

TOPOLOGICAL INSULATORS AND DIRAC SEMIMETALS — SYNTHESIS AND CHARACTERIZATION

Filip Orbanić Faculty of science, Department of phyisics, Zagreb

OVERVIEW

• What are topological insulators and Dirac semimetals?

• Quantum transport and magnetic properties (quantum oscillations).

• Synthesis

• Some concrete materials and measurements.

• Closing of the energy gap at the boundary of topological and normal insulator (vacuum)

→ conductive edge/surface

TOPOLOGICAL INSULATORS

• Examples of TI and topological invariant ?

Quantum Hall effect

n → topological invariant (Chern number or TKNN)

trs, 2D

Z₂ TI (TRS & IS)

2D:
$$(-1)^{\nu} = \prod_{i=1}^{4} \prod_{n=1}^{N} \xi_{2n}(\lambda_i)$$

 $v = 0,1 \longrightarrow Z_2$ topological invariant

3D: v_0, v_1, v_2, v_3

Topological crystalline insulator

 $\nu = 0$, topological invariant is not determined by TRS but with crystal simmetries (mirror symmetry).

 $M^2 = -1$

Nontrivial topological invariant if there is an band inversion at some λ !

TOPOLOGICAL INSULATORS

• Edge/surface states properties.

Dirac dispersion in low-energy excitations — high mobility!

• Dirac dispersion in 3D!

• 2D – graphene:
$$\widehat{H}(\vec{k}) = v(k_x\sigma_x + k_y\sigma_y) \longrightarrow \text{SOC} \sim \sigma_z$$
 opens the gap.

• 3D: $\widehat{H}(\vec{k}) = v_{ij}k_i\sigma_j$, $j = x, y, Z \longrightarrow$ Robust against perturbations!

DIRAC SEMIMETALS

- Dirac semimetals come in two topological clasces too.
 - Consequence of topological phase transition NI TI.

• Intrinsic as a result of additional symmetries (rotational symmetry).

TOPOLOGICAL INSULATORS & DIRAC SEMIMETALS

• Topological insulators \longrightarrow 2D Dirac dispersion.

• Dirac semimetals ---- 3D Dirac dispersion.

Possibility for investigating Dirac's fermion physics!

Evidence of Dirac fermions?

QUANTUM OSCILLATIONS

• Electrons in strong B-field — Landau levels.

For Dirac dispersion $E_{\pm}(k) = \pm v_f k$

Periodic behavior of DOS.

Oscillations of physical quantities in 1/B!

- $M \rightarrow$ de Haas van Alphen oscillations.
- σ ightarrow Shubnikov de Haas oscillations.

QUANTUM OSCILLATIONS

SYNTHESIS

- Aim: high quality monocrystal samples.
- The fewer impurities and defects —> minimize the influence of bulk states and increase mobility.

Sealing the quartz tube.

High vacuum in ampoule

- clean atmosphere
- volatile elements

Material in vacuum seald quartz ampoule (vacuum $\sim 10^{-6}$ mbar)

SYNTHESIS

• Modified Bridgman method.

• (Chemical) vapor deposition.

Temperature gradient is achieved by two-zone tube furnaces.

Synthesis parameters:

temperature, gradient, heating/cooling rate, growth time, amount and shape of material, ampoule dimensions.

Optimization of parameters!

SYNTHESIS

• Results of synthesis:

SAMPLE PREPARATION

• For transport measurements good contacts are crucial ($\sim \Omega$).

Samples of Cd_3As_2 with contacts.

PbSnSe

- $Pb_{1-x}Sn_xSe$ is a topological crystalline insulator for x > 0.23.
- Known for ages \rightarrow energy gap depends on the T and x.

• What happens at the transition point? ($x \approx 0.18$)

x = 0.17, 0.18

PbSnSe

• Magnetization (SQUID) and magnetoresistance measurements in Pb_{0.82}Sn_{0.18}Se.

PbSnSe

Cd_3As_2

- Cd₃As₂ is an intrinsic (nontrivial) Dirac semimetal.
- Very stable material, except toxicity ideal for application and experiment.
- High mobility $\sim 10^6 cm^2 V^{-1} s^{-1}$.
- A pair of Dirac points in the direction of rotational symmetry axis (k_z) .

Different frequencies for different direction of magnetic field.

Fermi surface

3D Dirac semimetal Cd₃As₂

OTHER MATERIALS

• Other materials we have successfully synthesized:

TaP \rightarrow Weyl semimetal candidate.

Successfully observed quantum oscillations.

CONCLUSION

- Topological insulators.
 - symmetry protected surface states \longrightarrow spin locking and robustness at nonmagnetic impurities.
- Dirac semimetals.
 - 3D analogue of graphene. Symmetry protected Dirac points.
- The idea is to synthesize (determination of synthesis parameters) and characterize the obtained materials.
- Examine the consequences of the Dirac nature of cariers in magnetization and transport.

An insight into the physics of Dirac 's fermions.