Optička svojstva jednoslojnog i dvoslojnog MoS_2

Valentino Jadriško, Institut za fiziku Zagreb

Siječanj 2017

Sažetak

U skoroj budućnosti dosegnut ćemo teorijsku granice izrade tranzistora na bazi silicija, pri čemu daljnji napredak u izradi digitalinih elektroničkih uređaja (kvaliteta, kapacitet, minijaturizacija) više neće biti moguć. Kao jedna od mogućih zamjena za silicijske tranzistore koja se trenutačno proučava je dvodimenzionalni (2D) materijal molibden-disulfid (MoS₂). MoS₂ je u cjelovitom (eng. bulk) obliku poluvodič s indirektnim prijelazom, no kako smanjujemo broj slojeva MoS₂ energija indirektnog procjepa raste te jednoslojni (eng. single layer 1L) MoS₂ postaje poluvodič direktnog energetskog procjepa u vidljivom dijelu elektromagnetskog (EM) spektra. Tehnikom pretraživanja mikroskopijom atomske sile (eng. Atomic Force Microscope-AFM) utvrdili smo visinu i broj slojeva materijala, dok se optičkom karakterizacijom uzoraka jedoslonog (1L) i dvoslojnog (2L) MoS₂ putem apsorpcije, mikro-fotoluminiscencijske i mikro-Raman spektroskopije direktno opažaju efekti višečestične ekscitonske interakcije, efekti kvantnog zatočenja na elektronsku strukturu MoS₂ pri prelasku iz indirektnog u direktni energetski procjep uslijed stanjivanja materijala te efekti vezani za strukturna svojstva ovih 2D materijala.

Uvod

Nakon otkrića grafena 2004. godine od strane Geima i Novoselova, počinje novo doba 2D materijala. Grafen je bio prvi stabilni 2D materijal, čime se opovrgnula do tada opće uvriježena teorija Landau i Pierlsa da su 2D materijali nestabilni zbog termičkih fluktuacija [1]. Grafen ima mnoga zanimljiva i poželjna svojstva, poput visoke mobilnosti, čvrstoće, transparentnosti i konstantne apsorpcije u cijelom EM spektru [2], međutim zbog najvećeg mogućeg optičkog procjepa od maksimalno 250 meV [3] nije poželjan za primjenu u elektronici i optoelektronici. Svi elektronički uređaji se zasnivaju na radu silicijskih tranzistora. Prema Mooreovu zakonu [4,5], u narednih pet godina minijaturizacija u tehnologiji izrade silicijskih tranzistora dovesti će do efekta kvantnog tuneliranja koji je nepoželjan, jer će onemogućiti njihov rad. To će dovesti do ograničenja broja tranzistora u čipovima, a i time onemogučiti daljni razvitak bržih čipova i naprednijih elektroničkih uređaja.

Slika 1: Struktura cjelovitog MoS_2 koja se sastoji od S-Mo-S slojeva. Naznačene su kovalentne veze između atoma unutar jednog sloja te van der Waalsova veza između slojeva. Debljina jednog sloja iznosi ~ 6,5Å. Preuzeto iz [6].

Slika 2: (a) Elektronska struktura dobivena DFT računom za cjeloviti, četveroslojan, dvoslojan i jednoslojan MoS₂. Horizontalna iscrtkana linija označava energetski nivo vrha valentne vrpce u K točci. Crvenom linijom označen je minimum vodljive vrpce, a plavom maksimum valentne vrpce. Puna strelica pokazuje najniži energetski prijelaz, a iscrtkana strelica pokazuje prethodno najniži energetski prijelaz. Preuzeto iz [7]. (b) Elektronska struktura jednoslojnog MoS₂ s prikazanim cijepanjem valentnih vrpci v1 i v2. Crvena strelica prikazuje eksciton A, a plava strelica prikazuje eksciton B. Preuzeto iz [8].

Jedna od mogućih zamjena za silicijske tranzistore su tranzistori bazirani na 2D materijalima poput TMD (eng. transition metal dichalcogenide) [6]. TMD su klasa materijala kemijske formule MX_2 , gdje M predstavlja prijelazni metal (npr. Mo, W, Nb, Ta, Re), a X je halkogeni element (npr. S, Se, Te). TMD materijali spadaju pod skupinu slojevitih van der Waals materijala te najpoznatiji predstavnik TMD materijala je MoS_2 . Jednosloj TMD, odnosno MoS_2 se sastoji od 1 atomskog sloja prijelaznog metala (u ovom slučaju molibdena) koji se nalazi u sendviču 2 atomska sloja halkogenih atoma (u ovom slučaju sumporovih atoma) s kojima je povezan jakom kovalentnom vezom, kao što je prikazano na Slici 1. Cjeloviti oblik MoS_2 sastoji se prethodno opisanih S-Mo-S slojeva međusobno povezanih van der Waalsovim silama, kao što je prikazano na Slici 1. Cjeloviti oblik MoS_2 je dijamagnetični poluvodič s indirektnim procjepom 1,2 eV, smanjivanjem broja slojeva dolazi do kvantnog zatočenja koje se očituje u porastu indirektnog procjepa do preko 1,9 eV u jednosloju MoS₂ [9]. Promjena energije indirektnog procjepa puno je veća nego promjena energije direktnog procjepa koja se poveća samo za 0,1 eV, posljedica toga je da jednoslojan MoS₂ postaje poluvodič sa direktnim procjepom od 1,9 eV, dok u formi dvosloja i višesloja još uvijek ima indirektni procjep, Slika 2.a. Takvo ponašanje očekujemo opaziti promatranjima apsorpcijskog i fotoluminisencijskog spektra jednoslojnog i dvoslojnog MoS₂.

Slika 3: Pomaci atoma 4 Raman aktivna moda u jedničnoj ćeliji cjelovitog MoS₂ kristala. Preuzeto iz [10].

Koristili smo Raman spektroskopiju kako bi ispitali vibracijske modove jednoslojnog i dvoslojnog MoS₂. Glavna svojstva Raman spektra cjelovitog MoS_2 su nerezonantna pobuđenja 4 Raman aktivna moda prvog reda [11]. To su E_{2g}^2 (optičke vibracije susjednih S-Mo-S slojeva u protufazi), E_{1g} (optičke vibracije S atoma u ravnini, u protufazi), E_{2g}^1 (optičke vibracije Mo i S atoma u ravnini, u protufazi) i A_{1q} (optičke vibracije S atoma izvan ravnine duž c osi u protufazi) čiji prikaz vidimo na Slici 3. U tankim filmovima MoS₂ Raman modovi E_{1g} i E_{2g}^2 nisu primjećeni zbog selekcijskih pravila geometrije raspršenja (E_{1g}) ili zbog ograničenog odbijanja Rayleigh raspršenja (E_{2g}^2). Ostala dva Raman aktivna moda E_{2g}^1 i A_{1g} nalaze se tipično na energijama ~ 387cm⁻¹, odnosno ~ 405cm⁻¹. U članku Lee et al. [10] otkriveno je da frekvencije modova E_{2g}^1 i A_{1g} ovise o debljini slojeva u jako tankim filmovima MoS_2 . U ovom radu koristit ćemo razliku frekvenecija između frekvencija Raman modova E_{2g}^1 i A_{1g} za određivanje jednoslojnog i dvosloinog MoS_2 .

Eksperimentalni postav

Priprema uzoraka

Na Institutu za fiziku sintetizirali smo jednoslojni i dvoslojni MoS_2 na SiO_2/Si podlozi. Koristili smo metodu kemijskog taloženja iz plinske faze CVD (eng. chemical vapor deposition) za dobivanje uzoraka MoS_2 . Kao podlogu na kojoj je narastao MoS_2 koristi se 500 μ m debeli sloj dopiranog silicija na kojem se nalazi sloj SiO_2 debljine 300 nm. SiO_2/Si podloga takvih debljina slojeva je pogodna za optičko promatranje atomski tankih slojeva MoS_2 zbog nastalog interferencijskog efekta zbog kojeg nastaje razlika u kontrastu između uzoraka i podloge.

Slika 4: CVD postav za rast MoS₂. (a) Shema postava.(b) Slika postava. Preuzeto iz [12].

Na Slici 4.a je prikazana shema i Slici 4.b slika CVD aparature korištene za sintezu MoS_2 [12]. Koristili smo prašak MoO_3 koji se nalazio u kvarcnoj posudici nedaleko od SiO_2/Si podloge, sumpor koji se nalazi nekoliko centimetara udaljen od podloge koji je zagrijan posebnim grijačem na temperaturu isparavanja 140 °C koji dovodimo pomoću inertnog plina argona na podlogu. Prostor oko podloge i kvarcne posudice je zagrijan na radnu temperaturu od 750°C na kojoj MoO_3 isparava i taloži se na podlozi gdje kemijskom reakcijom u prisustvu zagrijanog plina sumpora nastaje MoS_2 . Cijeli postav je tako napravljen da se može u stvarnom vremenu promatrati rast MoS_2 i time mjenjati pojedini uvjeti kako bi se optimizirao rast. Na Slici 5. je prikazan rast MoS_2 koji u prosjeku traje nekoliko minuta, u ovisnosti u vremenu mogu se postići različiti postoci pokrivenosti podloge s kristalima MoS_2 .

Slika 5: Proces rasta MoS_2 u vremenskim razmacima od 20s. Preuzeto iz [12].

Optički postav

Slika 6: Shema Raman spektrometra kućne izrade.

Za mjerenje optičkih svojstva MoS_2 koristili smo Raman spektrometar kućne izrade, koji se sastoji od konfokalnog mikroskopa i lasera valne duljine 532 nm. Shema mikroskopa prikazana je na Slici 6. Konfokalni mikroskop ima mogućnosti 10x i 50x povećanja. Uzorak je postavljen u invertiranoj konfiguraciji te ga promatramo u reflektiranoj svjetlosti, a reflektirani signal koji nastaje kao rezultat interakcije materijala i svjetlosti odvodimo u kameru spojenu s kompjuterom za optičku sliku ili optičkim vlaknom u Andor Shamrock spektrograf. Spektrograf raspršuje mjereni signal i projicira ga na CCD detektor koji je ohlađen na -30° C. Za snimanje apsorpcijskog spektra koristili smo izvor bijele svijetlosti Thorlabs thungsten lampu. Također smo koristili komercijalni Raman uređaj NTEGRA Spectra na Institutu za fiziku u Beogradu za mjerenje Raman spektara jednoslojnog i dvoslojnog MoS₂.

Rezultati

Slike 7.a i 7.b prikazuje optičku sliku jednoslojnog i dvoslojnog MoS_2 na SiO_2/Si podlozi na kojoj smo vršili mjerenja. Razlika između jednoslojnog, dvoslojnog MoS_2 i SiO_2/Si podloge se lako može uočiti zbog razlike u optičkim kontrastima. Slika 7.c prikazuje AFM topološku sliku jednoslojnog MoS_2 .

Slika 7: Optička slika (a) jednoslojnog MoS₂ i (b) dvoslojnog MoS₂. (c) AFM slika jednoslojnog MoS₂ i (d) visinski profil jednosloojnog i dvoslojnog MoS₂.

Visinska razlika između slojeva i podloge izmjerena "tapping" modom AFM-a je prikazana na Slici 7.d, dobivena visina MoS_2 jednosloja na SiO_2/Si podlozi je 0,8-1,0 nm, dok visina MoS_2 jednosloja na postojećem jednosloju MoS_2 je izmjerena 0,5-0,7 nm što odgovara teoretskoj debljini od 6,5 Å. Odstupanje od teorijske debljine jednosloja MoS_2 na podlozi implicira da SiO_2/Si podloga na svojoj površini ima apsorbirane čestice koje uzrokuju veću debljinu jednosloja MoS_2 na podlozi.

Apsorpcijski spektar

Kako bi bolje razumjeli fenomene vezanih ekscitonskih stanja, promatramo apsorpcijski spektar u granicama od 550 nm do 800 nm. Iz literature [9] znamo da apsorpcijskim spektrom cjelovitog MoS_2 dominiraju 2 izražena prijelaza koji odgovaraju ekscitonima A (670 nm) i B (616 nm). Ekscitoni su vezana stanja šupljina i elektrona, osnovna pobuđenja kondenzirane tvari koja prenose energiju bez prijenosa električnog naboja. Oni nastaju kao rezultat direktnih prijelaza između maksimuma valentnih vrpci v1 i v2 i minimuma vodljive vrpce, koji se nalazi u K točci Brillouinove zone, što je prikazano na Slici 2.b. Razdvajanje valentnih vrpci je posljedica zajedničkog efekta vezanja između slojeva i spin-orbit vezanja.

Slika 8: Apsorpcijski spektar jednoslojnog i dvoslojnog MoS₂. Označene su valne duljine ekscitonskih prijelaza A i B.

Apsorpcijski spektar dvoslojnog MoS₂ je intenzivniji od jednoslojnog, međutim položaji rezonantnih maksimuma su ostali isti, prikazano na Slici 8. Eksciton A odogovara nižoj apsorpcijskoj rezonanci u položaju i širini, te time pripisujemo eksiton A emisiji jednosloja i direktnom energetskom procjepu. Apsorpcijski spektar je opisan ovisnošću $\Delta R/R \circ \lambda$, gdje je $\Delta R/R = 1 - \frac{R_{uzorak}}{R_{podloga}}$ kompleksna reflektivnost, a λ valna duljina.

Fotoluminiscencija

Na Slici 9. prikazani su fotoluminiscenski spektri jednoslojnog i dvoslojnog MoS_2 . Fotoluminiscenski spektri sastoje se od 2 ekscitonska prijelaza, koji odgovaraju A ekscitonu (674,7 nm) i B ekscitonu (620,7/623,5 nm). Eksciton B pomaknut je za ~50 nm, što odgovara energiji cijepanja valentne vrpce [9]. Pri prijelazu s jednoslojnog na dvoslojni MoS_2 opažamo smanjene intenziteta ekscitona A, dok eksciton B ostaje isti, zbog prijelaza iz direktnog u indirektni procjep. Povećanjem broja slojeva intenzitet fotoluminiscencije opada te u cjelovitom MoS_2 gotovo je nepostojeći. Položaji ekscitonskih rezonancija u fotoluminiscenciji se za 5 nm pomaknuti u crveno u odnosu na položaj apsorpcijskih maksimuma (tzv. Stokeov pomak) [13]. On upućuje na efikasnu radiativnu rekombinaciju pri direktnim ekscitonskim prijelazima.

Slika 9: Fotoluminiscenski spektar jednoslojnog i dvoslojnog MoS₂. Označene su valne duljine ekscitonskih prijelaza A i B.

Raman spektroskopija

Na Slici 10. vidimo Raman spektre jednoslojnog i dvoslojnog MoS₂ pobuđene laserskom svjetlošću od 532 nm u zraku na sobnim uvjetima. Iz dobivenih mjerenja jednosloja i dvosloja vidimo da se frekvencija A_{1g} moda povećava, a frekvencija E_{2g}^1 moda smanjuje prijelaskom s jednosloja na dvosloj MoS_2 . Povećanjem broja slojeva vdW sila između slojeva guši atomske vibracije što rezultira potrebom za unos veće energije za pobuđenje E_{2g}^1 i A_{1g} modova. Prema tome, oba moda E_{2g}^1 i A_{1g} trebali bi biti pomaknuti u plavo (eng. blueshifted), odnosno ukrutiti se. Međutim, samo je pomak frekvencije moda ${\rm A_{1g}}$ u skladu s očekivanjima. Pomak frekvencije moda ${\rm E_{2g}^1}$ u crveno (eng. redshifted) ukazuje na mogućnost da povećanje vdW sila između slojeva ne doprinosi puno promjeni frekvencija modova. Mogući drugi razlozi promjene frekvencije modova su strukturne promjene uzrokovane različitim vezanjima između slojeva ili posljedica dugodosežne Coulomb interakcije među slojevima [10].

Slika 10: Raman spektar MoS_2 s prikazanim E_{2g}^1 i A_{1g} modovima. (a) Raman spektar jednoslojnog MoS_2 . (b) Raman spektar dvoslojnog MoS_2 .

Na Slikama 10. se vidi ovisnost frekvencije modova o debljini slojeva, takvo svojstvo E_{2g}^1 i A_{1g} Raman modova nam omogućuje da pomoću ovisnosti razlike frekvencija modova o debljini slojeva možemo odrediti da li se radi o jednoslojnom ili dvoslojnom MoS₂. Takav postupak nije ograničen samo za jednoslojan i dvoslojan MoS₂, nego je primjenjiv i na višeslojeve [11]. Rezultati dobiveni pomoću promatranja razlike frekvencija su u skladu sa optičkim, fotoluminiscenskim, apsorpcijskim i AFM mjerenjima u ovom radu.

Zaključak

Karakterizirali smo jednoslojan i dvoslojan MoS₂ pomoću AFM, fotoluminiscencije, apsorpcije i Raman spektroskopije. Koristeći AFM u "tapping" modu izmjerili smo visine jednoslojnog i dvoslojnog MoS_2 na SiO_2/Si podlozi, te uočili moguću dodatnu adsorpciju na podlozi zbog koje visina jednoslojnog MoS_2 na podlozi odstupa od teoretske vrijednosti. Prijelaz s indirektnog procjepa na direktni procjep objašnjava porast intenziteta fluorescencije ekscitona A kod jednoslojnog u odnosu na dvoslojni MoS₂. Položaj ekscitonskih rezonancija u fotoluminiscenciji je pomaknut u crveno u odnosu na ekscitonske rezonance u apsorpcijskim spektrima, što je posljedica Stokeovog pomaka prema rubu apsorpcijskog optičkog prijelaza. Intezitet apsorpcijskog spektra dvoslojnog MoS₂ je veći od jednoslojnog, dok su položaji rezonantnih maksimuma ostali isti. U Raman spektrima opazili smo da se frekvencija Raman moda E_{2g}^1 smanjuje dok se frekvencija Raman moda A_{1g} povećava s povećanjem debljine slojeva. Obzirom da je promjena frekvencije mod
a $\mathrm{E}_{2\mathrm{g}}^1$ u crveno neočekivana unutar modela slabog vezanja vdW sila među slojevima, takav rezultat ukazuje na moguće druge bitne pojave poput strukturnih promjena uzrokovanih različitim vezanjima između slojeva ili dugodosežne Coulomb interakcije među slojevima.

Literatura

- L. Landau and E. Lifshitz, "The fundamental principles of statistical physics," 1980, pp. 133. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/ B978008023039950007X
- [2] A. K. Geim, "The rise of graphene," Nature Mater., vol. 6, 2007. 1.1.1
- [3] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, "Direct observation of a widely tunable bandgap in bilayer graphene," Nature, vol. 459, pp. 820–823, jun 2009. 1.1.2
- [4] Gordon E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, no. 8, 1965. 1.1.1

- [5] Gordon E. Moore, "Progress In Digital Integrated Electronics," IEDM Tech. Digest, pp. 11–13, 1975. 1.1.1
- [6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS₂ transistors". Nature nanotechnology, vol. 6, no. 3, pp. 147150, 2011.
- [7] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, "Emerging Photoluminescence in Monolayer MoS₂," Nano Letters, vol. 10, pp. 1271–1275, apr 2010.
 1.3.1
- [8] Tawinan Cheiwchanchamnangij and Walter R. L. Lambrecht,"Quasiparticle band structure calculation of monolayer, bilayer, and bulk *MoS*₂", Phys. Rev. B 85, 205302 – Published 2 May 2012
- [9] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically Thin MoS2 : A New Direct-Gap Semiconductor," Physical Review Letters, vol. 105, p. 136805, sep 2010. 1.1.2, 3.2.3
- [10] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone, and Sunmin Ryu, "Anomalous Lattice Vibrations of Single- and Few-Layer MoS₂" ACS Nano 2010 4 (5), 2695-2700
- [11] Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier, and Dominique Baillargeat, "From bulk to Monolayer MoS₂: Evolution of Raman Scattering", Advanced Functional Materials 22(7):1385-1390, April 2012
- [12] B.Radatović, "Diplomski rad sklopovi bazirani na slojevitim 2D materijalima i njihovim heterostrukturama", 2016
- [13] Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer *MoS*₂ by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)