Sinkrotronsko zračenje galaksija u XXL-North polju

Bruno Šlaus Mentor: prof. Smolčić

Sinkrotronsko zračenje:

[1] Beckmann V., Shrader C., Active Galactic Nuclei, WILEY-VCH, Weinheim, 2012.[2] http://www.ifa.hawaii.edu/~jpw/classes/ast622.spring2008/handouts/synchrotron.html

Podaci: GMRT (610 MHz)

[3] http://www.mso.anu.edu.au/~plah/Home_Page_Stuff/GMRT_2006/GMRT_images_2006.html

Usmjeravanje teleskopa:

XMM-LSS potpodručje (crna boja) Središnji dio XXL-North polja ima veći šum od ostatka

[4] Smolčić et al. (u pripremi)[5] Tasse C., Röttgering H.J.A., Best P.N., et al. 2007. A&A, 471, 1105

Prikaz XXL-North polja:

RA

Katalog XXL-North polja:

	Source	Isl_id	RA	E_RA	DEC	E_DEC	Total_flux	E_Total_flux	Peak_flux	E_Peak_flux	
1	0	0	38.75534	3.667035E-5	-4.33597	4.047924E-5	0.00856	0.00045	0.00527	0.0002	
2	1	2	38.75618	5.748202E-6	-5.54474	7.020443E-6	0.03523	0.00042	0.02696	0.00017	
3	2	3	38.72737	3.579661E-5	-4.28857	3.154430E-5	0.00807	0.00036	0.00601	0.00023	
4	3	4	38.70737	6.503220E-5	-4.42808	4.681281E-5	0.00544	0.00027	0.00337	0.00018	
5	4	5	38.70404	0.0002	-4.42067	0.00029	0.00191	0.00024	0.00092	0.00017	
6	5	6	38.69862	6.003108E-5	-5.16495	7.041782E-5	0.00172	0.00026	0.00174	0.00015	Γ
7	6	7	38.68788	6.805020E-6	-4.49281	6.539629E-6	0.02082	0.00027	0.01923	0.00016	Γ
8	7	8	38.67936	1.356366E-5	-4.50508	2.904865E-5	0.01003	0.00035	0.00752	0.00015	Г
9	8	9	38.68223	5.503458E-5	-5.69669	3.862706E-5	0.00245	0.00023	0.00231	0.00013	Г
10	9	10	38.67289	9.270405E-5	-4.41397	7.885909E-5	0.00151	0.00023	0.00132	0.00014	Г
11	10	11	38.66441	9.068758E-5	-4.95803	7.928779E-5	0.00105	0.0002	0.00104	0.00011	Γ
12	11	12	38.65026	1.997008E-5	-4.32728	5.000782E-6	0.10975	0.00045	0.04225	0.00013	Γ
13	12	12	38.64817	4.857847E-5	-4.31896	3.031178E-5	0.01581	0.00026	0.00604	0.00013	Γ
14	13	13	38.65798	9.164913E-6	-5.53645	7.897490E-6	0.01158	0.0002	0.01095	0.00012	Γ
15	14	14	38.64924	7.266965E-5	-5.15108	8.026714E-5	0.00141	0.00021	0.0013	0.00012	Γ
16	15	15	38.6428	0.00032	-4.18586	0.00016	0.0027	0.00027	0.00112	0.00019	Γ
17	16	16	38.64474	8.537648E-5	-4.62785	8.176273E-5	0.0011	0.00023	0.00117	0.00013	Γ
18	17	17	38.64497	0.00012	-4.96121	0.00013	0.00115	0.00018	0.00083	0.00012	Γ
19	18	18	38.63826	4.881892E-5	-4.17694	5.040649E-5	0.00268	0.00033	0.00286	0.00019	Γ
20	19	19	38.63569	4.293071E-5	-4.25956	3.304607E-5	0.01117	0.00021	0.00504	0.00015	Γ
21	20	20	38.63361	0.00027	-4.168	0.0001	0.0012	0.00032	0.00103	0.00018	Г
22	21	21	38.62092	9.316364E-5	-4.9831	0.00013	0.00091	0.00018	0.00079	0.00011	Г
23	22	22	38.61752	0.00019	-4.49772	0.00019	0.00072	0.00016	0.00052	0.0001	
24	23	23	28 61012	4 861970E-5	-5 37805	4 867970E-5	0 00216	0 00021	0 00204	0 00012	
	•										

Katalog navodi podatke vezane uz pojedini izvor.

Imamo 7640 izvora od čega 5434 ima S/N > 7.

[4] Smolčić et al. (u pripremi)

INTEGRIRANI (TOTALNI) FLUKS MAKSIMALNI FLUKS

Kromatska aberacija:

- Postoji kod opažanja vršenih pomoću prijemnika konačne frekvencijske širine kanala.
- Dolazi do smanjenja maksimalnoga fluksa pri čemu integrirani fluks ostaje očuvan.
- Efekt kromatske aberacije proporcionalan je udaljenosti izvora od centra opažanja.

[6] Bondi M., Ciliegi P., Schinnerer E., 2008., ApJ, 681, 1129

U našem slučaju promatramo mozaik.

[7] Smolčić V., Novak M., Bondi M., 2017., prihvaćeno u A&A

Iz činjenice da

je većina

Razlučeni i nerazlučeni izvori:

- Izvore smatramo razlučenima kada su veći od rezolucijskoga elementa (6.5" x 6.5").
- Razlučeni izvori imaju veći omjer integriranoga i maksimalnoga fluksa. Na ovaj omjer utječe i šum.

[8] Miller N. A., Bonzini M., Fomalont E. B., 2013., ApJS, 205, 13

Primjeri na kontinuiranoj mapi:

Učestalost pogrešnih detekcija:

- Koristmo katalog invertirane mape (kontinuirana mapa gdje su fluksevi pomnoženi s -1).
- Kako u stvarnosti ne postoji negativna emisija ovime brojimo učestalost pogrešnih detekcija.

46 izvora 1 izvor sa S/N > 7

Korišteni katalog je vrlo pouzdan

Izvori od više komponenti:

- Veliki izvori mogu greškom biti upisani u katalog kao veći broj elemenata (komponente).
- Nužno je identificirati ovakve izvore.
- Spektri pojedinih komponenti mogu odstupati od očekivanih, jer pojedine komponente ne predstavljaju cjelokupnu populaciju nabijenih čestica.

[7] Smolčić V., Novak M., Bondi M., 2017., prihvaćeno u A&A

[9] http://www.cfht.hawaii.edu/Science/CFHLS/

Računanje spektralnih indeksa:

- Važno je uočiti da su nam potrebni podaci na frekvenciji različitoj od 610 MHz.
- Koristimo podatke NVSS istraživanja na 1400 MHz.
- Nužno je povezati podatke dvaju kataloga. Finalni katalog mora sadržavati samo izvore detektirane unutar oba istraživanja (GMRT i NVSS).

Izvore povezujemo na osnovi njihovog položaja na nebu.

[10] http://www.cv.nrao.edu/nvss/

Sistematska odstupanja:

Sistematska odstupanja:

Zasada smo:

- Eliminirali efekt kromatske aberacije
- Odvojili razlučene od nerazlučenih izvora
- lzdvojili izvore od više komponenti
- Eliminirali odstupanja vezana uz detekcijski limit

Preostale izvore koristili smo pri računanju spektralnih indeksa:

294 u središnjem dijelu 490 u vanjskome dijelu

$$\alpha = -\frac{\log(S_2) - \log(S_1)}{\log(\nu_2) - \log(\nu_1)}$$

Rezultati:

- Vrijednosti spektralnih indeksa u literaturi tipično iznose 0.7 do 0.8
- Uočavamo razliku u profilima histograma razlučenih i nerazlučenih izvora .
- Većina detektiranih izvora su aktivne galaktičke jezgre (AGN).
- Spektri AGN-ova razlikuju se za kompaktne i proširene izvore.

[11] Smolčić et al., podneseno u A&A[12] Kimball A. E., Ivezić Ž., 2008., ApJ, 136

Aktivne galaktičke jezgre:

[13] https://ned.ipac.caltech.edu/level5/Cambridge/Cambridge1_3_1.html

Zaključak:

- Promatrali smo izvore unutar XXL-North polja na frekvenciji od 610 MHz.
- Eliminirali smo efekte kromatske aberacije, odvojili razlučene od nerazlučenih izvora te izdvojili izvore od više komponenti.
- Elimirali smo odstupanja vezana uz detekcijski limit.
- Spektralne indekse prikazali smo u obliku histograma.
- Razlike u profilima histograma objasnili smo pozivanjem na postojeća saznanja o aktivnim galaktičkim jezgrama.

Hvala na pažnji.