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ABSTRACT

The present research proposes a standard nomenclature for mesoscale meteorological concepts and integrates
existing concepts of atmospheric space scales, flow assumptions, governing equations, and resulting motions
into a hierarchy useful in categorization of mesoscale models. New dynamically based mesoscale time- and
space-scale boundaries are proposed, consistent with the importance of the Coriolis force. In the proposed flow-
class classification, the starting point is the complete (no approximations) set of mesoscale equations for non-
Boussinesq flows. In the subsequent scale analysis, the deep and shallow Boussinesq flow divisions of Dutton
and Fichtl are kept, as is the shallow-flow subdivisions of Mahrt. In addition, the scale analysis approach of
Mabhrt is extended to deep Boussinesq motions. Limits of applicability of each derived flow-class equation set
( with respect to atmospheric phenomena that can be simulated) are also discussed. '

The proposed hierarchy of atmospheric motions is organized into hydrostatic versus nonhydrostatic flow types
and then into non-Boussinesq, deep, and shallow Boussinesq motions. Criteria used to differentiate each resulting
flow class are discussed, while resulting governing thermodynamic and dynamic equations for each motion type
are given. Separate graphical representations during stable and unstable conditions of the spatial limits of each
Boussinesq mesoscale flow subclass are constructed from order of magnitude estimates for the various length
and flow-class separation criteria. A summary of the consensus in the literature concerning the equation sets
necessary to reproduce characteristics associated with specific atmospheric flow phenomena is given. Compar-
ative modeling studies are required to test the quantitative aspects of many of the ideas put forth in this paper.
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1. Introduetion

Hasse (1993 ) recently called for a series of ‘‘perhaps
controversial’’ papers to stimulate discussion on as-
pects toward development of a ‘‘commonly accepted
planetary boundary layer (PBL) theory.”” Lack of
agreement concerning technical definitions thwarts
such a development. Previous examples in air pollution
meteorology include diffusion versus dispersion and
model validation versus evaluation.

Different opinions currently exist conceming defi-
nitions of the time and space boundaries of the
micro-, meso-, and macrometeorological scales; Bous-
sinesq approximations; anelastic equation of continu-
ity; advection versus convection; and shallow convec-
tion. The present research begins with a review of the
current status on these topics. It then proposes a stan-
dard nomenclature and integrates the concepts of at-
mospheric space scales, flow assumptions, governing
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equations, and resulting motions into a hierarchy useful

for mesoscale model classification.

2. Atmospheric space scales

The standardization of mid-1970s atmospheric scale
classification schemes by Orlanski (1975) contained
eight horizontal space and time subdivisions (Table 1)
because of the wide range of phenomena encompassed
by the three basic scales (micro, meso, and macro).
The previous definition of the mesoscale he quoted was
intermediate states between macroscale ( ‘‘space scales
more that 1000 km and time scales of the order of a
week’’ ) and microscale ( ‘‘space scales of several me-
ters and time scales on the order of a minute’’). His
proposed new upper bound (2000 km) was of the same
order of magnitude as the old one, but his new lower
bound (2 km) significantly enlarged the range of mi-
croscale phenomena. He pointed out, however, that as
it was not generally possible to identify ‘‘a relationship
between geophysical parameters and the intrinsic spa-
tial scale, . . . all horizontal scale divisions are some-
what arbitrary and ill-defined.”

Recent mesoscale texts, however, have proposed al-
ternative definitions for mesoscale phenomena; for
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TABLE 1. Atmospheric scale definitions, where Ly, is horizontal scale length.

Stull Pielke Orlanski
Ly Lifetime (1988) (1984) (1975) Present Atmospheric phenomena
S
y . .
1 month n Macro-a Macro-a General circulation, long waves
o
P
10 000 km t
M i
a c
c Macro-8 Macro-3 Synoptic cyclones
r R
o e
2000 km 1 week g
i
[
n Meso-a Macro-y Fronts, hurricanes
a
1
200 km 1 day
M .
e Meso-f3 Meso-£ Low-level jets, thunderstorm groups,
s mountain winds and waves, sea
o breeze, urban circulations
20 km
M
e
1h r N Meso-y Meso-y Thunderstorm, clear-air turbulence
o
2 km
Micro-a Meso-6 Cumulus, tornadoes, katabatic jumps
M
200 m 30 min i
c M
(r) :: Micro-g Micro-g8 Plumes, wakes, waterspouts, dust
devils
r
o
20m 1 min
Micro-y
2m 1s M Micro-y Turbulence, sound waves
i
c
r Micro-6
o
[

example, the textbook of Arya (1988) defines micro- textbook of Pielke (1984) defines mesoscale phenom-
meteorological phenomena as limited to those that ena as having a horizontal length scale large enough to
‘‘originate in and are dominated by’’ the PBL, exclud- be hydrostatic but small enough so that the Coriolis
ing phenomena whose ‘‘dynamics are largely governed force is small relative to the advective and pressure
by mesoscale and macroscale weather systems.”” The gradient forces. While Pielke mentions that this upper
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bound is thus latitude dependent, it is also true that his
lower bound would be PBL stability dependent. His
definition (Table 1) thus confines mesoscale to the Or-
lanski meso-/3 scale.

The mesoscale bounds of Pielke were consistent with
phenomena that contemporaneous mesomodels could
simulate, that is, meso-3. Such models generally used
meso-a (and larger) values as external forcing and pa-
rameterized subgrid/subscale nonhydrostatic (meso-y
and smaller) effects. Current nonhydrostatic mesoscale
models are, however, capable of simulating motions on
the smaller meso-y and micro-a scales, while model
nesting allows them to simulate meso-a (and larger)
flows.

The textbook of Stull (1988) places the lower limit
of the mesoscale at 3 km. It also reproduces part of the
Orlanski table (meso-a to micro-y) but with an addi-
tional micro-§ scale (Table 1) extending from 2 m
down to 2 mm. In addition, it shows an overlap between
the micro- and mesoscales that extends downward from
the middle of meso-y to the lower end of micro-a.

Pielke (1984) also defines the vertical bounds of
mesoscale phenomena as extending ‘‘from tens of me-
ters (i.e., above the SBL) to the depth of the tropo-
sphere.”” While shallow mesoscale motions (like sea
breezes) are all or mostly contained within the PBL,
deep mesoscale motions (like thunderstorms) can ex-
tend well above it.

Given the current variety of definitions for both
mesoscale bounds, the current work seeks to update the
Orlanski subdivisions. The new proposed scale bound-
aries (Table 1) include the following changes: addition
of a micro-§ scale, renaming of meso « to macro vy,
and renaming of micro a to meso §. These last two
changes shift mesoscale down one class toward
smaller-scale flows. These changes thus incorporate
contributions from the boundary layer meteorology
textbook of Stull, except that his scheme showed an
overlap of the micro- and mesoscales covering the cur-
rent meso 6 and half of the current meso .

Both new mesoscale boundaries (appendix A) are
thus dynamically based. Its upper boundary thus cor-
responds to that proposed by the textbook of Pielke, in
which atmospheric motions have a horizontal extent
small enough so that the Coriolis force is not latitude
dependant. By analogy, the new lower bound includes
all phenomena in which Coriolis effects are strong
enough to determine rotational direction. Note that both
new mesoscale bounds are stability dependent, because
as stability increases, motions become more horizontal
and thus more influenced by Coriolis forcing.

Dust devils and water spouts are thus microscale, as
they are in cyclostrophic balance and can rotate in ei-
ther direction (Table 1). While tornadoes are also

“cyclostrophic, they are large enough so that Coriolis
forcing generally determines flow direction (but not
speed), hence, they are mesoscale. While the current
upper limit excludes phenomena in which latitude-de-
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pendent effects are significant (such as fronts and hur-
ricanes), it does include tropospheric phenomena ei-
ther originating at the surface or driven by dynamic
macroscale weather systems, for example, squall-line
thunderstorms.

The location in Table 1 of only two phenomena dif-
fer from that in Orlanski and Stull; that is, plumes and
urban effects are each moved up one scale. Current
mesomodels can simulate flows on all proposed meso
subscales, including nonhydrostatic meso-y and meso-
6 phenomena, as discussed below.

3. Governing equations

The different flow depths of the various mesoscale
flow types imply governing dynamic and thermody-
namic equations that can be simplified via scaling as-
sumptions such as the Boussinesq approximation. Dis-
agreement exists, however, as to the vertical extent to
which that approximation is valid. A description of the
approximations of Boussinesq (1903) always states
that the variation of perturbation density can be ne-
glected in the mass continuity and momentum equa-
tions, except through its influence in the buoyancy term
(which includes thermal and pressure contributions) in
the vertical equation of motion (appendix A). Such a
statement allows for both deep and shallow flows (Dut-
ton and Fichtl 1969; Pielke 1984). Some authors (e.g.,
Businger 1982), however, further impose a condition
that perturbation pressure influences in the buoyancy
term can be neglected, which restricts the approxima-
tion to shallow flows. Mahrt (1986) and Stull (1988)
point out that this extra condition is limited to only
nonneutral shallow flows.

The current study attempts to clarify the types of
Boussinesq and non-Boussinesq atmospheric flows and
to identify the approximations implied in the derivation
of their respective governing equations. The current re-
search keeps the deep and shallow Boussinesq flow
equations of Dutton and Fichtl and the shallow flow
subdivisions of Mahrt. In addition, the scale analysis
approach of Mahrt is extended to deep motions. Limits
of applicability of each equation set (with respect to
atmospheric phenomena that can be simulated ) are also
discussed.

In engineering terminology, convection is used to
describe vertical or horizontal movements of mass or
energy by either the mean or turbulent component of
thermally forced flow. In meteorology, convection
needs to be differentiated from both advection and dif-
fusion (appendix A). The smallest scale of the vertical
movement of energy, mass, and/or momentum is ran-
dom (disorganized) microscale turbulent diffusion
(with a zero-mean vertical velocity). The next largest
scale of such movement is organized (nonhydrostatic)
mesoscale or microscale (thermal or mechanical ) con-
vection, with vertical velocities large enough (same or-
der of magnitude as horizontal velocities) to signifi-
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cantly alter or produce the horizontal flow component
(mainly) by mass continuity. Finally, the largest scale
of vertical movement is the organized mesoscale (and
larger) advective circulation cells, in which advective
vertical velocities are at least an order smaller than the
horizontal component and arise from horizontal con-
vergence again via mass continuity.

One impact of such a nomenclature is that motions
such as sea~land breezes, mountain—valley winds, and
urban circulations would no longer be referred to as
convective but as advective. Another result of this clas-
sification is also that hydrostatic mountain waves are
considered as advective, while nonlinear lee waves are
convective. Note, this does not imply that all nonhy-
drostatic flows are convective, that is, neutral-stability
advective flows over surface discontinuities in which
vertical motions are limited by advection are also non-
hydrostatic (Fig. 1). All hydrostatic flows are thus ad-
vective, but not all advective flows are hydrostatic.

a. Basic equations

The instantaneous ( ) momentum and continuity
equations are, respectively,
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where all symbols are defined in appendix B. Combin-
ing both equations yields
opV o
=5 = ~V-PVV — V5 — b,
—2p2 X V + puVV. (3)

Each thermodynamic and dynamic parameter in the
above two equations is then Reynolds decomposed (ap-
pendix A) into its mean (unbarred for convenience)
and turbulent components:

O=CHr+C ),
in which
t+Ar Px+Ax py+Ay z+Az .
[ [ 7 0 vt
t x y z
()= AxAyAzAt )

represents a running mean (appendix A). The Reyn-
olds (averaging) assumption (appendix A) is then ap-
plied to the Reynolds decomposed versions of (2) and
(3) to produce

LoV L op _ R
p—5}-=—pV'VV—Vp—~pg6,z Bf_ v pv \% pvv (5)
=2 X VvV, () 9V g yv) - v (V) + Mt
ap - 6t
o = VAV (2) — Vp - pgéis — 202 X V + uV?V, (6)
' Nonhydrostatic I Hydrostatic '
‘ Convection l Neutral 3 Advection '
Compressible Extreme Boussines q Compressible
Vertical Horizontal l
Motions convection Motions

FiG. 1. Schematic of basic flow subclasses and assumptions.
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where flux terms have an overbar and where the vector
momentum turbulence term Mt is given by
d(p'V’ S
Mt = —(—ﬁp——) + V-2V
ot
+p'V'V") + 20 X p'V') .

Note, Mt contains density—velocity turbulent terms but
no pressure—density perturbation term, as the starting
equation (1) was multiplied by p to combine it with
(2) to produce an equation containing diffusion terms.

Note, the validity of the Reynolds assumption re-
quires the existence of a spectral gap scale separation
between resolvable motions and parameterized subgrid
processes (Piclke 1984 ). As recent observations show
that such a separation generally does not exist ( Young
1987; Courtney and Troen 1990), this assumption is
questionable and should be applied carefully.

Also, the assumption (made in the above derivation)
that spatiotemporal averages of time or space deriva-
tives are equal to time or space derivatives of spatio-
temporal averages is only valid in models with constant
time steps of integration and/or constant grid spacings
(Pielke 1984 ); for example,

@=6( )
ot ot

b. Timescaling

As only the vertical momentum and continuity equa-
tions are significantly modified in the following flow-
class analysis, their most general forms [(5) and (6)]
are given in the upper line of Table 2. Following Mahrt,
the Coriolis and molecular viscosity terms are omitted
in the table and in the following scale analysis, as their
form would not be significantly altered. The same cri-
terion is used to omit turbulent diffusion terms but to
include the other turbulence terms in Mt.

Continuity equation (5), without its turbulence term,
is now simplified via scale analysis, starting with de-
composition (following Oberbeck 1888) of mean dy-
namic and thermodynamic variables ¢(x, y, z, t) into
a motionless (hydrostatic) horizontally homogeneous
basic-state part ¢, (z) and a space/time-varying pertur-
bation part ¢,,(x, y, z, t) that is the sum of hydrostatic
é,(x, v, z, t) and nonhydrostatic ¢,(x, y, z, t) com-
ponents.

This allows the compressible form of the mass con-
tinuity equation to be written as

6ahn aah,, aao
+ . — + —_—
Y Vi Vi, +w o2 w o2
0
=a0VH'VH+aO'—Z£. (7)
0z

Typical mesoscale ( ) and static-state ( ), scale
lengths, speeds, and times can be substituted in the
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above equation. In the current analysis, specific nu-
merical values are not assigned to scale parameters, as
these values are application dependent. After such sub-
stitution, (7) can be written as

Ap Qpy Ay [« VH W
—+Vyi—+W—+W—=a,—+a,—,
VYLtV T, e ®
or
1 Vg W s W 8 5
1, Yy W a W _aVy oW
T LH LZ Qg Ha Oy LH Ay Lz
where static-state density scale-height H,, is given by
1 o )™
H,=|——
a, 0z

Scale analysis identifies an appropriate timescale 7
for the occurrence of significant variations in mesoscale
specific volume. When 7 is exceeded, the Eulerian time
derivative of the mesoscale perturbation density can be
neglected. Mahrt has summarized past approaches for
obtaining 7.

Spiegel and Veronis (1960) and Businger (1982)
assumed horizontal and vertical velocity advection
scales of the same magnitude as the Eulerian time de-
rivative of density; that is,

LH —~ Lz

“v,owe
When (10) is used in (9), the following is obtained

T (10)

s L 5 5
4141+ 2% & (1
Uy Hy Oy Qy
As they also assumed
lawl (12)
la)

the first three terms of (11) are neglected compared to
the final two terms.
As they also only considered shallow flows,

L <H,, (13) -

the fourth term of (11) is also neglected, leaving only
the nondivergent/incompressible form of the continu-
ity equation (appendix A):

V-V =0. (14)

Note that for flows over terrain features, L, is the flow
depth in the vertical (and not in the direction perpen-
dicular to the surface).

According to Mahrt, however, use of (10) to derive
(14) is invalid for flows when 7 is either smaller or
bigger than the advective timescales. In the former,
density advection is dominated by mass convergence,
which can be either due to the propagation of energy
by pressure fluctuations or to density changes from ra-



385

THUNIS AND BORNSTEIN

1 FEBRUARY 1996

*3IBAUO
QQ NQ 8&‘ Hm
gl twgg T ~(A)-A-= —
9 et ne reuzaayy, | SUOLIOA
a d. 0 *
0 18 |AL %8 (uygu). e = 2
ME&&Q 20 :.\.HQH_ °g + °%e A %\»V a a7 Te} Z-w@@}%@ﬂ
By
4g Hdeo 1 mﬁgh@ﬁmrﬁ
AAZ0 *ssnog
*1ODA
od dp 5 zg ©d _ 1 ¥ Py
:lfuﬂm - :&&mﬂ - Ta.év A-= me w@&ﬂﬁﬁz
*129AUO
Mg o e lor = e °d b zg °d e | 0 | moyreys
Do 81T (wgay. pm = e ) T e~ —(m) A= 2
widg ®o ~ “Yrg| °p ' °pe “ige ) de 1 ™€ | mo[reys
*JORAUOD)
ar 3@ 19L, %@ uyg g0 °d e %0 zg °d o__ze SUOIJO
— 4 —m ~ ) A—— = —6+ —_— = (mpod) A—— = — I30TAT
T.ﬁm og Tope™ ~(M04%) AT - = s wgl Y wag T ~ (A AT o= 00 ——
“1DDADY
v 'y
N Moo 2 _ e o, db _0Vp e *SSNOE
(°da)-a=0 “idg oo  “dfg| °g uday g Ydeo { ([-UrIBy T
. , o *922AUCY)
ze °d__ %@ 24D 0 )5y P00 (mpod). pst o= P des
mms ~ (%4 4°0) - DIa.I = Sigg wWdw T + g 1 mA°d) - A 1 mo ﬁ.awv@@ a
n *ITDALOD
w0 o e | g e 49 29 I__le SUOI}O]
“A A= T I d-pa~—-= e - - —(mpd) A=— = — IIOIN
(9.4) A+ (@A) -a=0 1|+ Tama .:QL , Tead) a3- =g M+ 055 ~ wmggy ~ (mad)a- =0 B,
d zQ d . - T °
2z _e7 - ZIICY | SUGIZOY SSNO
% ~Tagi~ =0 ey 13O/ 2l
a
__t i o e 1z Lo _ e
AR\\S.D._.AQ\»V.DI :&Q%l g+ M.:Emﬂ - :n&%u M +oA-A— = e
d zp d I wd . o
W+ ~ g~ (had) AT = e dwop N

‘b A3INUIGUOD

‘b A8aeuy TewiIeyy,

oo Jo ‘BE 3384 [elred

SSBI-CNIS MOLE

g xipuadde uy paugep are sfoquIAs J[e a1aym ‘sse[oqus mop pasodoid 0] suonenbo Surmsaos ‘g a14v],




386

diative flux divergence and/or phase changes. Thus, in
theory, the Eulerian time derivative would be kept for
such flows; however, as shown below, a less stringent
criteria may be derived from 7 that would in fact allow
most such flows (sound waves excepted) to be gov-
erned by (14). In the opposite case, when 7 is larger
than the advective timescale (as in stationary condi-
tions), the Eulerian derivative cannot be dropped, but
the density perturbation advection terms can be
dropped via (12).

As Ogura and Phillips (1962) and Dutton and Fichtl
(1969) investigated convective flows, they assumed 7
comparable to the buoyancy (Brunt—Viisild) time-
scale, or

(15)

To neglect the Eulerian time derivative, their scale
analysis showed it is necessary that

> VL /g. (16)

Note that Mahrt (1986) omitted the radical sign in his
restatement of the above relationship. Advection of
perturbation density is, however, only eliminated when

Vi _ Ly
—=—. 17
| (17
The continuity equation thus again becomes the incom-
pressible form given by (14) for shallow flows [in
which (13) is valid] but becomes

V-pV =0 (18)

for deep flows in which

L <H,. (19)

While (18) is referred to as the anelastic form of the
continuity equation, this name is also used for (derived
below)

V-pV =0, (20)

in which total density replaces p,. Thus, (18) will here-
after be referred to as the Boussinesq anelastic form
(appendix A), while (20) will be called the full ane-
lastic form. As pointed out by Mahrt, (15) is not valid
for near-neutral flows.

To correct the aforementioned limitations of Spiegel
and Veronis and of Dutton and Fichtl, Mahrt derived a
condition for 7 by comparison of the Eulerian time de-
rivative of density with the larger of the two velocity
divergence terms on the right-hand side of (8), thus
obtaining (after inversion of the terms)

QA pg LH LZ
— | =, = . 21
s [VH ’ w ]min ( )
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Note, this approach assumes that the perturbation den-
sity advection terms are dropped because of (12) and
that the vertical static-state density advection term is
dropped because of (13), which means that only shal-
low flows are considered. Equation (21) is a ‘‘partial’’
relaxation of the criteria of the preceding four studies,
in that it allows for inclusion of most shallow flow
types excluded by (10) and (15). It, however, excludes
non-Boussinesq flows but does incorporate the deep
Boussinesq flows of Dutton and Fichtl. A more relaxed
condition on 7 is now thus derived.

¢. Non-Boussinesq flows

Whereas each of the above studies chose to compare
the Eulerian derivative of the full (compressible) form
of the continuity equation to only some of the other
terms in the equation, the current extension of Mahrt’s
approach compares it to the largest of all the other five
terms, yielding

Vu w

ay . Qyy Ay a,
el v, W W o e | (22
T <[ "I. L H, L, Lz]max( )

or

T>[ﬁl L aMH aMLH ClML] (23)

VHWQSW asV”aW

The new criteria is a relaxation of (21), as it now in-
cludes three new terms (final three) that might be
smaller than the first two for flows either deeper than
H, (last versus third term) or in which

layl = (24)

(fourth and fifth versus first and second terms). If, as
is likely, (24) never occurs in normal atmospheric
flows, (23) reduces'to

;i Ly L He
Vi WW |

e

(25)

Thus, flows with small 7 values, that is, those not
fulfilling (25), require the compressible form (appen-
dix A) of the mass continuity equation (5) in Table 2
and are referred to as compressible motions (appendix
A). Note, specific volume « appears in the text, but
Table 2 equations are written in terms of density p for
convenience.

Neglect of the turbulent density term in the conti-
nuity equation (and also in the momentum equation)
has been shown by Mahrt (1986) as an invalid ap-
proximation in extreme aspect ratio flows, that is, ex-
treme narrow convective and long thin horizontal ad-
vective flows.

While the flow speeds associated with normal me-
teorological phenomena are insufficient to alter atmo-
spheric density, the complete continuity equation is
kept in some models to avoid the necessity of solving
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an elliptic equation for pressure. Solution of the com-
pressible continuity equation, however, requires a small
computational time step (as it allows for formation and
propagation of sound waves, which are not of meteo-
rological interest). It has thus been used for numerical
convenience in GCMs, cloud models, and some meso-
scale models (listed below).

Compressible motions can be nonhydrostatic or hy-
drostatic (Table 2 and appendix A). Nonhydrostatic
compressible motions include vertical sound waves,
while hydrostatic compressible motions include hori-
zontal sound (or Lamb) waves (Table 3).

Compressible motions require the complete forms of
the momentum and continuity equations, which are
also valid for all Table 2 flow types (discussed below)
derived by their simplification. Likewise, each set of
equations in the table is also thus valid for flow types
located below it, as indicated by the downward- and
leftward-directed arrows in Fig. 2. The name in each
box in the figure represents the most complex flow type
reproducible with its associated equations ( Table 2) but
which cannot be simulated with equations associated
with boxes located below it. Horizontal box position
(solid-line part) is likewise related to the division be-
tween hydrostatic and nonhydrostatic motions, while
dashed extensions into the hydrostatic part of the figure
indicate that its equations are also able to simulate hy-
drostatic phenomena. Note that vertical location in Fig.
2 is not indicative of circulation depth, for example, as
compressible motion sound waves can occur in shallow
near-surface layers.

Nonhydrostatic (vertical) compressible motion
models (Table 3) include MESOSCOP (Schumann et
al. 1987), ADREA (Bartzis et al. 1991), and MM5
(Dudhia 1993), while hydrostatic (horizontal) for-
mulations include MAR (Gallée and Schayes 1994)
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and MM4 (Anthes et al. 1987). Some models are
quasi-nonhydrostatic, in that they do not include non-
hydrostatic effects in all terms; for example, the buoy-
ancy term in MEMO (Moussiopoulos et al. 1993) in-
cludes only hydrostatic density.

For larger 7 values fulfilling (25), the Eulerian den-
sity time derivative can be dropped, and thus such flows
require only the full anelastic mass continuity equation
(20) in Table 2. Note that the turbulent density terms
are still retained, as these flows are not limited in ver-
tical extent. Hence, they are called extreme convection
(appendix A) and, thus, are nonhydrostatic. Extreme
convection flow types include nonlinear lee waves and
severe thunderstorms (Table 3), but the authors have
been unable to find any extreme convection models in
the open literature. Note that none of the models listed
under the two non-Boussinesq flow types in Table 3
are fully non-Boussinesq, as all omit the Mt, Et, and
density velocity turbulent correlation terms.

d. Deep Boussinesq flows

Following Mahrt (1986), a’ was kept in the non-
Boussinesq flow equations discussed in the previous
section. It is thus now proposed that the first criterion
for Boussinesq motions is

le'| < |al, (26)

which will be used as justification (in the averaged
equations) to drop flux terms containing «'. This as-
sumption was used by Pielke (1984) to eliminate the
“‘turbulent density—pressure gradient correlation’’
term in the vertical equation of motion.

As described above, considerable work has been de-
voted to establishment of sufficient conditions for
Boussinesq approximation validity. The above scale

TasLE 3. Examples of models used to simulate phenomena in text subclasses.

Subclass Phenomena Models References
Compressible vertical motions vertical sound waves MESOSCOP Schumann et al. (1987)
MMS5 Dudbhia (1993)
MEMO Moussiopoulos et al. (1993)
ADREA Bartzis et al. (1991)
Compressible horizontal motions horizontal sound waves MAR Gallée and Schayes (1994)
MM4 Anthes et al. (1987)
Extreme convection nonlinear lee waves, severe thunderstorms —_ —
Deep convection thunderstorms, linear lee waves, GESIMA Eppel et al. (1992)
orographic clouds RAMS Tripoli and Cotton (1982)
— Peltier and Clark (1979)
Deep thermal convection cumulus congestus FITNAH Gross (1992)
TVMnh Thunis (1995)
Thermodynamic advection mountain waves, fronts, cyclones — —
Shallow convection sea-breeze fronts MERCURE Buty et al. (1988)
Shallow thermal convection cumulus, thermals, strong upslope winds — Sievers and Zdunkowski (1986)
— Svoboda and Stekl (1994)
Thermal advection sea breezes, urban flows, mountain/valley URBMET/TVM —

winds down/upslope winds
Neutral advection

high wind speeds, low hill flows

Schayes et al. (1995)




388

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 3

HYDROSTATIC NON-HYDROSTATIC
N Compressible Motions
0
N r v~ 1
B Horizontal Vertical
0 1% U X2
U
S - Extreme
S ra~l
Convection
C; o X2
D b .
% re~1 eep L; € rHqy
P :
: Convection
B | eeeen
0)
ISI Thermo-Dynamic o Deep
S _ : Thermal
Advection Convection
r~1l ]
S
H ol e o
A el Shallow
L r>1
L : Convection
0 ; e,
w bpn ~ 0
B Thermal rel Shallow
0 ) Thermal
ISI Advection Neutral Convection
-1
S Advection B ~ O
Text Eqgs.
L L, Ha
°lo > 2[5 ) 29
Ly L,
é > e fr il (21)
E | C |t < 1, |£] <1 (12), (26)
R
I <1, B (19), (17)
A Cs —f’f; <1 - (13)

FiG. 2. Flow subclass chart, whose organization is explained in text and whose symbols are defined in appendix B.
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analysis will now be applied to Boussinesq flows (ap-
pendix A) to complete a comprehensive hierarchy of
criteria for the classification of mesoscale atmospheric
flows.

The shallow Boussinesq flow subdivisions of Mahrt
are now extended to the deep Boussinesq flows (ap-
pendix A) of Dutton and Fichtl by use of the scale
analysis of Pielke (1984), in which each term of the
full anelastic continuity equation (20) is scaled by the
static-state density vertical advection term (in the form
Wa,/H,), yielding

Vi H, V. H,
2 K Za = HZe e 27)
[+ 2 WLH WLH Lz

With the use of (12), the heart of the Boussinesq
assumption, the advection of perturbation density (first
two terms) is dropped, which implies that the sum of
the final two terms of (27) must be of order one. Mahrt
(1986) has shown that the practical limitations asso-
ciated with the further assumption that each of these
two terms is likewise of order one is minimal; this latter
assumption implies criteria (17) and (19), respec-
tively. Note, for deep Boussinesq motions, timescale
criterion (25) reduces to the shallow Boussinesq form
(21) of Mabhrt, as the final two terms are equivalent.
Remultiplication of the remaining final three terms of
(27) by scale factor W a,/ H, produces the Boussinesq
anelastic continuity equation (18) in Table 2. A sum-
mary of the above three criteria to move from extreme
convection to the currently discussed deep convection
flows is given in box C2 in Fig. 2.

As a,,, was eliminated from the continuity equation
for deep Boussinesq motions, it can be eliminated from
the momentum equations, except in the buoyancy term.
Use of (12) allows linearization of the ideal gas law as

Xy Hoz

a, L,

H,

+ 1

————— , (28)

which when introduced in the buoyancy term produces
the vertical equation of motion for deep convection
(appendix A and Table 2). Examples of such deep con-
vection models (Table 3) include GESIMA (Eppel et
al. 1992) and the model of Peltier and Clark (1979).
A quasi-Boussinesq model in this group, RAMS (Trip-
oli and Cotton 1982), neglects a,, in all terms, except
buoyancy (consistent with the Boussinesq approxima-
tion) and the Eulerian time change term in the conti-
nuity equation (which avoids numerical solution of an
elliptic pressure equation).

The Boussinesq deep convection equations are now
simplified by generalization of the Mahrt shallow-flow-
scale analysis to two deep convection subclasses: lim-
ited (in depth) nonhydrostatic deep flows (called deep
thermal convection) and hydrostatic thermodynamic
advection. Deep convection flows are nonhydrostatic
when buoyancy does not balance the vertical pressure
gradient force (VPGF). From the ideal gas law and
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isothermal atmosphere scale-height H; (=RT,/g), a ra-
tio r is defined between the scaled perturbation buoy-
ancy and the scaled perturbation VPGF:

au L. ps
A HiPM

. (29)

During noninversion conditions, H; < H,, while during
inversion conditions, H; > H,. Dutton and Fichtl
(1969), however, have shown that differences remain
small in both cases, and thus H; ~ H, is assumed
below.

For hydrostatic (r =~ 1) deep Boussinesq motions,
mesoscale pressure perturbations must be retained in
both the VPGF and buoyancy terms. Such motions
must be mostly horizontal and, hence, advective. As
such flows are deep (L, large) and hydrostatic (L very
large), they occur at the upper end of mesoscale, merg-
ing with the macro-y scale. Such flows are driven by
both dynamic and thermal instabilities and, thus, are
called thermodynamic advection flows (appendix A
and Table 2). Such phenomena could include mountain
waves and synoptic fronts and cyclones (Table 3), but
no reference to a thermodynamic advection model has
been found in the literature.

Scale analysis of the other deep Boussinesq subcase,
that is, unstable thermal convection, shows that the per-
turbation pressure in the buoyancy term may be ne-
glected. To demonstrate this, (29) is rearranged as fol-
lows:

Pu
ps

L oy

(30)

H,r a,
To neglect p,,/p,, (30) shows it is necessary that
L, <rH,. (31)

For flow depths at the upper limit of deep Boussinesq,
that is, with

L,~H,, (32)

mesoscale perturbation pressure in the buoyancy term
can be neglected only if

r> 1. (33)

Such a large r, however, should also force neglect of
the VPGF in the vertical equation of motion, which
would produce vertical accelerations from thermal
buoyancy bounded only by advection. It is thus prudent
to limit L, to a value nearer the lower end of deep Bous-
sinesq. Thus, r cannot be as large as in (33), but only
r > 1. This hypothesis should be tested by use of a
deep thermal convection model with and without the
VPGF.

For such deep Boussinesq flows, mesoscale pertur-
bation pressure can thus be ignored in the buoyancy
term, and the resulting motions in Table 2 and Fig. 2
are hence called deep thermal convection (appendix
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A). Note, (31) is the upper limit on L,, while its lower
limit is the upper limit (13) of shallow flows. Also note
that (31) allows for deeper vertical circulation depth as
flows become more nonhydrostatic.

As mesoscale perturbation pressure must be evalu-
ated for the VPGF anyway in primitive equation mod-
els, this approximation might not frequently be used in
such models. In vorticity-mode mesoscale models,
however, as all reference to mesoscale perturbation
pressure is eliminated, this is a useful approximation.
Examples of deep thermal convection models (Table
3) include the primitive equation FITNAH model
(Gross 1990) and the vorticity-mode TVMnh model
(Thunis 1995).

e. Shallow Boussinesq flows

When a given flow satisfies criteria (12), (17),
(21), (26), and

L <H,,

[this latter instead of (19)], the flow is shallow Bous-
sinesq. For such shallow convection (appendix A)
flows, the continuity equation is incompressible ( Table
2 and Fig. 2), because the above criteria allows for the
vertical advection of basic-state density (fourth term)
to be eliminated from (8); this changes the (deep)
Boussinesq anelastic form of the continuity equation
into the (shallow Boussinesq) incompressible form
(appendix A). Note that such incompressible flows ex-
ist in a compressible (by gravity) atmosphere.

The corresponding form of the vertical equation of
motion in Table 2 (see also Fig. 2) is similar to that
for deep convection flows, except that the vertical vari-
ation of p, has been neglected as a result of the one
changed criteria. Shallow convection models (Table 3)
include MERCURE (Buty et al. 1988).

The shallow convection equations can be simplified
for hydrostatic (r = 1) flows. With (13) in (30), meso-
scale perturbation pressure drops out of the buoyancy
term for such flows, called thermal advection (appen-
dix A) in Fig. 2. Thermal advection models (Table 3)
include TVM/URBMET (Schayes et al. 1995).

The shallow convection equations may also be sim-
plified for nonhydrostatic motions in which perturba-
tion buoyancy dominates the VPGF (r > 1). In such
flows, perturbation pressure again drops from the buoy-
ancy term, leading to shallow thermal convection (ap-
pendix A, Fig. 2, and Table 2). With increasing flow
depth, such flows merge with the above-described deep
thermal convection, and are thus located near the shal-
low end of that latter class. Such models (Table 3)
include the microscale model of Sievers and Zdun-
kowski (1986) and the mesoscale model of Svoboda
and Steckl (1994).

Note, with thermally neutral stability, another pos-
sible shallow motion case exists in which the thermal
buoyancy (by definition) is zero, producing equality
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between py,/p, and ay/a, in (28). As the circulation is
shallow (L, < H,), r must thus be much less than unity,
which indicates that buoyancy can be eliminated from
the vertical equation of motion for neutral advective
flows (appendix A and Fig. 2), and thus the VPGF is
balanced by advective processes (Table 2). Mahrt
(1986) has, however, pointed out that the pressure per-
turbation term must be retained in the buoyancy flux in
the turbulent kinetic energy (TKE) equation. While the
resulting set of equations is often used by engineers to
study flows around buildings, a need exists for quan-
titative evaluation of this term. In addition, Fast and
Takle (1988) point out that for such nonhydrostatic
flows, it is incorrect to use a hydrostatic thermal ad-
vection model to simulate neutral (e.g., high wind
speed) shallow PBL flows (Fig. 1) over surface rough-
ness discontinuities or hills (Table 3), for example, as
was done in URBMET (Bornstein 1975).

Turbulent kinetic energy production by wind shear,
buoyancy, and mixed shear/buoyancy effects, respec-
tively, are parameterized as eddy friction terms. Such
processes produce zero average vertical velocities and
are thus not mesoscale (or microscale) convective
flows. Such processes produce only subgrid microscale
modifications of mesoscale flows via diffusion, and
thus the correct names for these vertical mixing mech-
anisms could be mechanically driven, buoyancy driven,
and mixed diffusion, respectively (appendix A). Note,
forced convection is synonymous in the current no-
menclature with advective flow interactions with to-
pographic features.

In summary, the most important effect of the deep
and shallow Boussinesq assumptions on the governing
equations is to ignore all density spatial variations, ex-
cept in the buoyancy term. Note that the particular form
of the linearized ideal gas law appropriate for each
Boussinesq flow type is contained within the corre-
sponding buoyancy term in the vertical equation of mo-
tion, except for neutral advection flows for which buoy-
ancy is eliminated. In that case, the ideal gas law is
given by (28).

4. Thermal energy equation

Criteria derived in the above scale analysis are now
applied to the thermal energy equation, required in any
mesoscale model. The objective is to ensure consis-
tency between the thermodynamic and dynamic equa-
tions for each flow class. Note that no scaling argument
has been developed yet to justify elimination of certain
terms. As these terms are never even mentioned in most
models, the current analysis starts with the complete
thermal energy equation and drops these terms at what
appears (based on the scale analysis developed above)
to be the correct level in the current flow hierarchy.

While the first law of thermodynamics is formulated
in terms of temperature, it is convenient in mesome-
teorology to rewrite it in terms of potential temperature
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6, as the turbulent heat flux is zero during adiabatic
conditions. With the Poisson equation, the first law can
be written as

dd 8 dS
—_—— 4
dt ¢, dr’ 34)
which after averaging becomes
@+V Vo + V- V0’—-9—6—S+Et (35)
ot c, Ot

Reynolds-mean quantities are still unbarred for con-
venience, and the scalar turbulent-advective entropy
term Et is given by

_ 0_6S’ + @+0)H)(V+V')V(S+S)

c, Ot cp

(36)

which after expansion of its last term becomes

Bt=——+— [0v VS + 0V VS’

+ e'v-vs' +9V-VS+0V-VS ] (37

Note, this is believed to be the first time that the above
term has been mentioned in an analysis of the thermal
energy equation.

To expand the entropy time derivative in (35), the
definition of mean entropy

S = c, Inf
{which does not involve flux terms) is combined with
Poisson’s equation to produce
S=c¢,InT — Rlnp.

Taking the local time derivative yields

9 _qoT Rop

ot T ot p o’ (38)
which, when used in (35), produces
% +V-Vo+V-Vo'

_9| 9T _ « 9pm
-7 G- 2%e| vm o)

where zero-valued time derivative ( ), components
leave only time-varying (), components in time de-
rivatives and where the bracketed term represents ex-
ternal diabatic forcing.

This compressible motion form of the thermody-
namic energy equation (39) thus includes intractable
(cannot be parameterized by normal closure tech-
niques) turbulent entropy fluxes in Et, an intractable
turbulent temperature flux term, and temperature and
entropy advection terms that cannot be put in flux form
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without the addition of density containing correction
terms (as flow is compressible).

For extreme convection flows, the turbulent temper-
ature flux term V' - V@' in (39) becomes tractable (as
it and the temperature advection term can be written in
flux form) via continuity equation (20), which yields

869""+ V-(pVO) + = vpv'o'
_ 8| 0w _ @ Opm
_T[ o o o ]D+Et. (40)

Overbars are required because Reynolds decompo-
sition of the instantaneous density 2 (= p + p'),
and consistency with the extreme convection verti-
cal momentum and continuity equations in Table 2,
introduces now tractable (in theory, via parame-
terization) fourth-order temperature turbulent flux
terms.

As turbulent and mesoscale density perturbations
were neglected (relative to its mean quantity) in the
Boussinesq continuity and momentum equations,
these are now likewise neglected in the Boussinesq
thermal energy equation; that is, p becomes p, in
(40). In addition, Et is now dropped, analogous to
the elimination of Mt in the extreme convection mo-
mentum equation. Although this might seem arbi-
trary in the absence of a scaling argument, it is hoped
that future research will be able to produce such an
analysis.

For the resulting deep convection flow equation, de-
composition of mean variables into static-state and
mesoscale components, followed by application of the
deep Boussinesq criteria (C, in Fig. 2) changes the
equation (Table 2) to

60;,,,

06,
ot +_V (Povohn)"'w_"'i'_v (poV'0")

0z

=_9_ I:QZ’& - gﬂ@g (@)] , (41)
To | Ot ¢, Ot\po/ lp
where the steady-state p, term is included within the
time derivative for the scale argument contained in the
following paragraph.

This deep convection equation can be simplified for
its thermal convection subclass by application of (31),
which allows neglect of the pressure correction term,
producing
80 1

00,
ot + _V (pOVO,,,,) + Wa—z

oT,
+—V(p0V0) < "") . (42)
ot J,
The shallow Boussinesq flow criteria must be ap-

plied to (41), and not to (42) (as the pressure term is
again required), to produce (Table 2)
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00,
ot

+V(V0,,,,)+w%+V(V0)

= — [BT"" - %2 (Eﬁﬂ)] , (43)
8t Cp at Po D
where «, has replaced «,, consistent with the Boussi-
nesq approximation for shallow flows.

Note that most shallow Boussinesq models assume
80/ Ty ~ 1, which produces a 3% error at a height of 1
km. The above shallow convection equation (Table 2)
is valid for both of its nonneutral stability subcases
(thermal advection and thermal convection). This form
is used in most mesomodels but without regard to con-
sistency with their dynamic equations.

The commonly made assumption that diabatic heat-
ing is due only to vertical net radiative divergence pro-

duces
O _ _ @600
o ),

44
T 0 (44)

where « is «p and «, for deep and shallow Boussinesq A

flows, respectively. Horizontal radiative flux diver-
gence can, however, be comparable to vertical diver-
gence with small nonhydrostatic horizontal grid spac-
ings, in particular at the edges of polluted urban bound-
ary layers. Note, all above versions of the energy
equation are also valid for hydrostatic flow cases.

5. Flow classification

Separate graphical representations of the Boussinesq
mesoscale flow subclasses during stable and unstable
conditions were constructed from order of magnitude
estimates of the various length scales and flow-class
separation criteria (ignoring effects from condensa-
tion) described above. Note that while these values are
(for convenience) representative of the earth atmo-
sphere in its midlatitudes, they could be derived for
other latitudes and/or for other planets by use of the
criteria presented above.

Boundaries between unstable condition flow sub-
classes described above are defined in Fig. 3 by the
following limits: zones of unrealized atmospheric
flows, upper and lower limits on thermal convection,
upper limit on the micro-f scale, hydrostatic—nonhy-
drostatic transition, and shallow—deep flow limit. All
flow-class boundaries in this and the next figure rep-
resent best estimates consistent with scale arguments
presented above. As each flow-class limit line really
represents a transition zone, more precise limits and
slopes could be developed via numerical model simu-
lation of impacts resulting from the approximations dis-
cussed above.

For example on its vertical axis, a daytime PBL
depth of 1 km was assumed for the boundary between
shallow and deep Boussinesq, while the 10-km height
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assumed for the corresponding density scale-height H,
was also taken as the deep Boussinesq limit. The hor-
izontal axis ranges over all currently defined mesoscale
subclasses and the micro-8 scale, whose vertical limit
has been set equal to its 200-m horizontal limit (assum-
ing mainly isotropic microscale motions). Note, the
smallest large scale (macro-¢) is represented by hori-
zontal and vertical extensions of the deep end of the
meso-03 scale.

The figure excludes flows with physically unreason-
able combinations of L, and L, for example, flows
with Ly of 200 km and L, of 200 m, or with L, of 200
m and L, of 10 km. The transition from hydrostatic to
nonhydrostatic has an approximate slope of unity, as
the scale analysis of Pielke (1984 ) indicated nonhy-
drostatic effects when L, became greater than L. It has
further been assumed that the smallest horizontal hy-
drostatic length scale is about 5 km at a height of 200
m, the horizontal size at which nonhydrostatic effects
began in the vertical velocity field for island breeze
simulations by Thunis (1995).

The hydrostatic—nonhydrostatic line, in combination
with the deep—shallow flow line, produces four flow
regions. Note first the transition from thermal advection
to thermodynamic advection with increasing circula-
tion depth for hydrostatic flows. Also note that part of
deep convection is divided off by criteria (31) to pro-
duce deep thermal convection, while part of shallow
convection is likewise divided off by criteriar = 1 to
produce shallow thermal convection. Note, the r = 1
criteria denotes a transition between VPGF and buoy-
ancy-dominated nonhydrostatic flows, and not a phys-
ical extension of the hydrostatic flow regime. Note also,
the dashed horizontal line that denotes the internal di-
vision between the two thermal convection subclasses.

The corresponding stable atmosphere representation
(Fig. 4) shows a lower-density scale height, a lower
PBL depth, and an assumed factor of 2 reduction in the
meso-f-scale upper limit. These first two changes re-
sult from the reduction of vertical motion magnitude in
stable atmospheres, while the latter is a reasonable es-
timate of the known reduced horizontal extent of ther-
mal circulations with such stability, for example, land
versus sea-breeze circulations. Numerical simulations
could help better define these limits. Note also that both
exclusion zone limits have been moved, consistent with
the larger horizontal to vertical length-scale ratios in
stable flows.

While the microscale limit is unchanged, the hydro-
static—nonhydrostatic transition line is shifted toward
smaller scales to reflect that circulations are more likely
hydrostatic in stable conditions (Martin and Pielke
1983). Thermodynamic advection, thermal advection,
and shallow convection still exist, but thermal convec-
tion flows (with r > 1) cannot exist in stable condi-
tions. Vertical motions in stable condition deep con-
vection flows are thus forced by the VPGF and/or ad-
vection but not by buoyancy. Thus, nighttime
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FiG. 3. Schematic of flow subclasses under unstable stability

conditions, where hatched zones indicate nonphysical phenomena,

dotted line indicates merging of thermodynamic advection with macroscale, r represents scaled ratio of buoyancy and VPGF
perturbations, and dashed line represents division of thermal convection into its deep and shallow regimes.

convective motions have buoyancy acting as a restoring
force and include gravity waves associated with moun-
tain-induced flows, frontal lifting, and jet streaks.

Note, the equations of each subclass in Figs. 3 and
4 are less likely to accurately reproduce associated at-
mospheric phenomena as one moves upward and/or
leftward within a subclass area.

6. Conclusions

This work could be considered as a response to the
call by Hasse (1993) for a series of papers to stimulate
discussion toward commonly accepted concepts in
mesoscale meteorology. In that sense, its qualitative
conclusions are open to discussion and consensus.

Different opinions exist concerning definitions of
the time and space boundaries defining the micro-,
meso-, and macrometeorological scales; Boussinesq
approximations; anelastic equation of continuity; ad-
vection versus convection; and diffusion versus con-
vection. The present research proposes a standard no-
menclature (appendix A) and has integrated existing
concepts of atmospheric space scales, flow assump-
tions, governing equations, and resulting motions into
a hierarchy useful in the categorization of mesoscale

models. Relationships between the hydrostatic and
Boussinesq assumptions, relative to the proposed def-
initions of advective and convective flow types, are
illustrated in Fig. 1.

In the proposed flow-class classification, the starting
point was the complete (no approximations) set of
mesoscale equations for non-Boussinesq flows. In the
subsequent scale analysis, the deep and shallow Bous-

. sinesq flow divisions of Dutton and Fichtl were kept,
as were the shallow flow subdivisions of Mabhrt. In ad-
dition, the scale analysis approach of Mahrt was ex-
tended to deep Boussinesq motions. Limits of appli-
cability of each derived flow-class equation set (with
respect to atmospheric phenomena that can be simu-
lated) were also discussed.

New dynamically based mesoscale time- and space-
scale boundaries were proposed, consistent with the
importance of the Coriolis force. Boundaries for each
proposed macro-, meso-, and microscale subflow class
are given in Table 1.

The proposed hierarchy of atmospheric motions is
given in Fig. 2, which is organized into hydrostatic ver-
sus nonhydrostatic flow types, and then into non-Bous-
sinesq, deep and shallow Boussinesq motions. The cri-
teria used to differentiate each resulting flow class
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(lower box of Figure) are discussed in the text, while
the resulting corresponding governing thermodynamic
and dynamic equations for each motion type are given
in Table 2. Separate graphical representations during
stable and unstable conditions (Figs. 3 and 4) of the
spatial limits of each Boussinesq mesoscale flow sub-
class were constructed from order of magnitude esti-
mates of the various proposed length scales and flow-
class separation criteria. Note that while it is hoped that
the proposed hierarchy contains all physically reason-
able flow types, it does not include all theoretically pos-
sible combinations of assumptions, for example, hy-
drostatic extreme convection.

Certain phenomena, such as thunderstorms and
mountain waves, have been simulated by a variety of
equation sets that differ in their basic dynamic and ther-
modynamic assumptions. A summary of the consensus
in the literature concerning the equation sets necessary
to reproduce characteristics associated with specific at-
mospheric flow phenomena is given in Table 3, which
also gives examples of models used to simulate many
of the flow types in the table. Note, due to the difficulty
of obtaining (from the literature ) updated descriptions
of equations used in current models, some references
listed in the table could be updated.

Few studies have been carried out using simulation
pairs (with and without a given assumption) to quan-
tify the effects of a given assumption. For example,
Schumann et al. (1987) simulated cumulus clouds
using the nonhydrostatic compressible MESOSCOP
model with and without a Boussinesq assumption.
They found maximum changes of about 6% in com-
puted velocities and about 20% in computed cloud
particle concentration, although resulting fields did
not exhibit significantly different structures. More
such comparative studies are required to test the
quantitative aspects of many of the ideas put forth in
this paper.

As many model formulations are not completely de-
scribed in the peer-reviewed literature, a volume con-
taining such descriptions in a uniform format would be
extremely useful for model comparison purposes. In
addition, the design of a series of mesoscale modeling
experiments that would involve application of a spec-
trum of model formulations would allow for evaluation
of the limitations imposed by the modeling assump-
tions described above.
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APPENDIX A
Glossary of Concepts Developed in Text

Advection. Organized motions, in which horizontal
velocity convergence (via mass continuity) produces
vertical velocities at least an order of magnitude
smaller. Subclasses include the following:

e Thermal: temperature-driven hydrostatic shallow
Boussinesq advective flows.

® Thermodynamic: temperature- and pressure-driven
hydrostatic deep Boussinesq advective flows.

e Neutral: nonhydrostatic advective flows under
neutral static stability conditions.

Boussinesq flows. Motions in which (mesoscale and
turbulent) perturbation density may be ignored, except
in the buoyancy term where it is the linear sum of meso-
scale pressure and temperature perturbations. Sub-
classes include the following:

* Deep: Boussinesq motions in which characteristic
vertical length scale could be as large as characteristic
density scale height; continuity equation is Boussinesq
anelastic.

e Shallow: Boussinesq motions in which character-
istic vertical length scale is much less than character-
istic density scale height; continuity equation is incom-
pressible.

Buoyancy term. Density—perturbation term in ver-
tical equation of motion.

Compressible motions. Non-Boussinesq motions, in
which Eulerian density time derivative is important in
continuity equation. Subclasses include the following:

e Vertical: nonhydrostatic compressible motions.
* Horizontal: hydrostatic compressible motions.

Continuity equation. Forms include the following:

e Compressible: full equation.

e Full anelastic: temporal variation of density omit-
ted.

® Boussinesq anelastic: temporal and spatial varia-
tions of density omitted, except for vertical static-state
density variation.

¢ Incompressible: temporal and spatial variations of
density omitted; flow is nondivergent.

Convection. Organized free (or thermal) or forced
{or mechanical ) nonhydrostatic motions, in which ver-
tical velocities significantly impact horizontal veloci-
ties via mass continuity. Subclasses include the follow-
ing:

® Extreme: non-Boussinesq convection.
¢ Deep: deep Boussinesq convection.
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® Deep thermal: deep Boussinesq convection, in
which perturbation density is function of temperature
only and not pressure.

e Shallow: shallow Boussinesq convection.

¢ Shallow thermal: shallow Boussinesq convection,
in which perturbation density is function of temperature
only and not pressure.

Diffusion. Movement by microscale turbulent mo-
tions. Types include the following:

* Buoyancy driven: by temperature and/or pressure
produced turbulence.

® Mixed: driven by wind shear and buoyancy pro-
duced turbulence.

® Mechanically driven: by wind-shear-produced
turbulence.

Hydrostatic balance. Advective flows in which the
VPGF and gravity are in near balance, although the
difference between them must be larger than the sum
of all other forces in the vertical equation of motion
(Pielke 1984).

Reynolds.

¢ Decomposition: division of instantaneous variable
into average and fluctuation components.

e Assumption: assumes spectral gap separation be-
tween resolvable scale (as defined in decomposition)
and subgrid-scale motions. Existence of gap implies
stationary, homogeneous resolvable mean flow. Allows
use of ensemble averaging rules.

Scales of motion. Subscales include the following:

e Macro: organized hydrostatic tropospheric mo-
tions driven by dynamic instabilities and with a lati-
tude-dependant Coriolis force.

® Meso: organized atmospheric motions with Corio-
lis force large enough to determine rotational direction
but small enough to be assumed latitude independent;
motions originate in troposphere.

e Micro: Nonhydrostatic motions with a Coriolis
force too small to determine rotational direction.

Turbulence. Disorganized nonhydrostatic micro-
scale fluctuations caused by buoyancy and/or mechan-
ical shear processes.

APPENDIX B
List of Symbols
a. Roman
cp specific heat at constant pressure (=1005
Jkg7' K™
C, specific heat at constant volume (=718
Jkg7'K™)
Et scalar turbulent entropy terms
g acceleration of gravity (=9.81 m s72)
H, isothermal atmosphere scale height (~8 km)



H, density-scale height (~8 km)

Ly scale horizontal circulation extent

L, scale circulation depth

Mt vector turbulent momentum terms

P atmospheric pressure

(0] radiative flux

r buoyancy to VPGF ratio

R gas constant (=287 Jkg™' K™)

S entropy

t time

T temperature

A\ three-dimensional wind vector

Vi scale horizontal speed

w vertical wind speed component

w scale vertical wind speed component

x,y,z eastward, northward, and upward cartesian co-
ordinate, respectively

CAT  clear-air turbulence

GCM  global circulation model

LLJ low-level jet

PBL  planetary boundary layer

SBL  surface boundary layer

VPGF vertical pressure gradient force

b. Greek

specific volume

Kronecker delta

potential temperature
dynamic molecular viscosity
density

scale time

dummy variable

earth rotation vector

MBIV E DOR

c. Subscripts

). volume average

diabatic

)»  hydrostatic mesoscale perturbation

)»» (nonhydrostatic plus hydrostatic) mesoscale
perturbation

_——~~ i~
N
]

( )» mesoscale scale

( ). nonhydrostatic mesoscale perturbation
( )o static state

( )s synoptic scale

d. Special

() Reynolds decomposed average value (no over
. symbol)

() Reynolds flux terms

(_ )" turbulent perturbation

) instantaneous value

V( ) three-dimensional del operator

Vu( ) horizontal del operator
A( ) difference operator
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