Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Istraživanje nanostruktura za fotonaponske ćelije ili fotodetektore

Juraj Hanžek

Fizički odsjek, PMF, Bijenička 32, 10 000 Zagreb

24.1.2018

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

1 Uvod

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

3 Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- 4 Zaključak
- 5 Zahvale
- 6 Literatura

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Uvod

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motivacija

Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Motivacija

- Izvor energije:
 - Obnovljiv
 - 2 Ekološki prihvatljiv
 - 8 Niska cijena
 - ④ Dostupan u velikim količinama

Motivacija

Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Tri generacije solarnih ćelija

- Pločaste (wafer) fotoćelije:
 - monokristalni Si (25%)
 - polikristalni Si (20%)
 - multi-junction (40%)
- Fotoćelije na tankom filmu:
 - amorfni Si(13%)
 - CdTe(kadmij telurid)(17%)
 - CIGS (bakar indij galij selenid)(20%)
- Efikasne i jeftine fotoćelije:
 - polimerne/organske fotoćelije
 - perovskitne fotoćelije
 - bojom senzitirane fotoćelije
 - kvantnom točkom senzitirane fotoćelije

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Princip rada DSSC

- Bojom senzitirane solarne ćelije (Dye-senzitized solar cells, skraćeno DSSC)
- Izumili Brian O'Regan i Michael Grätzel

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Materijali i metode

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC

SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Sinteza DSSC

Materijali:

FTO (engl. fluorine doped tin oxide) staklo
nanočestični prah:

- TiO₂
- TiO₂ dopiran 1%Sm
- *TiO*₂ dopiran 1%Sm te modificiran kateholom (KAT)
- 3 etilen glikol (etan-1,2-diol)
- 4 grafit
- **5** N3 boja (Cis-bis(isothiocyanato)bis(2,2'-bipyridyl-
 - 4,4'-dicarboxylato)ruthenium(II))
- 6 elektrolit (0.05M I_2 i 0.1M KI u acetonitrilu)

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC

SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

TiO2	l
FT0	
staklo	

	N3	
Г	TiO2	1
	FT0	
	staklo	

イロト イロト イヨト イヨト

590

æ

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF

Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

SEM, TEM, HAADF

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF

Ramanova spektroskopija

UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Ramanova spektroskopija

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF

Ramanova spektroskopija

UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija **UV-VIS spektroskopija** Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

UV-VIS spektroskopija (transmisija i refleksija)

• Kubelka-Munk model:

$$\frac{K}{S} = \frac{(1-R_{\infty})^2}{2R_{\infty}} \quad (1)$$

- Pretpostavke:
 - materijal homogen
 - svjetlost pada okomito
 - materijal beskonačno debel
- Za indirektan energijski procjep:

$$\alpha h\nu = B(h\nu - Eg)^2 (2)$$

イロト 不得 とうき イヨト

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija **UV-VIS spektroskopija** Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

UV-VIS spektroskopija (transmisija i refleksija)

• Kubelka-Munk model:

$$rac{K}{S}=rac{(1-R_\infty)^2}{2R_\infty}$$
 (1)

- Pretpostavke:
 - materijal homogen
 - svjetlost pada okomito
 - materijal beskonačno debel
- Za indirektan energijski procjep:

$$\alpha h\nu = B(h\nu - Eg)^2 (2)$$

イロト 不得 とうき イヨト

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija **UV-VIS spektroskopija** Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

UV-VIS spektroskopija (transmisija i refleksija)

• Kubelka-Munk model:

$$\frac{K}{S} = \frac{(1-R_{\infty})^2}{2R_{\infty}} \quad (1)$$

- Pretpostavke:
 - materijal homogen
 - svjetlost pada okomito
 - materijal beskonačno debel
- Za indirektan energijski procjep:

$$\alpha h\nu = B(h\nu - Eg)^2 (2)$$

イロト 不得 とうき イヨト

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija **UV-VIS spektroskopija** Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

UV-VIS spektroskopija (transmisija i refleksija)

• Kubelka-Munk model:

$$\frac{K}{S} = \frac{(1-R_{\infty})^2}{2R_{\infty}} \quad (1)$$

- Pretpostavke:
 - materijal homogen
 - svjetlost pada okomito
 - materijal beskonačno debel
- Za indirektan energijski procjep:

$$\alpha h\nu = B(h\nu - Eg)^2 (2)$$

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Solarni simulator

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Solarni simulator

(□) (@) (E) (E) =

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator

Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Model I-V karakteristike DSSC

Rješenje ekvivalentnog strujnog kruga:

$$I = I_{ph} - I_0 \left(e^{\frac{V - R_s I}{nV_T}} - 1 \right) - \frac{V - R_s I}{R_{sh}}$$
 (3)

Aproksimacije: $R_{sh} \gg$ i $R_s \ll$

$$I = I_{ph} - I_0 \left(e^{\frac{V}{nV_T}} - 1 \right) \quad (4)$$

$$T_T = \frac{e}{k_B T}$$

(5)

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Rezultati i diskusija

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Morfologija uzoraka

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

(□) (@) (E) (E) =

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka

Struktura uzoraka

Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Struktura uzoraka

TiO ₂	<i>TiO</i> ₂ -Sm	<i>TiO</i> ₂ -Sm-KAT	anatas[9]
146	145	146	144Eg
198	196	197	197Eg
399	397	400	399 <i>B</i> 1g
517	517 520 520		$513A_{1g}$
517			$519B_{1g}$
639	642	639	639Eg

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

<i>TiO</i> ₂ -Sm-KAT	rutil[9]
152	$143B_{1g}$
300kom	235kom
429	447Eg
607	612 <i>A</i> _{1g}
-	826 <i>B</i> _{2g}

 Fazni prijelaz iz monokristala anatasa u rutil je na 900°C

(日) (同) (日) (日)

э

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Optička svojstva uzoraka

- Izmjereni *TiO*₂ *Sm* Eg=3.09eV
- TiO₂ Eg=3.30eV [11]

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka

Efikasnost DSSC

Zaključak

Zahvale

Literatura

- Podloge:
 - Staklo (plavo)
 - TiO₂ (crveno)
 - $TiO_2 Sm$ (zeleno)
 - *TiO*₂ *Sm KAT* (žuto)
- prije (isprekidano) i nakon (puna linija) stavljanja N3 boje

・ロト ・置と ・ モト・

ж

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM,TEM,HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka

Efikasnost DSSC

Zaključak

Zahvale

Literatura

Efikasnost DSSC

▲□▶ ▲■▶ ▲臣▶ ▲臣▶ ―臣 … のへ⊙

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zakliučak

Zahvale

Literatura

	Ćelija	V_{oc}/V	$I_{sc}/\mu A$	Eff/%	ff/%	$P_{max}/\mu W$
\mathcal{O}_2	1.	0.412	14.8	0.605	39.6	2.42
	2.	0.368	11.6	0.359	33.5	1.44
Ľ.	3.	0.34	8.95	0.148	19.5	0.592
	4.	0.409	7.82	0.177	22.1	0.707
5m	5.	0.451	38	0.991	23.1	3.96
	6.	0.444	47.2	1.1	21.0	4.41
5	7.	0.442	24.3	0.587	21.9	2.35
Ţ;(8.	0.44	23.8	0.669	25.6	2.67

$ff = \frac{P_{max}}{I_{sc} * V_{oc}} \qquad (6) \qquad \eta = \frac{ff * V_{oc} * Isc}{I \; svjetlosti} \qquad (7)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

površina ćelija iznosi oko 0.4 cm²

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Zaključak

- TiO₂ Sm nanočestice aglomeriraju, a na TiO₂ - Sm - KAT je to još izraženije
- dimenzije nanočestica *TiO*₂ od 30-40nm, dok su od *TiO*₂ - *Sm* i *TiO*₂ - *Sm* - *KAT* 10-20nm.
- Sm supstitucijski ugrađen u kristalnu rešetku TiO2
- Sm i KAT ne mijenjaju kristalnu strukturu
- efikasnost DSSC na *TiO*₂ *Sm* iznosi 1.1% što je gotovo duplo više od efikasnosti DSSC na *TiO*₂ (0.6%).
- mogući razlog neuspjelih DSSC na TiO₂ Sm KAT je da katehol pokrije cijelu površinu od TiO₂ i onemogućuje prijelaz fotopobuđenih elektrona sa N3 boje u vodljivu vrpcu TiO₂.

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

2

Zaključak

Zahvale

Literatura

Zahvale

Hvala mentoru dr. sc. Krunoslavu Juraiću na vođenju kroz metode mjerenja uzoraka i dr. sc. Andreji Gajović na pomoći pri pisanju seminara. Zahvaljujem se i doktorandu Ivani Panžić te studentima Mariji Ivezić i Petri Papež pri pomoći oko sinteze DSSC.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivacija Vrste solarnih ćelija Princip rada DSSC

Materijali i metode

Sinteza DSSC SEM, TEM, HAADF Ramanova spektroskopija UV-VIS spektroskopija Solarni simulator Model I-V karakteristike DSSC

Rezultati i diskusija

Morfologija uzoraka Struktura uzoraka Optička svojstva uzoraka Efikasnost DSSC

Zaključak

Zahvale

Literatura

Literatura

[1] Brian O'Regan & Michael Grätzel, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737-740 [2] P. Y. Simons and F. Dachille. 1967. The structure of TiO2II. a high-pressure phase of TiO2, Acta Cryst. 23,334-336 [3] Milivoj Plodinec, 2014, Fizikalna i kemijska svojstva funkcionaliziranih titanatnih nanostruktura, doktorski rad [4] Michael Grätzel*, 2005, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem., 44 (20), pp 6841-6851 [5] Demtröder, W., Laser spectroscopy 3rd edition. Springer-Verlag Braun Heidelberg. New York (2003) [6] https://commons.wikimedia.org/wiki/File:Raman_energy_levels.svg [7] Paul Kubelka, Franz Munk, 1931, An Article on Optics of Paint Lavers [8] Earnest J. Johnson, chapter 6. Absorption near the Fundamental Edge [9] Toshiaki Ohsaka, Fujio Izumi and Yoshinori Fujiki, 1978, Raman Spectrum of Anatase, TiO, 321-324 [10] S. P. S. Porto, P. A. Fleury and T. C. Damen, 1966, Raman Svectra of TiO₂, MgF₂, ZnF2 FeF2, and MnF2, Phisical review volume 154 [11] Rosendo López and Ricardo Gómez, 2011, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO_2 : a comparative study. J Sol-Gel Sci Technol 61:1-7 [12] Liyuan Han, Naoki Koide, Yasuo Chiba, and Takehito Mitate,2014,Modeling of an equivalent circuit for dve-sensitized solar cells. Aplied physic letter volume 84, number 13 [13] Tian Hanmin, Zhang Xiaobo, Yuan Shikui, Wang Xiangyan, Tian Zhipeng Liu Bin, Wang Ying, Yu Tao, Zou Zhigang, 2009, An improved method to estimate the equivalent circuit, parameters in DSSCs, Science Direct, Solar Energy 83 715-720