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The goal of the presentation

For a bounded C 1,1 domain D ⊂ Rd , d ≥ 3,

and for the non-local
operator ϕ(− ∆|D), the infinitesimal generator of a subordinate killed
Brownian motion, we solve the following problem

−ϕ(− ∆|D)u(x) = f (u(x)) x ∈ D,

lim
x→z

u(x)

Pϕ
Dσ(x)

= ∞ z ∈ ∂D,

for f : D → R, where Pϕ
Dσ is a reference function - the Poisson potential

of (d − 1)-dimensional Hausdorff measure on ∂D.
Also:

ϕ is the Laplace exponent of the subordinator, i.e. a Bernstein
function,

Example: ϕ(λ) = λs , s ∈ (0, 1), ϕ(− ∆|D) = (−∆|D)
s is the spectral

fractional Laplacian.
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Probabilistic background
Underlying process and connection to ϕ(− ∆|D)

Let W = (Wt)t be a Brownian motion in Rd with the char. exp. ξ 7→ |ξ|2.

Let S = (St)t be a subordinator with the Laplace exponent ϕ. The killed
Brownian motion WD upon exiting the set D is defined by

WD
t :=

{
Wt , t < τD := inf {t > 0 : Wt ̸∈ D},
∂, t ≥ τD ,

where ∂ is the additional point added to Rd called the cemetery.
The process

Xt = (WD)St , t ≥ 0,

is called the subordinate killed Brownian motion.
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I. Biočić (UniTo) Large solutions
Probability and Analysis, Bedlewo 22.4.2024.
5 / 26



Probabilistic background
Underlying process and connection to ϕ(− ∆|D)

Let W = (Wt)t be a Brownian motion in Rd with the char. exp. ξ 7→ |ξ|2.
Let S = (St)t be a subordinator with the Laplace exponent ϕ. The killed
Brownian motion WD upon exiting the set D is defined by

WD
t :=

{
Wt , t < τD := inf {t > 0 : Wt ̸∈ D},
∂, t ≥ τD ,

where ∂ is the additional point added to Rd called the cemetery.

The process
Xt = (WD)St , t ≥ 0,

is called the subordinate killed Brownian motion.
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I. Biočić (UniTo) Large solutions
Probability and Analysis, Bedlewo 22.4.2024.
5 / 26



Subordination and killing do not commute!
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Probabilistic background
Assumptions on ϕ

We assume that:

ϕ is a complete Bernstein function without the drift

ϕ(λ) = bλ+

∫ ∞

0
(1− e−λt)µ(dt)

.

ϕ satisfies the weak scaling condition at infinity: there exists
a1, a2 > 0 and δ1, δ2 ∈ (0, 1) s.t.

a1
( t
s

)δ1
≤ ϕ(t)

ϕ(s)
≤ a2

( t
s

)δ2
, t, s ≥ 1. (WSC)
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Operator ϕ(− ∆|D)
Definition in L2(D)

Let {φj}j∈N be an ONB of L2(D) s.t. −∆|D φj = λjφj in D. We define

ϕ(− ∆|D)u =
∞∑
j=1

ϕ(λj)ûjφj ,

for u ∈ D(ϕ(− ∆|D)) := {v =
∞∑
j=1

v̂jφj ∈ L2(D) :
∞∑
j=0

ϕ(λj)
2|v̂j |2 <∞}.

ϕ(− ∆|D) is an unbounded operator, C∞
c (D) ⊂ D(ϕ(− ∆|D)), and

Lemma (B., 2023)

The operator −ϕ(− ∆|D) is the infinitesimal generator of L2(D) semigroup
generated by Xt = WD

St
, i.e. of the subordinate killed Brownian motion X .
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Properties of ϕ(− ∆|D)

ϕ(− ∆|D) is a non-local operator with a pointwise representation

Proposition (B., 2023)

For u ∈ C 1,1(D) ∩ D(ϕ(− ∆|D)) and a.e. x ∈ D

ϕ(− ∆|D)u(x) = P.V.

∫
D

[u(x)− u(y)]JD(x , y)dy + κ(x)u(x).

Here

JD(x , y) ≍
(
δD(x)δD(y)

|x − y |2
∧ 1

)
ϕ(|x − y |−2)

|x − y |d
, x , y ∈ D.
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Green and Poisson function

X has density rD(t, x , y),

the Green function, Gϕ
D(x , y) =

∫∞
0 rD(t, x , y)dt,

Gϕ
D f (x) =

∫
D Gϕ

D(x , y)f (y) = Ex

[∫∞
0 f (Xt)dt

]
, and

Theorem (Kim, Song, Vondraček, 2016, B., 2023)

Gϕ
D(x , y) ≍

(
δD(x)δD(y)

|x−y |2 ∧ 1
)

1
|x−y |dϕ(|x−y |−2)

, x , y ∈ D.

Proposition (B., 2023)

The function

Pϕ
D(x , z) := − ∂

∂n
Gϕ
D(x , z), x ∈ D, z ∈ ∂D.

is well defined and (x , z) 7→ Pϕ
D(x , z) ∈ C (D × ∂D). Moreover,

Pϕ
D(x , z) ≍

δD(x)

|x − z |d+2ϕ(|x − z |−2)
, x ∈ D, z ∈ ∂D.
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Nonnegative harmonic functions

Definition

h ∈ L1(D, δD(x)dx) is harmonic in D if ϕ(− ∆|D)h = 0 in D in
distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function h ≥ 0 is harmonic in D if and only if it satisfies the mean-value
property, i.e. h(x) = Ex [h(X

D
τU
)], for every x ∈ U ⊂⊂ D.

Theorem (B., 2023)

If h ≥ 0 is harmonic in D, then there exists a finite measure ζ ∈ M(∂D)
such that

h(x) =

∫
∂D

Pϕ
D(x , z)ζ(dz), for a.e. x ∈ D.
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Moderate solutions

Theorem (B., 2023)

Let f ∈ L1(D, δD(x)dx) and g ∈ L1(∂D), then the problem

−ϕ(− ∆|D)u = f in D,
u

Pϕ
Dσ

= g on ∂D,

has a so-called weak-dual solution u = Gϕ
D f + Pϕ

Dg.

Additionally, if f and
g are ”regular enough”, u is a pointwise solution.
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g are ”regular enough”, u is a pointwise solution.
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Large solutions

A solution u : D → R to the problem

−ϕ(− ∆|D)u(x) = f (u(x)) in D,
u

Pϕ
Dσ

= ∞ on ∂D,

is called a large solution since

Lemma (B., Wagner, 2024+)

If u : D → R satisfies

lim
D∋x→z

|u(x)|
Pϕ
Dσ(x)

= ∞, z ∈ ∂D,

then u is not uniformly bounded in D by any nonnegative harmonic
function with respect to ϕ(− ∆|D).
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Higher Hölder regularity of distributional solutions to
ϕ(− ∆|D)u = f in D

Theorem (B., Wagner, 2024+)

Let d ≥ 3, α ∈ (0, 1) and k ∈ N0 such that k + α+ 2δ1 /∈ N, and let
f ∈ C k+α(D).
If u ∈ L1(D, δD(x)dx) solves ϕ(− ∆|D)u = f in D in distributional sense,
then u ∈ C k+α+2δ1(D) and for any K ⊂⊂ K ′ ⊂⊂ D, there exists C > 0
such that

||u||C k+α+2δ1 (K) ≤ C
(
||f ||C k+α(K ′) + ||u||L1(D,δD(x)dx)

)
.

Moreover, if f ∈ L∞loc(D) and β ∈ (0, 2δ1), then

||u||Cβ(K) ≤ C
(
||f ||L∞(K ′) + ||u||L1(D,δD(x)dx)

)
.

In particular, if u is ϕ(− ∆|D)-harmonic, then u ∈ C∞(D), and

Pϕ
Dζ ∈ C∞(D) for all finite measures ζ on ∂D.
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Higher Hölder regularity of distributional solutions to
ϕ(− ∆|D)u = f in D: Remarks

The proof is motivated by the proof/sketch of Abatangelo and
Dupaigne (Ann. I. H. Poincare-An. 2017)

The goal is to connect ϕ(− ∆|D)u = f in D to ϕ(− ∆))u = f in Rd ,
and to use the parabolic theory of ∂t −∆|D .

At this point, we cannot remove d ≥ 3 even in the fractional case.

In
the essential part of the proof we use function

v(x) := GRd f (x) = Ex

[∫ ∞

0
f (Wt)dt

]
,

but GRd is the Green function of the Brownian motion and in d = 2
the Brownian motion is not transient so GRd |f | ≡ ∞ for f ̸≡ 0.
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Introduction

We solve
−ϕ(− ∆|D)u(x) = f (u(x)) in D,

u

Pϕ
Dσ

= ∞ on ∂D,

for f : D → [0,∞) such that

f ∈ C 1(R) and

(1 +m)f (t) ≤ tf ′(t) ≤ (1 +M)f (t), t ∈ R, (F)

for some 0 < m ≤ M <∞, e.g. f (t) = tp for p > 1.
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Approximating sequence

Let (uj)j be a sequence of solutions to the problems

−ϕ(− ∆|D)uj = f (uj) in D,
uj

Pϕ
Dσ

= j on ∂D, (AP)

Lemma (B., Wagner, 2024+)

The sequence (uj)j increases as j → ∞, and if f ∈ Cα(R) for
α > 2(δ2 − δ1), then uj is a pointwise solution to (AP).

The goal now is to find a Keller-Osserman-type condition that will
guarantee that limj uj =: u is finite and that it is a large solution. This will
be obtained by using the method of supersolution.
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Construction of a supersolution

Let

F (t) =

∫ t

0
f (s)ds, t > 0,

and set φ : (0,∞) → (0,∞) as

φ(t) =

∫ ∞

t

ds√
F (s)

, t > 0.

Denote by ψ the inverse of φ.

A supersolution will be obtained from U(x) := ψ(V (δD(x))), where V (t)
is the renewal function of the subordinate Brownian motion with char.
exp. ϕ(|ξ|2).
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Construction of a supersolution, part 2

Lemma (B., Wagner, 2024+)

The function U = ψ(V (δD(x)) satisfies U ∈ L1(D, δD(x)dx) if and only if∫ ∞

1

dt

ϕ−1(φ(t)−2)
<∞.

If in addition ∫ ∞

r

dt

ϕ−1(φ(t)−2)
≲

r

ϕ−1(φ(r)−2)
, r ≥ 1, (KO)

then there exist constants C > 0 and η > 0 such that

ϕ(− ∆|D)U(x) ≥ −Cf (U(x)), x ∈ Dη,

where Dη = {x ∈ D : δD(x) < η}.
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By modifying U to U := λU + µGϕ
D1 for some µ, λ > 0, we get

Corollary (B., Wagner, 2024+)

Let f satisfy (F) and (KO). Then there is a function
U ∈ L1(D, δD(x)dx) ∩ C 1,1(D) such that

ϕ(− ∆|D)U ≥ −f (U), in D,

both in the distributional and pointwise sense. Furthermore, assume that

lim
s→0+

ψ(s)

s2ϕ−1(s−2)
= ∞, (B)

then lim
x→∂D

U(x)

Pϕ
Dσ(x)

= ∞.
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Large solution under (F), (KO), and (B)

Recall the uj , j ≥ 1, which solve (AP), and u =↑ limj uj .

Under (F), (KO)
and (B), we have u <∞,

uj ≤ U,

hence u ≤ U so:

Theorem (B. Wagner, 2024+)

The function u is in L1(D, δD(x)dx) and is a distributional and a pointwise
solution to the semilinear problem

−ϕ(− ∆|D)u = f (u) in D,
u

Pϕ
Dσ

= ∞ on ∂D.
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