flow blocking,
that is, where the total horizontal wind speed is zero,
can be identified. For example, Hines (1988) shows
that for a homogeneous flow over a bell-shaped ridge
the blocking condition is F < F, = (.5, where F_is the
critical Froude number at which the flow first becomes
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statically unstable at some point. On the basis of lab-
oratory experiments in a salt-stratified water channel,
Rottman and Smith (1989) conclude that for all nat-
urally occurring ridges with aspect ratios less than 0.16,
F. = 1.0. This value is twice as great as Hines’ value,
and this suggests that the linear model underestimates
the occurrences of flow blocking. Hines (1988) and
Rottman and Smith (1989) studied homogeneous
flows; the presence of height varying winds and ambient
critical levels will lead to different results.

Figure 8 shows a series of flow “solution” lines above
a ridge as the upper-level wind speed is reduced from
4to—1m s~ ! with Uz constant at 4 m s, These lines
are given by
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X

1
ns(x,z) =z + T Js

The streamline originating at z = 0 far upstream rep-
resents the ridge height profile. For the case shown in
Fig. 8, the aspect ratio is 0.12, and for the vertically
uniform wind case (Fig. 8a) the Froude number is 4.4,
which is well above the value of F,; we can assume
that blocking does not occur. Above the ridge the

w(x, z)dx. (3.5)
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streamlines are somewhat regularly spaced and wave
amplitude decreases with height. When Ur is reduced
to 2 m s™! (Fig. 8b), the streamline perturbations shift
upwind and become more aligned above the ridge. Now
wave amplitude increases with height, and the stream-
lines above about 300 m steepen. When Uy is further
reduced to 1 m s~' (Fig. 8c), the lines above 300 m
cross. In this case, these lines are no longer streamlines.
We take this behavior to be symptomatic of the break-
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FIG. 9. Profiles of background wind speed (dashed) and total wind speed (solid) at x = —b/ V2 for the flow fields presented in Fig. 8.
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down of the linear wave theory; that is, the vertical
displacements, n;, become very large. In these regions,
flow blocking and wave breaking can be anticipated.
When Ur = —1 m s™', a critical level exists at a height
of about 245 m. Although not shown in Fig. 8d, the
lines originating between 200 and 250 m cross and
have amplitudes that exceed the scale of the graph.
Profiles of the background and total wind speed for
the four cases in Fig. 8 are plotted in Fig. 9. These
profiles are taken at the point x = —b/ \/5, which
is where the horizontal wave velocity will have a max-

2000
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imum negative value and where flow reversals will first
occur. For the uniform wind case (Fig. 9a), the vertical
variation of the wave perturbation horizontal velocity
is approxxmately equal to the hydrostatic wavelength
2w U/ N, thatis, 840 m. As the velocity shear increases,

so does the complexity of the total flow. When Ur = 1
m s~ (Fig. 9¢), the total flow first reverses its direction
at about 380 m. From Fig. 8¢, it is seen that the solution
lines (3.4) originating near these heights intersect, in-
dicating a breakdown of the linear theory. The vertical
wavelength of the perturbation in the upper-half space
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1s about 210 m, which equals the hydrostatic wave-
length in that region. Flow reversals are predicted to
occur at vertical intervals of about 100 m. When an
ambient critical level is present, as in Fig. 9d, the wave
amplitudes are greatly reduced above the critical level
so that higher altitude flow reversals are not created.

¢. Three-dimensional case
1) THE FLOW FIELDS

Figure 10 shows the horizontal fields of streamline
displacements at various heights above a Gaussian-
shaped hill. The hill is centered on the origin of the
coordinates, and the shaded circle represents the area
contained within the height contour 2 = 0.2Hg. For
this case, the Froude number is 2 and Nb/U = 4.5,
The streamline patterns in Fig. 10 are quite similar to
those found in Smith (1980) and Lin (1986), even
though those studies were based on a tropospheric
scaling. It should be noted that Lin (1986) examined
the flow perturbations caused by a three-dimensional
heat source, not a mountain. The flow streamline dis-
placements in the x-z plane at y = 0 are shown in Fig.
11. These streamlines are also quite similar to those
seen in Fig. 5 of Smith (1980). Wave amplitude de-
creases with height above the hill because of the hori-
zontal spreading of the disturbance field. The intro-
duction of a noncritical wind shear changes the flow
fields, but these are not significantly great changes. Over
reasonable differences between Uy and Upg, the
streamline displacements very much resemble those
shown in Figs. 10 and 11. However, the flow field is
significantly changed when a critical level is introduced.
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FiG. 11. Vertical displacements of flow streamlines above a three-
dimensional Gaussian-shaped hill in the x-z plane at y = 0 for the
flow field in Fig. 10.
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Figure 12 shows the horizontal fields of the vertical
displacements when a critical level is present. In this
case, Ur = —1 ms~!and Uz = 4 ms™'. The critical
level is at z = 235 m; the Richardson number there is
about 0.5. The flow disturbances now tend to remain
concentrated above the hill rather than spread out away
from the hill. At the first model level above the critical
level, z = 250 m, the amplitudes of the wave distur-
bances are reduced by about a factor of 10. The
streamline displacements in the x-z plane at y = 0 are
shown in Fig. 13. It is clear that the wave absorption
across the critical level is essentially complete. It is also
seen in Fig. 13 that below the critical level, the wave
amplitude grows with height above the hill. Just as in
the two-dimensional case, the wave disturbances be-
come extremely large as the critical level is approached.
In these cases, flow blocking can be expected.

2) WAVE DRAG

When a stable flow is directed over an isotropic hill,
as in the present case, the Reynolds stresses in the
crosswind direction, r,, will be antisymmetric. In this
case, their contributions to the wave drag will cancel
so that the total wave drag is given by

Dy = —ﬁf f u(x,y, 0)w(x, y, 0)dxdy. (3.6)

The average Reynolds stress, 7, over the hill is obtained
by dividing Dy by the horizontal cross-sectional arca
of the hill, which we take to be the area enclosed by
the height contour line 2 = 0.2H; (Hines 1988). For
an isotropic Gaussian hill, this area is 5.0652. Sample
curves of average Reynolds stress, normalized by H%
as functions of Uy, are shown in Fig. 14. Comparison
of these curves with corresponding curves in Fig. 3
shows that the average drag over a three-dimensional
hill is about half of that over a two-dimensional ridge.
This is in agreement with the results of Blumen and
McGregor (1976), which are based on a hydrostatic
flow and tropospheric scaling. The comparison of Fig.
14 with Fig. 3 also shows that the variations of average
stress with wind speed over two- and three-dimensional
obstacles are similar.

3) WAVE-GENERATED VORTICITY

In section 2c, we demonstrated that the horizontal
variations of 7, and 7,, defined in (2.15), generate a
perturbation vorticity when they are absorbed into the
mean flow near a critical level. Figure 15 shows the
spatial distributions of the stress couple s, defined in
(2.21), when a critical level is present. If the dissipation
distance 8, in (2.24), is 50 m, and if s = 5000 X 107°
N m™3, then { = 8 X 1075(z — #,) s'. For comparison,
the vorticity at midlatitudes due to the earth’s rotation
is about 10™* s~'. Thus, within a few minutes time,
the gravity-wave-generated vorticity will exceed this
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value. The horizontal contours of this vorticity will be
essentially identical to the contours shown in Fig. 15b.
We expect that these vortices will form standing eddies
above the hill much like whirlpools in a stream but
that the intensities of their circulations will increase
with time until other effects stabilize their amplitudes
or until the system breaks down.

Vortices in the lee of three-dimensional hills have
been observed in laboratory flows by Hunt and Snyder
(1980) and in nonlinear, nonhydrostatic model cal-
culations by Smolarkiewicz and Rotunno (1989).
Hunt and Snyder’s (1980) results show that the lee

vortices occur in conjunction with flow separation at
Froude numbers below 1.7. Smolarkiewicz and Ro-
tunno (1989) performed inviscid flow simulations and
showed that the lee vortices occur for values of Froude
number less than 0.5. Their use of a free-slip bottom
boundary condition precludes the generation of hori-
zontal vorticity in the boundary layer and subsequent
tilting into the vertical direction. They argue that the
lee vortices are generated by the tilting of the horizontal
vorticity created through baroclinic production as the
isentropes bend upward, and subsequently downward,
as the flow passes over the obstacle. Smith (1989) offers
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a different explanation. However, whatever the cause
of the vortices observed in Smolarkiewicz and Rotunno
(1989), it is not clear what role, if any, gravity waves
play; at such low values of Froude number it is certain
that the linear theory is not valid.

Our calculations do not predict vorticity in the flow
field. This is beyond the linear theory. Rather, we pre-
dict a potential for vorticity when wave absorption oc-
curs near a critical level. This mechanism is not limited
to low Froude number flows and is therefore a process
quite different than those proposed by either Smolar-
kiewicz and Rotunno (1989) or Smith (1989).
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FIG. 14. Average Reynolds stress above a three-dimensional
Gaussian-shaped hill as a function of upper-level wind speed. Values
are normalized by the square of the maximum hill height; N = 0.03 s™!
and b = 300 m.
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4. Concluding remarks

The resuits of this analysis suggest that surface-gen-
erated internal gravity waves are quite common in the
stable PBL. We have also seen that in regions of rough
terrain, where wave generation is most likely, large
wind-direction shears and flow reversals produce crit-
ical levels for these waves. This has two immediate
consequences. First, it presents a dynamic not yet ac-
counted for in conventional PBL theory; second, it of-
fers a means of observing this “mountain wave” phe-
nomenon close to the ground surface where measure-
ments can be made more easily than at higher
elevations of the atmosphere.

Conventional PBL theory assumes that the upper
levels of the stable layer do not directly sense the ground
surface, and gravity waves are not taken into account.
Further, it is commonly assumed that the stable strat-
ification always acts to keep turbulence levels low and
that turbulence decreases monotonically with distance
away from the ground surface. However, beginning
with the early observations by Durst (1933), Gifford
(1952), and Lyons et al. (1964) and later by, for ex-
ample, Bean etal. (1973), Kondo et al. (1978), Mahrt
(1985), and Gossard et al. (1985), it is now clear that
sporadic outbreaks of turbulence, that is, breakdowns
of the PBL structure, are common. Recently Nappo
(1991) performed a climatological study of these
breakdown events over simple and complex terrain.
He concludes that a major portion of the nighttime
exchange of heat, momentum, and atmospheric pol-
lutants between the atmosphere and the ground surface
occurs during these breakdowns, and that the statistics
of these events are essentially the same over urban,
rural, and complex terrain environments. It is quite
possible that these breakdowns are manifestations of
wave-turbulence interactions near PBL critical levels.

The linear theory predicts a reduction of Reynolds
stress as a gravity wave passes through a critical level.
However, exactly what happens there is unknown.
Numerical experiments using nonlinear hydrodynamic
models predict strong wave reflection at a critical level,
while wave saturation theory predicts a partial but
continuous reduction of energy as the wave approaches
a critical level. These theoretical investigations have
been limited to the upper atmosphere where wave am-
plitudes are large. However, this region of the atmo-
sphere is not generally accessible for observation. Ex-
cept for a difference in scaling, wave processes in the
PBL and the upper atmosphere are expected to be
identical. Indeed, the studies of wave-turbulence in-
teractions made by, for example, Einaudi and Finnigan
(1981) and Finnigan (1988) are based on measure-
ments made in the surface layer, and there is nothing
that would limit their results to the boundary layer.
Continuous measurements of wind speed, wind direc-
tion, turbulence, and wave activity throughout the
depth of the boundary layer are now possible using
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doppler sodar (for example, see Coulter 1990; Neff
1986); more sensitive measurements using sonic an-
emometers can be made on tall towers such as that at
Boulder, Colorado.

We have demonstrated that even mild perturbations
in surface height can launch internal gravity waves and
that the surface stress associated with these waves can
be larger than the friction stress. At a boundary-layer
critical level, we predict that the wave drag will act on
the mean flow, generating discrete regions of turbu-
lence. Patches of turbulence, as well as intermittent
breakdowns of the PBL stratification, have been ob-
served; we speculate that these events are consistent
with surface-generated gravity wave interactions with
boundary-layer critical levels. Our calculations show
that the average wave stress over a three-dimensional
hill is about half that over a two-dimensional ridge of
similar height and width. A new result is the prediction
of counterrotating vortices in the lee of a three-dimen-
sional isotropic hill near a critical level, where the wave
stresses act on the mean flow. Our investigations show
that wave processes in the PBL are not different from
similar processes in the upper atmosphere. However,
these processes can be more easily observed in the PBL.

Acknowledgments. This research was funded in part
by an agreement between the National Oceanic and
Atmospheric Administration and the U.S. Department
of Energy. It was supported in part by the National
Science Foundation under Grant ATM-8804623. We
thank Mrs. Ann Houston for her skillful typing of this
manuscript.

APPENDIX

Analytical Treatment of the Critical Level

A brief description of the analytical solution of the
Taylor-Goldstein equation across a critical level is
presented. We begin by expanding U(z) in (2.1) to
second order in a Taylor series about z.. This results

n
R, .
Voo + [—5 -2 R+ 1)+ 7]w =0, (A1)
n am

where
aU U
ay = _a; 3 a = .(gz— s n=z Zey
v=3(@/@) — K, R.=NYa}. (A2)

Then w is expressed by the Frobenious expansion
Wik, z. + 1) = 2 Cin"™*. (A.3)

n

Using (A.3) in (A.1) leads to recursion relations for
the expansion coeflicients, that is,
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(@2/a))(R,+ 1)
e e e Av4
Gi AA+ 1)+ R, o (A4)
C+vG
= . A5
2T A+ DN+ 2)+ R, (A.5)
The expansion parameter X is found to be
A =%ii[Rc—0.25]”2. (A.6)
Equation (A.3) can be expanded to get
Wik, ze+ n) = CinA(n) + Con* 4%(n), (A7)
where
C G o,
Amy=1+—=n+=2 A8
(m "t (A.8)

and the asterisk denotes the complex conjugate value.
To evaluate the complex constants C¢ and Cy , we first
take the vertical derivative of (A.7) to get

aw

—==C3n*B(n) + Con* B*(n),  (A9)
where
C
B(n) = M~ + G A+ 1)+ =N+ 2)n. (A.10)
Co Co
Then using (A.7) and (A.9), one gets
C¢ = (A4*dWw/dz — B*W)/D  (A.11)
Cy = (AdWw/dz — BW)/D*, (A.12)
where
D = A*B — AB*. (A.13)

At distance 5 below z., (A.7) and (A.9) become
Wk, z. — n) = C§(—1)*n*4(—n)

+ Ci(—=1)NA*(—1) (A.14)
and

.
z;‘v”" Ze = 1) = —Ci(~1)n*B(—n)

+ Co(=1)N N B¥(—1), (A.15)

respectively. Before (A.14) and (A.15) can be evalu-
ated, we must know how to express —1 in complex
form. Booker and Bretherton (1967) show that

-1 = e—ng >0 (A.16)
dz .
—1 =¢™ —dU < Q. (A.17)
dz

Zc

In the model, w and dw/dz are solved numerically
from the upper boundary to height z, + 5, where C¢
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and Cj are evaluated using (A.11)and (A.12). Below
the critical level, w(k, z. — 1) and dw/dz(k, z. — 1)
are obtained from (A.14) and (A.15), respectively. The
numerical solutions continue from this point down-
ward to the ground surface.
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