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1. INTRODUCTION

This article describes fluid turbulence with application to the Earth's oceans. We begin with the simple,
classical picture of stationary, homogeneous, isotropic turbulence. We then discuss departures from this
idealized state that occur in small-scale geophysical flows. The article closes with a tour of some of the
many physical regimes in which ocean turbulence has been observed, and a brief discussion of numerical
modeling.

Turbulent flow has been a source of fascination for centuries. The term "turbulence" appears to have
been used first in reference to fluid flows by da Vinci, who studied the phenomenon extensively. Today,
turbulence is frequently characterized as the last great unsolved problem of classical physics. It plays a



central role in both engineering and geophysical fluid flows. Its study led to the discovery of the first
strange attractor by Lorenz in 1963, and thus to the modern science of chaotic dynamics. In the past few
decades, tremendous insight into the physics of turbulence has been gained through theoretical and
laboratory study, geophysical observations, improved experimental techniques and computer simulations.

Turbulence results from the nonlinear nature of advection, which enables interaction between motions on
different spatial scales. Consequently, an initial disturbance with a given characteristic length scale tends
to spread to progressively larger and smaller scales. The simplest example of this is a one-dimensional
disturbance consisting of a single Fourier component u = sin(kx), subjected to the advection operation
u, = —uu_ (where subscripts denote partial derivatives). The advection operation introduces a new

Fourier component with wavenumber 2k . More generally, advection of a disturbance with wavenumber
k by a second disturbance with wavenumber / introduces two new components with wavenumbers
k+[and k—1.In real turbulence, this expansion of the spectral range is limited at large scales by
boundaries and/or body forces, at small scales by viscosity. If the range of scales becomes sufficiently
large, the flow takes a highly complex form whose details defy prediction.

The roles played by turbulence in the atmosphere and oceans can be classified into two categories:
momentum transport and scalar mixing. In transporting momentum, turbulent motions behave in a
manner roughly analogous to molecular viscosity, reducing differences in velocity between different
regions of a flow. For example, winds transfer momentum to the Earth via strong turbulence in the
planetary boundary layer (a kilometer-thick layer adjacent to the ground) and are thus decelerated.

Scalar mixing refers to the homogenization of fluid properties such as temperature by random molecular
motions. Molecular mixing rates are proportional to spatial gradients, which are greatly amplified due to
the stretching and kneading (i.e. stirring) of fluid parcels by turbulence. This process is illustrated in figure
1, which shows the evolution of an initially circular region of dyed fluid in a numerical simulation. Under
the action of molecular mixing (or diffusion) alone, an annular region of intermediate shade gradually
expands as the dyed fluid mixes with the surrounding fluid. If the flow is turbulent, the result is
dramatically different. The circle is distended into a highly complex shape, and the region of mixed fluid
expands rapidly.

Figure 1: A comparison of mixing enhanced by
turbulence with mixing due to molecular processes
alone, as revealed by a numerical solution of the
equations of motion. The initial state includes a circular
region of dyed fluid in a white background. Two possible
evolutions are shown: one in which the fluid is motionless
(save for random molecular motions), and one in which
the fluid is in a state of fully developed, two-dimensional
turbulence. The mixed region (yellow-green) expands
much more rapidly in the turbulent case.




2. THE MECHANICS OF TURBULENCE

We now describe the main physical mechanisms that drive turbulence at the smallest scales. The

description is presented in terms of strain and vorticity, quantities that represent the tendency of the flow
at any point to deform and to rotate fluid parcels, respectively (figure 2). A major and recent insight is that
vorticity and strain are not distributed randomly in turbulent flow, but rather are concentrated into coherent

regions, each of which is dominated by one type of motion or the other.
Vorticity
Figure 2: Schematic representations of vorticity and strain, in terms of
the effect they have on an initially circular fluid parcel in two-dimensional
flow. Vorticity rotates the parcel without changing its shape. Strain
stretches the parcel in one direction and compresses it in the orthogonal
direction (to conserve mass). Flow in the neighborhood of a point Strain
following the motion can always be decomposed into a vortical
component and a strain component. In three dimensions the geometry is
more complex, but the concepts are the same.

The first mechanism we consider is vortex rollup due to shear instability (figure 3). This process results
in a vorticity concentration of dimension close to unity, i.e. a line vortex. Line vortices are reinforced by
the process of vortex stretching. When a vortex is stretched by the surrounding flow, its rotation rate
increases to conserve angular momentum. Opposing these processes is molecular viscosity, which both
dissipates vorticity and fluxes it away from strongly rotational regions.
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Figure 3: Schematic illustration of line vortices and strained Figure 4: Computer simulation of turbulence as it is
regions in turbulent flow. Fluid parcels in the vortex interiors  believed to occur in the ocean thermocline. The
rotate with only weak deformation. In contrast, fluid parcels  colored meshes indicate surfaces of constant vorticity.
moving between the vortices are rapidly elongated in the

direction of the purple arrows and compressed in the

direction of the green arrows.



Turbulence may thus be visualized as a loosely tangled "spaghetti" of line vortices, which continuously
advect each other in complex ways (figure 4). At any given time, some vortices are being created via
rollup, some are growing due to vortex stretching, and some are decaying due to viscosity. Many,
however, are in a state of approximate equilibrium among these processes, so that they appear as long-
lived, coherent features of the flow. Mixing is not accomplished within the vortices themselves; in fact,
these regions are relatively stable, like the eye of a hurricane. Instead, mixing occurs mainly in regions of
intense strain that exist between any two nearby vortices that rotate in the same sense (figure 3). Itis in
these regions that fluid parcels are deformed to produce amplified gradients and consequent rapid
mixing.

3. STATIONARY, HOMOGENEOUS, ISOTROPIC TURBULENCE

Although the essential structures of turbulence are not complex (figure 3), they combine in a bewildering
range of sizes and orientations that defies analysis (figure 4). Because of this, turbulence is most usefully
understood in statistical terms. Although the statistical approach precludes detailed prediction of flow
evolution, it does give access to the rates of mixing and property transport, which are of primary
importance in most applications. Statistical analyses focus on the various moments of the flow field,
defined with respect to some averaging operation. The average may be taken over space and/or time, or
it may be an ensemble average taken over many flows begun with similar initial conditions.

Analyses are often simplified using three standard assumptions. The flow statistics are assumed to be

e stationary (invariant with respect to translations in time),
e homogeneous (invariant with respect to translations in space), and/or
e isotropic (invariant with respect to rotations).

Much of our present understanding pertains to this highly idealized case. Our description will focus on the
power spectra that describe spatial variability of kinetic energy and scalar variance. The spectra provide
insight into the physical processes that govern motion and mixing at different spatial scales.

3.1 Velocity fields

Big whorls have little whorls
That feed on their velocity
And little whorls have lesser whorls
And so on to viscosity
L.F. Richardson (1922)

Suppose that turbulence is generated by a steady, homogenous, isotropic stirring force whose spatial
variability is described by the Fourier wavenumber ke. Suppose further that the turbulence is allowed to



evolve until equilibrium is reached between forcing and viscous dissipation, i.e. the turbulence is
statistically stationary.

Figure 5 shows typical wavenumber spectra of kinetic energy, E(k), and kinetic energy
dissipation, D(k), for such a flow. E(k)dk is the kinetic energy contained in motions whose

wavenumber magnitudes lie in an interval of width dk surrounding k . D(k)dk =vik*E(k)dk is the rate
at which that kinetic energy is dissipated by molecular viscosity (V ) in that wavenumber band. The net

rate of energy dissipation is given by € = J.D(k)dk , and is equal (in the equilibrium state) to the rate at
0
which energy is supplied by the stirring force.

Nonlinear interactions induce a spectral flux, or cascade, of energy. The energy cascade is directed
primarily (though not entirely) toward smaller scales, i.e. large-scale motions interact to create smaller-
scale motions. The resulting small eddies involve sharp velocity gradients, and are therefore susceptible
to viscous dissipation. Thus, while kinetic energy resides mostly in large-scale motions, it is dissipated
primarily by small-scale motions. (Note that the logarithmic axes used in figure 5 tend to de-emphasize
the peaks in the energy and dissipation rate spectra.) Turbulence can be envisioned as a "pipeline”
conducting kinetic energy through wavenumber space: in at the large scales, down the spectrum, and out
again at the small scales, all at a rate € . The cascade concept was first suggested early in the 20"
century by L.F. Richardson, who immortalized his idea in the verse quoted at the beginning of this
section.

The energy spectrum is often divided conceptually into three sections. The energy-containing subrange
encompasses the largest scales of motion, while the dissipation subrange includes the smallest scales.
If the range of scales is large enough, there may exist an intermediate range in which the form of the
spectrum is independent of both large-scale forcing and small-scale viscous effects. This intermediate
range is called the inertial subrange. The existence of the inertial subrange depends on the value of the
Reynolds number: Re =u//v , where u and ¢ are scales of velocity and length characterizing the
energy-containing range. The spectral distance between the energy-containing subrange and the
dissipation subrange, & / k. , is proportional to Re** . A true inertial subrange exists only in the limit of

large Re.
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Figure 5: Theoretical wavenumber spectra of
kinetic energy and kinetic energy dissipation for
stationary, homogeneous, isotropic turbulence
forced at wavenumber kF . Approximate
locations of the energy containing, inertial, and
dissipation subranges are indicated, along with
the Kolmogorov wavenumber Kk, . Axes are

energy, dissipation rate

logarithmic. Numerical values depend on Re
and are omitted here for clarity.
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In the 1940s, the Russian statistician A.N. Kolmogorov hypothesized that, in the limit Re — oo, the
distribution of eddy sizes in the inertial and dissipation ranges should depend on only two parameters
(besides wavenumber): the dissipation rate € and the viscosity V , i.e. E = E(k;€,v) . Dimensional
reasoning then implies that £ =&"*v>* f (k/ky), where k, = (e/v*)"* is the Kolmogorov
wavenumber and £ is some universal function. Thus, with the assumptions of stationarity, homogeneity,

isotropy and infinite Reynolds number, all types of turbulence, from flow over a wing to convection in the
interior of the Sun, appear as manifestations of a single process whose form depends only on the
viscosity of the fluid and the rate at which energy is transferred through the "pipeline". This tremendous
simplification is generally regarded as the beginning of the modern era of turbulence theory.

Kolmogorov went on to suggest that the spectrum in the inertial range should be simpler still by virtue of
being independent of viscosity. In that case E = E(k,€), and the function can be predicted from

2/3k75/3

dimensional reasoning alone up to the universal constant C, , viz. £ =C, € . This power-law

spectral form indicates that motions in the inertial subrange are self-similar, i.e. their geometry is invariant
under coordinate dilations.

Early efforts to identify the inertial subrange in laboratory flows were inconclusive because the Reynolds
number could not be made large enough. (In a typical, laboratory-scale water channel,

u~0.1m/s, £~0.1m, and v ~10°m’ /s, giving Re ~10". In a typical wind tunnel,

u~1m/s, £ ~1m, and v ~10"m* /s, sothat Re ~ 10’ .) The inertial subrange spectrum was first
verified in 1962 using measurements in a strongly turbulent tidal channel near Vancouver Island, where
typical turbulent velocity scales u ~ 1m/ s and length scales ¢ ~ 100m combine with the kinematic
viscosity of seawater v ~ 10°m’ /s to produce a Reynolds number Re ~ 10® . From this experiment
and others like it, the value of C) has been determined to be near 1.6.



3.2 Passive scalars and mixing

Now let us suppose that the fluid possesses some scalar property 6, such as temperature or the
concentration of sEIme chemical species, and that the scalar is dynamically passive, i.e. its presence does
not affect the flow . Suppose also that there is a source of large-scale variations in 6, e.g. an ambient
temperature gradient in the ocean. Isosurfaces of 6 will be folded and kneaded by the turbulence so that
their surface area tends to increase. As a result, typical gradients of 6 will also increase, and will become
susceptible to erosion by molecular diffusion. Scalar variance is destroyed at a rate ¥ , which is equal (in

equilibrium) to the rate at which variance is produced by the large eddies.

Thus, the turbulent mixing of the scalar proceeds in a manner similar to the energy cascade discussed
above. However, there is an important difference in the two phenomena. Unlike energy, scalar variance is
driven to small scales by a combination of two processes. First, scalar gradients are compressed by the
strain fields between the turbulent eddies. Second, the eddies themselves are continually redistributed
toward smaller scales. (The latter process is just the energy cascade described in the previous section).

Figure 6 shows the equilibrium scalar variance spectrum for the case of heat mixing in water. Most of the
variance is contained in the large scales, which are separated from the small scales by an inertial-
convective subrange (so called because temperature variance is convected by motions in the inertial
subrange of the energy spectrum). Here, the spectrum depends only on € and y ; its form is

E, = Bye"k™", where Bis a universal constant.

. A . variance- inertial- Viscous- viscous-
Figure 6: Theoretical wavenumber spectra of containing /  convective ! convective / diffusive

scalar variance and dissipation for stationary,
homogeneous, isotropic turbulence forced at

wavenumber kF . Approximate locations of the
variance-containing, inertial-convective, viscous-
convective, and viscous-diffusive subranges are
indicated, along with the Kolmogorov wavenumber
k; and the Batchelor wavenumber k. Axes are
logarithmic. Numerical values depend on Re and
are omitted here for clarity.
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The shape of the spectrum at small scales is very different from that of the energy spectrum, owing to the
fact that, in seawater, the molecular diffusivity, k, of heat is smaller than the kinematic viscosity. The ratio
of viscosity to thermal diffusivity is termed the Prandtl number (i.e. Pr =v /K ) and has a value near 7 for
seawater. In the viscous-convective subrange, the downscale cascade of temperature variance is
slowed because the eddies driving the cascade are weakened by viscosity. In other words, the first of the
two processes listed above as driving the scalar variance cascade is no longer active. There is no

" In the case of temperature, this is true only for sufficiently small-scale fluctuations; see Buoyancy
Effects for details.



corresponding weakening of temperature gradients, because molecular diffusivity is not active on these
scales. As a result, there is a tendency for variance to "accumulate" in this region of the spectrum and the
spectral slope is reduced from —5/3 to —1. However, the variance in this range is ultimately driven into
the viscous-diffusive subrange, where it is finally dissipated by molecular diffusion. A measure of the
wavenumber at which scalar variance is dissipated is the Batchelor wavenumber, k, = (¢ /vik®)""* . When

Pr>1, as for seawater, the Batchelor wavenumber is larger than the Kolmogorov wavenumber, i.e.
temperature fluctuations can exist at smaller scales than velocity fluctuations.

In summary, the energy and temperature spectra exhibit many similarities. Energy (temperature variance)
is input at large scales, cascaded down the spectrum by inertial (convective) processes, and finally
dissipated by molecular viscosity (diffusion). The main difference between the two spectra is the viscous-
convective range of the temperature spectrum, in which molecular smoothing acts on the velocity field but
not on the temperature field. This difference is even more pronounced if the scalar field represents salinity
rather than temperature, for salinity is diffused even more weakly than heat. The ratio of the molecular
diffusivities of heat and salt is of order 10°, so that the smallest scales of salinity fluctuation in seawater
are ten times smaller than those of temperature fluctuations.

4. TURBULENCE IN GEOPHYSICAL FLOWS

The assumptions of homogeneity, stationarity and isotropy as employed by Kolmogorov have permitted
tremendous advances in our understanding of turbulence. In addition, approximations based on these
assumptions are used routinely in all areas of turbulence research. However, we must ultimately confront
the fact that physical flows rarely conform to our simplifying assumptions. In geophysical turbulence,
symmetries are upset by a complex interplay of effects. Here, we focus on three important classes of
phenomena that modify small-scale turbulence in the ocean: shear, stratification and boundary proximity.

4.1 Shear Effects

Geophysical turbulence often occurs in the presence of a current which varies on scales much larger than
the energy-containing scales of the turbulence, and evolves much more slowly than the turbulence.
Examples include atmospheric jet streams and large-scale ocean currents such as the Gulf Stream and
the Equatorial Undercurrent. In such cases, it makes sense to think of the background current as an entity
separate from the turbulent component of the flow.

Shear upsets homogeneity and isotropy by deforming turbulent eddies. By virtue of the resulting
anisotropy, turbulent eddies exchange energy with the background shear through the mechanism of
Reynolds stresses. Reynolds stresses represent correlations between velocity components parallel to
and perpendicular to the background flow, correlations that would vanish if the turbulence were isotropic.
Physically, they represent transport of momentum by the turbulence. If the transport is directed counter to



the shear, kinetic energy is transferred from the background flow to the disturbance. This energy transfer
is one of the most common generation mechanisms for geophysical turbulence.

The simplest example of shear-amplified vortices is the Kelvin-Helmholtz instability shown in figure 7a.
The vortex rollup process shown in figure 3 is closely related to this instability. A more complex example
is the sinuous instability of a jet (figure 7b). This structure may be thought of in an approximate sense as
two interacting trains of Kelvin-Helmholtz billows. Sinuous instability is partly responsible for the hot and
cold core rings of the Gulf Stream.

(a)
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Figure 7: Two common examples of vortex generation via shear instability in a two-dimensional
model flow. Schematics at the left indicate the initial velocity profiles. Colors indicate vorticity
(blue=clockwise; red=counterclockwise).

-

In sheared turbulence, the background shear acts primarily on the largest eddies. Motions on scales
much smaller than the Corrsin scale, L. =&/ S® (where S =dU /dz , the vertical gradient of the

ambient horizontal current) are largely unaffected.

4.2 Buoyancy Effects

Most geophysical flows are affected to some degree by buoyancy forces, which arise due to spatial
variations in density. Buoyancy breaks the symmetry of the flow by favoring the direction in which the
gravitational force acts. Buoyancy effects can either force or damp turbulence. Forcing occurs in the case
of unstable density stratification, i.e. when heavy fluid overlies light fluid. This happens in the atmosphere
on warm days, when the air is heated from below. The resulting turbulence is often made visible by
cumulus clouds. In the ocean, surface cooling (at night) has a similar effect. Unstable stratification in the
ocean can also result from evaporation, which increases surface salinity and hence surface density. In
each of these cases, unstable stratification results in convective turbulence, which can be extremely
vigorous. Convective turbulence usually restores the fluid to a stable state soon after the destabilizing flux
ceases (e.g. when the sun rises over the ocean).
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Buoyancy effects tend to damp turbulence in the case of stable stratification, i.e. when light fluid overlies
heavier fluid. In stable stratification, a fluid parcel displaced from equilibrium oscillates vertically with

frequency N =,/—g pfldp/a’z , the buoyancy or Brunt-Vaisala frequency ( g represents acceleration
due to gravity and p(z)is the ambient mass density). A result of stable stratification that can dramatically

alter the physics of turbulence is the presence of internal gravity waves (IGW). These are similar to the
more familiar interfacial waves that occur at the surfaces of oceans and lakes, but continuous density
variation adds the possibility of vertical propagation. Visible manifestations of IGW included banded
clouds in the atmosphere and slicks on the ocean surface. IGW carry momentum, but no scalar flux and
no vorticity.

In strongly stable stratification, motions may be visualized approximately as two-dimensional
turbulence (figure 1) flowing on nearly horizontal surfaces that undulate with the passage of IGW. The
quasi-two-dimensional mode of motion carries all of the vorticity of the flow (since IGW carry none), and is
therefore called the vortical mode.

In moderately stable stratification, three-dimensional turbulence is possible, but its structure is modified
by the buoyancy force, particularly at large scales. Besides producing anisotropy, the suppression of
vertical motion damps the transfer of energy from any background shear, thus reducing the intensity of

turbulence. On scales much smaller than the Ozmidov scale, L, = V& /N*, buoyancy has only a minor

effect’. The relative importance of stratification and shear depends on the magnitudes of Sand N . If
S > N, shear dominates and turbulence is amplified. On the other hand, if S <« N , the buoyancy

forces dominate and turbulence is suppressed. The simulated turbulence shown in figure 4 developed
from Kelvin-Helmholtz instability (figure 7a) of a stratified shear layer in which § > N .

The relationship between IGW and turbulence in stratified flow is exceedingly complex. At scales in
excess of a few meters (figure 8), ocean current fluctuations behave like IGW, displaying the
characteristic spectral slope k. At scales smaller than the Ozmidov scale (typically a few tens of cm),
fluctuations differ little from the classical picture of homogeneous, isotropic turbulence. The intermediate
regime is a murky mix of nonlinear IGW and anisotropic turbulence that is not well understood at present.

The breaking of IGW is thought to be the major source of turbulence in the ocean interior. Breaking
occurs when a superposition of IGW generates locally strong shear and/or weak stratification. IGW
propagating obliquely in a background shear may break upon encountering a critical level, a depth at
which the background flow speed equals the horizontal component of the wave's phase velocity3. Just as
waves may generate turbulence, turbulent motions in stratified flow may radiate energy in the form of
waves.

% In Passive Scalars and Mixing, we used temperature as an example of a dynamically passive quantity. This
approximation is valid only on scales smaller than the Ozmidov scale.

* Many dramatic phenomena occur where wave speed matches flow speed. Other examples include the
hydraulic jump and the sonic boom.
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represent approximate length scales from
ocean observations. Axes are logarithmic.
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In stably stratified turbulence, the distinction between stirring and mixing of scalar properties becomes
crucial. Stirring refers to the advection and deformation of fluid parcels by turbulent motion, while mixing
involves actual changes in the scalar properties of fluid parcels. Mixing can only be accomplished by
molecular diffusion, though it is accelerated greatly in turbulent flow due to stirring (cf. figure 1 and the
accompanying discussion). In stable stratification, changes in the density field due to stirring are
reversible, i.e. they can be undone by gravity. In contrast, mixing is irreversible, and thus leads to a
permanent change in the properties of the fluid. For example, consider a blob of water that has been
warmed at the ocean surface, then carried downward by turbulent motions. If the blob is mixed with the
surrounding water, its heat will remain in the ocean interior, whereas if the blob is only stirred, it will
eventually bob back up to the surface and return its heat to the atmosphere.

4.3 Boundary Effects

It is becoming increasingly clear that most turbulent mixing in the ocean takes place near boundaries,
either the solid boundary at the ocean bottom, or the moving boundary at the surface. All boundaries tend
to suppress motions perpendicular to themselves, thus upsetting both the homogeneity and the isotropy
of the turbulence. Solid boundaries also suppress motion in the tangential directions. Therefore, since the
velocity must change from zero at the boundary to some nonzero value in the interior, a shear is set up,
leading to the formation of a turbulent boundary layer. Turbulent boundary layers are analogous to
viscous boundary layers, and are sites of intense, shear-driven mixing (figure 9). In turbulent boundary
layers, the characteristic size of the largest eddies is proportional to the distance from the boundary.

Near the ocean surface, the flexible nature of the boundaries leads to a multitude of interesting
phenomena, notably surface gravity waves and Langmuir cells. These phenomena contribute significantly
to upper-ocean mixing and thus to air-sea fluxes of momentum, heat and various chemical species.
Boundaries also include obstacles to the flow, such as islands and seamounts, which create turbulence. If
flow over an obstacle is stably stratified, buoyancy-accelerated bottom flow and a downstream hydraulic
jump may drive turbulence (figure 9).
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Figure 9: Flow over Stonewall bank, on

the continental shelf off the Oregon 20 m
coast. Colors show the kinetic energy

dissipation rate, with red indicating

strong turbulence. White contours are

isopycnals, showing the effect of density
variations in driving the downslope flow. 40m
Three distinct turbulence regimes are

visible: (1) turbulence driven by shear at

the top of the rapidly moving lower

layer, (2) a turbulent bottom boundary 1 l.<m ' 2 l.(m
layer and (3) a hydraulic jump. [ . | T
9 7 5
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Ocean turbulence is often influenced by combinations of shear, stratification and boundary effects. In the
example shown in figure 9, all three effects combine to create an intensely turbulent flow that diverges
dramatically from the classical picture of stationary, homogeneous, isotropic turbulence.

5. LENGTH SCALES OF OCEAN TURBULENCE

Examples of turbulent flow regimes that have been observed in the ocean can be considered in terms of
typical values of € and N that pertain to each (Figure 10). This provides the information to estimate both
largest and smallest scales present in the flow. The largest scale is approximated by the Ozmidov scale,
which varies from a few cm in the ocean’s thermocline to several hundred meters in weakly stratified
and/or highly energetic flows. The smallest scale, the Kolmogorov scale L, = kK_l, is typically 1cm or

less.

Turbulence in the upper ocean mixed layer may be driven by wind and/or by convection due to surface
cooling. In the convectively mixed layer, N is effectively zero within the turbulent region, and the
maximum length scale is determined by the depth of the mixed layer. In both cases the free surface limits
length scale growth.

Turbulence in the upper equatorial thermocline is enhanced by the presence of shear associated with
the strong equatorial zonal current system. Stratification tends to be considerably stronger in the upper
thermocline than in the main thermocline. Despite weak stratification, turbulence in the main thermocline
tends to be relatively weak due to isolation from strong forcing. Turbulence in this region is generated
primarily by IGW interactions.
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Tidal channels are sites of extremely intense turbulence, forced by interactions between strong tidal
currents and three-dimensional topography. Length scales are limited by the geometry of the channel.
Turbulent length scales in the bottom boundary layer are limited below by the solid boundary and above
by stratification. Intense turbulence is also found in hydraulically controlled flows, such as have been
found in the Strait of Gibraltar, and also over topography on the continental shelf (cf. Figure 9). In these
flows the stratification represents a potential energy supply that drives strongly sheared downslope
currents, the kinetic energy of which is in turn converted to turbulence and mixing.

All of these turbulence regimes are subjects of ongoing observational and theoretical research, aimed at
generalized Kolmogorov's view of turbulence to encompass the complexity of real geophysical flows.

6. MODELING OCEAN TURBULENCE

A measure of our understanding of any phenomenon is our ability to model it. Besides providing a
predictive capability, models of ocean turbulence can help us to interpret observations, which are
incapable of fully resolving the space-time variability of naturally occurring turbulence. In this section, we
survey some issues involved in computer simulation of ocean turbulence.

Flow simulation begins with the specification of a computational grid, a collection of points in space at
which flow variables (velocity, temperature, etc.) are to be computed. A specified initial flow state is then
"evolved" forward in time using discrete approximations to the equations of motion. Ideally, the grid
contains enough points to fully resolve both the largest and the smallest eddies (i.e. the entire spectrum
shown in figure 5). Such a computation is called a direct numerical simulation (DNS). An example of a
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DNS is shown in figure 4. Unfortunately, this ideal is not easily achieved for many flows of interest, and
less direct methods are often needed, as we now describe.

The tremendous range of scales present in ocean turbulence poses a challenge for computer simulations,
since the memory needed is proportional to the cube of the ratio of largest to smallest scale. It is evident
that direct simulation of many regimes of ocean turbulence will not be possible in the foreseeable future.
Because of this, a major focus of turbulence research is the development of models that can approximate
the effects of the smallest fluctuations, eliminating the need to resolve them explicitly. Simulations based
on such techniques are referred to as large eddy simulations, or LES.

An example of ocean LES output is given in figure 11. The model covered a rectangular region, bordering
the ocean surface, approximately 100m deep and 300m on each lateral side. The grid spacing was
approximately 1m. The model was initialized with observed profiles of velocity, temperature and salinity
and forced at the surface with realistic wind stress, heat flux and precipitation. LES modeling provides a
picture of the spatial and temporal variability of currents and scalar fields that is far more comprehensive
than can be obtained from observational measurements. These data allow calculation of property fluxes
in the upper ocean, as well as detailed diagnosis of the physical mechanisms at work.
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Figure 11: Cross-section of the upper ocean mixed layer during a storm, simulated using LES
techniques. The x and z coordinates indicate downwind and vertical directions, respectively.
Arrows show flow in the plane of the cross-section. Colors indicate the temperature anomaly,
computed by subtracting the horizontally averaged profile (averaged over both x and y) from the
temperature field. Red (blue) indicates regions in which the temperature is warmer (cooler) than the
horizontally averaged value at that depth. This cross section represents a downwelling region, so
that temperature anomalies tend to be positive.

The comprehensive information available from LES comes at a price: there is no guarantee that the
model's behavior will match that of the ocean. Not only are the initial and boundary conditions
approximate, the smallest scales of motion are not resolved explicitly. Unresolved scales (motions smaller
than about 1m) generally include all of the dissipation range and some of the inertial range (figure 5). The
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behavior of these unresolved scales is approximated by assuming that the turbulence is stationary,
homogeneous and isotropic, and taking advantage of our theoretical understanding of that relatively
simple case (section 3). As we have seen, however, these assumptions are of limited validity when
applied to ocean turbulence (section 4).

Because of the uncertainties inherent in LES methods, it is important that we test models as thoroughly
as possible by comparison with observational measurements. Results of such a comparison are shown in
figure 12. Because of the chaotic nature of turbulence, we do not expect the model to reproduce the
observations at each point in space and time; instead, we compare statistics taken over suitably chosen
space-time intervals. For the case shown in figure 12, the statistics compared very well in the strongly
turbulent region (-10m > z > -60m, the upper ocean mixed layer). In this region, the assumptions of
stationarity, homogeneity and isotropy are relatively sound. In the strongly stratified region below z = -
60m, turbulence becomes highly anisotropic (section 4.2), and model accuracy is reduced as a result.
Near the surface (z > -10m) measurements are unavailable, but we expect turbulence to be anisotropic in
that region due both to boundary proximity effects (section 4.3) and strong shear (section 4.1).
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Figure 12: Comparison of € statistics derived from LES
(red) and oceanic measurements (blue). Histograms of
modeled €& were compiled for several depth bins,
describing both horizontal variability and evolution over
an interval of two hours, and compared with
measurements taken over the same time interval. The
histograms corresponding to indicated depth ranges are
shown in red; the observational measurements are
shown in blue. Observations shallower than 10m are
contaminated by ship wake and are thus discarded.
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Large-scale ocean models employ grid resolution much coarser than LES, and the assumptions made in
modeling the unresolved scales are correspondingly more tenuous. Nevertheless, such modeling efforts
must be pursued as they provide our only access to crucial processes such as pollutant dispersal and
anthropogenic climate change.

In summary, modeling techniques lead to significant new insights into the nature and role of turbulence in
the oceans, but careful attention to the validity of the underlying assumptions is needed. As our
understanding of real (i.e. nonstationary, inhomogeneous, anisotropic) turbulence improves, so will our
ability to model ocean turbulence in all its complexity.
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