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ABSTRACT

Orographic gravity waves excited by a narrow mountain ridge are investigated with the aid of numerical
simulations. When the nondimensional mountain half-width Na/U is around 1—N, a, and U being the Brunt–
Väisälä frequency, the dimensional half-width, and the ambient wind speed, respectively—only part of the
gravity wave spectrum excited by the mountain is able to propagate vertically. In this case, linear theory, as
well as numerical simulations with low mountains, show two wind maxima: one at the mountain crest and one
in the lee of the mountain. As Na/U is reduced below 1, the wind maximum in the lee weakens and moves
farther downstream, and the maximum at the crest intensifies rapidly with decreasing Na/U. Simulations in
which a gap with a level axis is embedded in the mountain ridge demonstrate that the wind perturbations along
the gap axis are qualitatively similar to those over the adjacent mountain ridge. However, their magnitude is
substantially lower, and the tendency to form a wind maximum at the gap center (corresponding to a maximum
at the mountaintop) is rather weak.

When the mountain is high enough for nonlinear effects to become important, the flow structure changes
substantially. Provided that Na/U is not below 1, there is a range of nondimensional mountain heights where
gravity wave breaking establishes a flow structure very similar to that typical for wider mountains, including
strong downslope winds in the lee of the mountain and a pressure drag well above the linear value. The results
indicate that nonlinearity can shift the primary wind maximum from the mountain crest into the lee. For Na/U
ø 0.75, gravity wave breaking no longer occurs, and the wind maximum is reached at the top of the mountain
regardless of its height. Along a gap axis, however, there is a tendency for a pronounced wind maximum on
the lee side even for narrow mountain ridges. In agreement with the results known for wider mountains, surface
friction is found to reduce the wind speed close to the ground, to promote flow separation from the ground over
the lee slope of the mountain and to reduce the tendency toward gravity wave breaking. For Na/U ø 1 and
moderate surface friction, the formation of rotors becomes possible even for uniform large-scale flow.

1. Introduction

Gravity waves are a ubiquitous feature over moun-
tainous terrain. As is well known from linear theory,
stationary monochromatic gravity waves are able to
propagate vertically when their horizontal wavelength
ranges between approximately 2pU/N and 2pU/ f—U,
N, and f being the horizontal wind speed, the Brunt–
Väisälä frequency and the Coriolis parameter, respec-
tively. Shorter gravity waves, dominated by nonhydro-
static dynamics, and long inertio-gravity waves decay
with height. Gravity waves excited by an isolated moun-
tain are associated with a surface wind maximum over
the lee slope when their wavelength spectrum is dom-
inated by vertically propagating wave components (e.g.,
Queney 1948). For very narrow mountains, however,
the wind maximum is located at the mountain peak, and
there is an intermediate range of mountain widths that
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exhibits wind maxima at the peak as well as in the lee.
When the atmospheric structure is such that U/N in-
creases significantly with height, there is a range of
wavelengths for which vertical propagation is possible
only up to a certain threshold height. Under these cir-
cumstances, certain wavelengths may become resonant,
leading to the well-known trapped lee waves propagat-
ing horizontally downstream (e.g., Scorer 1949; Sawyer
1960). Below the wave crests of trapped lee waves,
rotors may form when surface friction forces flow sep-
aration from the ground (Doyle and Durran 2002).

Since the discovery of the nonlinear gravity wave
amplification mechanism by Clark and Peltier (1977)
and Peltier and Clark (1979), which is capable of pro-
ducing downslope windstorms far exceeding the
strength predicted by linear theory, a large number of
numerical studies has been performed on various aspects
of vertically propagating gravity waves. Most of them
focused on relatively wide mountains such that Na/U
k 1, a denoting a characteristic length scale of the
mountain (usually its half-width in along-stream direc-
tion). This criterion ensures that the wave spectrum ex-
cited by the mountain is dominated by vertically prop-
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agating components. Exceptions are studies concerned
with trapped lee waves (e.g., Durran and Klemp 1982;
Shutts 1992; Koffi et al. 2000) and those by Bacmeister
and Schoeberl (1989), Xue and Thorpe (1991), Klemp
and Durran (1983), and Dudhia (1993). Bacmeister and
Schoeberl considered the propagation of low-amplitude
waves into the stratosphere and performed a sensitivity
experiment with Na/U 5 3 in order to test the impact
of nonhydrostatic wave dispersion. The latter authors
conducted simulations with Na/U 5 2 (Xue and
Thorpe), Na/U 5 1 (Klemp and Durran, Dudhia), and
Na/U 5 0.1 (Dudhia) for the purpose of model vali-
dation.

Yet, there appears to be no study considering nonlin-
ear effects on airflow over a mountain with Na/U ; 1.
For this parameter range, linear theory predicts a pri-
mary wind maximum at the mountain top and a sec-
ondary (weaker) maximum in the lee of the mountain
(Queney 1948). This is confirmed by observations of
airflow over small hills (e.g., Vosper et al. 2002). How-
ever, occasional observations in the Alps (Sládkovič and
Kanter 1977; M. Hornsteiner 2002, personal commu-
nication) indicate that the dominant surface wind max-
imum can also be located in the lee of such a narrow
mountain ridge or at least in the lee of a gap embedded
in such a ridge. The amplification of the wind speed
achieved in this situation appears to be of the same order
as that found for much wider ridges for which the flow
is essentially hydrostatic. This raises the question
whether nonlinear effects are able to extend the hydro-
static flow structure with a leeside wind maximum to
lower values of Na/U. In addition, the sensitivity of the
flow structure to small changes of Na/U is an interesting
question that has not been addressed previously.

To gain more insight into the airflow over narrow
mountain ridges, numerical simulations have been per-
formed with a mesoscale model. Since the available
observations of strong leeside winds are biased towards
the vicinity of gaps, indicating that gaps favor the oc-
currence of high wind speeds, gap effects are also in-
vestigated in some detail. The standard setup considers
uniform flow over a mountain ridge with a gap in the
absence of Coriolis force and surface friction. Sensitiv-
ity experiments with Coriolis force and surface friction
are also conducted. The nondimensional mountain
height Nh0/U, h0 being the dimensional maximum
mountain height, varies between 0.3 and 2.1 so as to
compare quasi-linear flow with strongly nonlinear flow.
It will be demonstrated that nonlinear effects, in par-
ticular gravity wave breaking, indeed extend the hydro-
static flow regime with a leeside wind maximum to
smaller mountain widths. This behavior is especially
pronounced in the vicinity of gaps. The experiments
with surface friction demonstrate that—in contrast to
common belief—the formation of rotors is possible even
for uniform large-scale flow.

The outline of the paper is as follows. In section 2,

the setup of the simulations is described. Section 3 pre-
sents the results, and a summary is given in section 4.

2. Model and setup

The numerical simulations are performed with the
nonhydrostatic fifth-generation Pennsylvania State Uni-
versity–National Center for Atmospheric Research
(PSU–NCAR) Mesoscale Model (MM5). The model
uses a terrain-following sigma-coordinate system that is
based on a temporally and spatially constant reference
state. For details, the reader is referred to the model
description (Grell et al. 1995).

Since the MM5 is set up for simulations with real
data, a few modifications were necessary in order to
adapt it for idealized simulations. Curvature terms and
mapping factors were removed from the equations of
motion, and the Coriolis parameter f is set to a constant
value of either zero or 1024 s21. The model is run in
dry mode, and the only physical parameterization re-
tained for the simulations is a turbulent-kinetic-energy-
based parameterization for vertical mixing and, if sur-
face friction is taken into account, for computing the
surface momentum fluxes (Gayno 1994; Ballard et al.
1991). The roughness length is set to either 1 or 50 cm
in the frictional runs; otherwise, the surface momentum
fluxes are set explicitly to zero. In the remainder of this
paper, the simulations without surface momentum fluxes
will be referred to as frictionless. It is noted that the
MM5-built-in option for switching off surface friction
is not used because this option also switches off vertical
mixing. For horizontal mixing, which is needed to en-
sure numerical stability, the modified diffusion scheme
described in Zängl (2002a) is used. It computes the
diffusion truly horizontally rather than along the coor-
dinate surfaces and greatly reduces the numerical errors
over steep orography.

The simulations presented in this study are computed
on four interactively nested domains having a horizontal
resolution of 10.8 km, 3.6 km, 1.2 km and 400 m, re-
spectively. The numbers of grid points are 61 3 61 for
the first three domains and 61 3 115 for the innermost
domain. Interactive nesting means that a nested domain
receives its boundary values from the next coarser do-
main while the coarser domain gets smoothed infor-
mation from the nest at every time step for the whole
overlap area. This ensures that spurious boundary in-
fluences are weak at internal model boundaries. More-
over, the more problematic outer model boundaries can
be moved sufficiently far away from the mountain with-
out significant computational costs. In the vertical, 39
full-sigma levels are used, corresponding to 38 half-
sigma-levels where all variables except for the vertical
wind speed are computed. The lowermost half-sigma
level, which will be referred to as surface level in the
remainder of this paper, is about 25 m above the ground.
The vertical resolution ranges from 60 m near the sur-
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FIG. 1. Orography of the innermost model domain for the mountain
ridge with h0 5 1500 m. The contour interval is 200 m, and shading
steps are taken every 400 m. The dashed box indicates the subdomain
shown in Fig. 10. The solid lines denote the cross sections RR’ (ridge)
and GG’ (gap) shown in the subsequent figures. Section SR’ is shown
in Fig. 13.

face to about 700 m near the upper boundary, which is
located at 100 hPa. At the upper boundary, a radiation
condition is used to prevent spurious reflections of ver-
tically propagating gravity waves. The radiation con-
dition follows the ideas of Klemp and Durran (1983)
and has been modified by the author so as to enhance
the range of horizontal wavelengths captured by it. In
the standard MM5 implementation, this wavelength
range is limited to 12 times the grid distance, which is
not sufficient for the nested model domains. In the mod-
ified version, the longer wave components are inter-
polated from the coarser model domain(s), ensuring that
the whole spectrum of gravity waves is able to radiate
upward. A description of this procedure is given in the
appendix of Zängl (2002b). It is mentioned that the local
computation of the radiation condition is switched off
in the innermost model domain since the wavelength
range that would be radiated upward in this case (up to
4.8 km) is not able to propagate vertically under the
atmospheric conditions chosen for this study (see be-
low). In the innermost model domain, only the inter-
polation of the radiation condition from the coarser do-
mains is retained. This way, it is achieved that the ver-
tically propagating part of the wave spectrum is radiated
upward without applying the radiation condition to ver-
tically decaying wave components.

The orography used for the simulations is a long,
north–south-oriented mountain ridge. Its basic shape is
given by

2 2mh (x) 5 h [1 1 (x/L) ] .m 0 (1)

The shape parameter m is set to 1.5 except for a few
sensitivity experiments for which m 5 1 is used. The
length-scale parameter L is set to 1.5 km for m 5 1.5
and to 1 km for m 5 1, corresponding to a half-width
a of 1.15 and 1 km, respectively. In meridional direction,
the mountain ridge has constant height over a distance
of 36 km, followed by a 3-km-long cosine-squared-
shaped transition zone on either side. The maximum
height h0 ranges between 300 and 2250 m. In the ma-
jority of the simulations, a gap is introduced at the center
of the mountain ridge by replacing h0 with

2h* 5 h 2 h cos [py/(2l)]0 0 G (2)

if | y | # l. The gap depth hG is equal to h0, and the
gap width l is set to 2 km except for the simulations
with h0 . 2 km where l had to be increased to 2.6 km
for reasons of numerical stability. As an example, a
contour plot of this orography is given in Fig. 1 for m
5 1.5 and h0 5 1500 m. Figure 1 also displays the
location of the cross sections shown in the subsequent
figures. Line RR’ is the section through the northern
part of the split mountain ridge, and line GG’ goes along
the gap axis if a gap is present. Otherwise, line GG’
goes through the symmetry axis of the ridge.

The large-scale flow condition is a uniform westerly
(ridge normal) wind with a constant speed of either U
5 10 or 15 m s21. It is prescribed in the whole model

domain at initial time and continuously imposed at the
outer model boundaries through a relaxation condition.
The Brunt–Väisälä frequency N is set to a constant value
of 1022 s21. It follows that the nondimensional mountain
height is obtained by dividing the dimensional height
by 1000 and 1500, respectively. The corresponding non-
dimensional half-width Na/U is 1.15 and 0.77, respec-
tively. For the frictionless simulations, zero Coriolis
force is assumed. However, a Coriolis parameter of 1024

s21 is used for the frictional simulations because setting
up a uniform stationary large-scale flow is difficult with-
out Coriolis force. Since the along-flow Rossby number
U/ fa ranges between 67 and 130 for the parameters
chosen, it is expected that the inclusion of the Coriolis
force does not have a significant effect on the flow over
the mountain ridge. To ensure that this is also valid for
high mountain ridges that may induce substantial up-
stream blocking, a few frictionless test runs were per-
formed with f 5 1024 s21 and compared with the stan-
dard runs. These tests confirmed the absence of signif-
icant Coriolis effects. All simulations are carried out
until t 5 12 h, corresponding to a nondimensional time
t* [ tU/L of 288 in the U 5 10 m s21 case. It turned
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TABLE 1. List of simulations discussed in this paper. The suffix
‘‘r’’ denotes simulations using a mountain ridge without a gap. Sim-
ulations marked with ‘‘f’’ and ‘‘lf’’ include Coriolis force and surface
friction, the roughness length being 50 cm (1 cm) for ‘‘f’’ (lf ).

Simulation h0 (m) U (m s21) Nh0/U Na/U h0/a

L1, L1r, L1f
L2, L2r
N1, N1r, N1f, N1lf
N2, N2r, N2f, N2lf
N3, N3f
N4
N5

300
450
900

1500
2100

900
1500

10
15
10
10
10
15
15

0.3
0.3
0.9
1.5
2.1
0.6
1.0

1.15
0.77
1.15
1.15
1.15
0.77
0.77

0.26
0.39
0.78
1.31
1.83
0.78
1.31

N6
N7
S1r
S2r
S3r
S4r

2100
2250

300
300
300
450

15
15
10
15
25
15

1.4
1.5
0.3
0.2
0.12
0.3

0.77
0.77
1
0.67
0.4
0.67

1.83
1.96
0.3
0.3
0.3
0.45

Simulations taken from Zängl (2002b)
W1, W1r
W2, W2r
W3, W3r, W3f
W4, W4r

300
900

1500
2100

10
10
10
10

0.3
0.9
1.5
2.1

30.7
30.7
30.7
30.7

0.01
0.03
0.05
0.07

TABLE 2. Pressure drag and maximum wind speeds for frictionless simulations. The pressure drag is evaluated along line GG’ (see Fig.
1) for the ridge simulations (upper part) along line RR’ (see Fig. 1) for the simulations with gap orography (lower part). It is normalized
with the linear hydrostatic value given in Eq. (3). Definitions are u9 5 (u 2 U )/U, x9 5 x/L.

Simulation
Normalized

drag
u9max

along RR’
x9max

along RR’
umax

along GG’
xmax

along GG’

L1r
L2r
N1r
N2r
S1r
S2r
S3r
S4r
W1r
W2r
W3r
W4r

0.62
0.37
1.35
0.93
0.58
0.33
0.21
0.36
1.16
2.55
1.99
1.32

0.129
0.298
1.076
0.923
0.153
0.205
0.248
0.333

—
—
—
—

0.0
0.0
3.0
2.9
0.0
0.0
0.0
0.0
—
—
—
—

0.120
0.292
1.045
0.914
0.149
0.205
0.255
0.336
0.215
1.396
1.652
1.418

0.0
0.0
3.2
3.4
0.0
0.0
0.0
0.0
0.6
1.5
1.4
1.5

L1
L2
N1
N2
N3
N4
N5
N6
N7
W1
W2
W3
W4

0.58
0.37
1.34
0.95
0.49
0.46
0.63
0.57
0.51
—
—
—
—

0.129
0.311
1.090
0.928
0.799
0.715
1.217
1.143
0.946

—
—
—
—

0.0
0.0
3.2
2.9
0.0
0.0
0.0
0.0
0.0
—
—
—
—

0.028
0.089
0.943
0.974
0.717
0.206
0.347
0.290
0.393
0.093
1.229
1.452
1.574

1.9
0.0
3.2
3.5
6.2
0.2
0.2
7.7
7.5
1.0
2.8
1.6
2.5

out that this is well enough to reach a stationary state
in all the simulations.

A list of the simulations discussed in this paper is
provided in Table 1. The names of the simulations are
composed of a capital letter indicating the simulation
series, a number, and an optional suffix. Of the leading
capital letters, ‘‘L’’ (‘‘N’’) denotes the simulations cov-

ering the linear (nonlinear) parameter range provided
that they are conducted with the m 5 1.5 orography.
The sensitivity experiments conducted with the standard
Witch-of-Agnesi orography (i.e., m 5 1) are named with
‘‘S.’’ In addition, Table 1 lists a few simulations already
presented in Zängl (2002b). These simulations have
been conducted with a much wider mountain ridge (L
5 40 km or Na/U ø 31) having the same shape as the
m 5 1.5 orography (see Zängl 2002b for details). They
are named with a ‘‘W’’ and are needed for comparison
with the results obtained in the present study. The ab-
sence of a suffix means that surface friction and the
Coriolis force are not taken into account and that the
model orography contains a gap. When the name ends
with an ‘‘r,’’ the orography is a simple ridge without a
gap. Finally, ‘‘f’’ and ‘‘lf’’ indicate the presence of the
Coriolis force and of surface friction, the roughness
length being 50 cm for f and 1 cm for lf.

3. Results and discussion

The following discussion first considers the flow over
the mountain ridge and then the flow along the gap axis.
Finally, the experiments with Coriolis force and surface
friction are discussed. For the frictionless simulations,
Table 2 summarizes the results for the pressure drag and
the maximum surface wind perturbation. The pressure
drag is normalized by its linear hydrostatic value

2D 5 F(m)rUNh ,lin 0 (3)
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FIG. 2. Normalized surface wind perturbation u9 [ [(u 2 U )/U] at t 5 12 h. Values are taken along the line RR’ (see Fig. 1) for simulations
L1 and L2, and along the line GG’ otherwise. The horizontal range given on the abscissae equals the east–west extension of the innermost
model domain displayed in Fig. 1. (a) Simulations with the standard orography [m 5 1.5; see Eq. (1)] with Nh0/U 5 0.3 and various values
of Na/U. The simulation W1 with Na/U 5 31 is reproduced from Zängl (2002b). (b) Simulations with the m 5 1 orography. Unlike in (a),
h0/a is kept fixed in (b).

where r denotes the density and F(m) is p/4 for m 5
1 (Smith 1979) and 8/(3p) for m 5 1.5. The surface
wind perturbation u9 [ [(u 2 U)/U] is normalized by
the basic-state wind speed. The location where the sur-
face wind maximum is attained is also indicated in Table
2. It is denoted as with x9 being defined as x/L.x9max

Except for Fig. 2 and the wide-ridge simulations re-
produced from Zängl (2002b), the flow over the ridge
is always considered along the line RR’ (see Fig. 1),
corresponding to the center of the northern mountain
ridge if a gap is present. The gap flow results are taken
along the line GG’ (Fig. 1). The wide-ridge simulations
without a gap (W1r–W4r) are also evaluated along the
line GG’ because the innermost model domain covers
only part of the ridge in these simulations (see Zängl
2002b for details). A comparison of the no-gap simu-
lations L1r, L2r, N1r, and N2r with the corresponding
standard simulations (Table 2) indicates that the impact
of the gap on the flow over the adjacent ridge(s) is very
small. As will be shown below, the most notable effect
is found on the upstream side of the mountain, where
the presence of the gap reduces the mountain-induced
blocking. Moreover, for the no-gap simulations, it makes
very little difference whether line RR’ or line GG’ is
considered (Table 2). This indicates that the mountain
ridge can be considered as quasi-two-dimensional al-
though its meridional extension is limited.

a. Linear parameter range

Before turning to the effects of strong nonlinearity,
simulations for the linear parameter range are presented.

The nondimensional mountain height Nh0/U considered
here ranges between 0.12 and 0.3 (see Table 1, series
L and S). For this parameter setting, the flow over wider
mountains is known to be qualitatively similar to linear
analytical solutions. In particular, gravity wave breaking
does not occur for such low mountains. Figure 2 dis-
plays the surface wind perturbation u9 for a number of
simulations. The values are taken along the line GG’
(see Fig. 1) for all no-gap simulations (L1r, W1r, S1r–
S4r) and along the line RR’ otherwise. Vertical cross
sections for potential temperature and the ridge-normal
horizontal wind component are shown in Fig. 3. As
already mentioned, Table 2 summarizes the normalized
surface pressure drag and the maximum surface wind
perturbation for all simulations.

First of all, the L1 and L1r wind profiles displayed
in Fig. 2a indicate that the presence of a gap primarily
affects the wind field on the upstream side of the moun-
tain ridge. The maximum negative wind perturbation
and the upstream extension of the area with significantly
reduced wind speeds are larger in L1r than in L1. In
the lee of the mountain, there are also some minor dif-
ferences, but they are not as systematic as those on the
upstream side. Yet, the strength of the primary wind
maximum at the mountain peak hardly differs between
the two runs. This is also valid for the other simulations
conducted in this study (see Table 2). Since the nor-
malized pressure drag across the ridge is also quite in-
sensitive to the presence of a gap (Table 2), the no-gap
simulations will not be discussed separately in the re-
mainder of the paper.
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FIG. 3. Vertical cross sections of potential temperature (solid lines, contour interval 2 K) and horizontal wind speed (shading; see label
bars) for the innermost model domain, t 5 12 h. The cross sections are taken along the line RR’ in Fig. 1. The dashed lines mark the
prescribed large-scale wind speed U. (a) Simulation L1 (Nh0/U 5 0.3, Na/U 5 1.15, U 5 10 m s21). (b) Simulation L2 (Nh0/U 5 0.3, Na/U
5 0.77, U 5 15 m s21).

Figure 2a also gives a first impression how the moun-
tain-induced wind perturbations depend on the mountain
width. The W1r run with Na/U ø 31, reproduced from
Zängl (2002b) for comparison, exhibits a single wind
minimum on the upstream side and a single wind max-
imum in the lee. When Na/U is reduced to 1.15 (run
L1), the flow behavior upstream of the mountain is fairly
similar, but there are now two wind maxima. The leeside
wind maximum is shifted downstream, and an additional
wind maximum appears at the mountain top. Moreover,
the magnitude of the leeside wind maximum is only half
as large as for the wide mountain, and less than that of
the mountain-top wind maximum. A further reduction
of Na/U to 0.77 (run L2) retains the double wind max-
imum structure. However, the mountaintop wind max-
imum becomes much stronger and the leeside maximum
shifts even farther into the lee, while the wind speed
reduction on the upstream side of the ridge is somewhat
less pronounced. Comparing the results of L1 and L2,
one finds that a reduction of Na/U by a factor of 1.5
increases the ratio between the two wind maxima by a
factor of 2.5 (see also Table 2). A detailed discussion
of the parameters controlling this flow behavior will be
given below. Along with the intensification of the pri-
mary wind maximum at the mountain crest, the pressure
drag exerted by the mountain decreases (see again Table
2). This behavior can easily be explained by linear the-
ory since the pressure perturbation p9 is proportional to
2u9 (e.g., Smith 1979). Thus, a more symmetric wind
perturbation (with respect to the crest) is equivalent to
a more symmetric pressure perturbation or to a weaker
pressure difference between the two sides of the moun-
tain.

The structure of the gravity waves excited by the

narrow mountain ridges is displayed in Fig. 3. Most
importantly, wind and temperature perturbations are
found not only above the mountain but also in the lee.
This is related to the fact that nonhydrostatic gravity
waves are dispersive. The slope of the group velocity
vector is m/k, where m and k are the vertical and the
horizontal wavenumbers, respectively, which means that
the downstream component of the group velocity in-
creases with decreasing horizontal wavelength (e.g.,
Smith 1979, p. 108). A consequence of this dispersion
is that the leeside wind maximum is weaker for narrow
mountains than for wide mountains (see Fig. 2a). More-
over, the wave amplitude would decrease with height if
the dispersion effect was not compensated for by the
decreasing density. In addition, it is important to note
that vertical wave propagation is restricted to horizontal
wavelengths longer than 2pU/N (6.28 km for U 5 10
m s21), so that only part of the wave spectrum excited
by the mountain is able to propagate vertically. As a
result, the horizontal wavelength of the vertically prop-
agating wave appears longer than the dimensions of the
mountain, particularly for L2 (Fig. 3b). The wave am-
plitude is clearly lower for L2 (Fig. 3b) than for L1
(Fig. 3a) because a smaller part of the wave spectrum
excited by the mountain propagates vertically.

It would be desirable to compare these results with
linear analytic solutions, but these are available for the
hydrostatic limit only in the case of m 5 1.5. Thus,
additional simulations (S1r–S4r) were conducted with
a m 5 1 mountain ridge. The normalized analytic wind
perturbation obtained for this orography type in the non-
hydrostatic limit is

2h 1 2 (x/a)0u9 5 (4)
2 2a [1 1 (x/a) ]
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(e.g., Smith 1979); is attained at the mountain peaku9max

and amounts to h0/a. Moreover, an approximate ana-
lytical solution for Na/U 5 1 was calculated by Queney
(1948; Fig. 1). It predicts a double wind maximum sim-
ilar to that discussed above. The wind extrema are

ø 0.2Nh0/U at the peak and ø 20.2Nh0/U onu9 u9max min

the upstream side.
The results of the simulations S1r–S4r are displayed

in Fig. 2b. Experiment S1r, conducted with Na/U 5 1
for comparison with the Queney solution, shows a good
qualitative agreement with the analytical result: both
wind maxima and the upstream wind minimum are lo-
cated at approximately the same location as in Fig. 1
of Queney (1948). The gravity wave pattern, which is
very similar to that shown in Fig. 3a, is also consistent
with the analytical solution. However, the magnitude of
the simulated surface wind perturbations is substantially
larger. While the analytical solution predicts øu9min

20.06 and ø 0.06 for the mountain height underu9max

consideration, the numerical simulation yields values of
20.17 and 0.15, respectively. Nonlinear effects are un-
likely to be responsible for this large discrepancy: ad-
ditional experiments with mountain heights of 100, 10,
and 1 m consistently exhibited wind perturbations 2–
2.5 times as large as predicted by the analytical solution.
Moreover, the simulations for wider and narrower
mountain ridges do not indicate the presence of a sys-
tematic model error. The difference between the wind
perturbations predicted by the hydrostatic analytical so-
lution (Phillips 1984) and the simulations reported in
Zängl (2002b) is only about 30% for Nh0/U 5 0.3 and
tends to approach zero for very low mountains. In ad-
dition, the simulations with Na/U , 1, which will be
discussed below, approach the analytical solution for
the nonhydrostatic limit [Eq. (4)]. A possible explana-
tion for the large discrepancy between the Queney
(1948) result and the simulations could be that the as-
ymptotic solution technique applied by Queney is not
particularly exact close to the ground.

Simulations S2r and S3r investigate the effect of re-
ducing Na/U to 0.67 and 0.4 while keeping h0/a constant
at 0.3. This is associated with a decrease of the non-
dimensional mountain height Nh0/U from 0.3 to 0.2 and
0.12, respectively. As evident from Fig. 2b, the wind
reduction on the upstream side of the ridge weakens,
the mountaintop wind maximum intensifies and the lee-
side wind maximum weakens and shifts farther down-
stream. The intensification of the mountaintop wind
maximum despite the decreasing Nh0/U clearly dem-
onstrates that this wind maximum does not scale with
Nh0/U, which is in agreement with Eq. (4) for the non-
hydrostatic limit. Moreover, the simulated values for

(Table 2) indicate that the simulations would ap-u9max

proach the analytical value of h0/a 5 0.3 for even small-
er Na/U. A check whether does really scale withu9max

h0/a as predicted by Eq. (4) is provided by a comparison
between S2r and S4r. Increasing h0/a by 50% while
keeping Na/U fixed increases by about 60% (seeu9max

also Table 2), suggesting that there are probably some
nonlinear effects but that the scaling law for the non-
hydrostatic limit is already valid in the transitional pa-
rameter range of Na/U ø 1. Yet, the leeside wind max-
imum is still, to a large extent, controlled by Nh0/U.
Simulations S1r and S4r, differing in Na/U but having
the same Nh0/U, show only a slight weakening of the
leeside maximum with decreasing Na/U. This is con-
firmed by the simulations L1 and L2 already discussed
above. On the other hand, the series S1r–S3r (fixed h0/
a) exhibits a much stronger weakening of the leeside
wind maximum. The apparent explanation for this be-
havior is that the leeside wind maximum is related to
the vertically propagating part of the wave spectrum,
which is known to scale with Nh0/U from hydrostatic
analytical solutions. This is corroborated by the fact that
the leeside wind maximum shifts downstream with de-
creasing Na/U. Since vertical propagation requires a
horizontal wavelength larger than 2pU/N, the nondi-
mensional location of the leeside wind maximum x9max

can be expected to be inversely proportional to Na/U if
Na/U & 1. Finally, considering the wind speed upstream
of the mountain reveals that the upstream effect depends
on both Na/U and on Nh0/U. Because the analytical
values of are h0/(8a) for the nonhydrostatic limitu9min

and Nh0/(2U) for the hydrostatic limit, the decrease of
| | with Na/U can easily be anticipated from ana-u9min

lytical theory.
The drag values provided in Table 2 show that the

drag decreases continuously with Na/U. This is also in
agreement with linear theory since the analytical solu-
tion for the nonhydrostatic limit predicts zero drag.
Comparison between S2r and S4r again indicates that
nonlinear effects are small in the parameter range con-
sidered here. Moreover, a comparison between the drag
und values for the L and S runs shows that theu9max

mountain shape has only a minor impact on the results
when similar values of Na/U are considered. However,
using the length scale L instead of the half-width a as
control parameter would pretend a substantial influence
of the mountain shape. For this reason, only a was used
in the preceding discussion.

The results for the linear flow regime suggest that the
gravity wave response of a narrow mountain ridge can
to some extent be interpreted as a superposition of a
vertically propagating wave and an evanescent wave.
While the former induces a wind maximum in the lee
of the mountain, the latter is responsible for the moun-
taintop wind maximum. The relative importance of the
wave components is controlled by Na/U and changes
quite rapidly with this parameter.

b. Nonlinear parameter range

For quasi-hydrostatic flow over a two-dimensional
mountain ridge, gravity wave breaking sets in as soon
as the nondimensional mountain height exceeds a value
of about 0.85 (e.g., Peltier and Clark 1979). This leads
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FIG. 4. Same as Fig. 2, but for simulations with higher mountains. The values are taken along the line RR’ in Fig. 1 except for
simulation W3r, for which the values refer to the symmetry axis of the mountain ridge.

to the formation of strong downslope winds over the
lee slope of a mountain and to a pressure drag several
times larger than the linear value. In this section, it is
investigated whether wave breaking and the concomi-
tant strong downslope winds also occur for Na/U ; 1.
Surface wind profiles similar to Fig. 2 are given in Fig.
4. In addition, vertical cross sections of the wind and
potential temperature fields are displayed in Fig. 5 for
four selected simulations.

For Nh0/U 5 0.9 and Na/U 5 1.15 (run N1, Figs. 4a
and 5a), the flow structure is indeed remarkably close
to that typical for the quasi-hydrostatic flow regime
(e.g., Stein 1992; Zängl 2002b). Gravity wave breaking
occurs above the lee slope and forms an almost calm
zone extending downstream at a height of about 2 km.
Supported by the decrease of atmospheric density with
height, a second wave breaking region forms at about
8 km. Correspondingly, strong downslope winds are
found near the ground. In contrast to the quasi-linear
simulation L1, the leeside wind maximum is now much
stronger than the mountaintop wind maximum, which
is noticeable in Fig. 4a only. Although the correspond-
ing wide-ridge simulation W2r exhibits an even larger
wind amplification (see Table 2 and Zängl 2002b), this
clearly indicates that nonlinearity can reduce the impact
of nonhydrostatic effects. The dominance of the leeside
wind maximum is extended to lower values of Na/U.

Interestingly, the pressure drag depends much more
sensitively on the mountain width than the leeside wind
maximum. As evident from Table 2 (runs N1 and W2r),
nonhydrostatic effects reduce the normalized drag by
a factor of almost two, while decreases by onlyu9max

20%. A closer investigation of the pressure field re-
veals that this is largely due to the fact that the leeside
pressure minimum is located farther downstream for

the narrow mountain than for the wide one (close to
; see Table 2). The maximum cross-mountain pres-x9max

sure difference decreases only from 3.6 to 2.9 hPa (not
shown), but between the peak and x 5 61.5a, the
cross-mountain pressure difference decreases by a fac-
tor of more than 2.

For higher mountains (runs N2 and N3, Figs. 4a, 5b,
and 5c), the impact of nonhydrostatic effects increases
again. There are still strong downslope winds extending
far into the lee for Nh0/U 5 1.5 (run N2), but the local
wind maximum at x 5 0 is more pronounced than for
Nh0/U 5 0.9, and is substantially lower than foru9max

the corresponding quasi-hydrostatic run W3r (Fig. 4a
and Table 2). The normalized drags again differ by a
factor of two (Table 2). For Nh0/U 5 2.1 (run N3), the
flow separates from the ground over the lee slope, and
there remains only one wind maximum at the crest (Fig.
5c). The corresponding wide-mountain run W4r, how-
ever, retains its wind maximum in the lee, and flow
separation is not encountered (Table 2 and Zängl
2002b). Correspondingly, the difference in the normal-
ized pressure drag further increases.

A remarkable feature appearing in both N2 and N3
is an atypically weak gravity wave activity over the
mountain. A closer examination of the flow evolution
reveals that there occurs transient wave breaking during
the first 2 h of the simulation, but then, the wave breaks
down and the remaining upward flux of wave energy is
very weak. For wider mountains, such a breakdown of
the wave energy flux is usually not found (e.g., Peltier
and Clark 1979; Olafsson and Bougeault 1997; Zängl
2002b). In fact, the gravity wave patterns found for the
wide-mountain simulations W2r, W3r, and W4r are very
similar to each other, and it is merely the depth of the
leeside strong wind zone that decreases with increasing
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FIG. 5. Vertical cross sections along line RR’ (Fig. 1) for simulations (a) N1 (Nh0/U 5 0.9, Na/U 5 1.15), (b) N2 (Nh0/U 5 1.5, Na/U
5 1.15), (c) N3 (Nh0/U 5 2.1, Na/U 5 1.15), and (d) N7 (Nh0/U 5 1.5, Na/U 5 0.77). Plotting conventions are as in Fig. 3, but dashed
lines are given for u 5 U and u 5 0. The basic-state wind speed U is 10 m s21 in (a)–(c) and 15 m s21 in (d).

Nh0/U (see Zängl 2002b). A conclusive explanation of
the weak wave activity in the narrow-ridge runs is dif-
ficult to give because analytical methods are not appli-
cable to such highly nonlinear flows. From the simulated
flow evolution, it appears that the well-mixed layer es-
tablished in the lee of the mountain for Nh0/U 5 1.5
reflects much of the wave energy while flow separation
prevents the maintenance of a larger wave amplitude
for Nh0/U 5 2.1. For the wide ridges, no flow separation
occurs in this range of mountain heights, and the vertical
orientation of the group velocity vector probably re-
duces the impact of the well-mixed region in the lee on
the wave propagation.

A decrease of Na/U to 0.77 leads to a drastic change
of the flow pattern as is the case for the lower mountains
discussed above. None of the simulations exhibits grav-
ity wave breaking, and the maximum wind speed is
reached at the mountain crest in all simulations. Since

airflow over a mountain with Na/U ø 1 is controlled
partly by h0/a and partly by Nh0/U (see discussion of
Fig. 2b above), experiments N4–N7 are conducted ei-
ther with the same h0/a as runs N1–N3 or with the same
Nh0/U (see Table 1). Yet, the following discussion al-
ways refers to Nh0/U since this is a more common non-
dimensional parameter than h0/a.

As already mentioned, the wind maximum now oc-
curs at the mountain crest for all mountain heights con-
sidered (Fig. 4b). In contrast to above, and consistent
with the absence of gravity wave breaking, only a weak
nonlinear wind amplification is found. Comparing the
results for Nh0/U 5 0.3 (L2), Nh0/U 5 0.6 (N4), and
Nh0/U 5 1.0 (N5) reveals that the ratio of and h0u9max

increases by no more than 20% (Figs. 2a and 4b, and
Table 2). A somewhat larger increase is found for the
normalized drag (Table 2), but the values remain well
below 1 in all cases. When Nh0/U is increased above
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FIG. 6. Same as Fig. 2a, but values along the gap axis (line GG’ in
Fig. 1).

FIG. 7. Same as Fig. 3, but for cross section GG’ along the gap axis. The simulations are (a) L1 (Nh0/U 5 0.3, Na/U 5 1.15) and (b)
(Nh0/U 5 0.3, Na/U 5 0.77).

1.0, and the normalized drag decrease again (runsu9max

N6, Nh0/U 5 1.4, and N7, Nh0/U 5 1.5). This can be
explained by upstream blocking, which reduces the ef-
fective mountain height. A similar behavior has often
been reported for quasi-hydrostatic flow over wide
mountains (e.g., Olafsson and Bougeault 1996; Bauer
et al. 2000). It is interesting to note that the vertically
propagating gravity wave visible in Fig. 5d has a sub-
stantially larger amplitude than the waves found in sim-
ulations N2 and N3 with Na/U 5 1.15 (Figs. 5b,c). As
already mentioned above, initial wave breaking is fol-
lowed by an almost complete breakdown of the upward
wave energy flux in simulations N2 and N3. At later

times, the wave activity remains weak regardless wheth-
er a strong downslope flow is maintained (Fig. 5b) or
not (Fig. 5c). For Na/U 5 0.77, the permanent absence
of wave breaking appears to preclude a breakdown of
the wave energy flux. Another interesting feature is that
the dependence of the normalized drag on Na/U be-
comes weak when the mountain is high enough for flow
separation to occur over the lee slope. The simulations
N3, N6, and N7, which all have virtually no surface
wind in the lee of the mountain (Fig. 4), also exhibit
very similar drag values (Table 2).

c. Gap effects

Since real mountain ridges are usually not quasi-two-
dimensional, it is certainly justified to investigate the
effects of gaps in narrow mountain ridges. The discus-
sion again starts with the linear flow regime and then
considers the ridge heights that were found to induce
wave breaking in the previous section. Surface wind
profiles along the line GG’ in Fig. 1 are displayed in
Fig. 6 for the linear flow regime and in Fig. 8 for the
nonlinear flow regime. Vertical cross sections of wind
and potential temperature are given in Figs. 7 and 9,
respectively. Finally, Fig. 10 shows the horizontal wind
field at 250 m AGL for two cases.

As evident from Fig. 6, the wind perturbations along
the gap axis are qualitatively similar to those found over
the mountain ridges (Fig. 2a) in that there is a negative
wind perturbation on the windward side and a positive
wind perturbation in the lee. However, their magnitude
is substantially weaker than for the ridge, and the spatial
structure of the wind perturbations partly differs from
those above the ridge. Most importantly, a local wind
maximum at x9 5 0 (i.e., in the gap center) is missing
in L1 (Nh0/U 5 0.3, Na/U 5 1.15), so that there is just
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FIG. 8. Same as Fig. 4, but values along the gap axis (line GG’ in Fig. 1).

a single wind maximum in the lee. The maximum wind
perturbation is less than 25% of that found for theu9max

ridge (see Table 2), but is roughly half as large asu9min

for the ridge. Simulation L2 (Nh0/U 5 0.3, Na/U 5
0.77) exhibits two wind maxima along the gap axis, the
primary one being at x9 5 0, as is the case for the ridge.
However, the dominance of the wind maximum at x9 5
0 is less pronounced for the gap than for the ridge. The
closest structural agreement between the wind pertur-
bations along the gap axis and those above the ridge is
found for the wide-ridge simulation W1r. The gap–ridge
ratios of ( ) are 43% (52%) in this case.u9 u9max min

The qualitative similarity between the wind pertur-
bations along the gap axis and those above the mountain
ridge can be explained by the intrinsically three-dimen-
sional structure of the flow. As already discussed in
Zängl (2002b), low-level confluence in the gap region
causes the negative wind perturbation generated on the
windward side of the mountain ridges to extend into the
gap region. Moreover, the properties of gravity wave
propagation over three-dimensional topography make
an important contribution. Vertically propagating grav-
ity waves excited by a localized mountain are subject
to a horizontal dispersion in cross stream direction, re-
gardless whether the flow is hydrostatic or nonhydro-
static (Smith 1980; Zängl 2002b). Thus, the gravity
waves excited by the mountain ridges spread out toward
the gap, and at some vertical distance from the ground,
the wave pattern above the gap axis becomes very sim-
ilar to that above the adjacent mountain ridges (Fig. 7,
cf. Fig. 3). Correspondingly, the wind perturbations re-
lated to the gravity waves can also be found above the
gap axis (Fig. 7).

It remains to be discussed why the relative magnitude
of the wind perturbations along the gap axis is lower
for narrow ridges than for wider ones. First, a compar-

ison of Figs. 3 and 7 suggests that the wave dispersion
is more effective for the vertically propagating part of
the wave spectrum than for the decaying one. Although
the lack of exact analytical solutions precludes a proof
of this hypothesis, it is at least plausible that a rapidly
decaying disturbance has less chance to spread out into
the gap than a propagating one. As a consequence, one
expects that the tendency for a wind maximum at x9 5
0 is less pronounced along the gap axis than above the
adjacent ridge. This is in agreement with the numerical
results. Second, the wave dispersion in along-flow di-
rection related to nonhydrostatic effects might play a
role. It tends to weaken the wave signal that reaches the
gap axis and thus contributes to the reduced gap–ridge
ratios of the leeside wind maxima. On the other hand,
the low-level confluence on the upstream side of the
gap is not directly related to the properties of wave
propagation. This might explain why is quite similaru9min

for L1 and W1r. However, the large difference between
L1 and L2 indicates that there are further processes not
yet recognized.

When the adjacent mountain ridge is high enough to
induce wave breaking, the flow structure along the gap
axis undergoes major changes. Part of these changes is
similar to those found above the ridge, but there are
also some pronounced differences. For Na/U 5 1.15
(Fig. 8a), all experiments show a strong wind amplifi-
cation in the lee of the gap. In cases N1 (Nh0/U 5 0.9)
and N2 (Nh0/U 5 1.5), this is in agreement with what
was found for the adjacent ridges (see Fig. 4a), but in
simulation N3 (Nh0/U 5 2.1), the strong wind is re-
stricted to the gap area and thus appears as a localized
jet (see also Fig. 10a). This indicates that the tendency
toward a strong wind maximum in the lee is even more
pronounced for a gap than for a quasi-two-dimensional
ridge. Moreover, none of the cases exhibits a local gap
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FIG. 9. Same as Fig. 5, but for cross section GG’ along the gap axis. The simulations are (a) N1 (Nh0/U 5 0.9, Na/U 5 1.15), (b) N2
(Nh0/U 5 1.5, Na/U 5 1.15), (c) N3 (Nh0/U 5 2.1, Na/U 5 1.15), and (d) N7 (Nh0/U 5 1.5, Na/U 5 0.77).

wind maximum at x9 5 0, so that the flow structure
along the gap axis is qualitatively similar to the wide-
ridge experiment W3 (Nh0/U 5 1.5, Fig. 8a). This is,
again, in contrast to the results found for the mountain
ridge (Fig. 4), showing a pronounced wind maximum
at x9 5 0 at least for N2 and N3. A comparison between
experiments W3 and N2 (both Nh0/U 5 1.5) shows that

is still lower for N2 than for W3, but the relativeu9max

difference is much smaller than for the low-mountain
simulations L1 and W1. It can be concluded that non-
linear effects greatly reduce the dependence of gap flows
on the width of the adjacent mountain ridges. Moreover,
the range of nondimensional mountain heights for which
nonhydrostatic effects lose their impact on the flow
structure is larger along a gap axis than for a mountain
ridge.

The vertical cross sections along the gap axis (Figs.
9a–c) show that the gravity wave fields above the gap

axis are very similar to those above the mountain ridge
(Figs. 5a–c) except for the lowermost 2 km. This can
again be explained by the cross-stream wave dispersion
discussed above. However, the weakness of the gravity
wave activity for Nh0/U $ 1.5 raises the question of
which dynamical mechanism accelerates the flow
through the gap. In agreement with the findings made
by Zängl (2002b), a detailed analysis of the model re-
sults suggests that the pressure field driving the gap flow
is no longer directly related to the gravity wave pattern
aloft. Rather, the larger-scale cross-mountain pressure
difference built up by blocking effects and the flow field
over the adjacent ridges becomes relevant as soon as
the flow gets strongly nonlinear. As demonstrated in
Figs. 6 and 10 of Zängl (2002b), the cross-mountain
pressure difference then extends into the gap region
without significant weakening, regardless of the local
gravity wave field above the gap axis. In the simulations
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FIG. 10. Horizontal cross section at a constant height of 250 m for simulations (a) N3 (Nh0/U 5 2.1,
Na/U 5 1.15) and (b) N7 (Nh0/U 5 1.5, Na/U 5 0.77). A full barb denotes a wind speed of 5 m s21.
Orography shading starts at 200 m with shading steps every 400 m.

considered here, the maximum pressure difference along
the gap axis is 2.2, 2.4, and 1.75 hPa for nondimensional
mountain heights of 0.9, 1.5, and 2.1, respectively. For
these pressure differences Dp and a density of r 5 1.2
kg m23, the Bernoulli equation for a surface streamline

2 2u u Dpo2 5 (5)
2 2 r

predicts maximum wind speeds of 20.2, 20.0, and 17.1
m s21, respectively, when uo is taken to be 6.5 m s21

for Nh0/U 5 0.9 (see Fig. 8a), and 0 m s21 otherwise.
This is in close agreement with the simulated values of
umax (19.4, 19.7, and 17.2 m s21, in dimensional form)
when taking into account that some of the momentum
may be lost in N1 and N2 due to vertical mixing with
the weak wind layer aloft. The dominant influence of
the cross-mountain pressure difference provides a good
explanation why nonlinear gap flow dynamics is so in-
sensitive to the mountain width and the related prop-
erties of the gravity waves.

Apart from this, the cross sections for the runs N1
and N2 (Figs. 9a,b) suggest that hydraulic dynamics—
that is, conversion of potential energy into kinetic en-
ergy—could play a role in establishing the leeside wind
maximum (cf. Arakawa 1969). Although the large-scale
flow prescribed in the simulations is uniform, interac-
tions with the orography form an almost neutral surface
layer capped by a stable layer, so that the reduced gravity
shallow water theory (Drobinski et al. 2001 and refer-
ences therein) may be applied to this flow problem.

Unfortunately, the lack of an inversion makes it hardly
possible to compute a Froude number on the upstream
side of the gap, but the flow on the lee side is clearly
supercritical. Assuming an inversion strength Du of 4
K, a mean potential temperature of 290 K and a flowu
depth H of 750 m, the Froude number

U
(6)

Ïg(Du/u )H

(see Drobinski et al. 2001) exceeds 1 for U . 10 m
s21, which is easily fulfilled in the lee of the gap. A
hydraulic-jump-like feature is found outside the model
domain shown in Fig. 9. It is mentioned that the inter-
pretation of gap flows in terms of hydraulic theory often
helps to better understand the complex behavior of non-
linear gravity wave dynamics. As recently shown by
Flamant et al. (2002), the local structures of gap flows
in a valley with varying width can be well reproduced
and interpreted with a simple hydraulic model, sup-
porting the analysis of full-physics numerical models.

Turning to the results for Na/U 5 0.77 (runs N4–N7;
Figs. 8b, 9d, and 10b), it is important to note that the
flow can be considered as quasi linear up to Nh0/U 5
1.0 (run N5) for such a narrow mountain. As discussed
in section 3b, the wind perturbations induced by the
mountain ridge increase roughly linearly with h0 in this
parameter range. Evidently, this is also valid for the
maximum wind perturbation along the gap axis (Fig. 8b
and Table 2), which is attained at x9 5 0 as in the L2
run (Fig. 6). For higher mountains (runs N6, Nh0/U 5
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1.4 and N7, Nh0/U 5 1.5), the absence of wave breaking
still precludes the build up of a strong cross-mountain
pressure difference, so that the maximum wind speed
along the gap axis remains comparatively weak (cf. Figs.
8b and 8a). Yet is now reached far downstream ofu9max

the gap center (see also Table 2), and the wind maximum
at x9 5 0 disappears. Thus, the flow structure becomes,
again, qualitatively similar to that typical for gaps em-
bedded in wide mountain ridges. Moreover, the for-
mation of an almost calm wake in the lee of the ridge
makes the gap flow appear as a localized jet (Fig. 10b).
It is mentioned that the acceleration of the flow through
the gap in N6 and N7 is again consistent with the cross-
mountain pressure difference built up by the partially
blocked flow over the adjacent ridges.

It is interesting to check whether the wake formation
in the lee of the mountain ridge found for N3, N6, and
N7 is associated with lee vortices. An analysis of the
flow in the coarser model domains reveals that none of
the simulations exhibit lee vortices on the scale of the
whole mountain ridge (not shown). The shear lines sep-
arating the wake from the flow around the ridge run
almost straight and meet each other in the far lee of the
mountain ridge. Since wake formation in the lee of wide
mountain ridges is usually associated with rather pro-
nounced lee vortices (e.g., Olafsson and Bougeault
1997; Zängl 2002b), this suggests that the tendency of
shear lines to roll up to a vortex decreases with their
horizontal scale. There are, however, cases exhibiting
small-scale vortices in the lee of the gap. The horizontal
cross section at z 5 250 m displayed in Fig. 10b (run
N7) shows a pair of vortices in the lee of the gap, and
a similar result is found for N6 (not shown). On the
other hand, no local lee vortices occur in run N3 (Fig.
10a). We have to conclude that there are certainly more
factors influencing the formation of lee vortices than
just the scale of the shear line, but an exhaustive in-
vestigation of lee vortex dynamics is beyond the scope
of this paper.

d. Experiments with surface friction

Apart from a general reduction of the near-surface
wind speed, surface friction is known to lower the grav-
ity wave amplitudes and to reduce the tendency toward
wave breaking (e.g., Georgelin et al. 1994; Olafsson
and Bougeault 1997). Moreover, friction tends to force
flow separation from the ground over the lee slope of
a mountain, particularly when wave breaking occurs
despite friction and the flow is in a high-drag state (e.g.,
Richard et al. 1989, 1990). The tendency for flow sep-
aration has been found to be less pronounced along gaps
than in the lee of a mountain ridge (Zängl 2002b). In
addition, Doyle and Durran (2002) showed that the fric-
tion-induced flow separation is essential for the for-
mation of rotors. In this section, the impact of surface
friction on airflow over a narrow mountain ridge is in-
vestigated. It will turn out that part of the frictional

effects is similar to that known for wider ridges. How-
ever, there is a significant range of mountain heights for
which friction leads to a larger amplitude of the verti-
cally propagating gravity waves. An interesting and
novel discovery is that the formation of leeside rotors
is possible even for uniform upstream flow.

As mentioned in section 2, roughness length values
of 1 and 50 cm have been prescribed in the frictional
simulations, corresponding to grassland and forest, re-
spectively. While a value of 50 cm turned out to prevent
the occurrence of wave breaking for all mountain
heights considered in this study, wave breaking is still
possible for a roughness length of 1 cm. For low moun-
tains, the impact of the surface friction is largely re-
stricted to a reduction of the wind speed close to the
ground. Thus, the following discussion starts with a
nondimensional mountain height of 0.9. Selected sur-
face wind profiles for the mountain ridge and the gap
axis are given in Fig. 11. Unlike above, dimensional
wind speeds are shown in this figure because friction
renders the unperturbed surface wind speed different
from U and thus makes the normalized wind pertur-
bation u9 difficult to interpret. Since all simulations dis-
cussed in the following are based on U 5 10 m s21, a
normalization of the wind speed is not needed for com-
parability. Figure 12 depicts vertical cross sections of
wind and potential temperature for the simulations with
Nh0/U 5 1.5. A closer look at the rotor found in the
N21f simulation is provided in Fig. 13.

As evident from Fig. 11a, all simulations with a
roughness length of 50 cm attain their primary wind
maximum at the mountain crest. For Nh0/U 5 0.9 (run
N1f ), a significant secondary wind maximum occurs in
the lee, but for the higher mountains, flow separation
is forced immediately behind the mountain crest. In the
latter cases, very weak winds are found in the lee of
the mountain ridge. The tendency toward flow separa-
tion also has the consequence that the pressure drag is
30%–40% lower than in the frictionless runs except for
N3 (Nh0/U 5 2.1), where flow separation even occurs
without friction (not shown). Along the gap axis, how-
ever, the wind maxima generally occur in the lee as in
the quasi-hydrostatic case (Fig. 11b). For Nh0/U 5 0.9,
the maximum gap wind speed is somewhat weaker than
the secondary wind maximum in the lee of the ridge,
but otherwise, the gap flow appears as a localized jet.
It is interesting to note that the maximum gap wind
speed does not increase between Nh0/U 5 0.9 (N1f )
and Nh0/U 5 1.5 (N2f ) while it increases by about 50%
between Nh0/U 5 1.5 and Nh0/U 5 2.1 (N3f ). A closer
analysis of the simulations suggests that hydraulic dy-
namics (conversion of potential into kinetic energy) sup-
ports the formation of the pronounced wind maximum
for Nh0/U 5 2.1 (not shown). For Nh0/U 5 1.5, how-
ever, such an effect is missing (Fig. 12b). The N2f sim-
ulation also allows for a comparison with an otherwise
identical simulation with Na/U 5 31 (Zängl 2002b, Fig.
10). The maximum wind speed above the mountain
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FIG. 11. Same as Figs. 4a and 8a, but for simulations with surface friction. The wind profiles are taken (a) along line RR’ and (b) along
line GG’ (see Fig. 1 for location). Roughness lengths and nondimensional mountain heights are indicated in the figures.

ridge (14 m s21) is almost identical to that obtained for
the wide mountain. However, it occurs at the mountain
crest for the narrow mountain but in the lee for the wide
one. The maximum gap wind speed is 7.5 m s21 com-
pared to 9 m s21. Another interesting feature of the N2f
simulation is revealed by Fig. 12a. Compared with the
corresponding frictionless run (Fig. 5b), the amplitude
of the vertically propagating gravity waves is substan-
tially larger. While the wave energy flux breaks down
after about 2 h of simulation in the frictionless run (see
discussion in section 3b), the simulation with friction
remains in the quasi-linear regime without wave break-
ing and a rather large vertical flux of wave energy. This
behavior has also been found for Nh0/U 5 2.1 (not
shown). To the author’s knowledge, none of the existing
studies on the effects of surface friction indicate that
friction can also lead to an increase of the quasi-sta-
tionary gravity wave amplitude. This is related to the
fact that wave breaking usually does not lead to a break-
down of the wave energy flux.

When the roughness length is reduced to 1 cm, the
primary wind maximum shifts from the mountain crest
to the lee except for Nh0/U 5 2.1, where flow separation
occurs even in the frictionless case (shown for Nh0/U
5 1.5 only). For Nh0/U 5 1.5 (run N2lf ), the maximum
wind speed along the gap axis more than doubles and
is close to the maximum speed in the lee of the ridge
(Fig. 11). Figure 12d indicates that a hydraulic-like con-
version of potential into kinetic energy contributes to
this strong wind maximum. The Froude number com-
puted according to Eq. (6) is well above 1 in the lee of
the gap, and a weak indication of a hydraulic jump is
also visible. Yet, the pronounced gravity wave activity

above the gap axis makes the impact of hydraulic dy-
namics less evident than in the frictionless cases dis-
cussed above. Most interestingly, the cross section
through the mountain ridge (Fig. 12c) shows the for-
mation of rotors in the lee of the ridge (see also Fig.
13 for a zoomed view), a phenomenon that has recently
regained great scientific interest (see Doyle and Durran
2002 and references therein). While the first (counter-
clockwise) rotor is related to gravity wave breaking, the
second (clockwise) one closely resembles the ‘‘classi-
cal’’ rotors occurring beneath wave crests of trapped lee
waves (Doyle and Durran 2002). The turbulent kinetic
energy field displayed in Fig. 13 indicates substantial
turbulence in both rotors, making them potentially haz-
ardous to aviation in the same way as the classical rotors.
In contrast to what has been known so far, the rotors
form despite the fact that the large-scale flow is uniform
and thus does not support linear trapped lee waves. It
appears that nonlinear interactions between the various
parts of the nonhydrostatic gravity wave spectrum set
up an environment supporting the formation of the sec-
ond rotor. As confirmed by Fig. 12a, the wind pertur-
bations induced by the upward propagating part of the
wave spectrum are capable of partly trapping the more
horizontally propagating modes because they induce a
local decrease of the Scorer parameter N/U. Moreover,
the hydraulic jump occurring at the foot of the mountain
ridge might play an important role since it produces a
dipole of horizontal vorticity. This vorticity rolls up to
form a pair of rotors. The hypothesis that nonlinear
effects are crucial for the development of the rotors is
supported by experiments with lower mountains (not
shown). Run N1lf (Nh0/U 5 0.9) also exhibits wave
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FIG. 12. Same as Fig. 5, but for simulations with surface friction and Nh0/U 5 1.5. (upper row) simulation N2f (roughness length 5 50
cm), cross sections along line (a) RR’ and (b) GG’; (lower row) simulation N2lf (roughness length 5 1 cm), cross sections along line (c)
RR’ and (d) GG’ (see Fig. 1 for the location of the cross sections). Dashed lines are plotted for u 5 U and u 5 0 (U 5 10 m s21).

breaking and a pair of rotors, but the second rotor is
smaller in amplitude. On the other hand, an additional
experiment with Nh0/U 5 0.6 shows neither wave
breaking nor rotor formation. The flow pattern obtained
in this case is similar to that displayed in Fig. 3a except
for a larger wave amplitude.

Since the vertical model resolution in the lowermost
kilometer above ground is not particularly high (80 m
on average), the question might arise whether the rotor
and the boundary layer processes leading to its for-
mation are adequately resolved in the model. Thus, a
sensitivity test with 10 additional model levels in the
relevant height range was conducted. The lowermost
half-sigma level is located 12 m above ground in this
test run. The results still exhibited a pair of rotors, but
their horizontal extent was smaller than in the N2lf case
shown in Figs. 12 and 13 because of an upstream shift
of the flow separation point. Additional tests revealed

that the location of the flow separation point depends
somewhat on the distance of the lowermost model level
from the ground. As it turned out, a reduction of the
roughness length from 1 cm to about 0.7 cm would be
needed to approximately reproduce the N2lf result with
the higher vertical resolution. This indicates that the
rotor formation is a reproducible feature, but the range
of roughness lengths supporting rotor formation seems
to depend on model details such as the vertical reso-
lution or the boundary layer parameterization.

4. Summary and conclusions

This study investigates the airflow over a mountain
ridge with a nondimensional half-width Na/U of about
1. Such a mountain induces a gravity wave spectrum,
which is only partly able to propagate vertically. The
impact of a level gap embedded in the mountain ridge
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FIG. 13. Vertical cross section along line SR’ (see Fig. 1) for simulation N2lf (Nh0/U 5
1.5, roughness length 1 cm). Solid lines denote potential temperature (contour interval 1K),
shading denotes the turbulent kinetic energy predicted by the model’s boundary layer param-
eterization (shading steps every 0.4 J kg21; see label bar). Wind vectors are scaled according
to the aspect ratio of the figure; the maximum horizontal (vertical) speed is 17.1 m s21 (8.3
m s21). The dashed line denotes u 5 0.

is also examined. The standard setup of the numerical
simulations uses a free-slip lower boundary condition
and neglects the Coriolis force, but sensitivity experi-
ments with surface friction and Coriolis force are also
performed. A wide range of mountain heights is con-
sidered so as to assess the effect of nonlinearity on the
flow behavior. Part of the results is compared with sim-
ulations for a wide mountain ridge reported previously
(Zängl 2002b). Except for a much larger mountain
width, these simulations were performed with the same
model setup as those presented in this study.

In accordance with linear analytical solutions, the
simulations with low mountains show that the parameter
Na/U to a large extent controls the structure of the grav-
ity waves and the concomitant wind perturbations.
While a single surface wind maximum is located on the
lee side of the mountain for Na/U k 1, an additional
wind maximum at the mountaintop appears as Na/U
approaches 1. With decreasing Na/U, the mountaintop
wind maximum intensifies while the leeside wind max-
imum gradually disappears. Simultaneously, the gravity
wave activity above the mountain weakens since an in-
creasing part of the gravity wave spectrum excited by
the mountain decays with height, and the pressure drag
exerted by the mountain decreases. The simulations
show that the ratio between the two surface wind max-
ima changes quite rapidly with Na/U in the parameter
range of Na/U ø 1. A decrease of Na/U by a factor of

1.5 increases the ratio between the wind perturbations
at the peak and in the lee by a factor of 2.5. Moreover,
it is found that the scaling of the wind perturbations
predicted by the analytical solutions for the hydrostatic
and the nonhydrostatic limit is still valid for Na/U ø
1. For fixed Na/U, the wind perturbation at the mountain
top is proportional to h0/a, and the leeside wind per-
turbation still scales with Nh0/U.

As nonlinear effects come into play, several aspects
of the flow over a narrow mountain ridge change fun-
damentally. Most importantly, there is a range of moun-
tain heights for which gravity wave breaking extends
the hydrostatic flow regime with a pronounced leeside
wind maximum close to a nondimensional half-width
of 1. This effect is strongest for Nh0/U ø 1 and still
present for Nh0/U 5 1.5. For higher mountains, how-
ever, flow separation from the ground occurs over the
lee slope and shifts the surface wind pattern back to
nonhydrostatic, the wind maximum again being at the
mountain peak. A further decrease of Na/U below 1
prevents gravity wave breaking for any mountain height.
As a consequence, the nonlinear wind amplification typ-
ical for wider mountains is absent. The maximum wind
perturbation increases roughly linearly with mountain
height up to some saturation value related to the onset
of upstream blocking. Moreover, flow separation from
the ground commences at much lower mountain heights
than for wider mountains, and the wind maximum oc-
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curs at the mountain crest regardless of the mountain
height.

The wind perturbations found along the gap axis are
qualitatively similar to those above the mountain ridge
in that there is a wind minimum on the upstream side
of the gap and a wind maximum in the lee. However,
the tendency for the formation of a wind maximum at
the gap center is weaker than for a wind maximum at
the crest of a mountain ridge. Moreover, in the linear
parameter range, the magnitude of the wind perturba-
tions along the gap axis is rather weak. In this case, the
pressure and wind perturbations along the gap axis are
related to the three-dimensional propagation properties
of gravity waves. When the adjacent mountain ridges
are high enough to induce gravity wave breaking, the
maximum wind speed along the gap axis becomes com-
parable to or even higher than that over the mountain
ridge. The primary dynamical mechanism governing the
gap flow in this case appears to be the cross-mountain
pressure difference built up by the flow over the adjacent
ridges. A hydraulic-like conversion of potential into ki-
netic energy may further enhance the wind speed on the
lee side of the gap. The range of mountain widths and
mountain heights for which nonlinear effects lead to a
quasi-hydrostatic flow pattern with a single wind max-
imum in the lee is larger for gaps than for the adjacent
mountain ridges.

In agreement with previous studies, surface friction
is found to reduce the wind speed close to the ground,
to promote flow separation from the ground and to re-
duce the tendency toward gravity wave breaking. For
the simulations performed in this study, a roughness
length of 50 cm completely suppresses wave breaking
while a value around 1 cm still allows for wave break-
ing. An interesting aspect of these simulations is that
the formation of rotors is possible not only in an en-
vironment that supports linear trapped lee waves, as is
commonly believed. When the mountain is narrow
enough for nonhydrostatic effects to be relevant, rotors
may even form in the presence of a uniform large-scale
flow.
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