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ABSTRACT 
The stratified hydrostatic flow over a bell-shaped isolated mountain is examined using linear 
theory. Solutions for various parts of the flow field are obtained using analytical and numerical 
Fourier analysis. The flow aloft is composed of vertically propagating mountain waves. The 
maximum amplitude of these waves occurs directly over the mountain but there is also 
considerable wave energy trailing downstream along the parabolas 

Nzax 

U 
y* = - 

Near the ground, the asymmetric pressure field causes the incoming streamlines to split to avoid 
the mountain and this lateral deflection persists downstream. The horizontal divergence 
associated with this lateral deflection is balanced by the descent of potentially warmer air from 
aloft. The relationship of linear theory to other three-dimensional models is discussed. The 
approach to the two-dimensional infinite ridge limit and non-hydrostatic effects are also 
discussed. 

1. Introduction 

The perturbation to a stably stratified airstream 
by uneven terrain has been examined theoretically 
by a number of authors, but only a few have 
avoided the two-dimensional infinite-ridge 
assumption and considered the flow past an 
isolated mountain. Wurtele (1957), and later 
Crapper (1959, 1962), extended the linear theory of 
Lyra and Queney, with uniform incoming U and N ,  
to three dimensions but succeeded in describing 
only the far-field inherently non-hydrostatic “dis- 
persive tail” of the mountain wave disturbance. In a 
similar way, the work of Scorer and Wilkinson 
(1956), Palm (1958), Sawyer (1962), Crapper 
(1962) and Gjevik and Marthinsen (1977) have 
extended the study of the inherently non-hydro- 
static trapped lee waves in structured atmospheres 
to three dimensions. The nature of the hydrostatic 
part of the mountain wave disturbance (i.e. those 
features that remain, under circumstances when the 
hydrostatic assumption is valid) and the nature of 
the flow near the mountain, remain largely un- 
known. It is the intention of this paper to reexamine 
the small-amplitude theory to clarify these points. 

Scorer (1956) attempted to solve a similar 
problem using an approximate inverse method- 
the accuracy of which is difficult to estimate. More 
fundamentally, however, Scorer used an incorrect 
radiation condition aloft and thus his flow field is 
composed of downward propagating waves coming 
from a supposed source, high in the atmosphere. 
Still, at certain levels, Scorer’s patterns of vertical 
displacement resemble those to be presented 
here-with the signs reversed. 

Blumen and McGregor (1976) used a numerical 
eigenfunction technique to find the hydrostatic 
wave field above an isolated mountain with nearly 
circular contours in both laterally sheared and 
unsheared flow. Their computation of the wave 
field in the unsheared case is qualitatively similar to 
the results to be presented herein. 

We shall see that the small-amplitude theory 
describes the tendency of the flow to be diverted 
around the mountain but that this theory is valid 
only for large Froude number F = U/hH + 1. In 
the opposite limit, F = U/hN < 1, the slow 
incoming flow (U), strong stratification ( N )  and 
great mountain height (h), demand that the flow 
pass around the mountain with fluid particles 
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remaining nearly in horizontal planes. Drazin 
(1961) has shown how the weak vertical pressure 
gradients which arise in such a flow, can be 
balanced hydrostatically by generating slight ver- 
tical motions. Unfortunately, even though the small 
Froude number theory can predict vertical 
motions, and the large Froude number theory can 
predict the horizontal deflection of flow to avoid the 
mountain, the two theories remain distinct and 
unconnectable, although qualitatively com- 
plementary. 

The formulation used herein is essentially that of 
Wurtele (1957) where the horizontal structure of 
the mountain and the disturbance are represented 
as a two-dimensional Fourier Transform and the 
vertical structure is simplified by assuming that the 
incoming wind ( U )  and buoyancy frequency ( N )  
are constant with height. The difficulty in evaluat- 
ing the inverse Fourier Transform is overcome in 
two ways: (1) The flow over a mountain of 
arbitrary shape, with or without !he hydrostatic 
assumption, is obtained by numerical analysis 
using a two-dimensional Fast Fourier Transform 
(FFT) algorithm. These numerical solutions by 
themselves however, provide only limited insight 
into the dynamics. (2) By choosing a mountain of 
simple shape, and making the hydrostatic 
assumption, analytical solutions may be cbtained 
for the flow near the ground and in the wave field 
which trails aloft. These analytical solutions are 
more useful for clarifying the underlying dynamics. 

In Section 2 the mathematical model is described 
and the numerical results are presented. Section 3 
considers the three-dimensional pattern of moun- 
tain waves aloft using both asymptotic methods 
and group velocity arguments. In Section 4 the flow 
near the ground is described using analytical 
solutions for the pressure, velocity, and displace- 
ment fields. The criterion for the validity of linear 
theory and the conditions which lead to flow 
around the mountain, are discussed in Section 5 .  In 
Section 6, the approach towards two dimen- 
sionality is examined by considering the flow 
near the end of a long ridge. The changes 
associated with deviations from hydrostatic 
balance are discussed in Section 7. 

2. The mathematical model 

Consider the steady flow of a vertically unboun- 
ded, stratified Boussinesq fluid, over small-ampli- 

tude topography described by z = h(x,y). The 
perturbations to the background wind, pressure, 
and density fields are described by the linearized 
equations 

p,l uu; = -p: 

P,l uv: = -Pi 
Po uw: = -p: - p' g 

u; -I- v; + w: = 0 

dP p ' = - - q  
dz 

where x, y ,  z are the downstream, cross stream and 
vertical coordinates; u',  v', w', p', p' ,  q are the 
corresponding perturbation velocity components 
and the perturbation density, pressure and vertical 
displacement; and po, U, dpldz are the background 
mean density, wind speed, and vertical density 
gradient. Using the kinematic condition for steady 
flow 

w' = uqx (2) 
and with U taken as a constant, system 1 can be 
reduced to a single equation for q(x,y,z) the 
vertical displacement of a fluid parcel, or a density 
surface, above its undisturbed level. 

To obtain a solution to (3) we represent q as a 
double Fourier integral 

q(x, y ,  z )  = I J-mw $k, I, z)ei(kr+'Y) dk dl (4) 

f izz + m 2 t j = 0  ( 5 )  

whereupon (3) becomes 

with 

With N 2  taken as constant the solution to ( 5 )  is 

a(k, I ,  Z )  = r](k, I ,  O)e'm(k'')z (7) 

For k2 > N 2 / U 2  the positive imaginary root of (6) 
must be chosen to eliminate the unphysical growth 
of the disturbance amplitude with height, and for 
k2 < N Z / U Z  the sign of m must be chosen to be the 
same as the sign of k,  in order to satisfy the 
radiation condition aloft. 
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The linearized lower boundary condition 

v(x ,  Y ,  z = 0) = h(x, Y )  (8) 
can be rewritten using the Fourier Transform of the 
mountain shape 

Finally then, from (4), (7), and (lo), 

~ ( x ,  y ,  z )  = 1 l:m L(k, I)eim(k*’)z e i ( k x f l y )  dk dl (1 1) 

with m(k, I )  given by (6) and l ( k ,  I )  given by (9). 
This (1 1) is the expression used by Wurtele (1957) 
in his study of the far-field dispersive waves behind 
a point source of vertical motion. 

Now consider the bell-shaped mountain with 
circular contours 

where “h” and “a” are the mountain height and 
horizontal scale. This shape was chosen by 
Crapper (1959) because of its particularly simple 
Fourier Transform (using (9) and (12)) 

where K = \/kZ + 1’ is the magnitude of the 
horizontal wavenumber vector. The problem can be 
further simplified by using the hydrostatic approxi- 
mation-setting the left-hand side of (lc) equal to 
zero. This reduces (6) to its hydrostatic form 

N (kz  + l 2 ) I I 2  

U k  
m = -  

or 

N 
m=- 

u c o s  y 

where y is the angle of the horizontal wavenumber 
vector. This approximation is valid (now looking at 
(6)) for Fourier components with k such at Ikl < 
N / U ,  and valid for the entire flow field if the 
mountain is broad enough that it generates only 

these small k components. From (13), this con- 
dition is 

Na 
- 9 1  

U 

which is that the horizontal scale of the mountain 
must be much larger than the distance of down- 
wind drift during a buoyancy oscillation period. 
Choosing typical atmospheric values of U = 10 
m/s and N = 0.01 s-l, the condition (15) is that the 
horizontal scale must be much greater than 1 km. 
The hydrostatic model described herein should then 
be applicable to scales from 5 to 50 km. The flow 
over still broader mountains will be influenced by 
the Coriolis force, which is not included here. 
Non-hydrostatic flow and flow over other mountain 
shapes will be considered briefly in Sections 6 and 
7. 

Now introduce the non-dimensional variables 

N 
2 = x / a ,  $=via, i=z- 

U 

& = k a ,  / = l a ,  K=ica 

so that (1 l), with (1 3) and (14), becomes 

(16) 

which depends only on ?,$, 2. Thus, in hydrostatic 
flow, the horizontal structure scales on “a” while 
the vertical structure scales on the length U/N. The 
hydrostatic flow obtained by numerically evaluat- 
ing ( I  7), using a two-dimensional FFT algorithm, is 
shown in Fig. 1 .  The details of the numerical 
technique are described in Appendix I. Very near 
the ground, the pattern of vertical displacement 
resembles the surface topography (12), as it must 
to satisfy the lower boundary condition (8). As we 
move slightly aloft (f = a/8) a region of downward 
displacement forms over the lee slope of the 
mountain and extends some distance downstream. 
Further aloft, the region of down motion splits and 
widens to form a U-shaped region, with fluid 
particles returning smoothly to their undisturbed 
level downstream. As we continue to move aloft the 
region of down motion widens, moves upstream, 
and is replaced by a U-shaped region of upward 
displacement (i.e. i = n). The general upstream 
shift of the identifiable regions is consistent with the 
radiation condition and the idea that the dis- 
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turbance is composed of vertically propagating 
mountain waves. At greater heights the zone of 
disturbance continues to broaden, the disturbance 
directly in the lee of the mountain disappears, the 
patterns of upward and downward motion become 
more wavelike, and the disturbance amplitude 
decreases. 

To understand this flow in greater detail we will 
attempt to integrate (17)  analytically. Note that the 
vertical wavenumber “m” given by the hydrostatic 
formula (14), depends only on the wavenumber 
direction tp. Also, because the mountain (12) has 
circular contours, the Fourier Transform of the 
mountain shape depends only on the magnitude of 
the horizontal wavenumber K. These features can 
be used to our advantage if we use cylindrical 
coordinates. 

i= (22 + p31/2. , 6 =  tan-1jV2 

R = (P + ry; ly = tan-’ 11L 
(18) 

so that (1 7) becomes 

x Kdudly (19) 

The integration over K can be done exactly leaving 

w 2% eiiicosv d 
q(i, 6, f )  = - (20) 2n h J  0 (1-iFcos(ly-6))’ 

The integration over ly is apparently also possible 
but very tedious. Instead we will derive asymptotic 
formulae describing the flow far from the mountain 
(i 9 l), high above the mountains (2 9 l), and close 
to the ground (2  z 0). 

3. The flow aloft 

To obtain an approximation to (20) valid far 
from the mountain, we note that with i 9 1 the 
major contributions to the integral come near ly - B 
= +n/2 where cos(ly - 6) is small. With this as a 
basis the following asymptotic formulae are ob- 
tained (see Appendix I1 for details) for i 9 1 
upstream 

downstream 

with /3 = ?2/9’. 
In dimensional form (21b) is 

(22) 

with p = Nzax/Uy2. 
This curious formula correctly describes the 

qualitative nature of the exact numerical results 
(shown in Fig. 1) beyond r/a z 3 and gives a 
quantitatively accurate representation beyond rla 
=: 10 or so. We remark in passing that the 
derivation of (21) is not a direct application of the 
method of stationary phase such as used by 
Wurtele and Crapper. The method of stationary 
phase cannot be used in the hydrostatic problem as 
one of the “principal curvatures’’ vanishes. This is 
seemingly connected with the fact that the hydro- 
static lee waves, being in some sense less dispersive 
than the non-hydrostatic waves, decay as l l r  
instead of 1/13. 

The pattern defined by (2 1) or (22) is most easily 
described by breaking these formulae into three 
factors. The local wave-like behavior is given from 
the factor cos (NzIU sin 6). Note that at a fixed 
height z, this depends only on 6 and thus the phase 
lines are radii passing back through the origin 
where the mountain is located. The phase surfaces 
tilt upstream and outward with increasing height. 
The amplitude factor [Be-Pl has a maximum at 

and thus the wave energy will be concentrated in 
regions where (23) is nearly met. At a fixed z ,  (23) 
represents a parabola with vertex at the origin and 
trailing downstream. This parabola becomes wider 
as z increases. The alr factor describes the general 
decay of the disturbance away from the mountain. 
A11 three of the qualitative features; the radial, 
outward tilting phase lines, the concentration of the 
disturbance along parabolas which widen with 
height, and the decay away from the mountain, are 
evident in retrospect in the numerical solutions 
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shown in Fig. 1. It remains to explain these features 
of the flow physically, and this can be done using 
group velocity arguments. 

The dispersion relation for internal gravity waves 
in a stagnant Boussinesq fluid is 

N 2 ( k 2  + 1 2 )  
k 2  + l 2  + m2 

where k .  I ,  in are the x, y, z directed components of 
the total wavenumber vector. With the hydrostatic 
approximation this becomes 

N ( k 2  + I 2 ) l l 2  
U =  

m 

The efficiency and direction of transport of wave 
energy through the fluid by pressure-velocity 
correlations, are described by the group velocity 
components. 

c = - - = _  
iiu N ( k 2  + I 2 ) - ' l 2  k 

(26a) 
'' iik in 

30 N ( k 2  + I 2 ) ' l 2  

$m m2 
+ ( 2 6 ~ )  c =--= 

For steady waves on a mean current we replace a 
with the intrinsic frequency U k  so that (25) gives 

N ( k 2  + I 2 ) ' I 2  

U k  
m = f -  

(cf. (14)). The components of the group velocity in 
fixed coordinates is then (adding U to (26a) and 
using (27)) 

1 2  

k 2  + l 2  
c ,  = u- 

kl 
k2  + l 2  

c ,  = - I /  ~ 

U 2  k 2  

N ( k 2  + 12)1/2 
c, = 

In earth fixed coordinates, wave energy propagates 
from the energy source (i.e. the mountain) along 
straight lines with slopes 

X I 2  = c,/c,; ( 2 9 4  

Y l X  = c, lC, 

Slope (29c) is evaluated using (28a, b) t o  give 

.VIX = -k/ l  (30) 
which is the geometric condition that the phase 
lines passing through the point (x, y )  are radial lines 
from the origin (cf. eq. (22) and Fig. 1). This is 
shown schematically in Fig. 2. 

Using (29a, b) and (28) gives 

y2 = - N z ( k 2  + 12)-1'2 x 

U 

/ I 

I 
I , 

Fig. 2. A schematic representation of the far-field hydro- 
static wave pattern in accordance with the asymptotic 
expression (2lb) and the group velocity arguments which 
lead to (30) and (33). At any height z, the wave energy is 
concentrated near the parabola y2 = Nzau/U (shown 
dashed). At higher altitudes this parabola becomes 
wider-a trend which is apparent in Fig. 1. The phase 
lines, i.e., the wave crests and troughs, are radii which 
point back toward the mountain. 

Fig. 1 .  The vertical displacement q(x ,y ,  z) at various levels associated with hydrostatic stratified flow over an isolated 
bell-shaped mountain (12) with h = 10. Regions of downward displacement are shaded. The cross @ marks the 
position of the mountain top. The dashed circle is the topographic contour at r = a. These patterns are computed by 
evaluating ( I  7) numerically using a two-dimensional FFT. Near the ground the vertical displacement approaches the 
topographic shape but as we move aloft (N/Ll)z  = d 8 )  a region of down motion develops in the lee. Further aloft 
( ( N / U ) z  = n/4 and 72/21 this region splits and widens to form a U-shape. Still further aloft ( (N/Ll)r  = n) the region of 
down motion has moved upstream and a U-shaped region of upward displacement has formed in the lee. The 
qualitative nature of this flow is explained by the asymptotic analysis and the group velocity arguments in the text. 
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354 R. B. SMITH 

We expect that the mountain will primarily 
generate waves with the magnitude of the horizon- 
tal wavenumber equal to the inverse of the 
mountain width scale. 

a 

Substituting (32) into (31) gives 

Nzax 
)’2 = - 

U 
(33) 

which is identical to the direct asymptotic result 
(23). Waves which satisfy (32) can only propagate 
to regions in space (x ,y ,z )  which satisfy (33). 
Looked at in more detail, those waves with phase 
fronts nearly perpendicular to the incoming flow 
(i.e. k 9 I )  will propagate vertically and their wave 
energy will be found directly above the mountain- 
as in two-dimensional hydrostatic flow. The waves 
with phase fronts at an appreciable angle to  the 
flow (i.e. k z /) will propagate upwards, outwards, 
and downstream. The wave packet trajectories 
become very shallow and oriented nearly down- 
stream in the limit of k / l  + 0. These waves are 
primarily advected downstream by the mean flow 
(see (28a)). The surface composed of all of these 
radial trajectories, is simply (33). 

The region of small y and I, but large x, i.e. the 
far-field “wake” of the mountain, seems to be 
singular in some sense. The asymptotic solution 
(22) behaves violently in this region. Group 
velocity arguments indicate that the Fourier com- 
ponent which control the flow in the wake are those 
whose phase fronts nearly parallel the incoming 
flow, so that their intrinsic frequency Uk is very 
small. The vertical wavenumber (14) approaches 
infinity for these waves, and large vertical gradients 
are expected-perhaps leading to viscous effects or 
turbulence in a real flow. 

There is an analogy between the singular wake in 
three-dimensional flow and the critical level in 
two-dimensional flow with a mean velocity U(z)  
that decreases to zero at some height (Booker and 
Bretherton, 1967). Both regions, the singular wake 
region and the critical layer, are controlled by 
waves with vanishing intrinsic frequency and thus 
infinite vertical wavenumber. 

The singular wake region will be discussed again 
when we describe the flow near the ground. 

The flow directly above the mountain at great 

heights can be determined from an asymptotic 
evaluation of (20) for i = z ( N / U )  9 1 while i = r/a 
= O( 1). The result from Appendix IV is 

?AX,Y,Z)Z-  “ L  fi N z  ( t  + f 2 ) 2  

x [ ( I  -2x^-x^2)c0si-(1 + 2 P - P 2 ) s i n i l  
(34) 

As with the earlier asymptotic results, this formula 
compares well with the exact numerical solution in 
the appropriate region. Equation (34) describes a 
field of vertically propagating waves with phase 
fronts perpendicular to the incoming flow. This is 
consistent with the progressive spreading of the 
wave fronts aloft, described by (23) and seen in 
Fig. 1. The phase lines tilt upstream with height just 
as they do in two-dimensional flow. Unlike two- 
dimensional hydrostatic flow, the amplitude of the 
displacements given by (34), decay upwards as 
zr1I2. In a compressible atmosphere, this decay 
would eventually be overwhelmed by the am- 
plification (- etr’*”) due to the decrease of density 
with height and the waves would eventually steepen 
and break down by overturning or by flow 
instability. 

4. The flow near the ground 

The flow at and near the ground is of particular 
interest, and not difficult to obtain. Integrals of the 
form (20) can be evaluated easily by contour 
integration in the complex plane, if the trouble- 
some eiiicosW factor is reduced to unity by setting .? 
= 0. First we will evaluate the surface pressure 
field. Combining ( le)  with the hydrostatic form of 
( lc)  and integrating vertically gives 

P ’ ( X ,  y ,  2) = -g - d p  im ~ ( x ,  y ,  2’) dz’ (35) 
dz 

where the perturbation pressure at infinity is 
assumed zero, due to the decay of the wave field 
aloft. Using (20) in (35) and setting z = 0 gives 

d i  U h rZn cos y d y  

(36) 
This can be evaluated by contour integration (see 
Appendix 111 for details) to give 
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(37) 

which is shown in Fig. 3. High pressure is found on 
the windward slope of the mountain and low 
pressure on the lee side. As in the two-dimensional 
case, this pressure asymmetry, and the resulting 
mountain drag, are associated with generation of 
vertically propagating waves. Bernoulli's equation, 
linearized in the form 

p' 4- po UU' = 0 (38) 

together with (37), give the downstream velocity 
perturbation 

xla 
(I  + r2/a2))l2 

u'(x, y, 0) = hN (39) 

The lateral velocity perturbation can be found by 
integrating ( lb)  

-1 
D ' ( X ,  y, 0) = - P$GY,O) dx 

Po uo -* 
Evaluating (40) with P' from (37) gives 

Yla 
(1 + r2/a2)3/2 

u ' ( x ,  4: 0)  = hN 

\ 

Fig. 3. The topographic contours of the bell-shaped 
mountain given by (12) with h = 10 (shown in solid lines) 
and the isobars of perturbation surface pressure for 
hydrostatic flow given by (37) (shown dashed). The 
pressure coefficient is defined as cp = p'/pCJNh and is 
also equal to -u'/Nh using (38). 

The lateral displacement 6 is found from (41) by 
again integrating downstream 

6(x, y, 0) = 's' u'(x,y, 0) dx (42) u -m 

which is 

u 1 + y2/a2 (1 + r2/a2)1/2 
hN 

6(x, y, 0)  = - 
(1. 

~ 

(43) 

The lateral displacement of the surface streamlines 
given by (43) is shown in Fig. 4. The lateral 
displacement of the low level fluid is connected with 
the pressure field in the following way. As a fluid 
particle to the right of the x-axis approaches the 
mountain, it experiences high pressure on its left, 
and therefore curves to the right. Abreast of the 
mountain it has an outward lateral velocity but 
feels no lateral pressure gradient and thus its path is 
not curved. Downstream of the mountain, the 
particle feels low pressure on the left and thus 
curves to the left, eventually returning to its original 
direction. There is, however, a permanent outward 
deflection to those streamlines which pass by in the 
vicinity of the mountain. 

Near the surface, the pattern of vertical displace- 
ment can be represented as a Taylor series 

rl(x,Y,z)=rl(x,Y,o)+ t l , * z+ . . .  (44) 

. - 

c 
I 

Fig.4.  The surface streamlines (given by (43)) of 
hydrostatic flow past an isolated bell-shaped mountain 
(12). The circle represents a topographic contour at r = 
a. Except on the centerline, the fluid is deflected away 
from the mountain by the surface pressure field shown in 
Fig. 3. This deflection i s  permanent, as shown, only right 
at L = 0. At any finite height, the streamlines eventually 
return to their original position. 
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where from (8), g(x,y, 0) = h(x,y). The quantity qz 
represents the increase (or decrease if rl, is 
negative) of the vertical distance between surfaces 
of constant density (isentropic surfaces in the 
atmosphere). This quantity can be computed by 
using the conservation of mass flux along a stream 
tube 

(45) 

with (39) and (43), or by taking the vertical 
derivative of (20) and evaluating it at z = 0 

i dy/ 
It, = - (46) 

a 

Evaluation of (46) by contour integration yields 

2 l  a ( 1 - y )  292 + -~ 

~2 + i)(r^2 + i)l/2 012 + 1) (P + 113'2 

(47) 
[I+ 

This formula, (47), when used in (44), very 
accurately reproduces the numerical results for q at 
low levels (for example Fig. la)  except far 
downstream directly in the lee of the mountain- 
i.e., in the singular wake region. As one moves 
downstream in this region the truncated Taylor 
series (44) is useful to progressively smaller 
altitudes. This is connected with the fact that this 
region is controlled by Fourier components with 
large vertical wavenumbers. 

Through the mass flux condition ( 4 9 ,  the 
vertical displacement described by (47) can be 
connected to the increase or decrease in down- 
stream velocity u' and to the lateral streamline 
divergence 6,. Along the centreline of the mountain 
the low layers thicken and then thin, in response to 
the velocity minimum and maximum. Added to this 
is a permanent thinning of the low layers-i.e. a 
sinking of warm air  from aloft--to compensate for 
the horizontal divergence shown in Fig. 4. 

The permanent lateral deflection of the low level 
streamlines (Fig. 4) and the compensating down- 
ward deflections (Fig. 5 )  are not artifacts of the 
hydrostatic approximation. In fact, a simple ex- 
pression can be derived for the lateral deflection far 

M=0.27 U 
# z =  lr/4 

"--4---- 

- - - _______ __  - 
I I  I I I I I  1 1  I l l 1  I I  I I1 I1111  

Fig. 5. The vertical displacements of the streamlines in 
the center plane y = 0 for hydrostatic flow over an 
isolated bell-shaped mountain (12) as computed 
numerically. The approximation given by (44) and (47) is 
shown dashed. The phase lines tilt upstream as in 
two-dimensional flow but the wave amplitude decreases 
with height. The long-lasting downward deflection behind 
the mountain is associated with the horizontal divergence 
shown in Fig. 4, rather than an increased velocity. 

downstream 8(x = 03, y ,  z = 0) for arbitrary 
mountain shape, and without using the hydrostatic 
assumption. From (lb), (lc), and (le) a relation- 
ship between the Fourier Transforms of u' and q 
can be obtained in the form 

C(k, 1 , ~ )  = f ( k ,  4 ?(k, L 2) (48) 

and at the ground-using (10) 

W, LO) = f ( k ,  0 W, 0 (49) 

From the property of the Fourier Transform 

v^(o ,~ ,  0) = -!i- J " [ J-1 u(x, y ,  0) dx e-"Y dy (50) 

where the integral in brackets is proportional to the 
permanent lateral deflection according to 

4nZ -" 1 
L: u(x, y ,  0) ak = u. Y ,  0) ( 5  1) 

Note also that 

where 

is the area of a downstream cross-section through 
the mountain. To compute f ( k ,  1) as k + 0, we 
need only its hydrostatic form 

-ilN2 

Ukm 
f ( k ,  0 = - (54) 
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with rn given by (14), which gives 

f ( 0 ,  I )  = -iN sgn ( I )  (55) 

Now using (49), (50), (51), (52), (53), and (55) we 
can relate the y- transform of A ( y )  (call this a(/)) 
and they-transform of G(oo,y, 0) (call this a@)); 

N 
U 

& I )  = -i - sgn ( I )  A ( / )  (56) 

This equation can be interpreted to say that the 
surface flow will be permanently deflected away 
from regions with large A @ )  and will tend to 
converge downstream of small A Q  areas. This 
deflection will be absent (still looking at (56)) only 
when the ridge cross-sectional area (A@))  is 
independent of y or when the fluid is not stratified. 

We reemphasize the point that while the lateral 
deflections (56) and the associated vertical motions 
may be evident some distance downstream, they 
are confined to a progressively shallower region. 
Far downstream, they will presumably be modified 
by non-ideal processes brought about by the 
singular nature of the wake. 

5. The breakdown of linear theory and the 
criterion for flow around the mountain 

As the parameter hN/U increases, the distur- 
bance amplitude increases in relation to the 
background flow and when hN/U become of order 
one, the linear theory is no longer valid. There are 
several criteria which can be used to mark the 
breakdown of linear theory. For example, (a) the 
perturbation velocity component u’, as given by 
(39), first becomes equal but opposed to U, 
bringing the total flow to a halt on the windward 
slope at 

(x,Y, I) = (-0.7a, 0,O) 

and this occurs when 

hN 
- z 3  

U 
(5 7) 

(b) Part of the surface level flow deflects laterally to 
avoid the mountain when 8, given by (43) and 
evaluated at  x = 0, becomes equal to the mountain 
width “Q”. This occurs at lyl = Q when 

hN 
-= 1 

U 

(c) The vertical distribution of density (or potential 
temperature) collapses and the stability becomes 
infinite when qz, given by (47), equals -1. This first 
occurs on the centerline, downstream of the 
mountain at  x = 1.4a, when 

hN 

U 
- = 112.09 (59) 

and occurs downstream of this point all along the 
x-axis when 

hN 

U 
-= 112 

This early collapse of the potential temperature 
surfaces in the wake region is associated with the 
divergence shown in Fig. 4 and is an indication that 
the three-dimensional flow studied herein is more 
sensitive to finite amplitude effects than the flow 
over an infinite ridge. 

The criteria discussed above can be compared 
with the blocking criterion of Sheppard (1956). 
Consider a surface streamline leading to the 
mountain peak. Along this streamline Bernoulli’s 
equation gives 

where the subscripts -oo and T refer to points far 
upstream and at the mountain top respectively. In 
analogy with an energy-conserving frictionless 
puck sliding on an uneven surface, Sheppard 
assumed that the flow would reach its lowest speed 
at the mountain top and that the onset of blocking 
would be signaled by UT going to zero. He further 
assumed that the perturbation pressure p’ at the 
top would be zero (this agrees with (37)), so that 

P , = P - , + g  p o - l 1 2 - h T  h ,  [ : ]  
From (6 1) and (62), the blocking condition is 

hN 

U 
_-  - 1  

The appearance of the same parameter4.e. the 
inverse Froude number h N I U - d o e s  not imply that 
Sheppard’s parcel argument is equivalent to  the 
analyses leading to (57)-(60), as this grouping 
follows from dimensional analysis. In fact, the 
continuum theory, with the radiation condition 
aloft, predicts that the minimum speed will occur 
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on the windward slope (see (39) and (57)) not a t  
the mountain top. 

If one wishes to construct an energy argument 
for blocking, which is consistent with the results of 
linear theory, one must argue as follows. If the air 
is able to flow over the obstacle, as is assumed in 
(8), then gravity waves will be produced which will 
radiate energy away at a rate 

d r a g . U - p U N h 2 a . U  (64) 

whereas the kinetic energy incident on the moun- 
tain is 

- [fpU21 Uha (65) 

The rate of energy loss (64) will exceed the supply 
(65) when 

hN 
U 
- > O(1) 

and the flow must then avoid the mountain. Of 
course this line of reasoning implicitly assumes that 
only the kinetic energy incident on the mountain is 
relevant, but in fact the mountain drag may act on 
an entirely different region of the flow. 

When the Froude number is very small, hN/U % 
1, the stratification dominates to the extent that 
fluid particles pass around the mountain while 
remaining in horizontal planes. If the mountain has 
circular topographic contours of radius “a(z)”, the 
pressure field at each level, calculated from 
potential theory, is of the form 

Unless the mountain has vertical sides, there will be 
a vertical pressure gradient (using (67)). 

1 

2 
pi  = -pUz f ’(ria, e) 

Drazin (1961) has pointed out that this vertical 
pressure gradient can be hydrostatically balanced 
in the presence of small vertical deflections v. From 
(35) 

The horizontal flow approximation which led to 
(67), is presumed to be valid if the vertical 
deflections predicted from (68) and (69) are so 

small that the parcels do not rise to a level where 
the mountain is significantly narrower-i.e. 

-- ‘IdaCgl 
a dz 

Using (68) and (69), this becomes 

The criterion can be applied to the mountain as a 
whole by choosing 

1 da 1 

a dz h 

so that (7 1) is 

-=- 

The condition (7 1) will always be violated locally a t  
the top of the mountain (a(z) -+ 0) unless the peak 
is cusped. 

It is curious to note that both the small and large 
Froude number theories predict flow around and 
vertical displacements but the qualitative nature of 
these predictions are quite different. The small 
Froude number theory predicts pressure and 
vertical displacements which have fore-aft sym- 
metry. There are no mountain waves and no wave 
drag, and the horizontal displacements are tem- 
porary. The large Froude number theory (i.e. linear 
theory) predicts asymmetric pressure and vertical 
displacements associated with the generation of 
waves. The lateral deflection to avoid the mountain 
increases downstream and becomes permanent. It 
seems likely that the range of validity of these two 
theories, and the transition between them, could be 
elucidated by a well-designed laboratory or numeri- 
cal experiment. It is possible, however, that these 
flows may be quite sensitive to viscosity, either 
due to separation of the flow in the low Froude 
number case, or to non-ideal behavior in the singu- 
lar wake region of the large Froude number case. 
Riley et al. (1975) find in experiments a t  low 
Froude number that the flow splits to avoid the 
mountain and this horizontal deflection persists 
some distance downstream. When the Froude 
number is increased enough so that vertical 
displacements become evident, those displacements 
are strongly asymmetric with slight lifting on the 
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windward slope and stronger sinking in the lee. 
They suggest that this can be accounted for by 
lee-side boundary layer separation occurring in 
each horizontal plane-thus altering the pressure 
distribution (67). Another possibility is just to 
realize that the observations of Riley et al. are 
qualitatively consistent with the predictions of 
inviscid linear theory as discussed in this paper. 

A further problem in interpretation arises from 
the use of steep mountains (h /L  - 1) in the 
laboratory experiments. In this case the two 
dimensionless numbers UINh and UINL (h and L 
are the vertical and horizontal scales of the 
topography) are the same order. As WIN increases, 
for fixed h and L,  the flow is more able to rise over 
the mountain but at the same time vertical 
accelerations become important (see eq. (15)). 
Thus in order to model the transition from U/Nh < 
1 to U/Nh & 1, while maintaining hydrostatic 
balance, a realistically gentle mountain (hlL < 1) 
must be used. 

1 

6. The flow past a long ridge 

To determine the flow over more complicated 
terrain, we can either use the numerical FFT 
technique, described in Appendix I, or else 
superpose a number of solutions arising from the 
simple shape (12). It is particularly interesting to do 
this for a long ridge, as this helps to explain how the 
flow approaches the much studied two-di- 
mensional limit. As shown in Fig. 6, there is 
parabolic zone trailing from the end of the ridge in 
which the transition between the undisturbed 
region, to the sides of the ridge and the decaying 
two-dimensional disturbance behind the ridge, 
occurs. This parabola becomes broader with height 
and is well described by (23). The reason for the 
shape of this region is clarified by considering that 
each segment of the ridge produces parabolic zones 
of disturbance as described by (21). Working 
backwards, the two-dimensional disturbance at any 
point in the lee (x > 0, y ,  z) can be thought of as a 
sum of the disturbances emanating from two short 
segments of the ridge, found by tracing the 
parabolas to the left and right upstream. For points 
within the parabola coming from the ridge end, 
only one ridge segment is effective and the 
disturbance departs from two dimensionality. For a 
ridge of length “L” and width “a”, two-di- 

Fig. 6. The pattern of vertical displacement (q)  near the 
end of a long ridge, at a height z such that (N/U)z = d8. 
The ridge is of Gaussian shape h(x, y )  = 10. e-(d’a)* 
where d is the distance from ridge crest line. The ridge 
crest line (i.e. h = 10) and the h = 5 contour are shown 
dashed. Away from the ridge end, the flow is as if the 
ridge were infinitely long. Downstream of the end of the 
ridge there is a complicated transition region which 
widens downstream and aloft according to (23). The 
raised and depressed regions, A and B, are associated 
with horizontal convergence and divergence occurring as 
the low-level air, passing near the ridge end, is deflected 
laterally away from the ridge. 

mensional theory is valid in the lee near the ground 
but becomes inapplicable further downstream or 
aloft as the parabolas from the ridge ends widen. 
The ridge width “a” enters directly in this criterion 
as the width of the parabola is proportional to  “a” 
(see (23)). 

The criteria for two-dimensional flow upstream 
of a finite ridge is less well defined. This is so 
because the disturbance upstream of an isolated 
mountain (see (21)) decays more rapidly but is not 
confined to parabolic zones. The vertical dis- 
placements upstream of an infinite ridge are just as 
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strong as those downstream, but must be thought 
of as emanating from long portions of the ridge. 

There is, of course, no lateral deflection of the 
surface streamlines in the infinite ridge case, but 
near the ends of a finite ridge the flow will be 
deflected away from the ridge. To compensate for 
this, there will be zones of upward and downward 
displacement just in the lee of the ridge end (Fig. 6). 

If the mean flow is obliquely inclined to the 
ridge, the disturbance can be analyzed in a similar 
way noting only that the parabolic zones of 
influence are aligned with the mean flow and are 
not necessarily perpendicular to the ridge. In 
regions where the flow is two dimensional, the 
vertical wavenumber NIU must be computed from 
the component of U which is perpendicular to the 
ridge. 

7. Non-hydrostatic flow 

The theoretical progress reported in this paper is 
due primarily to the sirnpPfication which results 
from the hydrostatic approximation. The numerical 
FFT technique, however, can be used with (6) 
(instead of (14)) to construct solutions without this 
approximation. The non-hydrostatic flow ( U I ”  = 
1) over the mountain ( 1  2) is shown in Fig. 7-to be 
compared with the hydrostatic flow in Fig. 1. The 
U-shaped region of down motion is similar in both 
cases but in the non-hydrostatic solution the fluid 
particles undergo a damped oscillation instead of 
recovering smoothly downstream. The wavelength 
of these oscillations rapidly approaches I ,  = 
2nU/N, corresponding to a pure buoyancy oscil- 
lation. These trailing lee waves have been dis- 
cussed by Wurtele (1957) and Crapper (1959, 
1962). 

In the limit UINa 9 1, the buoyancy forces are 
unimportant and no mountain waves are generated. 
The integral ( 1  1) can easily be evaluated with (13) 
and with (6) reduced to the form 

m = iK (73) 

to give 

(74) 

This flow (74), is identical to the potential flow past 
a spherical doublet placed below the z = 0 plane. 
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Fig. 7. The non-hydrostatic flow past an isolated bell- 
shaped mountain (12) as computed numerically for the 
case Na/U = 1. The vertical displacements at the height 
N z / U  = n/4 are shown. The lifting over the windward 
slope and the U-shaped region of downward displace- 
ment in the lee, are similar to the hydrostatic flow in 
Fig. Ib. The periodic lee waves apparent in this figure 
are inherently non-hydrostatic. Their wavelength 
approaches A = 2n(U/N), corresponding to parcels 
oscillating at the buoyancy frequency N while being 
advected downstream. 

The transition from irrotational flow (74) to 
buoyancy dominated hydrostatic flow, described 
herein for an isolated mountain, is similar in many 
respects to the corresponding study of Queney 
(1947) for an infinite ridge. (This transition and 
other aspects of mountain flow dynamics are 
reviewed by Smith, 1979.) 

8. Discussion 
Perhaps the most interesting aspect of the 

foregoing is the linear theory prediction that the 
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low level flow has a tendency to split to avoid the 
mountain. This lateral deflection persists down- 
stream and passes into the singular wake region. 
The horizontal divergence is compensated for by 
the descent of warm air from aloft. The general 
nature of these predictions are not strongly 
dependent on the hydrostatic assumption or on the 
choice of mountain shape, but are closely 
associated with the generation of three-di- 
mensional mountain waves. The blocking criterion 
of Sheppard (1956), using a parcel argument, does 
not seem useful in this context. Furthermore, the 
linear theory result is quite distinct from the low 
Froude number result of Drazin (1961). 

As we move aloft, the region of descent behind 
the mountain splits and becomes part of a 
three-dimensional field of vertically propagating 
mountain waves. These waves are primarily con- 
fined to parabolas which trail from the mountain 
and widen with height. The strongest waves are 
found directly over the mountain. The energy 
density of these waves decays upward due to the 
three dimensionality but, due to the decrease in air 
density, the wave amplitude will increase and wave 
breakdown must eventually occur. 
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10. Appendix I-Numerical techniques 

The two-dimensional FFT algorithm numerically 
computes the complex finite Fourier series defined 
by 

(AI. 1) 
2a(Zz - l)(Jz - 1) 

NZ 
+ 

Knowing P(Jl, J,), the original function F(Z,, 13 
can be returned by using the inverse FFT to 
compute 

. NI Nz 

-2w(J, - 1)(Z, - 1) -270, - 1)U* - 1 + 
N ,  N2 

(AI.2) 

To evaluate (1 1) in the text) 
The mountain shape h(x,y) is represented as 
an array h(Z,, ZJ by sampling with an interval 
Ax and Ay. 
The FFT algorithm is called to evaluate 
h(J, ,  JJ according to (AI.1). 
Each Fourier coefficient &J,, J J  is multiplied 
by exp (i. m(J, ,  J,) 2). In computing the ver- 
tical wavenumber “m”, eq. (6) or (14) is used 
with the horizontal wavenumbers k, 1 com- 
puted from 

2a(J, - 1) Nl 
k =  if J , < - + l  

N,.Ax 2 

or 

k =  if J ,  L - +  1 

and 

I =  if J ,  I- + 1 

or 

-2n(N1 + 1 -J1) N ,  
N , .  AX 2 

27r(J, - 1) N2 
N ,  . AY 2 

- 2 ~ ( N 2  + 1 - 5 3  N2 
N2 . AY 2 

I =  if J ,  L -  + 1 

In this way, the high wavenumbers J 2 ( N / 2 )  
+ 1, which have non-zero coefficients because 
of aliasing, are treated as small negative 
wavenumbers-and the utility of the two-sided 
Fourier transform (i.e. -co < k < co in (1 I), 
instead of 0 < k < a) is retained. 
The desired flow, at the height I, is obtained by 
computing the inverse transform according to 
(AI.2). 

The use of a finite Fourier series implies that the 
topography and the flow will repeat periodically in 
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both horizontal directions, outside of the computed 
domain. To avoid the influence from these periodic 
recurrences of the mountain, we must choose a 
domain large enough so the unwanted dis- 
turbances have decayed to small amplitude near the 
mountain of interest. At the same time we must 
choose a sampling interval (AX and AY) small 
enough to fully resolve the mountain and the flow. 
The array size N, = N2 = 128 was used for most of 
the present computations, although occasionally 
larger arrays were required. 

11. Appendix 11-Far-field asymptotics 

Equation (20) is of the form 
b eib“) dw 

I=S. (1  - i f (w)Y 
where f(w) is generally large but is zero at the 

g’ I i)r a where a = y~ - tyi. Since the contributions to 
f come primarily from points near to yi we can 
approximate Z FZ x i f i  where 

points wi. Near to wi, f(w) = f’ cr, g(w) = g(wJ + 

This integral can be evaluated by contour inte- 
gration, in terms of the residue of the double pole 
which lies at a = -i/ f I. If g’ is positivehegative 
the contour of integration must be completed in the 
upper/lower half of the complex plane. Thus, if g’ 
and f’ have the same sign, the contour encloses no 
singularities and f i  = 0. If g’ and f’ have opposite 
signs, the contour includes the double pole and 

I .  = 

For the case at hand, a = 0, b = 271 

zn da(ai)lgrl@’/f’ 
(f 

so 

Nz sin v/  
g’(w) = - - u cos2 ly 
and 

i r  

a 
f ‘ ( w )  =.- cos(y-  8) 

so 

r 
f ‘ ( w )  = - - sin (w - 0)  

a 

The function f ( w )  has two zeroes in a 2a interval 
at 

wi=  - 7c + e 
2 

so 

r 

and 

Nz 1 

U sin 8 
g(wJ = T - - 

Nz cos 8 
g’(wJ = & - - 

U sin2 8 

Combining these gives 

ha2 Nz a cos 8 

r2 
V(r,@,z)=-exp 

+ exp ( i -  u E e ) )  

which reduces to (21) in the text. 

12. Appendix 111-The integration to 
obtain the surface pressure field 

Starting with (36) in the form 

dp U 
dz N 

p’(x,y,O) = g - - hl 

where 

cos wdw 

we introduce a change of variable 

z = d *  and zd=e ie  
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We now can rewrite I as an integral around a unit 
circle in the complex plane 

z z +  l d z  
= I  ( z  - Z1)* ( z  - z2)2 

where z ,  and z 2  are the two double roots of the 
expression 

a 

so that 

The contour integral can be evaluated by the 
method of residues, recognizing that only the 
double pole a t  z ,  lies inside the unit circle. This 
gives 

2 1 Z d +  z;' 

which is 

. r cost9 

from which (37) follows. 
The integration to obtain qz(x, y ,  0) in the form 

(47) could in principle be done with a similar 
change of variable. The integral (46) however does 
not exist as qz decays too slowly at co, so the 
expression for tl,, must first be obtained using the 
methods above, and then integrated with respect to 
X .  

13. Appendix IV-The wave field at 
large z 

Starting with (20) 
eW*)z dw 

Y q(r, 8, z )  = - 2n h Real C( r 

with m(w) = N/Ucos v/, note that for large z the 
exponential factor will oscillate rapidly causing 
cancellation, except near wi = 0, n where cos v/ is 
slowly varying. Near to the Cyi ,  cos ~y z k (1  - fa') 
and 

1 - i -cos(w- e) 
la 

where ct = ~y - v/r. The integral can then be 
approximated as 

Noting that r cos 8 = x and that 

reduces the integral to 

+ 

After carefully separating the real and imaginary 
parts, the imaginary parts cancel and eq. (34) in the 
text is obtained. 
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