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Flow separation and rotor formation beneath two-dimensional trapped lee waves
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SUMMARY

Numerical simulations of trapped lee waves generated in flow over a two-dimensional ridge are presented.
It is shown that for sufficiently large amplitude waves flow separation occurs beneath the wave crests when
a no-slip lower boundary condition is applied. The occurrence of separation corresponds to rotor motion, or
recirculation, under the wave crests. The dependence of the wave-induced horizontal flow perturbations near the
ground on the wave amplitude, wavelength and surface roughness is examined. It is shown that the normalized
critical wave amplitude, above which rotors form, is a function of the ratio of the lee-wave horizontal wavelength
to the surface roughness length. This normalized wave amplitude is defined as the ratio of the lee-wave pressure
amplitude within the boundary layer, to the square of the friction velocity.

Linearized turbulent equations for motion beneath the wave crests are considered and numerical solutions
to the linear problem are compared with results from the simulations. When the waves are of sufficiently small
amplitude that flow separation does not occur, the linear flow perturbations are shown to agree closely with the
results from the simulations. It is also shown that linear theory provides a useful prediction of the occurrence of
rotor formation.
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1. INTRODUCTION

It is well known that mountain waves are sometimes associated with damaging
winds and severe turbulence, both near the ground and aloft. Such effects pose a threat
to aviation safety, particularly during take-off or landing manoeuvres, as well as causing
damage on the ground. Hertenstein and Kuettner (2005), in a recent numerical study,
categorized mountain-wave induced turbulence into two kinds: type 1 and type 2 rotors.
Type 1 are the regions of turbulent recirculating airflow which occur under the crests of
a laminar trapped lee-wave train, whereas type 2 are associated with low-level gravity-
wave breaking, whose structure is similar to that of a hydraulic jump (Baines 1995).
In this study we shall focus on type 1, or lee-wave rotors.

Currently little is known about the structure of lee-wave rotors, or the conditions
under which they occur. In comparison, as recently pointed out by Hertenstein and
Kuettner (2005), mountain waves themselves have received considerable attention over
the last few decades. The impact of the waves on the near-surface flow and the processes
which lead to the formation of rotors, have not. Notable exceptions to this include a small
number of observational studies, which date as far back as the pioneering measurements
made above the Alps and the Sierra Nevada (e.g. Kuettner 1939; Holmboe and Klieforth
1957). More recently, observational studies include those made by Ralph et al. (1997)
and Mobbs et al. (2005). Recently Doyle and Durran (2002) examined the dynamics
of lee-wave rotors with a series of numerical simulations. Their study highlighted the
importance of surface friction in allowing rotors to form. When the wave response is
of sufficient amplitude, the wave-induced pressure gradient can lead to boundary-layer
separation and regions of recirculation underneath the wave crests. This effect was also
noted by Vosper (2004) in numerical simulations of rotors under the crests of lee-waves
which formed on a sharp temperature inversion. Note that this concept is not new, and
in fact a very early study by Lyra (1943) noted that the lee-wave pressure gradient may
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drive rotor recirculations. Importantly, however, Lyra’s model did not take any account
of boundary-layer processes.

Compared to lee-wave induced flow separation over flat ground, for two-dimen-
sional (2-D) orography at least, separation in neutrally stratified turbulent flow over
hills is reasonably well understood. In this case the flow is essentially controlled by a
perturbation pressure field which is determined by inviscid dynamics in the outer region
of the flow. This inviscid outer region lies above the inner region, where the hill-induced
turbulent stresses play an important dynamical rôle. Negative pressure perturbations
above the summit and positive values over the lee slope lead to deceleration downwind
of the crest, which generates horizontal vorticity of the opposite sign to the boundary-
layer vorticity. For sufficiently large slopes the pressure field induces vorticity which
overcomes the boundary-layer vorticity, leading to flow separation and reversed flow.
The study by Wood (1995) highlighted the importance of the hill horizontal length-scale
(or wavelength) and the surface roughness in determining whether the flow over a hill
with a given slope will separate. Both these factors affect the magnitude of the velocity-
scale near the ground, an increase in which requires a corresponding increase in the
outer-region pressure gradient to reverse the flow. The flow is less prone to separation
over smooth or long hills. This latter dependence is due to the tendency for the inner-
region depth to grow with increasing wavelength, leading to an increase in the inner-
region velocity-scale.

Although there are clearly fundamental differences between the processes of flow
separation over hills and lee-wave rotor formation, the two phenomena do share one
common feature. Both are controlled to a large degree by the size of a pressure gradient
which is imposed on the near-surface flow. In the hill case this pressure gradient is, to a
good approximation, determined by the outer-region inviscid dynamics and is unaffected
by the turbulent processes within the inner region. Similarly Doyle and Durran (2002)
demonstrated a possible relationship between lee-wave rotor strength (as measured by
the strength of reversed flow) in no-slip simulations and the pressure gradient which
occurred in otherwise identical free-slip simulations. These similarities hint that we
might expect lee-wave rotors to depend on the surface roughness and wavelength
in an analogous way. In the lee-wave case, however, the relevant wavelength would
presumably be that of the waves rather than the orography.

As discussed by Wood (1995), in reality a fully turbulent flow may contain intermit-
tent separation due to the presence of intense turbulent eddies. However, numerical study
of such intermittent separation would require three-dimensional (3-D) eddy-resolving
modelling which is beyond the scope of this paper. Here we shall restrict our attention
to the process of mean flow separation. The main aim of this paper is to study the mecha-
nisms by which trapped lee waves affect the near-surface flow and, ultimately, to predict
the critical lee-wave amplitude required for the onset of flow separation, which leads to
the formation of rotors. Following on from the study by Doyle and Durran (2002), we
shall concentrate primarily on the relationship between the lee-wave pressure field and
the strength of the flow perturbations near the ground.

The remainder of the paper is set out as follows. The numerical model used in
this study is described in section 2 and a series of 2-D numerical simulations of lee
waves is described in section 3. The results are used to study the relationship between
the lee-wave pressure amplitude and the strength of the recirculating flow beneath the
wave crests. Simulations of flows with a range of surface roughness lengths and lee-
wave wavelengths are then used to produce an empirical prediction of the critical wave
amplitude required for rotor formation. In section 4 a set of linearized equations of
motion are presented for the turbulent flow beneath the wave crests. Numerical solutions
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to these equations are obtained and it is shown that, in general, the linear prediction for
the deceleration beneath the wave crests agrees well with the earlier results of the 2-D
numerical simulations, up to the point where the waves are of sufficient amplitude that
rotors form. The analogy between the lee-wave flow and turbulent flow over a hill is
also examined by comparing the results with linear theory for the latter. Conclusions are
drawn in section 5.

2. THE NUMERICAL SIMULATIONS

(a) Model description
The numerical model employed for this study was the Met Office BLASIUS model

(Wood and Mason 1993). This has been used extensively for studies of both neutral
and stably stratified flows over hills and mountains (e.g. Wood 1995; Ross and Vosper
2003; Vosper 2004). The model is based on the time-dependent Boussinesq or anelastic
equations for a terrain-following coordinate system (Gal-Chen and Somerville 1975).
The equations are discretized using finite differences; a second-order accurate scheme
is used for advection of velocity (Piacsek and Williams 1970) and the Leonard et al.
(1993) Ultimate-Quickest scheme is used for advection of potential temperature. The
present study is based on the Boussinesq equations and a first-order Richardson number-
dependent mixing-length turbulence closure scheme. The maximum mixing length used
in all simulations was 40 m.

The model domain consisted of 1024 grid points in the x (streamwise) direction
and 60 levels in the vertical. The lowest grid point above the ground was at 10 m
and the vertical grid was stretched such that the grid spacing increased smoothly with
height from 20 to 614 m adjacent to the upper boundary, which was placed at 20 km.
The horizontal resolution in all simulations was 200 m. The upper boundary condition
was a rigid lid and a Rayleigh damping layer was placed above 15 km in order to
minimize the reflection of upward-propagating gravity waves. The damping coefficient
in this layer increased smoothly from zero, at the bottom of the layer, to a maximum
value at the upper boundary. The model lateral boundary conditions were periodic
and following Vosper (2004) damping columns were applied at both the upwind and
downwind boundaries in order to avoid wrap-around effects. These were 8 km wide
and, as for the upper layer, the damping coefficient in these columns increased smoothly
towards the boundaries.

(b) Configuration of the simulations
The ridge considered in this study had the commonly used Witch of Agnesi form,

specified by
h(x) = H/(1 + x2/L2), (1)

where H and L are the mountain height and half-width, respectively. The value of L
was chosen to be 2 km and simulations were conducted for a range of heights. Most of
the results presented here are for lee waves generated in an idealized flow whose basic
state consisted of a sinusoidal westerly jet described by

U(z) = U0 + Ut sin(πz/zm), (2)

where U0 is the surface wind speed and zm = 20 km is the depth of the model domain.
The value of U0 chosen was 5 m s−1 and two different values of Ut were considered:
28 and 36 m s−1, giving maximum jet strengths of 33 and 41 m s−1, respectively.
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Figure 1. The idealized profiles of wind U (solid line) and potential temperature (dashed) used in the simulations
(U0 = 5 m s−1, Ut = 28 m s−1) both (a) before and (b) after modification by boundary-layer mixing with a
roughness length of 0.05 m. These profiles were used to initialize the 2-D BL and FS simulations, respectively
(see text). Note only the lowest portion of the profile is shown in (b) as above the boundary layer the profile is

identical to that shown in (a).

The basic-state potential temperature increased linearly with height, yielding a con-
stant Brunt–Väisälä frequency N which was equal to 0.01 s−1. Examples of the above
wind and potential-temperature profiles are shown in Fig. 1(a). Additional simulations
have been conducted using data from real radiosonde ascents launched from Hazelrigg
weather station near Lancaster (2.7◦W, 54.1◦N) in north-west England. These radioson-
des were launched as part of a programme of field measurements aimed at studying lee
waves and associated rotors downwind of the Pennines in northern England. The results
from this study are not presented here, but two of the radiosonde profiles obtained when
lee waves were observed across the Pennines will be used to initialize the simulations
across the 2-D idealized ridge. These ascents were made on 17 March and 6 December
2004. For both ascents the velocity data were resolved along a south-westerly direc-
tion, which was approximately the wind direction at the top of the boundary layer. The
velocity and potential-temperature profiles are presented in Fig. 2.

The extent to which gravity waves are trapped is largely determined by the well-
known Scorer parameter, �2(z) (Scorer 1949), which appears in the linear vertical
structure equation,

d2ŵ

dz2
+ (�2 − k2)ŵ = 0, (3)

where ŵ(k, z) is the Fourier transformed vertical velocity and k is the horizontal wave
number. The precise form of �2 depends on which approximate equations of motion
are considered (see Nance 1997). For the shallow-convection form of the Boussinesq
equations in which density is considered independent of height, �2 is given by

�2(z) = N2

U
2

− 1

U

d2U

dz2
. (4)

Profiles of �2 computed for the idealized and radiosonde profiles are shown in Fig. 3.
Note that substantial smoothing was applied to N2 and d2U/dz2 for the radiosonde
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Figure 2. The profiles of (a) wind speed and (b) potential temperature, obtained from the Hazelrigg radiosonde
ascents launched at 11 UTC 17 March (solid line) and 09 UTC 6 December 2004 (dashed). The wind data shown

are the component of the wind resolved along a direction of 225◦.
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Figure 3. Profiles of the Scorer parameter �2 (see text) over the lowest 10 km for the idealized profiles with
Ut = 28 m s−1 and Ut = 36 m s−1 and for profiles obtained from two radiosonde ascents launched from Hazelrigg

at 11 UTC 17 March and 09 UTC 6 December 2004.

profile calculation. The general tendency for �2 to decrease with height through the
lower troposphere for all cases indicates that the profiles are conducive to wave trapping.

Three types of simulation have been conducted. In the majority of cases a no-slip
lower boundary condition was applied, via a similarity condition for the surface stress,
and a range of different (constant) roughness lengths z0 were considered. In the interests
of reducing model integration times a one-dimensional (1-D) boundary-layer solution
was first obtained using a 1-D version of the model which was run to a steady state. This
resulted in some modification to the wind and potential-temperature profiles within the
boundary layer, in which the stratification became neutral. An example of this for the
idealized profile with Ut = 28 m s−1 is shown in Fig. 1(b). The no-slip 2-D simulations
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TABLE 1. THE IDENTIFIERS USED TO DISTINGUISH THE DIFFERENT TYPES OF 2-D SIMULATION

BL BLI FS

Initial 1-D solution Yes, with a no-slip lower Yes, with a no-slip lower No solution required
calculated? boundary condition boundary condition

2-D lower boundary No-slip Free-slip Free-slip
condition

Turbulence closure Yes No No
applied?

were then initialized with these modified 1-D profiles. Throughout the paper these
will be referred to as BL simulations. In a second type of simulation a free-slip lower
boundary condition was applied (Durran and Klemp 1983). These simulations allowed
assessment of the impact of surface friction and the presence of a developed upstream
boundary layer. In this case no initial 1-D solution was required. These simulations will
be identified by FS. The third kind of simulation was designed to distinguish between
the impact on the lee waves of changes to the basic-state profile caused by the boundary
layer and the direct effect of turbulent dissipation. For these simulations a 1-D solution
was first obtained (using a no-slip boundary condition and turbulence closure scheme)
so that the initial profile contained the boundary-layer wind shear and neutral potential-
temperature profile. However, the 2-D simulations were inviscid (no turbulence closure
was applied) and the free-slip boundary condition was imposed. These simulations will
be referred to by the identifier BLI. Note that the lack of viscosity (other than numerical)
in these simulations meant that they were only possible for small mountain heights. For
values of H greater than around 200 m the solutions contained a high degree of grid-
scale noise. The meanings of the three identifiers BL, FS and BLI are summarized in
Table 1.

In all cases a zero surface heat-flux condition was applied. The Coriolis force
was imposed with f = 10−4 s−1 and in the no-slip cases this resulted in turning of
the boundary-layer wind profile which was absent in the free-slip simulations. Note,
however, that for flow over a 2-D ridge the component of the flow parallel to the
ridge plays no rôle in the lee-wave dynamics. Model integrations were carried out for
3 × 104 s, by which time steady solutions were obtained.

3. NUMERICAL RESULTS

Figure 4(a) shows the potential temperature and horizontal velocity component for a
600 m high mountain in the BL simulation with Ut = 28 m s−1 and z0 = 0.05 m. A large
amplitude trapped lee-wave field extends downwind of the mountain with a horizontal
wavelength of approximately 10.4 km. Close examination reveals that the waves are of
sufficient amplitude to reverse the flow near the ground. This is confirmed by a close-up
view of the flow beneath the first two wave crests downwind of the mountain, as shown
in Fig. 4(b). This flow reversal is associated with flow separation and rotor motion under
the wave crests. In general the flow in free-slip simulations (not shown) does not contain
rotors such as these. This is consistent with previous findings (Doyle and Durran 2002;
Vosper 2004) which showed that surface friction plays a crucial rôle in allowing rotors
to form. Note, however, that in the free-slip simulation equivalent to that presented in
Fig. 4, reversal does occur. The recirculation is very weak, however, and reversal does
not occur for smaller mountains. In contrast, rotors are present for mountains as low
as 290 m in the Ut = 28 m s−1 BL case. Doyle and Durran (2002) obtained a similar
result for a free-slip simulation with a sufficiently high mountain. In their case the wave
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Figure 4. (a) The simulated flow field after 3 × 104 s of integration time for a 600 m high mountain in the
Ut = 28 m s−1, z0 = 0.05 m BL case. Quantities shown are the horizontal velocity component (shaded contours;
units m s−1) and contours of potential temperature (solid contours; interval 1 K). (b) A close-up view, including

flow vectors.

amplitude required to reverse the flow was so large that the waves were highly nonlinear
and nonstationary.

The results for BL simulations with Ut = 36 m s−1, z0 = 0.05 m contain similar
lee-wave trains and rotors to those seen in Fig. 4. Consistent with the smaller values
of �2 (see Fig. 3) in this case, the horizontal wavelengths are somewhat longer than
for Ut = 28 m s−1, at around 14.6 km. The BL simulations based on the radiosonde
profiles also contain lee waves and, for sufficiently high mountains, lee-wave rotors.
The horizontal wavelengths in this case are similar at around 9.9 and 10.1 km for the
17 March and 6 December 2004 profiles, respectively.
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Figure 5. The horizontal winds on the lowest model level (10 m) and surface pressure for Ut = 28 m s−1

simulations. (a) Horizontal winds and (b) surface pressure, for BL simulations with mountain heights H of 100,
300 and 600 m and a roughness length of 0.05 m. (c) The horizontal wind component after removal of the basic-

state value for H = 10 m BL, FS and BLI simulations (see text).

One measure of the strength of the rotors is the strength of the reversed flow. Fig-
ure 5(a) shows the horizontal variation of the horizontal wind component on the lowest
grid level (10 m) in the Ut = 28 m s−1, z0 = 0.05 m BL simulations for three mountain
heights, namely 100, 300 and 600 m. The amplitude of the wind-speed fluctuations
clearly increases with increasing mountain height and reversal occurs for the two higher
mountain cases. It is interesting to note that the horizontal wavelength exhibits some
slight decrease with increasing hill height. When H = 100 m, for example, the hori-
zontal wavelength deduced from Fig. 5 is approximately 11.2 km and this is reduced
to roughly 10.4 km when H = 600 m. It seems likely that this behaviour is due to the
increased importance of nonlinearity as the mountain height increases, which presum-
ably results in subtle modifications to the mean flow, thus altering the resonant lee-
wave response. Figure 5(a) also reveals a tendency for the wave amplitude to decrease
with downstream distance. Whilst it is possible that this apparent damping of the wave
motion is due to numerical dissipation, this is unlikely given that results from tests in
which the horizontal grid scale was reduced by a factor of 2 (not shown) were nearly
identical to those shown here. Figure 5(c) shows the 10 m wind, after removal of the
basic-state value, for three simulations with a very small mountain of height 10 m. The
results for the BL simulation show a gradual decrease of wave amplitude away from
the mountain, consistent with that observed for the higher mountain cases shown in
Fig. 5(a). It seems unlikely, therefore, that nonlinearity alone can explain the amplitude
decrease. The results from an equivalent FS simulation, however, do not show any signs
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of amplitude decay, indicating that perhaps boundary-layer processes are responsible.
The results from a further inviscid BLI simulation, in which the basic-state profile con-
tains the same wind and potential-temperature boundary-layer structure as the BL case,
also show no signs of amplitude decay. It would appear, therefore, that the damping is
due to the direct effect of the boundary-layer dissipation on the wave motion, rather
than changes to the upwind profile such as boundary-layer shear or neutral stratifica-
tion. This downstream decay of wave amplitude is consistent with the recent theoretical
ideas put forward by Smith et al. (2006), which are supported by numerical simulations
(Jiang et al. 2006). In Smith’s shallow-layer representation the boundary layer acts to
partially absorb energy associated with the downward-propagating part of trapped wave
motion, thus progressively reducing the amplitude downstream. This amplitude reduc-
tion is seemingly connected with the upwind phase shift of the boundary-layer wind
response (see Fig. 5(c) and discussion later) and the associated flow divergence which
changes the boundary-layer thickness. The differences in phase between the lee-wave
vertical motion aloft and the vertical motion within the boundary layer act to absorb
downward-propagating wave motion and advance the phase of reflected waves.

Figure 5(b) shows the horizontal variation of the surface pressure perturbation p′ for
the Ut = 28 m s−1 BL cases which correspond to the surface winds shown in Fig. 5(a).
The surface pressure fluctuations also exhibit a tendency to decrease with increasing
downwind distance. Comparison of Figs. 5(a) and (b) shows that the horizontal velocity
and pressure perturbation signals are not exactly 180◦ out of phase. Indeed, the minima
in U are located slightly upwind of the pressure maxima. Although not shown here,
the surface pressure results for the FS and BLI cases of Fig. 5(c) do not exhibit
this behaviour. It seems likely, therefore, that the upwind phase shift of the velocity
(relative to the surface pressure fluctuations) in the turbulent no-slip flows are due to
the influence of the turbulent stresses. Note that a similar effect is known to occur
in neutral turbulent flow across a hill (e.g. Newley 1985) where the maximum wind
speeds near the surface occur just upwind of the hill crest. In this case the upwind phase
shift is due to the perturbation turbulent shear stress gradient which has a decelerating
effect on the flow, opposing the acceleration towards the hill summit by the pressure
gradient. Similar phase shifts are also noted by Smith et al. (2006) who provided
a simple explanation of this behaviour by representing the boundary layer as a thin
Rayleigh friction layer. Considering the linearized horizontal momentum equation, the
friction causes an upwind phase shift of the horizontal velocity perturbation within the
boundary layer. In the limit of large friction the location of the maximum flow speed
would coincide with that of the maximum (negative) pressure gradient, rather than the
perturbation pressure.

We shall now examine the flow below an individual wave crest and focus attention
on the second lee-wave crest downwind of the mountain. Since we are concerned with
the influence of the trapped waves, the second wave crest was chosen in preference
to the first, as the latter is more likely to be influenced by vertically propagating
waves local to the mountain. Figure 6(a) shows the dependence on H of the minimum
horizontal velocity component Umin under the second lee-wave wave crest for FS and
BL simulations with Ut = 36 and 28 m s−1. The data shown are for the lowest grid level.
In the BL cases results for two values of roughness length are presented, namely 0.05
and 0.005 m. As expected there is a clear tendency for Umin to decrease monotonically
with increasing H . In the case of the free-slip simulations this decrease is approximately
linear for mountain heights less than around 350 m and for greater heights the rate
of decrease is somewhat reduced. Given that the non-dimensional mountain height,
NH/U0, is 0.7 when H = 350 m, it seems likely this change in behaviour is due to
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Figure 6. The variation of (a) the minimum horizontal component of velocity, Umin at the lowest grid level,
and (b) the pressure amplitude �p with mountain height under the second lee-wave crests for BL simulations
with Ut = 28 m s−1 and 36 m s−1 and for FS simulations with Ut = 28 m s−1. Results for the BL simulations are
shown for roughness lengths of 0.05 and 0.005 m. (c) The fractional deceleration �s on the lowest grid level as a
function of �p/u2∗, where u∗ is the basic-state friction velocity. (d) The dependence of �s on roughness length is

shown for fixed mountain heights of 250, 280 and 300 m in the Ut = 28 m s−1 BL case.

the increasing nonlinear nature of the flow. Flow reversal (and hence rotor formation)
occurs in the no-slip cases for mountain heights around 300 m, though the precise value
at which reversal first occurs clearly depends on the value of z0 and Ut , with rotors
forming for slightly lower mountains with the higher roughness length and lower wind
speeds.

The surface values of the pressure amplitude �p are shown in Fig. 6(b). Here �p
is defined as half the peak-to-trough pressure perturbation amplitude across the second
wavelength. This was estimated by measuring half the average difference between the
second maxima in p′ downwind of the summit and the two minima located immediately
up and downwind. Figure 6(b) shows that �p increases monotonically with H in all
cases. The values for the free-slip simulations are consistently larger than those in the
equivalent no-slip simulations. Further, for fixed values of Ut the size of �p in the BL
cases clearly increases with decreasing z0.



FLOW SEPARATION AND ROTOR FORMATION 2425

One non-dimensional measure of the rotor strength is the fractional deceleration
�s defined as

�s(z) = Umin − Uλ

Uλ

, (5)

where Uλ(z) is the mean horizontal velocity component at height z measured across
a lee-wave wavelength. Values of �s below −1 correspond to situations of reversed
flow. Where �s ≤ −1 on the lowest model grid level, flow separation occurs and rotors
form beneath the wave crests. Note that in Eq. (5) normalization by Uλ is preferred to
the basic state U because of the possibility of alteration to the mean flow by longer
(untrapped) waves, or by momentum transfer via turbulent or wave drag. In practise,
however, the results are not sensitive to this choice up until the point where rotors form
under the wave crests. In this situation there is clearly some modification to the mean
flow. Figure 6(c) shows �s (on the lowest grid level) beneath the second wave crest in
the BL cases. The data are plotted against the normalized pressure amplitude, �p/u2∗,
where u∗ is the basic-state friction velocity, determined from the 1-D solutions. The
fractional deceleration is clearly correlated with �p/u2∗, although the variation depends
on the values of z0 and Ut . Interestingly the curves for different values of Ut , but the
same roughness lengths, show signs of collapse where �s > −1. As we shall see later,
this collapse is connected with the ratio of the lee-wave horizontal wavelength to the
roughness length.

As with turbulent flow over a hill (Wood 1995), it would seem that the occurrence
of separation beneath lee-wave crests depends to some extent on the surface roughness.
This is demonstrated by Fig. 6(d) which shows the variation of �s (on the lowest grid
level) with z0 for series of Ut = 28 m s−1 BL simulations with fixed mountain heights
of 250, 280 and 300 m. In all cases the fractional deceleration becomes stronger (�s
becomes increasingly negative) as the roughness length increases. For the H = 300 m
case, increasing the roughness length from 5 × 10−4 m to 0.05 m results in rotor
formation.

The critical normalized pressure amplitude, �p/u2∗, at which rotors first form under
the second wave crest is shown in Fig. 7 as a function of λ/z0, where λ is the lee-wave
horizontal wavelength. These critical amplitudes were deduced by linear interpolation
between simulations with different mountain heights in which rotors did and did not
occur. The results from six series of BL simulations with two different values of Ut

(28 and 36 m s−1) and three different roughness lengths (0.005, 0.01 and 0.05 m) are
shown in Fig. 7. The data show signs of collapse onto a single curve when presented in
this manner, implying that the normalized critical wave amplitude is a function of λ/z0.
This idea is also supported by results from linear theory discussed in section 4. Note
that alternative normalizations of the pressure amplitude (e.g. by U

2
evaluated at the

inner-layer height or boundary-layer top) do not collapse onto a single curve. Values of
the critical �p/u2∗ for the two radiosonde simulations and the same three values of z0
are also shown in Fig. 7. These appear to behave in a similar way, although interestingly
they do not collapse onto the same curve as the idealized simulations. The precise reason
for this is not clear and we shall return to this point in section 4.

Note that the result implied by Fig. 7 is analogous to the occurrence of flow
separation in neutrally stratified turbulent flow over a hill. As shown by Wood (1995),
according to linear theory the critical hill slope at which separation first occurs is an
increasing function of the ratio of hill wavelength to roughness length. The analogy
becomes clearer when one considers that in neutral flow over a hill, the pressure
amplitude scales with the hill slope times the square of a velocity-scale.
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Figure 7. The critical normalized pressure amplitude, �p/u2∗, at which flow separation first occurs under the
second wave crest. The squares denote results from six series of BL simulations with two different values of
Ut (28 and 36 m s−1) and three different roughness lengths (0.005, 0.01 and 0.05 m). The data are plotted as a
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of z0. The linear theory prediction of the critical �p/u2∗ is shown as a solid line.

The height variation of �p beneath the second lee-wave crest for FS, BL and
BLI simulations is shown in Fig. 8(a) for a very small mountain of height 10 m.
Data are shown for the idealized profile case with Ut = 28 m s−1 and z0 = 0.05 m.
To a very good approximation the BL results show that the pressure amplitude is
constant through the boundary layer, whose depth is approximately 400 m. The low-
level pressure amplitude in the free-slip case is larger and also exhibits significant
changes with height, particularly above 100 m. As shown by Fig. 8(b), the same is
true for a much higher mountain (H = 300 m) when the waves are sufficiently large to
induce flow separation. Again �p is independent of height through the boundary layer
in the BL simulation, whereas the FS results contain more height variation and are of
greater amplitude. The BLI results in Fig. 8(a) show that �p is also independent of
height when no turbulence parametrization is applied but the boundary-layer profile is
retained, indicating that this height independence is caused by the changes in the basic-
state profile rather than the direct effect of the turbulent dissipation on the wave motion
itself. Note, however, that dissipation does account for the slight reduction in magnitude
of �p in the BL simulation relative to that in the BLI case. Also shown in Figs. 8(a) and
(b) are the height variations of �s in the BL simulations. Clearly the largest fractional
deceleration occurs close to the ground and the magnitude of �s decreases throughout
the boundary layer.

The results presented in Fig. 8 also hint at an interesting and potentially powerful
result. In the inviscid free-slip case the size of �p, just above the top of the boundary
layer, is comparable to the constant value observed in the BL case within the boundary
layer. We shall return to this point in section 4 where we attempt to obtain linear lee-
wave solutions for predicting the pressure amplitude within the boundary layer.
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Figure 8. Near-surface vertical profiles of the pressure amplitude �p (solid lines) and the fractional deceleration
�s (dashed), for the second downstream wavelength and mountain heights of (a) 10 m and (b) 300 m. Profiles of
�p are shown for BL, FS and BLI simulations with Ut = 28 m s−1, z0 = 0.05 m (see text). Note that profiles of

�s are presented for the BL simulations only and BLI simulations were not possible when H = 300 m.

4. LINEAR SOLUTIONS FOR THE NEAR-SURFACE FLOW

In this section we shall derive a set of equations for the turbulent motion beneath
the wave crests and compare solutions for the fractional deceleration with the results
from the numerical simulations. In reality the flow within a lee-wave rotor will clearly
be highly nonlinear. In the interests of simplicity, however, and because we believe that
linear dynamics will represent the main processes which lead to separation, we shall
restrict attention to linear solutions. As demonstrated by Wood (1995), linear theory
provides useful predictions of flow separation in turbulent flow over hills.

Two approaches to obtaining the linear solutions will be described. The first
approach is numerical and solutions can be obtained to the full linear equations. The
second involves further simplification to the equations which lead to an analytic solution.
This expression is analogous to previously derived solutions for the acceleration of
turbulent flow across a hill.

(a) A linear numerical solution for flow under the lee-wave crests
In what follows we shall assume that perturbations to the flow within the boundary

layer are driven by an external pressure field due to the lee waves aloft. As shown
previously (see Fig. 8) we expect this pressure perturbation to be independent of height
throughout the depth of the boundary layer. Since above the boundary layer the Rossby
number Ro = U/fλ � 1, where f is the Coriolis force, we shall neglect the effects of
rotation and assume the component of the flow parallel to the 2-D ridge axis is zero.

We define a ‘wave-following’ coordinate system whose surfaces follow the wave
motion at the top of the boundary layer (z = zi) and flatten off as the ground is
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approached, namely
X = x,

η = zzi

zi + δ
,

⎫

⎬

⎭

(6)

where δ is the vertical displacement of the streamlines about z = zi caused by the lee-
wave motion. Applying Eq. (6) to the horizontal momentum and continuity equation
and linearizing gives

U
∂u′

∂X
− Uz

zi

∂δ

∂X

dU

dη
+ w′ dU

dη
− ∂τ ′

∂η
= −∂P ′

∂X
(7)

and
∂u′

∂X
+ ∂w′

∂η
= z

zi

∂δ

∂X

dU

dη
, (8)

where u′ and w′ are the horizontal and vertical components of the perturbation velocity
field, respectively, τ ′ is the perturbation shear stress and P ′ = p′/ρ0, where ρ0 is
a (constant) reference density. Note that the coordinate transformation allows us to
evaluate the importance of the vertical transport of background shear by the wave
motion. This is represented by the second term on the left-hand side of Eq. (7) and
the right-hand side of Eq. (8). Assuming wave-like disturbances with wave number k,
namely,

(u′, w′, δ, τ ′, P ′) = Re{(̂u, ŵ,̂δ, τ̂ , ̂P) eikx} (9)

then gives

ikUû − ikÛδ
z

zi

dU

dη
− ∂τ̂

∂η
= −ik ̂P − ŵ

dU

dη
(10)

and
dŵ

dη
= −ikû + ik̂δ

z

zi

dU

dη
. (11)

For a specified pressure perturbation ̂P , Eqs. (10) and (11) can be solved with suitable
boundary conditions and an appropriate expression for τ̂ . For consistency with the tur-
bulence closure used in the numerical simulations we specify an eddy viscosity closure
of the form τ̂ = 2K dû/dz, where K = l2

m dU/dz is the basic-state eddy viscosity and lm
is the mixing length. Note that the factor of 2 comes from the contribution to τ̂ from the
perturbation eddy viscosity, which is equal to that from K . Under neutral stratification
lm is specified by

l−1
m = l−1

0 + {κ(z + z0)}−1, (12)

where κ is the von Karman constant (assumed to be 0.4) and l0 is a limiting scale for the
mixing length (40 m). The imposed lower boundary condition is one of no-slip, whereas
at the top of the boundary layer we assume that vertical wind shear and shear stress play
no rôle in the dynamics. The balance in the horizontal momentum equation is therefore
between horizontal advection and the wave-induced pressure gradient. The boundary
conditions can be written as

û = ŵ = 0 at z = 0 and û = −̂P/U at z = zi. (13)

Equations (10) and (11) have been discretized on a staggered regular vertical mesh
using second-order accurate centred finite differences. Solutions were obtained using
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an iterative procedure whereby the discretized tridiagonal system for û was first solved
using LU-decomposition and lagged values of ŵ (initially zero). Equation (11) was then
integrated upwards from the ground to obtain an updated profile of ŵ. This procedure
was repeated until convergence was obtained, typically after 10 to 20 iterations.

Note that one convenient approximation is to neglect the effects of the upstream
wind shear, dU/dη, in Eqs. (7) and (8). When such terms are neglected, solutions can
be obtained without the need for iteration, since the vertical velocity does not enter into
the horizontal momentum equation.

(b) A linear analytic solution by analogy with turbulent flow over a hill

If the shear terms are neglected and the basic-state velocity U(z) is replaced by
a single velocity-scale, Eq. (7) then becomes the same equation for which solutions
were initially sought in simple linearized theories for the inner region in turbulent flow
over hills (e.g. Jackson and Hunt 1975; Mason and King 1985). Given the analogy
between turbulent flow beneath lee waves and that over hills it is interesting to test linear
predictions for the latter against the results from the numerical simulations. Note that,
for the case of flow over a hill, the importance of vertical wind shear was recognized in
later theories (e.g. Hunt et al. 1988; Belcher 1990). However, since the vertical velocity
which advects the basic-state shear is clearly very different to that associated with lee
waves we shall restrict attention to the earlier solutions in which the shear was neglected.
Although admittedly Mason and King (1985) have heuristically improved the accuracy
of the original Jackson and Hunt (1975) solution, their expression for the fractional
acceleration does not converge as the surface is approached. Since in order to predict
flow separation such convergence is essential, we shall restrict attention here to the
original Jackson and Hunt solution. For flow over a 2-D sinusoidal ridge with wave
number k this can be be written as

u′/U = �phill

U(l)U(z)
Re

⎧

⎨

⎩

1 − K0(2
√

ikzU(l)/2κu∗)

K0(2
√

ikz0U(l)/2κu∗)
eikx

⎫

⎬

⎭

, (14)

where K0 is the zeroth-order modified Bessel function, l is the inner-region depth
and �phill is the amplitude of the pressure perturbation due to the hill. The latter is
determined by inviscid dynamics in the outer region of the flow. The depth-scale for
the inner region, l, is determined by balance between the perturbation stresses and the
perturbation pressure gradient. For flow over a sinusoidal ridge, l takes the implicit form

lk

π
log

(

l

z0

)

= κ2, (15)

where, following Wood (1992), the hill length-scale L which appeared in Jackson
and Hunt’s original expression has been replaced by one quarter of the sinusoidal hill
wavelength, or equivalently π/2k. The importance of defining l lies in the evaluation of
the single velocity-scale U(l) in Eq. (14). For flow over a hill, the pressure perturbation
�phill is assumed to be related to the hill slope θ , and a further velocity-scale U(hm)

in the outer region of the flow by �phill = θU(hm)2 (e.g. Hunt et al. 1988). When
concerned with the flow under a lee-wave wavelength, however, it is appropriate to
replace �phill by the lee-wave pressure perturbation �p. Similarly, when calculating
the inner-region depth l we shall replace k by the lee-wave horizontal wave number in
Eq. (15).
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Note that the above linear theories are typically applied to hills with horizontal
length-scales of O(1 km), whereas the lee-wave wavelengths are usually an order of
magnitude longer. One consequence of this is that the values of l in the lee-wave context
are significantly greater than those usually quoted for flows over hills. For example, for
a hill with a wavelength of 1 km, l ∼ 14 m when z0 = 0.05 m. In contrast, for a lee-wave
wavelength of 10 km, l is approximately 105 m and for a 20 km wavelength l increases
to 194 m, a significant fraction of the boundary-layer depth. We should also note that,
strictly speaking, Eq. (15) relies on the fact that the boundary-layer has a logarithmic
wind profile. Clearly for the larger values of l in the lee-wave context this may be a poor
approximation. There is, therefore, some uncertainty attached to the value of U(l) in
Eq. (14).

(c) Comparisons between linear solutions and numerical simulations
Vertical profiles of �s under the lee-wave crests are presented in Fig. 9 for the

idealized Ut = 28 m s−1 BL case with a roughness length of 0.05 m. The Jackson and
Hunt (Eq. (14)) and the numerical linear solutions, both with and without the vertical
shear terms, are presented. These solutions were based on lee-wave horizontal wave
numbers and surface values of �p deduced from the simulations. Again the latter
was measured across the second wavelength downwind of the mountain. Note that, to
account for alterations to the mean flow due to turbulent or wave drag, the basic-state
winds used in the calculations were the wavelength-averaged profiles, Uλ(z). Results
are shown for mountain heights of 10 and 300 m and for comparison purposes the
�s values in the corresponding BLASIUS simulations are also shown. In a qualitative
sense it appears that all the linear solutions reproduce the behaviour observed in the
simulations. The closest agreement with the simulations comes from the full linear
numerical solution in which the vertical shear terms are retained. In the H = 10 m case
these linear predictions are very close to those obtained in the BLASIUS simulation.
At H = 300 m the magnitude of �s is under-predicted by approximately 9%. For
both mountain heights the linear numerical prediction of �s is somewhat reduced in
magnitude when the vertical shear terms are neglected, implying that vertical advection
of the basic-state wind shear plays a rôle in enhancing the deceleration under the
wave crests. For the H = 300 m case the contribution to |�s| from this vertical
advection is approximately 15%. The Jackson and Hunt solution appears to significantly
underestimate the magnitude of �s in both the small and large mountain cases. Whilst
this can be partly attributed to the neglect of vertical shear, Fig. 9 suggests this alone will
only result in a slight under-prediction. Furthermore, tests performed with the numerical
solution (with no shear) to Eq. (7) in which U(z) was replaced by U(l) gave very
similar results to those provided by Eq. (14). Thus it seems that this underestimate
is largely a result of the selection of a single velocity-scale U(l) in the inner region.
This could possibly be corrected via an ad hoc (and probably case-dependent) reduction
in the inner-region depth. Given the uncertainties regarding the scaling for l in the
(long wavelength) lee-wave case this might be not be completely without justification.
However, this clearly requires some further investigation.

Figure 9 highlights the rôle of the turbulent stresses in determining the flow
perturbations within the boundary layer. If the dynamics were truly inviscid we might
expect −Uû ∼ ̂P and, since the pressure gradient is independent of height, |�s| ∝
1/U

2
. The decrease of the boundary-layer winds near the surface would then imply

a |�s| profile whose vertical gradient increased as the ground was approached. Figure 9
shows that this is clearly not the case. Instead the gradient of |�s| decreases close to
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Figure 9. Vertical profiles of the minimum fractional deceleration �s under lee waves in a BL flow with
Ut = 28 m s−1, z0 = 0.05 m (see text) for mountain heights of (a) 10 m and (b) 300 m. The quantities shown
are results from the numerical simulations beneath the second wave crest (solid line and circles), the linear
Jackson–Hunt solution (dotted) and the linear numerical solutions with (solid line) and without (dashed) the
shear terms. The linear solutions shown were obtained using the pressure amplitude �p diagnosed at the surface

in the corresponding numerical simulations.

the ground and, as shown by the numerical linear solutions, very close to the surface
�s is in fact almost independent of height. This result is consistent with that seen in the
flow over hills case, where the fractional speed-up over the hill crest is independent of
height in the lower portion of the inner region (e.g. Newley 1985). Clearly the turbulent
stresses have a significant impact on the size of the flow perturbations close the ground
and the flow is not controlled by simple inviscid dynamics.

For a range of mountain heights Fig. 10 shows how the linear prediction of �s at the
surface corresponds to the results from series of Ut = 28 and 36 m s−1 BL simulations,
with roughness lengths of 0.05 and 0.005 m. Again these linear solutions have been
obtained using values of �p and k deduced from the simulations. Also shown are results
from simulations based on the two radiosonde profiles with z0 = 0.05 m. Since the
linear numerical solution in which the shear terms are retained clearly provides the most
accurate estimates of �s, only these solutions are presented. Figure 10 demonstrates that
in all cases the linear estimate performs reasonably well right up to the point where the
waves are sufficiently large that flow separation occurs. For the small amplitude waves,
where |�s| is significantly less than unity, the linear solutions agree very closely with
the results of the simulations for all cases. As separation is approached (�s → −1) and
the flow becomes increasingly nonlinear, the linear estimates have a tendency to slightly
under-predict the deceleration in the majority of cases. Beyond separation the linear
solutions then begin to over-predict the magnitude of �s. Given the nonlinear nature
of the near-surface flow as separation is approached, the overall reliability of the linear
solution is perhaps somewhat surprising. We should note, however, that some degree of
nonlinearity is already incorporated into the linear estimate since the solution is forced
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range of mountain heights for the Ut = 28 and 36 m s−1 BL cases with z0 = 0.05 and 0.005 m (see text). Also
shown are the results for the two cases where the basic-state profiles were obtained from radiosonde profiles
(17 March and 6 December 2004). The linear results shown are from the numerical solutions in which the shear

terms are retained.

by the pressure amplitude diagnosed from the numerical simulations. In order to form a
more complete linear theory we clearly require an independent estimate of this pressure
amplitude. This is pursued in section 4(d).

The linear solutions for �s can be used to estimate the critical wave amplitude
required for rotor formation. The solid curve presented in Fig. 7 shows the linear
prediction of the critical normalized pressure amplitude, �p/u2∗, as a function of λ/z0.
The curve shown was computed using the most accurate numerical solution (in which
the shear terms are retained) and has been found to be valid for different combinations
of wavelengths, roughness lengths and friction velocities. The critical amplitudes were
obtained by simply computing the surface values of �s for a given (arbitrary) imposed
pressure and then extrapolating the results to obtain the values of �p at which �s = −1.
Note that, for the purposes of producing the curve shown, the basic-state wind profiles
within the boundary-layer were assumed to have a logarithmic form. However, the
results were not sensitive to this choice. Tests performed using the actual 1-D BL
profiles from the idealized or radiosonde simulations produced curves which were very
similar to that shown in Fig. 7. This lack of sensitivity suggests that for the numerical
simulation results depicted in Fig. 7, the differences in the way the critical values
of �p/u2∗ depend on λ/z0 for idealized and radiosonde profiles are not caused by
differences in the structure of the boundary layer. Given that when the waves are of
small amplitude the linear solutions for �s compare closely with the results from all
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types of numerical simulation (see Fig. 10), it is likely the differences in behaviour are
caused by nonlinearity as the waves become large enough that separation occurs.

The linear critical pressure amplitude shown in Fig. 7 behaves in a similar manner
to that deduced from the numerical simulations; both show a tendency to increase with
increasing λ/z0. It is worth noting here that, up to this point, the expectation that the
critical value of �p/u2∗ should be a function of λ/z0 was largely an empirical result.
The collapse of the linear predictions for different combinations of λ and z0 give this
result further credibility. Clearly, however, the linear prediction for the critical amplitude
is an overestimate compared to the results from the simulations. This is consistent with
the fact that as separation is approached the linear solution generally under-predicts the
magnitude of �s (see Fig. 10). Note though that, because (out of necessity) the linear
prediction of the critical wave amplitude is based on upwind rather than wavelength
averaged wind profiles, no account is taken of nonlinear modification to the mean flow.
The agreement between the linear solutions and the numerical simulations implied by
Fig. 7 is therefore not as close as that shown in Fig. 10.

(d) An estimate for the lee-wave pressure perturbation
In terms of developing a practical tool for rotor prediction it is clearly necessary

to predict the lee-wave amplitude as well as the response of the near-surface flow. In
this section we shall attempt to obtain linear estimates of the wave-induced pressure
perturbation which could then be used to force the solutions described in section 4.
It is worth bearing in mind, however, that under certain conditions the lee-wave field
can be highly nonlinear, even when generated by mountains with low slope and when
NH/U � 1 (e.g. Smith 1976; Durran and Klemp 1982). For example, when the
waves are generated by mountains which are significantly broader than the lee-wave
wavelength or when the upstream profiles contain sharp stable layers, the amplitude
will be determined by nonlinear processes. Nevertheless, linear models have proved
generally useful for predicting observed lee-wave motion over complex, but moderate,
terrain (e.g. Vosper and Mobbs 1996; Shutts 1997; Vosper 2003).

Following Sawyer (1960) the linear solution for a trapped lee wave with positive
horizontal wave number kr can be written as w′(x, z) = Re{ŵ eikrx}, where

ŵ = −2U(z = 0)

{

f (z)

f ′(z = 0)
kr̂h(kr)

}

(16)

and Eq. (16) is valid downstream of the mountain only. In the above f is a function
which satisfies Eq. (3) such that, at the resonant wave number kr, f = 0 at z = 0. The
quantity f ′ is ∂f/∂k, ̂h is the Fourier transform of the mountain and the factor 2 arises
from a contribution from a negative wave number (−kr), which itself is an artifact of
defining ̂h to be an integral over positive and negative wave numbers. Equation (3)
can be discretized using centred finite differences and resonant solutions (which satisfy
f (0) = 0) can then be sought for any given �2 profile. The appropriate upper boundary
condition is one which ensures either upward group velocity or exponential decay of the
waves, depending on the sign of �2 − k2 at the upper boundary. The solution of Eq. (3)
is an eigenvalue problem which yields a value for the complex resonant wave number
kr, the imaginary part of which gives an indication of the degree of wave trapping
since its reciprocal is a horizontal decay scale. Further details of the technique used to
obtain solutions are given by Shutts et al. (1994) and Vosper and Mobbs (1996). Linear
solutions for the pressure amplitude p̂ can be obtained by substitution of ŵ and û into
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the Fourier transformed horizontal momentum equation, where û is the corresponding
horizontal velocity amplitude, itself obtained from the continuity equation.

Figure 11 shows a comparison between the pressure amplitude profiles obtained
from the above linear solution and �p, measured in a Ut = 28 m s−1 FS idealized
simulation. The results shown are for a very small mountain (H = 10 m) and �p
was determined from the second wavelength. The linear solution for the inviscid free-
slip (FS) profile compares reasonably well with the FS numerical results with a slight
tendency for the linear solution to under-predict the numerical result near the ground.
The linear resonant wavelength was 11.8 km, which is very close to that determined
from the simulation. Linear solutions have also been obtained when the profile contains
a boundary layer. Note, however, that such solutions are somewhat ill defined since the
amplitude of the waves depends to an extent on the velocity U at z = 0 (see Eq. (16)). In
the no-slip case this is clearly zero, implying no wave generation. In an attempt to avoid
this problem solutions for the BL profiles were calculated by simply replacing U(0) in
Eq. (16) by the wind at the lowest model grid level (10 m). As shown by Fig. 11, the
solution obtained in this way compares closely with the inviscid (BLI) numerical results
in which the boundary-layer modifications to the profile are retained. The amplitude
of the linear solution is, however, highly sensitive to the choice of height of the lower
boundary. Although the shape of the profile is retained, increasing this height above 10 m
reveals that, as one might expect, the amplitude is proportional to the wind speed at the
lower boundary. Consequently, increasing the lower boundary height from 10 to 50 m
produces an increase in amplitude of roughly 30%. When the lower boundary height
is reduced from 10 to 1 m (using 1-D BL solutions with a lowest grid level at 0.25 m)
the amplitude fluctuates rapidly and changes by as much as 15% over this range. This
latter behaviour is presumably connected with the fact that �2 becomes unbounded as
the ground is approached. Despite the seemingly fortuitous level of agreement shown
in Fig. 11, it is clear that inviscid linear calculations such as these will in general not
provide a reliable estimate of the lee-wave pressure amplitude within the boundary layer.

As discussed in section 3, comparisons of the pressure amplitude in the no-slip and
free-slip simulations show that the constant value of �p observed within the boundary
layer is comparable to the value in the FS case, at some height above the boundary-layer
top (z = zi). This result, if generally true, would imply that a linear estimate for the lee-
wave pressure could be obtained by simply obtaining solutions for profiles without any
boundary-layer modification. The extent to which this is true in general is demonstrated
by Fig. 12(a), in which linear pressure predictions obtained using FS profiles are
plotted against �p measured across the second wavelength in BL simulations. Data are
presented for the idealized (Ut = 28 and 36 m s−1) and radiosonde profile simulations,
each with three values of z0 (0.005, 0.01 and 0.05 m). The mountain height is 100 m. In
all cases the linear estimates for �p shown in Fig. 12(a) are taken at a height z = 1.4zi ,
where zi is defined to be the height above which the basic-state shear stress has decayed
to below 10% of its surface value. This particular height was chosen since this is roughly
the height at which the FS pressure amplitude is equal to the near-surface value in the
BL simulations based on the idealized profiles (see Fig. 8, for example). Figure 12(a)
shows that the linear estimate of �p at z = 1.4zi is a reasonable one for all the cases
considered apart from the simulations based on the 6 December radiosonde profile. In
the latter case, the inviscid linear solution over-predicts �p in the boundary layer. The
reasons for this are not clear (though note they could be compensated for by taking the
linear pressure from a somewhat higher level, z ∼ 2zi) but given the slightly different
behaviour of the near-surface flow noted in Fig. 7 for the radiosonde profile simulations,
it seems likely that the flow in this case is more nonlinear. It is of course also possible
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Figure 11. The height variation of the linear pressure amplitude derived from solutions to Eq. (3) for the
Ut = 28 m s−1 idealized profile with a 10 m high mountain. Quantities shown are solutions for the inviscid
free-slip FS profile (solid line) and the BL profile (dashed) with roughness length 0.05 m. Also shown are profiles
of �p across the second wavelength determined from corresponding numerical simulations. The FS, BL and BLI

results are denoted by crosses, squares and circles, respectively.

that the correct choice of height will vary from case to case, depending on the details of
the structure of the boundary layer.

The extent to which the linear estimate for the pressure amplitude is useful for
waves with larger amplitude than those examined in Fig. 12(a) is demonstrated by
Fig. 12(b), which shows the variation of �p with mountain height for the BL simulations
with Ut = 28 and z0 = 0.05 m. It appears that the linear predictions at z = 1.4zi are
reasonable for mountain heights as high as around 250 m. Since this is close to the point
at which rotors first appear (at H = 290 m), it would seem that in this case at least, in
combination with the linear solutions of section 4(a) or the results presented in Fig. 7,
linear theory could be used to give a reliable prediction of rotor formation.

5. CONCLUSIONS

This study has demonstrated how the process of flow deceleration, which leads to
separation and the formation of rotors beneath lee-wave crests, depends primarily on the
amplitude of the lee-wave pressure field, and to a somewhat lesser extent, the surface
roughness and lee-wave wavelength. There is a clear analogy between the mechanism
by which lee waves decelerate the near-surface flow, eventually leading to separation,
and the process of acceleration of turbulent flow across a hill. In both situations the
near-surface flow is primarily controlled by an external (height-independent) pressure
field, which is relatively unaffected by turbulent dissipation within the boundary layer.
Further, in both cases the vertical advection of the mean wind shear plays a minor rôle
in contributing to the acceleration and deceleration.
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Figure 12. (a) The linear prediction for the pressure amplitude at a height 1.4zi plotted against �p across the
second wavelength diagnosed from the BL numerical simulations. The linear predictions are based on solutions
to Eq. (3) with no boundary-layer modification to the basic-state profile. The mountain height is fixed at 100 m.
Data are shown for idealized profile simulations with Ut = 28 and 36 m s−1 (open circles) and for the simulations
using the two radiosonde profiles (solid and shaded circles). In each case results are presented for three values of
z0 (0.005, 0.01 and 0.05 m). (b) The dependence of the pressure amplitude on H for the idealized Ut = 28 m s−1

profile when z0 = 0.05 m. The quantities shown are linear predictions (as in (a)) at z = 1.4zi and �p at the surface
determined from the BL simulations across the second wavelength. See text for explanation of symbols.

The results presented here have shown how, to a good approximation, the near-
surface deceleration under the wave crests responds in a linear manner to the lee-
wave pressure field. This is true almost right up to the point where reversal occurs.
As expected, beyond this point, when a rotor forms under a wave crest, the flow
behaviour is more nonlinear. Nevertheless, from the point of view of predicting the
occurrence of rotors the simple linear numerical solutions (or alternatively the Jackson
and Hunt solution with perhaps some adjustment to the inner-region velocity-scale)
describe the flow adequately well. When coupled with a prediction of the pressure
field, a practical tool for rotor forecasting could be developed. As suggested here, this
prediction could involve solutions to Eq. (3) obtained using either full profiles, which
include the boundary layer (though noting the likely sensitivity of the solutions to the
choice of grid), or by calculating the pressure at some height above zi using modified
profiles in which the boundary layer was somehow removed. Clearly the latter would
involve some arbitrary assumptions about the form of the profile before any modification
by the boundary-layer.

It is worth mentioning here that in the context of flow over hills a known defect
of mixing-length turbulence closure models is a tendency to over-predict (compared
with second-order closure models) the effect of the perturbation turbulent stresses near
the top of the inner region (Newley 1985; Belcher 1990; Wood 1995). This results in
spuriously enhanced mixing, thus reducing the impact of the mean velocity shear on the
velocity perturbations. In general, compared with second-order closure models, mixing-
length closure models of flows over hills tend to over-predict the magnitude of �s very
close to the ground, whilst under-predicting the values near the top of the inner region.
It seems likely that similar effects may occur in the context of lee-wave rotors, and since
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the predictions of �s and flow separation presented here were obtained using a first-
order closure scheme, compared with reality the critical wave amplitudes required for
rotor formation might actually be a slight overestimate.

The above effect, whilst possibly important, is likely to be small compared to
changes in the flow behaviour caused by the introduction of three-dimensionality. The
possibility of the low-level flow diverting around regions of adverse pressure gradient
rather than separating from the surface implies that the critical wave amplitudes required
for rotor formation are likely to be larger than those for 2-D wave fields. Further, the
complex structure and unsteadiness that occur in separated 3-D flows past hills indicates
that the process of separation and rotor formation might be far more complicated than
that considered here. Clearly much further work is required in this area.
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