Molekularni mehanizam generiranja heliciteta u diobenom vretenu

Lovro Vrček Mentor: izv. prof. dr. sc. Nenad Pavin

Prirodoslovno-matematički fakultet u Zagrebu Fizički odsjek

21. siječnja 2018.

Sažetak

Promotren je jednostavni model nastajanja C i S oblika svežnjeva mikrotubula u diobenom vretenu prilikom mitoze te je nađeno analitičko rješenje za slučaj kada se sustav sastoji od dvije kugle koje predstavljaju centromere i dva štapa koji predstavljaju svežnjeve mikrotubula. Također je proučen i model utjecaja proteinskih motora na razdvajanje kinetohora, u koji je uključen i mostni svežanj. Na temelju tih razmatranja predložen je novi model u koji su uključeni proteinski motori, s ciljem da se objasni mehanizam generiranja heliciteta u diobenom vretenu.

1 Uvod

Jedan od glavnih ciljeva svih živih organizama je razmnožavanje. Sa stanicama situacija nije drugačija te stoga i one prolaze kroz niz događaja koji dovode do njezinog dijeljenja na stanice kćeri. Taj se niz događaja naziva stanična dioba, a jedna od glavnih faza stanične diobe jest mitoza. U mitozi se kromosomi stvoreni u prijašnjoj fazi staničnog ciklusa, zvanoj interfaza, razdvajaju u dvije nove jezgre. Nakon mitoze najčešće slijedi citokineza, tokom koje se razdvajaju citoplazma, stanični organeli i stanična membrana na dvije nove stanice kćeri. Također je moguće da dođe do poremećaja prilikom mitoze te da nastanu tri ili više stanica kćeri, apoptoze stanica ili do nastajanja stanica s mutacijama, [1]. Te mutacije kasnije mogu dovesti do razvoja karcinoma, te je upravo stoga bitno dobro proučiti mehanizme mitoze i detaljno ih opisati matematičkim modelima, što je upravo cilj ovog seminara.

Sama mitoza podijeljena je na nekoliko stadija koji obilježavaju kraj neke aktivnosti u stanici i početak neke druge. Te faze su: profaza, prometafaza, metafaza, anafaza i telofaza, što je prikazano i na slici 1.

Prva faza mitoze, profaza, započinje s dvije identične kopije svakog kromosoma nastalog u interfazi. Kromosomi se kondenziraju, centrosomi pomiču, te se tako formira diobeno vreteno. Diobeno vreteno je struktura koja se sastoji od centrosoma, kromosoma i svežnjeva mikrotubula. U prometafazi se formiraju kinetohore koje povezuje dvije sestrinske kromatide na kromosomu. Iz oba centrosoma počinju izlaziti mikrotubuli koji dosežu kromosome i povežu se na njihove kinetohore te ih stoga zovemo kinetohornim mikrotubulima. Drugi mikrotubuli koji izlazi iz pola susretnu se s onima koji proizlaze iz suprotnog pola te se time i polovi međusobno povezuju, a zovemo ih interpolarnim mikrotubulima. Time je formirano diobeno vreteno.

U metafazi proteinski motori koji se nalaze na mikrotubulima pomiču kromosome prema ekvatorijalnoj ravnini - imaginarnoj ravnini koja se nalazi na pola puta između dva centrosoma.

Slika 1: Prikaz stadija mitoze. Zelenom bojom označeni su mikrotubuli, smeđom kromosomi, ljubičastom kinetohore, a crnom vezivni proteini. Preuzeto iz [2].

Tek kad su sve kinetohore povezane preko svežnja mikrotubula sa centrosomima i kada se svi kromosomi nalaze u ekvatorijalnoj ravnini, može započeti iduća faza mitoze - anafaza. U anafazi se kromosomi su u svojem najgušćem stanju. Oni se podijele na dvije kćeri kromatide, koje zatim putuju prema polovima.

Nakon toga slijedi posljednja faza mitoze, telofaza. U toj fazi se u svakoj stanici kćeri formira kćer jezgra. Time je mitoza gotova, nakon čega slijedi stvaranje i dijeljenje citoplazme i staničnih organela u citokinezi. Time je dioba stanice završena i kao rezultat smo dobili dvije nove stanice kćeri.

Fokus ovog seminara biti će na diobenom vretenu i mehanizmima koji utječu na generiranje heliciteta u vretenu. Dugo vremena se mislilo da mikrotubuli u vretenu poprimaju samo C i S oblike, no nedavno je pokazano da osim toga oni poprimaju i spiralne oblike, tj. ukazuju na postojanje heliciteta u diobenom vretenu. Nužan uvjet za to jest postojanje momenta sila te je stoga potrebno iznova promotriti djelovanje proteinskih motora na mikrotubule.

Promotrimo stoga prvo građu i ustroj mikrotubula. Mikrotubuli su dio staničnog skeleta koji se nalaze u citoplazmi, te izgledom podsjećaju na tanke šuplje cjevčice. Kraj mikrotubula koji je pričvršćen za centrosom nazivamo "minus" krajem, a slobodan kraj "plus" krajem, čime je definirano njihovo usmjerenje. Mikrotubuli koji se protežu iz istog pola mogu formirati paralelne svežnjeve, u slučaju da međusobno nisu jako udaljeni. Slično vrijedi i za mikrotubule koji se protežu iz dva različita pola, što dovodi do antiparalelnih svežnjeva, [3]. Da bi se mikrotubuli povezali potrebno je djelovanje proteinskih motora, čije su dimenzije nekoliko redova veličine manje od duljine mikrotubula. Te motore možemo podijeliti na dvije skupine: aktivne i pasivne. Pritom aktivni imaju usmjereno gibanje prema plus ili minus kraju mikrotubula, dok pasivni nemaju usmjereno gibanje, [3].

Kao što smo već rekli, iako su mikrotubuli u pravilu ravni, u diobenom vretenu tvore pretežito C, S i helikalne oblike, što se vidi i na slici 2. Kako bismo mogli proučavati helikalne oblike, poželjno je da prvo opišemo C i S oblike, za čije formiranje nisu potrebni proteinski motori. U ovu svrhu modelirat ćemo svežnjeve mikrotubula kao elastične štapove te uzeti u obzir sile koje djeluju na polovima, sile klizanja mikrotubula u regiji preklopa interpolarnih mikrotubula i sila

Slika 2: Prikaz diobenog vretena u mitozi. Zelenom bojom označeni su svežnjevi mikrotubula, a ljubičastom su označene kinetohore. Lijevo: prikaz u ravnini paralelnoj s osi vretena. Jasno se vide C i S oblici svežnjeva mikrotubula. Desno: prikaz diobenog vretena u ravnini okomitoj na os vretena. Uočava se naznaka spiralnog oblika mikrotubula. Preuzeto iz [6].

kojim plus dijelovi mikrotubula djeluju na kromosome. Prema tom modelu, pod utjecajem navedenih sila, interpolarni mikrotubuli bi osjetili kompresiju i poprimili C oblik. Eksperimentalno je uočeno da kinetohorni mikrotubuli također poprimaju takav oblik, no uzmemo li u obzir da su kromatide povezane kromatinom, čiji je Youngov modul elastičnosti sedam redova veličine manji od Youngovog modula mikrotubula, lako je uočiti da bi se kromatin sprešao umjesto da poprimi C oblik. Stoga je uveden mostni svežanj mikrotubula, [4] koji povezuje dva kinetohorna svežnja, a postojanje mostnog svežnja je zatim i eksperimentalno potvrđeno, [5]. Ono što nam sada preostaje, jest odrediti model kojim ćemo opisati moment sila u diobenom vretenu i stvaranje heliciteta.

Eksperimentalnu potvrdu heliciteta dobila je Tolić grupa na fiksiranim HeLa stanicama. Promatrane su stanice s vertikalnom orijentacijom koje se povremeno mogu naći u populaciji mitotičkih stanica, a korištena je metoda konfokalne mikroskopije. Pokazano je da pojedini svežnejvi mikrotubula rotiraju u smjeru kazaljke na sat, što ukazuje na lijevi helicitet u vretenu. Isto je utvrđeno i za horizontalno polegnute stanice, što znači da je helicitet neovisan o orijentaciji stanica, te da je to temeljno svojstvo diobenog vretena, [6].

Poznato je da proteinski motor kinezin-5 (Eg5) koji se nalazi na mikrotubulima ima preferiranu lijevu stranu kretanja po protofilametima, građevnoj jedinici mikrotubula, [3]. Inaktivira li se motor Eg5 u mitotičkim stanicama uočava se da nakon inaktivacije helicitet tih stanica postaje približno nula, [6]. To jasno pokazuje da je motor Eg5 ključan čimbenik za generiranje momenata sila i heliciteta u diobenom vretenu.

2 Formiranje C i S oblika mikrotubula

2.1 Postavljanje modela

Kako bismo objasnili uočene oblike, uvodimo model na temelju ravnoteže sila i momenata, a uzimamo u obzir i elastična svojstva svežnjeva mikrotubula. Dva centromera prikazujemo kao kugle polumjera d čija su središta udaljena za L, a mikrotubuli su prikazani kao savijeni štapovi koji povezuju te dvije kugle, [6]. Taj sustav vidi se na slici 3, lijevo. Pozicije na polovima na kojima se nalaze krajevi mikrotubula označujemo vektorima \mathbf{d}_i i \mathbf{d}'_i . Na temelju činjenice da je diobeno vreteno pretežito istog oblika tijekom metafaze, zaključujemo da postoji ravnoteža sila i momenata u tom sustavu, što pretvoreno u jednadžbe za lijevi pol izgleda ovako:

$$\sum_{i} \mathbf{F}_{i} = 0, \tag{1}$$

$$\sum_{i} (\mathbf{M}_{i} + \mathbf{d}_{i} \times \mathbf{F}_{i}) = 0.$$
⁽²⁾

Ovdje su \mathbf{F}_i i \mathbf{M}_i sile i momenti kojim lijevi pol djeluje na *i*-ti svežanj mikrotubula. Jednadžbe za desni pol su analogne jednadžbama (1) i (2), ali bismo veličine označili s \mathbf{F}'_i , \mathbf{M}'_i i \mathbf{d}'_i . Tada možemo napisati i jednadžbe ravnoteže za pojedini svežanj:

$$\mathbf{F}_i + \mathbf{F}'_i = 0,\tag{3}$$

$$\mathbf{M}_{i} + \mathbf{M}_{i}' + \mathbf{d}_{i} \times \mathbf{F}_{i} + (\mathbf{L} + \mathbf{d}_{i}') \times \mathbf{F}_{i}' = 0.$$
(4)

Slika 3: Lijevo: Prikaz sustava koji modeliramo. Sive kugle su polovi, a zeleni štapovi su svežnjevi mikrotubula. Desno: Prikaz veličina kojima opisujemo sustav. Preuzeto iz [6].

S obzirom da svežanj mikrotubula opisujemo kao elastični štap, pridjeljujemo mu elastičnost pri savijanju κ i krutost na uvijanje (torziju) τ . Put duž štapa opisujemo sa s, a radij vektor s $\mathbf{r}(s)$, pomoću čega možemo izraziti i normalizirani tangencijalni vektor kao $\mathbf{t} = d\mathbf{r}/ds$. Kut torzije opisujemo s $\phi(s)$ i on označava orijentaciju presjeka štapa duž duljine štapa. Te veličine vide se na slici 3, desno. Zakrivljenost i torziju štapa možemo tada opisati statičkom Kirchoffovom jednadžbom, [8]:

$$\kappa \mathbf{t} \times \frac{d\mathbf{t}}{ds} + \tau \frac{d\phi}{ds} \mathbf{t} = \mathbf{r} \times \mathbf{F}_i - \mathbf{M}_i.$$
(5)

Ovim modelom možemo opisati sustav s N svežnjeva mikrotubula, no radi pojednostavljenja promotrit ćemo slučaj sa samo 2 svežnja. U tom slučaju, koristeći rotacijsku simetriju vretena uspostavljamo relacije simetrije između komponenata sila i momenata paralelnih, odnosno okomitih na vektor **L**:

$$\mathbf{F}_{1\parallel} = \mathbf{F}_{2\parallel}, \quad \mathbf{F}_{1\perp} = -\mathbf{F}_{2\perp}, \tag{6}$$

$$\mathbf{M}_{1\parallel} = \mathbf{M}_{2\parallel}, \quad \mathbf{M}_{1\perp} = -\mathbf{M}_{2\perp}. \tag{7}$$

Također ćemo se ograničiti na slučajeve u kojima vrijedi $|\mathbf{M}_i| = |\mathbf{M}'_i|$, $\mathbf{M}_{i\parallel} = -\mathbf{M}'_{i\parallel}$ i $\mathbf{d} \cdot \mathbf{M}_{i\perp} = \mathbf{d}' \cdot \mathbf{M}'_{i\perp} = 0$, te radi pojednostavljenja odabiremo da \mathbf{d} i \mathbf{d}' budu okomiti na \mathbf{L} . Koordinatni sustav postavljamo tako da ishodište bude u središtu lijevog pola, a x-os gleda duž vektora \mathbf{L} .

2.2 Analitičko rješenje modela

Uzmemo li sve to u obzir, problem se znatno pojednostavljuje. Iz jednadžbe (1) i simetrije sila $F_{1\parallel} = F_{2\parallel}$ dobiva se $F_{1x} = F_{2x} = 0$. Sličnim postupkom dobiva se $F_{1y} = -F_{2y}$ i $F_{1z} = -F_{2z}$. Za odabir koordinatnog sustava u kojem vrijedi $M_{iy} = M'_{iy}$ i $M_{iz} = -M'_{iz}$ dobivamo $F_{iy} = 0$. Na kraju iz trećeg ograničenja postavljenog u prethodnom odlomku i okomitosti **d** na **L** dobivamo relaciju između parametara M_{1x} , M_{1y} i M_{1z} :

$$\left(\frac{2d}{M_{1x}L}\right)^2 = \frac{1}{M_{1y}^2} + \frac{1}{M_{1z}^2}.$$
(8)

U aproksimaciji malih kuteva, statička Kirchoffova jednadžba (5) može se analitički riješiti. Moment sile koji uzrokuje "twist", odnosno helicitet u diobenom vretenu odgovara momentu M_{1x} . Dakle, u slučaju kad je taj moment jednak nuli, pojavljuju se samo C i S oblici svežnjeva mikrotubula, no kada je različit od nule javlja se helicitet.

Analitičko rješenje statičke Kirchoffove jednadžbe dobiva se na način da se ona prvo raspiše po komponentama, a zatim eliminiramo parametre prema ograničenjima koja smo postavili i relacijama simetrije koje proizlaze iz našeg modela. Jednadžbe dobivene za svaku od tri komponente glase:

$$-\tau \frac{d\phi}{dx} = M_{ix},\tag{9}$$

$$-\kappa \frac{d^2 z}{dx^2} - M_{ix} \frac{dy}{dx} = F_{ix} z - F_{iz} x - M_{iy},\tag{10}$$

$$\kappa \frac{d^2 y}{dx^2} - M_{ix} \frac{dz}{dx} = F_{iy} x - F_{ix} - M_{iz}.$$
(11)

Uzmimo još u obzir da vrijedi $F_{ix} = F_{iy} = 0$. Nakon rješavanja sustava diferencijalnih jednadžbi dobivamo rješenja koja opisuju oblik štapa:

$$y_i(x) = -A_i \kappa \cos(\frac{M_{ix}}{\kappa}x) + B_i \kappa \sin(\frac{M_{ix}}{\kappa}x) + \frac{F_{iz}}{2M_{ix}}x^2 + M_{iy}x + C_i,$$
(12)

$$z_i(x) = A_i sin(\frac{M_{ix}}{\kappa}x) + B_i cos(\frac{M_{ix}}{\kappa}x) + \left(\kappa \frac{F_{iz}}{M_{ix}^2} + \frac{M_{iz}}{M_{ix}}\right) + D_i.$$
(13)

3 Utjecaj motora na razdvajanje kinetohora

U prošlom modelu zanemarili smo utjecaj proteinskih motora pri formiranju diobenog vretena, no oni zapravo imaju ključnu ulogu za nesmetano odvijanje mitoze. Njihov utjecaj se najbolje vidi u anafazi anafazi tokom koje dolazi do odvajanja kinetohora i putovanja kromatida prema polovima.

Promotrimo model u kojem je putovanje kromatida prema polovima objašnjeno klizanjem mikrotubula u mostnom svežnju. Sustav se sastoji od 2 para sestrinskih kinetohora, K-svežanj koji povezuje kinetohore i polove te mikrotubule mostnog svežnja koji se protežu od jednog do drugog pola i isprepliču se u sredini, [7]. Takav model prikazan je na slici 4. Pozicije kinetohora označavamo s x_k^{\pm} , a pozicije polova s x_p^{\pm} . Slično tome, pozicije K-svežnja i mostnog svežnja označavamo s x_{kf}^{\pm} i x_{br}^{\pm} . Pritom, oznake + i - označavaju radi li se o desnoj ili lijevoj strani.

Slika 4: Prikaz jednodimenzionalnog modela kojim opisujemo utjecaj motora u razdvajanju kinetohora. Sivom Bojom označeni su polovi i motori na polovima, zelenom bojom označeni su mikrotubuli, ljubičastom kinetohore, a crnom proteinski motori u regiji preklopa mikrotubula. Preuzeto iz [7].

Pomicanje kinetohore izračunato je iz ravnoteže viskozne sile trenja i sile koju generira kinetohora,

$$\chi_k \frac{dx_k^{\pm}}{dt} = F_k^{\pm},\tag{14}$$

pri čemu je koeficijent trenja kromosoma označen s χ_k . Sila F_k ovisi o brzini kinetohore, a opisujemo ju s

$$F_k^{\pm} = f_k \left(\pm 1 - \frac{v_k^{\pm} - v_{kf}^{\pm}}{v_{k0}} \right), \tag{15}$$

pri čemu f_k označava silu potrebnu za mirovanje kinetohora ("stall-force"), a v_{k0} brzinu bez tereta. Dinamiku K-svežnja određuju sile koje stvaraju molekularni motori distribuirani duž svežnja (F_m^{\pm}) , na polu (F_{pk}^{\pm}) i na kinetohori (F_k^{\pm}) , pri čemu je klizanje prigušeno pasivnim motorima u regiji preklopa. Označimo li s N_c broj motora u regiji preklopa K-svežnja i mostnog svežnja, a s χ_c trenje proteina koji povezuje mikrotubule u preklopu, dobivamo izraz:

$$N_{c}^{\pm}\chi_{c}\frac{d\left(x_{kf}^{\pm}-x_{br}^{\pm}\right)}{dt} = F_{m}^{\pm} + F_{pk}^{\pm} - F_{k}^{\pm}.$$
(16)

Slično kao i silu na kinetohore, ostale dvije sile u ovoj relaciji također možemo opisati pomoću "force-velocity" relacija:

$$F_m^{\pm} = N_m^{\pm} f_m \left(\pm 1 - \frac{v_{kf}^{\pm} - v_{br}^{\pm}}{v_m} \right), \quad F_{pk}^{\pm} = f_p \left(\pm 1 - \frac{v_{kf}^{\pm} - v_p^{\pm}}{v_{p0}} \right), \tag{17}$$

pri čemu su f_m i f_p "stall-force" sile motora i pola, a v_m i v_{p0} brzine bez tereta.

Gibanje mostnog-svežnja određeno je silom motora u regiji preklopa mostnog svežnja i Ksvežnja (F_m^{\pm}) , silom motora u regiji preklopa mikrotubula koji čine mostni svežanj (F_{br}) i silom motora na polovima koji djeluju na mikrotubule mostnog svežnja (F_{pb}^{\pm}) . Dobiva se relacija analogna relaciji (16):

$$N_{c}^{\pm}\chi_{c}\frac{d\left(x_{br}^{\pm}-x_{kf}^{\pm}\right)}{dt} = \pm F_{br} - F_{m}^{\pm} + F_{pb}^{\pm}.$$
(18)

Za kraj još možemo odrediti i gibanje polova koje određuju sile mostnih i K-svežnjeva te viskozno trenja:

$$\chi_p \frac{dx_p^{\pm}}{dt} = -\left(F_{pk}^{\pm} + F_{pb}^{\pm} + F_{pk}^{'\pm} + F_{pb}^{'\pm}\right),\tag{19}$$

pri čemu je χ_p koeficijent trenja na polu.

U odnosu na prošle modele, ovo je prvi model koji u razmatranje odvajanja kinetohora uključuje i mostni svežanj. Stoga ne začuđuje da najbolje opisuje eksperiment u kojem se laserski prerežu mostni i K-svežanj te promatra dinamika kinetohora, [7].

4 Utjecaj proteinskih motora na generiranje heliciteta

Kako bismo pobliže proučili mehanizam generiranja heliciteta u diobenom vretenu, proučit ćemo sustav s dva pola, dva mikrotubula, po jednim motorom na svakom polu i jednim motorom u regiji preklapanja mikrotubula. Motore modeliramo kao opruge koje spajaju dva mikrotubula, odnosno mikrotubul i pol.

Promotrimo li lijevi mikrotubul vidjet ćemo da postoje dvije sile koje djeluju na njega: sila pola (F_p) i sila motora (F_m) . Analogno prethodnom modelu, te sile mogu se izračunati iz "force-velocity" relacije:

$$\mathbf{F}_{p} = \mathbf{f}_{p0} \left(1 - \frac{v_{p}}{v_{p0}} \right), \qquad \mathbf{F}_{m} = \mathbf{f}_{m0} \left(1 - \frac{v_{m}}{v_{m0}} \right).$$
(20)

Pritom su f_p i f_m "stall-force" sile pola i motora u regiji preklopa, v_p i v_m brzine gibanja pola i motora, a v_{p0} i v_{m0} brzine gibanja bez tereta za pol i motor. Iz ravnoteže sile dobivamo jednadžbe:

$$\chi_c \frac{x_m - x_p}{dt} = F_{m,x} - F_{p,x},\tag{21}$$

$$\chi_c \frac{y_m - y_p}{dt} = F_{m,y} - F_{p,y},$$
(22)

$$F_{m,z} = F_{p,z}.$$
(23)

Gdje je χ_c ponovno koeficijent trenja proteinskog motora u regiji preklopa mikrotubula. Iduće što promatramo jest ravnoteža momenata:

$$\eta \frac{d\phi}{dt} = (\mathbf{r}_p \times \mathbf{F}_p)_x - (\mathbf{r}_m \times \mathbf{F}_m)_x, \qquad (24)$$

$$(\mathbf{r}_p \times \mathbf{F}_p)_y = (\mathbf{r}_m \times \mathbf{F}_m)_y,\tag{25}$$

$$\eta \frac{d\theta}{dt} = (\mathbf{r}_p \times \mathbf{F}_p)_z - (\mathbf{r}_m \times \mathbf{F}_m)_z.$$
(26)

Ovdje smo uveli koeficijent trenja za gibanje mikrotubula pod djelovanjem momenta sile, tj. na uvijanje za kuteve ϕ i θ . Ono što nas zapravo zanima u ravnoteži momenata, i cijelom ovom modelu, jest promjena kuta ϕ , jer je to kut koji označava da dolazi do generiranja heliciteta.

Iduće što bi bilo potrebno napraviti pomoću ovih relacija i statičke Kirchoffove jednadžbe naći jednadžbe za oblik mikrotubula u ovom sustavu. No, čak i u ovako pojednostavljenom modelu taj račun bi bio znatno kompliciraniji od računa u poglavlju 2, stoga je izvan dosega ovog seminara. Iako je ovo mali korak naprijed u opisivanju načina na koji motori utječu na oblik mikrotubula u diobenom vretenu, problem je daleko od riješenog te ostaje još mnogo prostora za daljnja istraživanja.

5 Zaključak

Iako se dioba stanica promatra već desetljećima, još su nam mnoge stvari nepoznate. Cilj ovog seminara jest da ukažemo na kompleksne oblike koji nastaju u diobenom vretenu prilikom mitoze, od kojih su neki tek nedavno po prvi puta uočeni, te da pokušamo protumačiti na koje načine ti oblici nastaju. U prvom dijelu seminara oslanjajući se na prijašnje rezultate dobivamo analitički izraz za oblik svežnjeva mikrotubula u jednostavnom modelu. U drugom dijelu ukazujemo na bitnu ulogu proteinskih motora u dinamici diobenog vretena. Na kraju predlažemo model u kojem bi upravo zbog djelovanja proteinskih motora dolazilo do heliciteta u diobenom vretenu. Nažalost, kompletna razrada te teorije je izvan dosega ovog seminara te time i dalje ostaje otvoreno pitanje.

6 Zahvale

Zahvaljujem se svom mentoru izv. prof. dr. sc. Nenadu Pavinu i Ivani Ban na uloženom trudu, strpljenju i konstruktivnim razgovorima koji su mi uvelike pomogli u tumačenju ovih problema i nalaženju načina kako ih riješiti.

Literatura

- [1] Wikipedia, Mitosis: https://en.wikipedia.org/wiki/Mitosis
- [2] Maja Novak, Uloga premosnih mikrotubula u ravnoteži sila diobenog vretena, doktorski rad, Sveučilište u Zagrebu, 2017.
- [3] Pavin, N., & Tolić, I. M., Self-Organization and Forces in the Mitotic Spindle. Annu. Rev. Biophys. 45, 279-298 (2016)
- [4] Tolić, I. M., & Pavin, N., Bridging the gap between sister kinetochores. Cell Cycle 9, 1169-1170 (2016)
- [5] Kajtez, J., et al., Overlap microtubules link sister k-fibres and balance the forces on bioriented kinetochores, Nat Communications, (2016)
- [6] Novak, M., Polak, B., Šimunić, J., Boban, Z., Kuzmić, B., Thomae, A. W., Tolić I. M., Pavin, N., The mitotic spindle is chiral due to torques generated by motor proteins, unpublished manuscript
- [7] Vukušić, K., Buđa, R., Bosilj, A., Milas, A., Pavin, N., Tolić, I. M., Microtubules sliding within the Bridging Fiber Pushes Kinetochores Fibers Apart to Segregate Chromosomes, Developmental Cell 43, 11-12, (2017)
- [8] Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Course of Theoretical Physics, Volume 7). Institute of Physical Problems, USSR Academy of Sciences: Pergamon Press (1970)