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Notes and Correspondence
An analytic solution for time-periodic thermally driven slope flows
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The article examines the flow generated by time-periodic variations in surface temperature
along an infinite slope in an initially unperturbed, stably stratified atmosphere at rest.
Uniform boundary conditions at the surface are conducive to an along-slope parallel flow,
governed by a periodically reversing local imbalance between along-slope advection and
slope-normal fluxes of momentum and heat. It is shown that solutions include both a
transient part and a periodic regime and that three different flow regimes may occur. The
properties of the solutions in each regime are examined and discussed, outlining novelties
with respect to previously known results.

Key Words: thermally driven wind; topographic effects; slope flows; Prandtl model

Received 17 June 2014; Revised 13 October 2014; Accepted 20 October 2014; Published online in Wiley Online Library

1. Introduction

The flow generated over a simple slope (i.e. an infinitely extended
tilted plane) by surface heating or cooling provides a basic
paradigm for understanding thermally driven mountain wind
systems (Zardi and Whiteman, 2013).

One of the best known models of steady slope flow was
proposed by Prandtl (1942). The model describes the steady
flow resulting from a balance between along-slope advection and
slope-normal fluxes of momentum and heat, in an otherwise
motionless, stably stratified atmosphere. Despite their inherently
restrictive assumptions, Prandtl’s (1942) solutions reproduce
realistic downslope flow reasonably well. This has been confirmed
by both field measurements (Defant, 1949; Axelsen and van Dop,
2009a) and high-resolution numerical simulations (Skyllingstad,
2003; Smith and Skyllingstad, 2005; Axelsen and van Dop, 2009b).
The agreement with upslope flows is less satisfactory, as both
field measurements (Defant, 1949) and numerical simulations
(Schumann, 1990; Serafin and Zardi, 2010b) demonstrate.
Nevertheless, the Prandtl model provides a solid framework by
which to understand the mechanisms involved in the production
of thermally driven slope flows (cf. Fedorovich and Shapiro,
2009).

Prandtl’s approach was further extended by various authors,
who found analytical solutions capable of describing the effects of
a number of secondary forcing factors. For instance, Grisogono
and Oerlemans (2001) and Grisogono et al. (2014) applied a
WKB technique to account for a non-constant eddy viscosity.
Zammett and Fowler (2007) found an approximate solution
representing the effects of a slowly changing slope angle, resulting
in a varying along-slope velocity and a non-zero slope-normal
velocity component. Stiperski et al. (2007) derived an analytical

solution including Coriolis effects. However, all of the above
solutions refer to steady states.

A model allowing the slope flow system to evolve in time
was proposed by Gutman and Malbakhov (1964). Their theory,
which included both surface thermal forcing and the Coriolis
effect, aimed at understanding the onset of katabatic winds and
their adjustment to changes in the upper forcing. Vertical velocity
profiles from the Gutman and Malbakhov (1964) model were
reported to be in good agreement with soundings taken in
Antarctica.

However, the first historical attempt at including time-
dependent behaviour in slope-flow models was published only a
few years after Prandtl’s original work. Defant (1949) extended
Prandtl’s (1942) theory in order to allow for a time-periodic
surface temperature forcing. As a result, Defant’s model displays
the slope-normal structure of Prandtl’s one, modulated by
the same time-periodic dependence of the surface forcing.
Accordingly, it entails a periodic time-reversal of the flow and
the temperature anomaly, occurring in phase at any height above
the slope. However, a careful examination of Defant’s (1949)
expressions reveals that they are only an approximation of the
exact time-dependent solutions, which are derived in section 2
below. The properties of the exact solutions in three cases of
interest are outlined in section 3, while conclusions are drawn in
section 4.

2. Formulation of the problem

The flow occurring along an infinitely extended plane, tilted
by an angle α to the horizontal, is inherently one-dimensional.
Following Prandtl (1942), it can conveniently be studied in
a reference frame with an along-slope coordinate s (positive
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upslope) and a slope-normal coordinate n (Figure 1). The
coordinate axes are rotated counterclockwise by an angle α,
with respect to a reference frame having the z-axis aligned with
gravity and oriented upward and the x-axis along the horizontal.

Let potential temperature be represented as θ = θr + θ + θ ′,
where θr = θ0 + γ z is the thermal structure of the unperturbed
atmosphere, displaying a constant vertical gradient γ . θ and θ ′
denote respectively the mean and fluctuating components–in the
sense of Reynolds decomposition–of the turbulent perturbation
determined by the thermal forcing at the surface. In analogy,
the along-slope velocity component will be decomposed into
u = u + u′ and the slope-normal one into w = w + w′.

Similarly to gravity waves in stratified fluids, slope flows
can be studied more easily if the Boussinesq approximation
is assumed; in the present case, the Coriolis force is neglected. In
contrast to the linear theory of gravity waves, turbulent diffusion
terms have to be retained here. We further assume invariance
along the s-axis. As a consequence, incompressibility–following
from the Boussinesq approximation–implies that slope-normal
velocity perturbations w associated with the slope flow system
are null. Pressure perturbations are instead determined by quasi-
hydrostatic balance along the n-axis (Haiden, 2003). Accordingly,
the Reynolds-averaged momentum and energy equations for an
s-invariant, slope-parallel flow can be written as

∂u

∂t
= θ

N2

γ
sin α − ∂

∂n
u′w′, (1)

1

ρ0

∂p

∂n
= θ

N2

γ
cos α − ∂

∂n
w′2, (2)

∂θ

∂t
= −uγ sin α − ∂

∂n
w′θ ′, (3)

where N = (γ g/θ0)1/2 is the Brunt–Väisälä frequency of the
unperturbed atmosphere, p is the Reynolds-averaged pressure
anomaly with respect to the unperturbed state and ρ0 is the refer-
ence air density of the unperturbed atmosphere. As shown below,
the coupled partial differential equations (1) and (3) can be solved
analytically, provided that suitable closures for the turbulent
fluxes are assumed and appropriate boundary conditions are
specified. Equation (2) can instead be used in order to diagnose
pressure perturbations, once the solution for θ is known.

A simple way to approximate turbulent fluxes is a first-order
K closure:

u′w′ = −Km
∂u

∂n
, w′θ ′ = −Kh

∂θ

∂n
. (4)

As a further simplification, we assume constant eddy viscosity
Km and eddy heat diffusivity Kh, finally getting the following
coupled equations for u and θ :

∂u

∂t
= θ

N2

γ
sin α + Km

∂2u

∂n2
, (5)

∂θ

∂t
= −uγ sin α + Kh

∂2θ

∂n2
. (6)

These equations were first derived by Defant (1949), as an
extension of those proposed by Prandtl (1942) for a steady,
laminar flow to a non-stationary, turbulent case.

They may also be viewed as a particular case (i.e. when
Coriolis terms are neglected) of the more general set of equations
considered by Gutman and Malbakhov (1964).

A first-order closure with constant eddy viscosity and diffusiv-
ity is a rather crude representation of turbulence. Nevertheless,
it may allow considerable insight into the basic structure of
turbulent flows, as shown by the previously mentioned studies by
Gutman and Malbakhov (1964), Shapiro and Fedorovich (2004b,

2006), Stiperski et al. (2007), Zammett and Fowler (2007) and
Fedorovich and Shapiro (2009), which all adopted a similar
approach.

Yet another remarkable example of use of a first-order closure
with constant exchange coefficients is Ekman’s (1905) model for
the flow resulting from a balance between horizontal pressure
gradient, Coriolis force and turbulent momentum flux in the
atmospheric boundary layer. Indeed, the similarity between
Ekman’s and Prandtl’s solutions is one example of a general
analogy between homogeneous, rotating fluids and stratified,
non-rotating fluids, as pointed out by Veronis (1967).

2.1. Stationary problem (Prandtl, 1942)

Let us omit temporal derivatives from Eqs (5) and (6) and assume
steady boundary conditions at the slope surface, consisting
of no-slip for velocity and a prescribed constant temperature
anomaly �:

u(n = 0) = 0, θ(n = 0) = �. (7)

Let us also require that perturbations vanish asymptotically far
from the surface:

u(n → ∞) = 0, θ(n → ∞) = 0. (8)

Then, a steady-state solution is easily found:

u = �
N

γ
Pr

−1/2
t e−n/� sin(n/�), (9)

θ = �e−n/� cos(n/�), (10)

where Prt = Km/Kh is the turbulent Prandtl number, the length
scale � is

� =
(

4KmKh

N2
α

)1/4

, (11)

and Nα = N sin α. The above expressions correspond to the
solution found by Prandtl (1942), shown in Figure 1, once
kinematic viscosity and heat diffusivity are replaced by eddy
viscosity and diffusivity, respectively. The solution is equally
valid for both heating and cooling at the surface: a positive
(resp. negative) temperature anomaly at the surface will produce
upslope (resp. downslope) flow. Notice that the length scale �
becomes singular for a horizontal surface (α = 0), reflecting
the fact that no steady balance can be achieved between along-
slope advection and turbulent fluxes in the absence of some tilt

Figure 1. Prandtl (1942) solution (from Schumann, 1990, reproduced with
permission). u, T and 	Ts in the figure correspond respectively to u, θ and � in
the text.
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promoting an along-slope flow. Notice also that the length scale �
corresponds to Ekman’s length scale, provided that Kh is replaced
by Km and Nα by the Coriolis parameter f .

Velocity and temperature perturbations in Prandtl’s solution
are π/2 out of phase along the slope-normal coordinate, exactly
like velocity and temperature perturbations across phase lines in
propagating gravity waves (Nappo, 2013).

Pressure perturbations can be diagnosed from Eqs (2) and (10)
as

p = ρ0

{
N2

2γ
cos α ��e−n/� [sin(n/�) − cos(n/�)] − w′2

}
.

(12)

Notice that the term w′2 cannot be evaluated explicitly, unless
a suitable closure is assumed for it. However a K closure cannot
be easily applied in this case, since there is no mean velocity
component in the slope-normal direction and accordingly no
velocity gradient to compare with. Moreover, any attempt to
relate the vertical velocity variance to the gradients of u or θ ,
provided by Eqs (9) and (10), could not cope with the intrinsically

positive nature of w′2, as both gradients become negative at some
point. Therefore, we leave this term undetermined.

However, concentrating on the resolved part of the pressure
profile, it can be seen that pressure–velocity correlations are null
on average. Therefore, differently from the case of gravity waves,
perturbations in the slope flow system do not propagate in the
slope-normal direction. Furthermore, they vanish with increasing
distance from the slope because of turbulent, dissipative effects.

2.2. Non-stationary problem (Defant, 1949)

Following Defant (1949), let us now consider a stably stratified
atmosphere initially at rest:

u(n, 0) = 0, θ(n, 0) = 0, (13)

and assume zero velocity and a sinusoidally periodic temperature
oscillation as surface boundary conditions:

u(0, t) = 0, θ(0, t) = � sin(ωt+ψ). (14)

Conditions far from the slope are the same as before.
Defant (1949) examined in particular the case ψ = π/2, i.e.

θ(0, t) = � cos(ωt), and proposed a solution in the form

u = �
N

γ
Pr

−1/2
t e−n/� sin(n/�)cos (ωt) , (15)

θ = �e−n/� cos(n/�)cos (ωt) . (16)

Equations (15) and (16) display the same spatial structure as
the steady flow represented by Eqs (9) and (10), modulated in
time by a factor cos(ωt). Accordingly, they provide values of
velocity and temperature anomaly oscillating in time with the
same angular frequency ω as the surface forcing and in phase
with it. At any height, the amplitude of oscillations is determined
by the steady-state solution. Actually, Eqs (15) and (16) are not
an exact solution of the system defined by the PDEs (Eqs (5) and
(6)). They can, however, be shown to approximate a particular
case of the general solution to the problem, as outlined below.

2.3. New solution

To make progress with the analytical solution, similarly to Gut-
man and Malbakhov (1964), Shapiro and Fedorovich (2004b),
Zammett and Fowler (2007) and Stiperski et al. (2007), we need to
impose Km = Kh = K, i.e. Prt = 1. This assumption reflects the
idea that molecular effects are relatively unimportant in this con-
text and that heat and momentum are transported by turbulence
with the same effectiveness (Lumley and Panofsky, 1964).

In the atmospheric surface layer over flat terrain, similarity
theory suggests that Prt = φh/φm, where φm and φh are the
similarity functions describing the non-dimensional vertical
gradients of wind speed and temperature, respectively (Monin
and Yaglom, 1971). In general, the exact value of φh/φm is a
function of z/L, z being the distance from the ground and L
the Obukhov length, and depends on the similarity functions
of choice (φm and φh are not univocally determined: Sorbjan,
1989). It seems justified, however, to assume Prt = 1, at least
in near-neutral conditions. The assumption Prt = 1 is also often
adopted in numerical simulations of atmospheric boundary-layer
flows (e.g. Khanna and Brasseur, 1997).

Under the condition Prt = 1, the length scale � becomes

� =
(

2K

Nα

)1/2

. (17)

Introducing the rescaled variable v = (γ θ0/g)1/2u, Eqs (5) and
(6) become

∂v

∂t
= Nαθ + K

∂2v

∂n2
,

∂θ

∂t
= −Nαv + K

∂2θ

∂n2
. (18)

Combining v and θ into the complex variable

φ = exp (−iNαt) (θ + iv) (19)

and rearranging Eq. (18), the problem is easily reduced to
an initial-/boundary-value problem for the heat conduction
equation for φ:

∂φ

∂t
= K

∂2φ

∂n2
, (20)

with null initial condition and time-periodic boundary conditions
at the surface, i.e.

φ(n, 0) = 0, φ(0, t) = exp (−iNαt) � sin(ωt+ψ). (21)

Solutions of the above problem are available in the literature
(cf. Carslaw and Jaeger, 1959, p 64ff). Introducing the following
parameters:

ω+ = Nα + ω, ω− = Nα − ω, (22)

�+ =
(

2K

ω+

)1/2

, �− =
(

2K

ω−

)1/2

, (23)

and defining

η = n

2
√

Kt
, (24)

the solution is

φ(n, t) = i�√
π

∫ η

0

{
exp −i

[
ω− t

(
1 − η2

μ2

)
−ψ

]

− exp −i

[
ω+ t

(
1 − η2

μ2

)
+ψ

]}
e−μ2

dμ

+ i�

2

{
exp

[
−i(ω+ t+ψ) − (1 − i)

n

�+

]

− exp

[
−i(ω− t−ψ) − (1 − i)

n

�−

]}
. (25)

Except for the special case Nα = ω (see below), the integral
term decays in time as t → ∞ (cf. Carslaw and Jaeger, 1959,
section 2.6, p. 65) and represents a transient disturbance caused
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(a) (b)

Figure 2. Slope-normal profiles of along-slope velocity ū (dark grey lines; blue in online) and potential temperature anomaly with respect to the unperturbed
situation θ̄ (light grey lines; red in online) under supercritical conditions (Nα > ω). (a) Steady-state Prandtl (1942) solution for constant surface potential temperature
anomaly �. (b) Vertical profiles at different values of ωt, as indicated at the top of each profile. Numerical values: α = 30◦, � = 5 K, θ0 = 288 K, γ = 0.003 K m−1,
ω = 7.28 × 10−5 s−1, K = 3 m2 s−1, ψ = 0.

by starting the oscillations of surface temperature at time t = 0.
The second term is the time-periodic component of the solution.

Equation (25) is somewhat analogous to the time-dependent
model proposed by Shapiro and Fedorovich (2010) to describe
nocturnal low-level jets, i.e. inertial oscillations of the wind speed
and direction caused by the release of the frictional constraint in
the Ekman boundary layer at sunset. Not surprisingly, the general
analogy between the stationary Prandtl and Ekman solutions,
mentioned in section 2 above, is also manifested in their time-
dependent counterparts.

Reverting to the original variables, one finally obtains

θ̄ + i
γ

N
ū = i�√

π

∫ η

0

{
exp i

[(
ω + ω−

η2

μ2

)
t+ψ

]

− exp i

[(
−ω + ω+

η2

μ2

)
t+ψ

]}
e−μ2

dμ

+ i�

2

{
exp

[
−i

(
ωt − n

�+
+ψ

)
− n

�+

]

− exp

[
i

(
ωt+ n

�−
+ψ

)
− n

�−

]}
. (26)

3. Discussion of the solutions

Here we concentrate on the properties of the periodic part of the
solution, which may assume three different forms, depending on
the frequencies ω and Nα .

3.1. Case 1. Supercritical: Nα > ω

This case occurs for strong stability and/or large slope angle α. We
refer to it as supercritical, because the time scale of the periodicity
in surface temperature is longer than the period of a buoyancy
oscillation. Both ω+ and ω− are positive and, accordingly, �+ and
�− are real and positive as well. The periodic part of the solution
to the problem is obtained by neglecting the integral terms in Eq.
(26), which describe a transient initial disturbance. It reads

u =�

2

N

γ

[
e−n/�+ cos

(
ωt − n

�+
+ψ

)

− e−n/�− cos

(
ωt + n

�−
+ψ

)]
, (27)

θ =�

2

[
e−n/�+ sin

(
ωt − n

�+
+ψ

)

+ e−n/�− sin

(
ωt + n

�−
+ψ

)]
. (28)

An example of the solution for the supercritical case is shown
in Figure 2, where ψ = 0 is assumed. It may be noticed that this
case displays a similar behaviour to Defant’s model (Eqs (15) and
(16)), apart from the different initial phase (0 instead of π/2).
Indeed, at all heights both velocity and temperature oscillate
approximately in phase, i.e. with no appreciable delay between
near-surface and elevated layers. The zeros of both profiles remain
essentially stationary over time.

It can be shown that Defant’s model corresponds to a special
case of Eqs (27) and (28), namely the condition 0 < ω � Nα .
In this case, ω+ ≈ ω− ≈ Nα and �+ ≈ �− ≈ �. Trigonometric
addition formulae then immediately lead to Eqs (15) and (16),
under the assumption Prt = 1. Therefore, Defant’s (1949) model
provides an acceptable description of time-dependent slope flows
only when the time scale of variations in surface forcing is much
longer than that of buoyancy oscillations in the atmosphere. Given
typical values of atmospheric stratification and duration of the
diurnal cycle, this condition is often verified. There is, however,
a notable exception, namely the case of winds developing over
gentle slopes in a near-neutral atmosphere (N, α → 0).

3.2. Case 2. Subcritical: Nα < ω

This case occurs for weak stability and/or small slope angles. Now
ω+ is positive and ω− is negative. Accordingly, �+ is real and
positive, whereas �− is an imaginary number. The time-periodic
component of the solution in this case reads

u =�

2

N

γ

[
e−n/�+ cos

(
ωt − n

�+
+ψ

)

− e−n/|�−| cos

(
ωt − n

|�−|+ψ

)]
, (29)

θ =�

2

[
e−n/�+ sin

(
ωt − n

�+
+ψ

)

+ e−n/|�−| sin

(
ωt − n

|�−|+ψ

)]
. (30)

An example of the solution for the subcritical case for ψ = 0
is shown in Figure 3. Notice that elevated layers may display a
significant phase lag with respect to the layers adjacent to the
surface. Consequently, upslope flow during a surface cooling
phase (e.g. at ωt = 5π/4) or, conversely, downslope flow during
a surface warming phase (e.g. at ωt = π/4) may occur. In
contrast to the supercritical case, the zeros of both profiles move
continuously away from the slope.

Subcritical solutions help us understand how the slope flow
system behaves as the slope angle approaches zero or the
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(a) (b)

Figure 3. Same as in Figure 2, for a subcritical condition (Nα < ω). Numerical values: α = 0.5◦, γ = 0.001 K m−1, ψ = 0.

atmosphere becomes neutrally stratified. For decreasing angles
and/or stratification approaching neutrality, ω 
 Nα → 0 and
consequently �+ → |�−|. In these conditions, in Eq. (29) the two
terms in brackets tend to be identical in magnitude, so their
difference vanishes. Therefore the wind speed tends to zero at all
heights. On the other hand, Eq. (30) suggests that the potential
temperature perturbation maintains a maximum at the surface.
In other words, advection parallel to the surface ceases and heat
is transported in the atmosphere solely by turbulent diffusion.

If, beyond α = 0, a condition with invariant surface forcing
is assumed (ω = 0), Eq. (30) also collapses to 0. In this case,
temperature perturbations are entirely determined by the non-
periodic component of the full solution, i.e. by the integral term
in Eq. (26). Actually, the solution is easily computed in this special
case, resulting in

θ̄ = � sin ψ erfc

{
n

2
√

Kt

}
; (31)

that is, the potential temperature perturbation decreases with
height but propagates to greater heights with increasing time.
This well-known solution corresponds to heat diffusion after an
impulsively started surface forcing.

3.3. Case 3. Critical: Nα = ω

In the critical case, the frequency of the forcing to the slope flow
system matches the intrinsic frequency of buoyancy oscillations
in the atmosphere. Consequently,

ω+ = 2ω = 2Nα , ω− = 0, (32)

�+ =
(

K

ω

)1/2

=
(

K

Nα

)1/2

, �− = ∞. (33)

In this circumstance, the full solution reads

u =�N

2γ

{
e−n/�+ cos

(
ωt − n

�+
+ψ

)
− erfc (η) cos(ωt+ψ)

− 2√
π

∫ η

0
cos

[
ωt

(
1 − 2η2

μ2

)
+ψ

]
e−μ2

dμ

}
, (34)

θ =�

2

{
e−n/�+ sin

(
ωt − n

�+
+ψ

)
+ erfc (η) sin(ωt+ψ)

− 2√
π

∫ η

0
sin

[
ωt

(
1 − 2η2

μ2

)
+ψ

]
e−μ2

dμ

}
. (35)

Critical solutions for both u and θ contain three terms in
braces, the last of which vanishes as t → ∞. The first term is

periodic in time, but it does not satisfy the boundary conditions
for n → ∞. The second one describes oscillations for which the
amplitude, modulated by the factor erfc(η), decreases with height
and increases in time. When taken together, these two terms
do satisfy the upper boundary conditions; however, they do not
describe a purely periodic behaviour any more.

An example of the solution for the critical case for ψ = 0 is
shown in Figure 4, where the two leftmost terms of expressions
(34) and (35), i.e. those that do not vanish in time, are
considered. While the temperature profile still displays quasi-
periodic oscillations, the depth of the atmospheric layer subject
to motion increases steadily in time. The critical condition, where
resonance occurs, seems to favour an efficient conversion of the
surface energy fluxes into kinetic energy.

The special critical condition ω = Nα = 0 has been discussed
in section 3.2 above, as a limiting case of subcritical behaviour.

4. Conclusions

A simple model describing the development of slope flows over
an infinitely long and uniformly heated (or cooled) slope, the
temperature of which varies periodically in time, is presented.
The governing equations of the model correspond to a limiting
case, for unimportant Coriolis acceleration, of those already
investigated by Gutman and Malbakhov (1964).

The possible existence of two prototypical slope flow regimes
(super- and subcritical), separated by a critical state, is highlighted.
It proves useful to consider the analogy with the case of internal
gravity waves, where forcing frequencies smaller or larger than
N discriminate between propagating and evanescent waves,
respectively (Nappo, 2013). Similarly, in our case, forcing at
frequencies smaller (resp. greater) than N results in supercritical
(resp. subcritical) slope flow.

Existing analytical models of slope flows, e.g. those by Prandtl
(1942) and Defant (1949), are shown to correspond to special
cases of the new, general solution. In particular, Defant’s model
coincides with a supercritical condition where the characteristic
frequency of the surface forcing cycle is much smaller than
the intrinsic frequency of buoyancy oscillations. Prandtl’s model
results from the same supercritical condition, when ω = 0 and
ψ = π/2. Differently from the Prandtl and Defant theories, the
new model is well behaved for N → 0 and α → 0, i.e. it naturally
collapses to a subcritical regime, where turbulent diffusion is the
sole process responsible for heat transfer in the atmosphere, in
the absence of slope-parallel advection.

In general, the vertical variation of wind speed and temperature
perturbations depends on the two length scales �+ and �− . When
the difference between the two scales is large (see e.g. Figure 3),
profiles of u and θ deviate considerably from those suggested by
Prandtl theory. The most notable case in which this may happen

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)
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(a) (b)

Figure 4. Same as in Figure 2, for a critical condition (Nα = ω). Numerical values: α = 0.41◦, γ = 0.003 K m−1, ψ = 0.

is that of thermally forced flows developing in a nearly neutral
atmosphere. Therefore, slope-normal profiles of temperature and
wind speed should not be expected to match the Prandtl model,
even approximately, in the late morning and afternoon stages of
the diurnal cycle of mountain breezes, when anabatic flows occur
in a context of weakening stratification due to the formation of a
valley mixed layer (Serafin and Zardi, 2010a, 2011).

Time-dependent profiles of flow velocity and (potential)
temperature similar to those derived in the present work were
found by Shapiro and Fedorovich (2006) for flow along vertical
plates immersed in a stably stratifed environment. Interestingly,
postulating the existence of harmonic solutions to the problem
(as opposed to deriving their general form, as is done here) allows
Shapiro and Fedorovich (2004a, 2006) to extend their model
to the case Pr �= 1. When Pr = 1, their solutions correspond
essentially to a particular case of ours (α → π/2) and feature
the same fundamental physical behaviour. In fact, the response
of the system is found to depend on the relative magnitude of
the forcing frequency with respect to the natural frequency of the
environment, with resonant behaviour if the two are equal.

The present work, in analogy to Prandtl (1942) and Shapiro
and Fedorovich (2004a,2004b,2006), stresses the importance of a
particular aspect of stratified flows along heated or cooled surfaces.
Namely, due to viscosity, upward (resp. downward) advection of
warm (resp. cold) fluid generates a cold (resp. warm) anomaly
with respect to the environment. In Prandtl’s upslope flow
model, for instance, reduced buoyancy for π�/2 < n < 3π�/2
limits upslope movement and causes the development of a weak
compensation flow (an anti-slope current). This negative feedback
process prevents velocity and temperature perturbations from
extending to large distances from the surface and, in cases where
the forcing remains constant in time, allows the flow to approach
a steady state.

The key ingredients for this process to develop are stratification
and parallel advection. No such flow pattern, and therefore no
steady-state or steady periodic behaviour, can be established if
either of the two is missing. For instance, thermal anomalies
continuously spread out from a heated vertical plate if the
environment is neutrally stratified (Shapiro and Fedorovich,
2004b). Similarly, thermal anomalies continuously diffuse
away from a heated horizontal surface, given the absence of
tilt promoting parallel advection, regardless of stratification
(section 3.2 above).

As outlined in the Introduction and in section 2.1, the
simple framework used by the Prandtl and Defant analytic
slope wind models does not allow pressure–velocity correlations
and therefore excludes internal gravity waves from the set of
possible solutions. Consequently, even the present model cannot
elucidate the possibly two-way interaction between gravity waves
and slope flows, in particular during nocturnal hours. Indeed,

related phenomena, such as the possible impact of gravity waves
on katabatic flow or the generation of internal gravity waves
by katabatic winds, were documented and investigated by Poulos
et al. (2000, 2007), Chemel et al. (2009) and Largeron et al. (2013).

Finally it is worth emphasizing that the present model can be
extended rather easily, by means of series expansion or transform
methods, in order to analyze the response of the atmosphere to
impulsive or irregular temporal variations of temperature along
a sloping surface. Also, effects related to the feedback exerted
by slope flow systems on the background stability profile and
more realistic spatially varying eddy diffusivities can be partially
accounted for using perturbation methods (e.g. Grisogono
et al., 2014). However, substantial progress in understanding
the properties of time-dependent thermally forced slope flows is
expected to occur mostly by means of high-resolution numerical
simulations, where turbulent exchange processes are resolved
explicitly or parametrized adequately.
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