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In this paper we investigate the entropy bounds and the properties of geometrical entropy. We derive the
Bekenstein and spherical bound. We define and comment on the covariant entropy bound conjecture. Motivated
by the hypothesized close relationship between the maximum amount of entropy a region of spacetime can
contain and the surface area which in some sense bounds it, we find the properties of the geometrical entropy
on (1+1)- and (d+1)- Minkowski spacetime assuming only general properties of quantum entropy.

I. INTRODUCTION

Entropy measures the number of microscopic states which
satisfy the macroscopic state of the system, famously given by
the Boltzmann formula:

S = kB lnW (1)

where S is the entropy and W is the number of microscopic
states. The constant kB gives the right dimension in thermo-
dynamics, from now on it will be set to kB = 1. In addition,
c = G = 1, unless explicitly stated otherwise.

In the second part of the 20th century new light has been
shed on entropy as the fields of General Relativity and Quan-
tum Field Theory developed. It was recognized that there ex-
ists a bound on the amount of entropy a certain amount of
matter can contain.

To give a motivation on why that may be true, consider
the situation where in the initial state there is a black hole
and a certain amount of matter, sufficiently far away from
each other. The matter itself has some amount of entropy Sm

which obeys the known theormodynamical laws. A stationary
black hole is on the other hand characterized by 3 quantities:
its mass, angular momentum and charge (this is the famous
no-hair theorem[1]). We can imagine the matter falling into
the black hole, which eventually settles to a stationary state,
which is then unique, as the no-hair theorem tells us. Now,
the total entropy is Stot = 0, whereas before the matter fell
behind the black hole horizon it was Sm > 0. That means that
second law of thermodynamics, namely dStot � 0, has been
violated.

The Hawking area theorem [1] states that the area A of
black hole is non-decreasing with time: dA � 0. That re-
minds us of the second law of thermodynamics. Based on this
Bekenstein introduced the black hole entropy: SBH = kA,
where the constant k was later set to be 1

4 by Hawking in his
black hole temperature calculation[2]. That means that for the
entropy of a black hole we have:

SBH =

1

4

A (2)

Bekenstein proposed to fix the above mentioned violation
of second law by introducing the generalized second law of

thermodynamics (GSL), where the total entropy now includes
the black hole entropy SBH as well:

dStot = dSm + dSBH � 0 (3)

The lesson here is that a stationary black hole indeed has a
non-zero entropy, i.e. there are e

S
= e

A/4 microscopic states
which satisfy the macroscopic state of the black hole, given
by the three variables of the no-hair theorem.

Now, we can come back to the question of existence of mat-
ter entropy bound. First entropy bound we will derive is the
Bekenstein bound [3].

Suppose there is an amount of matter which has a total en-
ergy E and suppose that R is the radius of the largest sphere
which contains all of the matter. Furthermore, we will assume
that the system is weakly gravitating which is a convenient
assumption since it leads to the stability of R in the process
of adding the matter to the black hole. Now, to obtain the en-
tropy bound on that matter system we will bring it from infin-
ity to the Schwarzschild black hole which has a radius a, and
is much larger than R. This approximation is simply a conve-
nience in the following calculation. Now, we would like the
matter to fall into the black hole, but adding the least possible
amount of energy to the black hole, which will result in the
least possible increase of area of the black hole, and accord-
ing to (2) the smallest increase in its entropy and thus the best
constraint on the entropy of matter system according to GSL
(3). We can do this through the so-called Geroch process in
which we lower the matter slowly near the horizon. The mass
that we add to the black hole will then be the redshifted en-
ergy E, where the redshift is calculated at the point of center
of mass of the system and the system is sitting just outside of
the black horizon, while the sphere of radius R touches the
horizon. Thus we need to calculate the redshift factor at the
proper distance R from the horizon.

Let x be the coordinate distance from the position outside
the black hole (denoted by r) to the horizon:

x = r � a

The redshift factor of a Schwarzchild black hole at a coordi-
nate position r is given by:

�(r) =

r
1� a

r
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Now, for r = a+ x, x ⌧ a:

�(x) =

p
xa

The proper distance l(x) is related to the coordinate distance
x as:

l(x) =

Z x

0

dx

�(x)

= 2

p
ax

Hence the redshift factor at the proper distance l is �(l) = l
2a

and the mass added to the black hole is:

�M  E�(l = R) = E

R

2a

The less-or-equal sign there reminds us of the setup of the
process. Recall we supposed that the center of mass is at R
which is the extremal scenario: generically we would expect
that the matter circumscribed by a sphere of radius R, without
any other assumptions, would have a center of mass which is
not at R and thus we have the freedom to orient it so it is the
closest to the horizon, i.e. at a proper distance less than R

which leads to a smaller addition of mass to the black hole.
The change in black hole entropy is then:

�SBH =

dSBH

dM

�M  2⇡ER

where we used (2) for SBH and the fact that the surface of
Schwarzschild black hole (with Sch. radius RS) is A = R

2
S⇡,

and RS = 2M . From the GSL (3) it follows that the matter
entropy was at most:

Sm  2⇡ER (4)

From the Bekenstein bound (4) we can derive a weaker,
spherical bound [? ][5]. Assume that the matter system is
spherically symmetric. Furthermore, assume that it is not a
black hole, i.e. it is true for the sphere of radius R which
contains the matter of total mass M that R � 2M (recall that
equal sign is true for the Schwarzschild radius). Then:

Sm  2⇡MR  2⇡

R

2

R =

A

4

i.e. the matter entropy is less or equal to one quarter of the
area of the smallest sphere in which it is contained.

It is tempting to conjecture a generalized bound based on
the above derived spherical bound. A quick way to show that
we can’t postulate that entropy content in a volume V with a
boundary of surface size A follows the law:

Sm(V )  A

4

is in the example of Friedmann–Robertson–Walker (FRW)
spacetime. In the FRW spacetime the entropy density (en-
tropy in a unit volume) is constant, � = const. That means
that the total entropy in a volume V is:

S = �V

and the proposed bound would be:

S  A

4

However, since the volume grows as V / R

3 and the area as
A / R

2 it is clear that no matter how small the entropy den-
sity is, we can always find such R that the bound is breached.

A need to generalize the Bekenstein bound motivated the
so-called covariant entropy bound of Bousso [6]. While the
Bekenstein requires the matter system to be gravitationally
stable and thus of a stable size in order for the Geroch thought
experiment to work, the covariant bound does not.

II. THE COVARIANT ENTROPY BOUND

The covariant entropy bound conjecture states:
Pick any 2-dimensional connected spatial surface B in 4-

dimensional spacetime M on which Einstein’s equations are

satisfied and the matter satisfies the dominant energy condi-

tion. Let A be area of the 2-dimensional surface B. Let L

be a hypersurface bounded by B and generated by one of the

four null congruences orthogonal to B. Additionally, let S be

the entropy contained on the hypersurface L. If the expan-

sion of congruence is non-positive at every point on L, then

S  A/4.

In other words, if we pick a 2-dimensional connected spa-
tial surface B, there will be four families of light-rays orthog-
onal to B. At least 2 of them will have a non-positive expan-
sion. We choose one of them and construct a null hypersurface
L by following every light-ray in the chosen family until it ei-
ther reaches a boundary or a singularity of the space-time or
their expansion becomes positive. The conjecture then says
that the entropy on a lightsheet L constructed in such a way
satisfies the condition that it doesn’t exceed one quarter of sur-
face area A of B in natural units:

S(L)  A

4

(5)

Note that this entropy bound has several theorethical advan-
tages over the Bekenstein bound in terms of general applica-
bility: first it is, as the name says, covariant. Secondly, it has
a well defined and reasonable condition on the matter, that it
needs to satisfy the energy condition. And finally, it does not
require a matter system to be gravitationally stable.

The simplest example to explain the choice of light-ray
family is when we choose a closed, empty sphere for a 2D
surface B. Trivially, there are four light-ray families orthog-
onal to the surface: 2 of them in the future light cone travel
orthogonally to its surface towards the inside or the outside
of the sphere (Fig.1.a). The one which travels towards the
outside of the sphere has a positive expansion ✓. A quick cal-
culation for a little piece of sphere’s surface a through which
some of the outgoing light rays travel gives that if R is the
radius of the sphere, r the standard spherical coordinate and
�⌦ a small spatial angle, and � the affine parameter, then for
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a(R) = R

2
�⌦:

✓ =

1

a

da

d�

=

1

R

2
�⌦

2R

dr

d�

�⌦ > 0

(for the outgoing light rays). For the ingoing light rays the
dr
d� is negative and thus the expansion ✓ is negative. The ingo-
ing family is one of the possible choices for the construction
of L.

The other two families are in the past light cone of the
sphere (Fig.1.b). The same as before, we can calculate the ex-
pansions and we would see that the outgoing family has ✓ > 0

and the ingoing has ✓ < 0, which means the latter would be
another good choice for the purpose of the conjecture.

FIG. 1: a) Light rays in the future cone, travelling towards
the inside (red) and the outside (black) of the sphere. b) Light
rays in the past cone, incoming from the inside (red) and the

outside (black) of the sphere.

It is now convenient to turn our attention to the fact that we
require the dominant energy condition for the matter to hold.
The dominant energy condition[1] says that for every causal
(lightlike or timelike) four-vector V a:

�T

a
b V

b
= W

a

the stress-energy tensor Tab satisfies the condition if W

a is
also a causal four-vector. It is equivalent to the statment that
nothing can travel faster than light.

It is important in the context of understanding where do we
stop following a light-ray in the construction of a light sheet.
That happens when the expansion changes the sign from a
negative to a positive one. The Raychauduri equation for the
change of expansion ✓ with change of affine parameter � for
a congruence of null geodesics with tangent vector field k

a is
as follows:

d✓

d�

=

1

2

✓

2 � 8⇡ Tabk
a
k

b � �

2
+ !

2 (6)

where Tab is the stress-energy tensor of matter, �2
= �ab�

ab

and !

2
= !ab!

ab are non-negative quadratic invariants of
the shear and vorticity tensors. Vorticity tensor is in the case
of surface-orthogonal null congurence equal to zero. The
dominant energy condition implies the null energy condition:

Tabk
a
k

b � 0. Thus we conclude that the right-hand side of
eq. (6) is non-positive and that expansion does not increase
along any geodesic. Since:

d✓

d�

 1

2

✓

2

a simple integration will gives us

1

✓(�)

� 1

✓0
+

1

2

�.

Thus, if the expansion is a negative ✓0 at any point of a light
ray (null geodesic) in the congruence, it will after a finite
affine time

��  2

|✓0| .

diverge to ✓ ! �1.

At this point the nearby light rays are reaching a single fo-
cus point, after which they start to expand. This is called a
caustic. Since at the focus point the expansion changes sign
from negative to positive, it is the point where we stop follow-
ing the light-ray and these are the endpoints of the light-sheet.

Now, back to the simple example. We understood how to
choose a light-ray family, and now we turn attention to the
construction of lighsheet L. The two ingoing families are the
good choice. They both end in the center of the sphere, at the
caustic. Clearly, at that point the expansion changes the sign
from negative to positive, which according to the conjecture
is the point at which the construction of lighsheet is finished.

To summarize, we choose light-rays from one of the two in-
going families which start at the sphere’s surface B (according
to the condition in the conjecture requiring the lightsheet to be
bounded by B), follow them until the caustic point and call the
hypersurface created in that way a lightsheet L. Then we cal-
culate the entropy on L and check if the entropy of matter on
L satisfies the conjecture.

While there are a number of proofs of this conjecture (or its
slightly generalized version), under special conditions, such
as the quantum proof for free fields in the limit where the
lightsheet size is small compared to curvature invariants [7],
and the case where entropy can be described by an entropy
current under certain restrictions [8], the full proof is still out
of reach.

It is, however, possible to investigate the newly discov-
ered connection between the limit on the amount of an en-
tropy (or information) in region of spacetime and it’s lower-
dimensional boundary. Note that the bound on the informa-
tion content which can be stored in a region of space may be
interesting also for practical purposes in the distant future.

III. QUANTUM ENTROPY

Quantum mechanically a physical state is described by the
density matrix ⇢. The entropy of the quantum state is given by
the expression:
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S = �Tr(⇢ log ⇢) (7)

For a pure state ⇢ = | ih | the entropy is equal to zero
and it is otherwise always positive. For a maximally entan-
gled system the entropy measures the dimension of Hilbert
space d, S = log d, and that is the maximum possible value
of entropy. Note that for an infinite-dimensional Hilbert space
entropy can be infinite.

If the Hilbert space is a tensor product of two or more
spaces H = H1 ⌦ H2 and ⇢ is the density matrix on H, one
can obtain the density matrix on H1 as ⇢1 = Tr2⇢, i.e. tracing
the total density matrix on H2.

For a pure density matrix ⇢:

S(⇢1) = S(⇢2) (8)

dute to the fact that ⇢ = | ih |, and by Schmidt decomposi-
tion we can write the state | i as:

| i =
X

i

ci| 1,ii| 2,ii,

where | i,ji are a set of orthogonal vectors on each of the
subspaces i = 1, 2. If we take a partial trace of ⇢, ⇢i = Trj 6=i⇢,
we get:

⇢i =

X

k

��
c

2
k

�� | i,kih i,k| .

It is clear that the reduced density matrices have the same
eigenvalues, which implies (8).

Interestingly, if ⇢ is a pure state with S(⇢) = 0, generically
⇢1 and ⇢2 will be in a mixed state with S(⇢i) > 0. Take for
example ⇢ = | ih | where

| i = 1p
2

(|0i1 ⌦ |0i2 + |1i1 ⌦ |1i2

is a Bell state and

⇢1 =

1

2

(|0i1h0|1 + |1i1h1|1).

The entropy of the reduced matrix is S(⇢1) = log(2), the
same as for ⇢2. This tells us that, generically, the entropy
does not increase with the size of the system.

If the density matrix describes two independent systems,
⇢ = ⇢1 ⌦ ⇢2, it is easily seen form eq. 7 that S(⇢) = S(⇢1) +

S(⇢2). In general:

S(⇢)  S(⇢1) + S(⇢2) (9)

We will generalize the above inequality for a physical sys-
tem with a Hilbert space which is a tensor product of an arbi-
trary number of subspaces, H = ⌦i2IHi, where I is a set of
indices I = 1, 2, ... labelling the different subspaces. We will
define the reduce density matrix ⇢A on ⌦i2A, where A 2 I

by tracing over all subspaces Hi/2A:

⇢A = Tr⌦i/2AHi⇢

S(A) := S(⇢a) is the entropy of such a subsystem. Now,
according to (9) for any subsets A and B of I , it is true that:

S(A) + S(B) � S(A [B) (10)

By (8) we have S(A) = S(�A) where �A is the set com-
plementary to A in I . Now we have S(�A) + S(�B) �
S(A [ B) = S(�(A \ B)), where the complement opera-
tion changed union into an intersection. Finally we use (8) to
arrive at:

S(A) + S(B) � S(A \B) (11)

Strong subadditivity (SSA)[9] is a property of quantum en-
tropy which says that for Hilbert space H = H1⌦H2⌦H3 and
the corresponding density matrices: ⇢ on H, ⇢2 = TrH1⌦H3⇢

and ⇢12 = TrH3⇢ (and others analogously defined) it is true
that:

S(⇢12) + S(⇢23) � S(⇢) + S(⇢2) (12)

SSA (12) generalizes (10) and (11) to:

S(A) + S(B) � S(A \B) + S(A [B) (13)

From that we can derive using the complementary entropies
equality (8) and the trick with changing union to intersection
with complementarity operation the SSB inequality (named
for brevity and close relation to SSA):

S(A) + S(B) � S(A�B) + S(B �A) (14)

where A�B = A\ (�B). Finally, for non-intersecting A

and B SSA and SSB imply:

|S(A)� S(B)|  S(A [B)  S(A) + S(B) (15)

IV. PROPERTIES OF THE GEOMETRIC ENTROPY

Now that we have all the necessary inequalities we will de-
rive geometrical properties of entropy. So far we have used
general notions and results in quantum theory. Let us turn our
attention to continuous quantum systems in Rd. The Hilbert
space will be the Fock space, H = �1

0 Hn, where the n-
particle space Hn is the tensor product of n copies of H1, and
H1 = L2

(R) is the Hilbert space of sqaure integrable func-
tions in R. We can also define the Fock space on a subset of
Rd, volume V 2 Rd. The one-particle space is now the space
of square integrable functions on V and total space is simply
analogously H(V ) = �1

0 Hn(V ).
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If we have two volumes V1 and V2 which do not intersect
(or have a zero measure intersection) then we have

H(V1 [ V2) = H(V1)⌦H(V2). (16)

That is equivalent to the statement that the two systems are
independent, which is clear from the fact that the two volumes
do not intersect and thus the one-particle states bounded by
the respective volumes are independent of each other, which
implies the independence of n-particle states on V1 and V2 for
any n.

Now we can take that the density matrix of a system to be
⇢. ⇢V will be the reduced density matrix on V , which con-
tains all of the information of the physical system restricted to
the volume V and may be computed from ⇢ as the trace over
complement of V in the entirety of the volume of the system:

⇢V = TrH⇢V [V 0 (17)

where V

0 is any volume which has measure zero intersec-
tion with V . The entropy of ⇢V is

S(⇢V ) ⌘ S(V ) = �Tr⇢V log ⇢V .

Now we have specified that we are dealing with a contin-
uous quantum systems as defined above, and we can apply
results derived in the previous section.

We will additionally use the property that when the total
state describe by ⇢ is invariant under some transformation U ,
then the entropy S(U(A)) = S(A), where A is a subset of the
total space of the system.

We will show properties of entropy on (1+1)- and (d+1)-
Minkowski spacetime. A few notes are in order.

We will use Penrose diagrams of the Minkowski spacetime
(Fig. 2) to depict the different situations in the following para-
graphs.

A Cauchy surface of a spacetime is any subset which is in-
tersected by a causal, inextensible curve exactly once. Infor-
mally, the initial conditions on a Cauchy surface of a space-
time, uniquely determines the past and future. In the special
case of Minkowski space, for example, any spatial hypersur-
face of constant time t is a Cauchy surface.

We assign a density matrix with respective entropy to any
subset A of a Cauchy surface C and assume the conditions
(16) and (17) for them to hold in order to be able to use results
from sec. 3.

Consider the case of subsets A of a Cauchy surface C and
A

0 of a Cauchy surface C0 which have the same causal de-
velopment A (i.e. they both uniquely determine the same A
which is a subset of Minkowski space) (Fig. 3). The unitarity
of a causal evolution implies that

S(A) = S(A

0
) ⌘ S(A) (18)

This is because the evolution of a density matrix is unitary,
U

+
U = UU

+
= 1, ⇢(t) = U

+
⇢ U which by the property

FIG. 2: A Penrose diagram of the (1+1)-Minkowski
spacetime. A pair of curves of constant x and t are labeled.

J + and J� are respectively the null future and past
infinities. ß0 is the spacelike infinity and i

± are the timelike
future and past infinities. The direction of photon rays is

shown by dashed arrows in the center of the diagram.
Photons always travel at 45o incline from the vertical axis

from past null infinity towards future null infinity.

FIG. 3: [10] A is a causally closed subset. All the causal
trajectories which pass through its Cauchy surface are

contained in it. Two different subsets A of a Cauchy surface
C and A

0 of a Cauchy surface C0 which have the same causal
development A.

of trace operation Tr(AB) = Tr(BA) leaves the entropy (7)
unchanged.

We will say that two causally closed sets A and B commute
if there is at least a pair of the respective Cauchy surface rep-
resentatives that belong to the same global Cauchy surface.
This is equivalent to their spatial corners (i0) being spacelike
separated, as explained in Fig. 4.

The notion of commuting sets is important due to the fact
that the SSA and SSB inequalities can only be applied to such
sets. Recall that we need the properties (16) and (17) to be
well defined. While this requires sets A and B to be subsets



6

FIG. 4: Two causally closed sets A and B, subsets of a
Minkowski spacetime which a) commute (spacelike

separation of corners), b) do not commute (time- or null-like
separation of corners) as defined in the text.

of the same global Cauchy surface C and, moreover spatial
and spatially separated from each other, we can by property
(18) extend it to A and B being any Cauchy surface of A and
B, respectively, if A and B commute.

Theorem 1 The most general form for a relativistic entropy
function on a subset Z in (1+1)-dimensional Minkowski space
is given by

S(Z) ⌘ Sm = � + (m� 1)� (19)

where m is the number of connected components of Z, � is
defined as the entropy on a vanishingly small Cauchy surface
of size x

� = lim

x!0
S(x)

and � � � � 0.
We will prove this theorem by induction. First we need to

show that it’s true for m = 1 and m = 2.
First we note that a connected causally closed set is defined

by the size of the uniquely defined Cauchy surface, which is
the size of the base of the Penrose diamond as shown in fig. 5.

Next we define (the same as in the theorem statement)

� = lim

x!0
S(x).

The entropy S(x) is a positive, non-decreasing and a con-
cave function [10].

The boost symmetry of Minkowski spacetime gives an ad-
ditional constraint to the entropy. If we apply SSA (13) to the
construction in fig. 6, we have

S(x) + S(x

0
)  2S(

p
xx

0
) (20)

We can take the limit of (20) when x

0 ! 0 and ob-
tain S(x)  �. Now, since S(x) is non decreasing and
� = limx!0 S(x), we find that

FIG. 5: The uniquely defined Cauchy surfaces for connected
causally closed sets Ai of size xi

FIG. 6: The diamond with the Cauchy surface size x

0 is the
intersection of two the diamonds which commute (their

spatial corners are spatially separated) and have a Cauchy
surface size

p
xx

0. The diamond with the Cauchy surface
size x is their union with causal completion. We perform

S(x) = � = const. (21)

Notice that this proves validity of the theorem for m = 1,
since it is the entropy of a connected causally closed set.

Now we turn to 2-component sets. In figure 7 the set A has
2 disconnected components. The set B commutes with A so
we can use the SSA inequality. We define a new 2-component
set A0 as the union A

0
= A [B.

We have

S(A) + S(B) = S(A) + �

where we used the previous result for the entropy of a con-
nected set for B. Combined with S(A \ B) = S(A

0
) and

S(A [B) = �, and applying the SSA inequality we get

S(A) + � � S(A

0
) + � (22)
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FIG. 7: Two component causally closed set A. B is a
connected causally closed setwhich contains one part of A.

FIG. 8: Two component set A .A0 components share its the
inner edges with A, while A

00 components share its the outer
edges with A. Clearly B and A commute with each other due
to the fact that there is a pair of the respective Cauchy surface

representatives that belong to the same global Cauchy
surface.

In the figure 8 we have a different construction. A0 and A

00
are included in A. A and B commute. By applying the SSA
inequality we get

S(A) + S(B) � S(A [B) + S(A \B) = � + S(A

0
)

S(A) + � � S(A

0
) + � (23)

Now we see from (22) that for any 2-component sets A0 and
A, where A 2 A

0, S(A0
)  S(A) . On the other hand, from

(23) we see that for any A 2 A

0, S(A0
) � S(A). This set of

inequalities implies that the entropy of a 2-component set hast
to be a constant

S(A) = const. = � + �

where we defined the constant � so that the form of entropy
would match the one given in theorem 1.

We have proved the theorem 1 for the case m = 1 and
m = 2. Now we turn to induction. Assume the theorem is
correct for every n

0  n.
Now from the figures 9a) and 9b) we derive analogously to

the previous inequalities

Sn+1 + � � Sn + �

FIG. 9: Construction accompanying the proof by induction.

Sn + � � Sn+1 + �.

These inequalities imply

Sn+1 + � = Sn + �

which proves the formula in theorem 1. Additionaly, from
positivity of entropy �, � � 0. From subadditivity Sn+1 � Sn

and thus �  �. That finishes the proof of theorem 1.
This theorem for (1+1)-dimensional Minkowski spacetime

agrees with our initial motivation to investigate the relation-
ship between the (maximal) entropy and the size of its bound-
ary surface. The boundary of a finite line are two points. We
would have thus initially guessed that the entropy of a system
of spatial dimension 1 has a constant entropy which is exactly
what we derived.

By analogous procedure the following theorem can be
proved in the higher-dimensional Minkowski spacetime:

Theorem 2 The most general form for a relativistic entropy
function on the relativistic polyhedra on (d + 1)-dimensional
Minkowski spacetime, with d > 1, is given by

S(X) = ↵0 + s area(X), (24)

where ↵0 and s are non-negative constants and area(X) is
the area of the boundary of the Cauchy surface of X .

The subtleties in the proof of this theorem lie in the fact that
the commutation property for 2 polyhedra in higher dimen-
sions are more complicated, however, the arguments remain
essentially the same.

The interesting result of this theorem is that we found
a direct relationship between entropy of a subset of the
Minkowski spacetime and the size of the boundary of its
Cauchy surface.

V. CONCLUSION

The Bousso covariant bound on entropy hypothesizes that
the amount of entropy or information that we can store in a re-
gion of spacetime is bounded by surface size of its boundary.
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There are strong evidences hinting at the validity of this con-
jecture, which is a peculiar thing from the stand point of the
theories we have at the moment, which are local. Quantum
field theory has degrees of freedom at every point in space.
We would expect then that the information content of should
grow with volume of a spatial region.

We investigated how close is the connection between en-
tropy and surface size. We used only the general properties of
the quantum entropy.

The symmetries of the Minkowski spacetime and the strong
subadditivity property of quantum entropy were shown to be
surprisingly powerful tools. We found that the entropy func-
tion on the (1+1)-dim. Minkowski space has two constant

terms, one of which is proportional to the number of con-
nected components. On (d+1)-dim space we find that there is
again a constant contribution to the entropy and, more impor-
tantly a term which is proportional to the area of the boundary
of Cauchy surface of a polyhedral subset of space.

The entropy of which we derived the properties is called
geometric entropy. We suppose in the calculation that we
may take a subset of a spacetime and trace the vacuum state
over the outside of the subset and obtain a density matrix and
the corresponding quantum entropy. That is not necessarily a
valid operation, since in QFT calculations divergences appear
when we do so.
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