

Samosila i gravitacijski valovi

Maja Milas mentor izv. prof. dr. sc. Ivica Smolić Sadržaj

01 Opća teorija 02 Samosila i gravitacijski valovi

03 Rigorozan izvod samosile

O4 Zaključak i dodaci

Notacija i konvencije

- grčki indeksi μ, ν, \dots = komponente 4-vektora i tenzora
- latinski indeksi *i*, *j*, ... = prostorne komponente
- 0 = vremenska komponenta
- latinski indeksi *a*, *b*, ... = apstraktni prostornovremenski indeksi

- metrika Minkowskog η_{ab} , potpis (-1, 1, 1, 1)
- prirodne jedinice c = 1

01

Opća teorija relativnosti

Einsteinova jednadžba

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

OTR

- poopćenje Newtonove teorije gravitacije
- gravitacijska sila je fundamentalno svojstvo prostora

Slika 1. Albert Einstein

Nova ideja

U općoj teoriji relativnosti tvar i energija zakrivljuju prostorvrijeme, a zakrivljeno prostorvrijeme uvjetuje njihovo gibanje i izmjenu.

Newton

$\nabla^2 \Phi = 4\pi G \rho$

Riccijev tenzor ('derivacija')

 $R = g^{\mu\nu}R_{\mu\nu}$

metrika koja opisuje zakrivljenost prostovremena ('potencijal')

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$

Einsteinova jednadžba

tenzor energije i impulsa ('gustoća materije')

02

Samosila i gravitacijski valovi

Samosila

- sila kojom tijelo djeluje samo na sebe (vlastitim poljem)
- EMRI = "extreme-mass-ratio-inspiral"

Slika 2. EMRI sustav

Slika 3. Potencijal u EMRI sustavu

Samosila

- sila kojom tijelo djeluje samo na sebe (vlastitim poljem)
- EMRI = "extreme-mass-ratio-inspiral"

Slika 3. Potencijal u EMRI sustavu

Samosila u elektromagnetizmu

- statičan naboj možemo tretirati kao testni -> djeluju samo vanjska polja
- akcelerirani naboj

Slika 4. Polje točkastog naboja

Samosila u elektromagnetizmu

- statičan naboj možemo tretirati kao testni -> djeluju samo vanjska polja
- akcelerirani naboj

Slika 4. Polje točkastog naboja

- Einsteinova jednadžba nije linearna
- promatramo EMRI sustav (malo tijelo mase *m*)

- Einsteinova jednadžba nije linearna
- promatramo EMRI sustav (malo tijelo mase *m*)

$$g_{\mu\nu} = q_{\mu\nu} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + O(\epsilon^3)$$
$$T_{\mu\nu} = \epsilon T_{\mu\nu}^{(1)} + \epsilon^2 T_{\mu\nu}^{(2)} + O(\epsilon^3)$$

Einsteinova jd.

 $G_{\mu\nu}[g] = 8\pi T_{\mu\nu}$

- Einsteinova jednadžba nije linearna
- promatramo EMRI sustav (malo tijelo mase *m*)

$$g_{\mu\nu} = q_{\mu\nu} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + O(\epsilon^3)$$
$$T_{\mu\nu} = \epsilon T_{\mu\nu}^{(1)} + \epsilon^2 T_{\mu\nu}^{(2)} + O(\epsilon^3)$$

Einsteinova jd. $G_{\mu\nu}[g] = 8\pi T_{\mu\nu}$

 $\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu}$ 1

- Einsteinova jednadžba nije linearna
- promatramo EMRI sustav (malo tijelo mase *m*)

$$g_{\mu\nu} = q_{\mu\nu} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + O(\epsilon^3)$$
$$T_{\mu\nu} = \epsilon T_{\mu\nu}^{(1)} + \epsilon^2 T_{\mu\nu}^{(2)} + O(\epsilon^3)$$

Einsteinova jd. $G_{\mu\nu}[g] = 8\pi T_{\mu\nu}$

1
$$\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu}$$

2

$$\delta G_{\mu\nu}[h^{(2)}] = 8\pi T^{(2)}_{\mu\nu} - \delta^2 G_{\mu\nu}[h^{(1)}]$$

$$\delta G_{\mu\nu}[h^{(2)}] = 8\pi T^{(2)}_{\mu\nu} - \delta^2 G_{\mu\nu}[h^{(1)}]$$

sadrži kvadratne članove $h^{(1)}_{\mu\nu}$ koji se ponašaju $\propto m^2/r^4$ u blizini tijela m

MiSaTaQuWa jednadžbe

- trenutno najbolji opis gibanja "malog tijela" u OTR-u (uzimaju prvi red korekcije zbog samosile)
- tenzor energije i impusla točkastog izvora

$$T_{\mu\nu}^{(1)} = m u_a(t) u_b(t) \frac{\delta^{(3)}(x^i - z^i(t))}{\sqrt{-g}} \frac{d\tau}{dt}$$

Lorentzovo baždarenje

$$\nabla^b \tilde{h}_{ab} = 0 \qquad \tilde{h}_{ab} \equiv h_{ab} - \frac{1}{2}hg_{ab}$$

MiSaTaQuWa jednadžbe

- trenutno najbolji opis gibanja "malog tijela" u OTR-u (uzimaju prvi red korekcije zbog samosile)
- tenzor energije i impusla točkastog izvora

$$T_{\mu\nu}^{(1)} = m u_a(t) u_b(t) \frac{\delta^{(3)}(x^i - z^i(t))}{\sqrt{-g}} \frac{d\tau}{dt}$$

Lorentzovo baždarenje

$$\nabla^b \tilde{h}_{ab} = 0 \qquad \tilde{h}_{ab} \equiv h_{ab} - \frac{1}{2}hg_{ab}$$

• svjetska linija

$$x^i(t) = z^i(t)$$

želimo korekciju na geodezik! u_n

MiSaTaQuWa jednadžbe

• uvrštavamo u 1. red Einsteinove jednadžbe

$$\delta G_{\mu\nu}[h^{(1)}] = 8\pi T^{(1)}_{\mu\nu}$$

$$\nabla^{c}\nabla_{c}\tilde{h}_{ab} - 2R^{c}{}_{ab}{}^{d}\tilde{h}_{cd} = -16\pi m u_{a}(t)u_{b}(t)\frac{\delta^{(3)}(x^{i}-z^{i}(t))}{\sqrt{-g}}\frac{d\tau}{dt}$$

 međutim, ako želimo dobiti negeodetska gibanja, moramo relaksirati Lorentzovo baždarenje u_n

... sustav više **nije ekvivalentan** Einsteinovom

Usporedba asimptotskih razvoja

- $g_{\mu\nu}(\lambda)$ = glatka jednoparametarska familija metrika koja se skuplja u nulu za $\lambda \to 0$
- blisko područje (eng. "near-zone") i daleko područje (eng. "far-zone")

Usporedba asimptotskih razvoja

- CILJ: korekcija na svjetsku liniju γ zbog samosile
 - korekcija opisana vektorskim poljem Z^i = infinitezimalni pomak
 - *M* je masa, a *S* spin **malog** tijela

$$\frac{d^2 Z^i}{dt^2} = \frac{1}{2M} S^{kl} R_{kl0}{}^i - R_{0j0}{}^i Z^j - \left(h^{tail}{}^i{}_{0,0} - \frac{1}{2} h^{tail}{}^{,i}_{00}\right)$$

03

Rigozoran izvod gravitacijske samosile

Pretpostavke i ključne ideje izvoda iz [2]

Pretpostavke

• glatka, jednoparametarska familija metrika $g_{ab}(\lambda)$ u kojoj se prisutno tijelo skuplja u dimenziju nula na samosličan način

(i) Postoji prirodni limes

 $g_{ab}(\lambda)$ je takva da postoje koordinate x^{α} takve da je $g_{\mu\nu}(\lambda, x^{\alpha})$ glatka u (λ, x^{α}) barem za $r > \lambda \overline{R}$ (gdje je $r \equiv \sqrt{x_i x^i}$, a \overline{R} konstanta).

Za svaki λ i $r > \lambda \overline{R}$, $g_{ab}(\lambda)$ je rješenje vakuumske Einsteinove jednadžbe. Nadalje, $g_{\mu\nu}(\lambda = 0 x^{\alpha})$ je glatka u x^{α} , uključujući r = 0, te je za $\lambda = 0$ krivulja γ definirana s r = 0 vremenskog tipa.

Pretpostavke

• glatka, jednoparametarska familija metrika $g_{ab}(\lambda)$ u kojoj se prisutno tijelo skuplja u dimenziju nula na samosličan način

(ii) Postoji skalirani limes

Za svaki t_0 , definiramo

$$\bar{t} \equiv \frac{t - t_0}{\lambda} \qquad \bar{x}^i \equiv \frac{x^i}{\lambda}$$

te je metrika $\bar{g}_{\overline{\mu}\overline{\nu}}(\lambda;t_0,\bar{x}^{\alpha}) \equiv \lambda^{-2}g_{\overline{\mu}\overline{\nu}}(\lambda;t_0,\bar{x}^{\alpha})$ glatka $\cup (\lambda;t_0;\bar{x}^{\alpha})$ za $\bar{r} \equiv r/\lambda > \bar{R}$.

Pretpostavke

• pretpostavke (i) i (ii) ne određuju potpuno $g_{ab}(\lambda)$ (mogu se pojaviti diskontinuiteti)

(iii) Uvjet uniformnosti

Svaka komponenta $g_{ab}(\lambda)$ u koordinatama x^{α} je glatka funkcija u svim varijablama.

Korespondencija pojmova

• pretpostavke (i) i (ii) ne određuju potpuno $g_{ab}(\lambda)$ (mogu se pojaviti diskontinuiteti)

Posljedice: asimptotski ravna pozadina

- Taylorov razvoj $g_{ab}(\lambda)$ i $\bar{g}_{\bar{a}\bar{b}}(\lambda)$ do konačnih redova N i M s istim koeficijentima u razvoju
- za pozadinsku metriku dobivamo

$$\bar{g}_{\bar{a}\bar{b}}(\lambda=0;t_0;\bar{t},\bar{r},\theta,\varphi) = \sum_{m=0}^M \left(\frac{1}{\bar{r}}\right)^m \left(a_{\mu\nu}\right)_{0m}(t_0;\theta,\varphi)$$

Posljedice: asimptotski ravna pozadina

- Taylorov razvoj $g_{ab}(\lambda)$ i $\bar{g}_{\bar{a}\bar{b}}(\lambda)$ do konačnih redova N i M s istim koeficijentima u razvoju
- za pozadinsku metriku dobivamo

$$\bar{g}_{\bar{a}\bar{b}}(\lambda=0;t_0;\bar{t},\bar{r},\theta,\varphi) = \sum_{m=0}^M \left(\frac{1}{\bar{r}}\right)^m \left(a_{\mu\nu}\right)_{0m}(t_0;\theta,\varphi)$$

nema ovisnosti o t i samo negativne potencije \bar{r}

Posljedice: geodezik i aproksimacija točkaste čestice

• BSO možemo izborom koordinata metriku izraziti kao

$$g_{\alpha\beta} = \eta_{\alpha\beta} + O(r) + \lambda h_{\alpha\beta} + O(\lambda^2)$$
 $h_{\alpha\beta} = \frac{c_{\alpha\beta}(t,\theta,\varphi)}{r} + O(1)$

Posljedice: geodezik i aproksimacija točkaste čestice

• BSO možemo izborom koordinata metriku izraziti kao

$$g_{\alpha\beta} = \eta_{\alpha\beta} + O(r) + \lambda h_{\alpha\beta} + O(\lambda^2) \qquad \qquad h_{\alpha\beta} = \frac{c_{\alpha\beta}(t,\theta,\phi)}{r} + O(1)$$

• uvrštavamo u prvi red linearizianih Einsteinovih jednadžbi i primjenjujenmo Bianchijev identitet $\nabla^a G^{(1)}_{ab} = 0$

• za $M \neq 0$

4-brzina
$$\gamma$$
 koja
mora biti **geodezik**

• što je perturbativna korekcija za $\lambda > 0$?

$$x^{i}(\lambda, t) = \lambda Z^{i}(t) + O(\lambda^{2}) \qquad \qquad Z^{0} = 0$$

• ovisi o izboru baždarenja

$$x^{\mu} \rightarrow \hat{x}^{\mu} = x^{\mu} - \lambda A^{\mu}(x^{\nu}) + O(\lambda^2)$$
$$Z^i(t) \rightarrow \hat{Z}^i(t) = Z^i(t) - A^i(t, x^j = 0)$$

- maseni dipolni moment je nula za $\, \widehat{x}^i = 0 \,$
- center mase $\hat{x}^i = 0$

• što je perturbativna korekcija za $\lambda > 0$?

$$x^{i}(\lambda, t) = \lambda Z^{i}(t) + O(\lambda^{2}) \qquad \qquad Z^{0} = 0$$

• ovisi o izboru baždarenja

$$x^{\mu} \rightarrow \hat{x}^{\mu} = x^{\mu} - \lambda A^{\mu}(x^{\nu}) + O(\lambda^2)$$
$$Z^i(t) \rightarrow \hat{Z}^i(t) = Z^i(t) - A^i(t, x^j = 0)$$

- maseni dipolni moment je nula za $\, \widehat{x}^i = 0 \,$
- center mase $\hat{x}^i = 0$

$$\left. \right\} \hat{Z}^i(t) = 0$$

želimo općenitu jednadžbu za **Z**ⁱ

- rješavamo linearizirane Einsteinove jednadžbe do 2. reda ...
- korekcija na svjetsku liniju γ zbog samosile
 - Z^i = infinitezimalni pomak
 - *M* je masa, a *S* spin malog tijela

$$\frac{d^2 Z^i}{dt^2} = \frac{1}{2M} S^{kl} R_{kl0}{}^i - R_{0j0}{}^i Z^j - \left(h^{tail}{}^i{}_{0,0} - \frac{1}{2} h^{tail}{}^{,i}_{00}\right)$$

$$h_{ab}^{tail}(x) = M \int_{-\infty}^{\tau_{ret}} \left(G_{aba'b'}^+ - \frac{1}{2}g_{ab}G_{ca'b'}^+ \right) \left(x, z(\tau') \right) u^{a'} u^{b'} d\tau'$$

- rješavamo linearizirane Einsteinove jednadžbe do 2. reda ...
- korekcija na svjetsku liniju γ zbog samosile
 - \circ Z^i = infinitezimalni pomak
 - *M* je masa, a *S* spin malog tijela

04

Zaključak i dodaci

Zaključak

- pretpostavili isključivo (i)-(iii) i dobili korekciju
- ovaj pristup ne daje dobar globalni opis
 - traži se samo-konzistentna diferencijalna jednadžba
- EMRI sustavi MiSaTaQuWa jednadžbe

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Dodatak: motivacija za limese

- jednoparametarska familija izgrađena iz Schwarzschild-de Sitterove metrike
- limes ovisi o načinu identifikacije točaka na mnogostrukosti

$$ds^{2}(\lambda) = -\left(1 - \frac{2M_{0}\lambda}{r} - C_{0}r^{2}\right)dt^{2} + \left(1 - \frac{2M_{0}\lambda}{r} - C_{0}r^{2}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Dodatak: motivacija za limese

• (t, r, θ, φ) de Sitterovo prostorvrijeme

 $ds^{2}(\lambda = 0) = -(1 - C_{0}r^{2})dt^{2} + (1 - C_{0}r^{2})^{-1}dr^{2} + r^{2}d\Omega^{2}$

• \bar{t}, \bar{r} $\bar{g}_{\bar{\mu}\bar{\nu}} = \lambda^{-2}g_{\bar{\mu}\bar{\nu}}$ Schwarzschildovo prostorvrijeme

$$d\bar{s}^{2}(\lambda=0) = -\left(1 - \frac{2M_{0}}{\bar{r}}\right)d\bar{t}^{2} + \left(1 - \frac{2M_{0}}{\bar{r}}\right)^{-1}d\bar{r}^{2} + \bar{r}^{2}d\Omega^{2}$$

Literatura

Članci (najvažniji)

- [1] Leor Barack i Adam Pound. "Self-force and radiation reaction in general relativity". Reports on Progress in Physics 82.1 (2018.)
- [2] Samuel E Gralla i Robert M Wald. " A rigorous derivation of gravitational selfforce". Classical and Quantum Gravity

Slike

- Slika 1. https://hr.wikipedia.org/wiki/Albert_Einstein
- Slike 2. i 3. <u>https://en.wikipedia.org/wiki/Extreme_mass_ratio_inspiral</u>
- Slika 4. <u>https://www.researchgate.net/figure/Electric-Field-of-a-Charged-</u> <u>Particle_fig2_2177605</u>
- Slika 5. [1]

