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19 Baroclinic Instability
19.1 Quasi-geostrophic theory

We now discuss baroclinic instability within the contextpfasi-geostrophic theory. The form of quasi-geostrophic
theory which uses the pseudo-height= (c,60/g) [1 — (p/po)R/%} as vertical coordinate was dicussed in Chapter
13. Recall that the most concise form of quasi-geostrogieéony consists of the prognostic equation for potential
vorticity, the invertibility principle, and the boundarynditions, i.e.,

dq dq dq

ot +u ga + vy a—y—O7 (19.2)
521/} 521/} 9 (pf*oy
0 0 6¢ _
(815 +u gax + gay> P =0, at z2=0,zr, (19.3)
where o0 o0
Ug = _Fy, ’Ug = %, (194)

are the geostrophic wind componeni$;) the pseudo-density (a known function9f and N2(z) the square of the
Brunt-Vaisala frequency (also a known function &f, 1> = ¢/ f the geostrophic streamfunction= 0 the bottom and

z = zr the top of the model atmosphere. Equations (19.1)—(19r) foclosed system in the four dependent vari-
ablesq(z,y, z,t), ug(z,y, 2,t), vg(x,y, 2,t), ¥(z,y, 2,t). Equation (19.1) predicts the quasi-geostrophic potentia
vorticity in the interior of the fluid. Equation (19.2) is tlygasi-geostrophic invertibility relation and is used tdash
U(x,y, z,t) fromg(x,y, z,t). Since (19.2) is a second order elliptic partial differahéiquation, boundary conditions
at the top and bottom are required (in additiongtin the fluid interior) to solve it. These time-varying boumngla
conditions are determined by (19.3), which is the thermadiyic equation applied at the boundaries.

19.2 TheCharney-Stern necessary condition for combined barotropic-baroclinicinstability

Now consider linearized motions about the basic state giuist zonal flowi(y, z). The linearized versions of
(19.1), (19.2) and (19.3) are
o4, o4 OV 0q

ot ox | oz oy (195)
a2w/ 82w/ 8 Pf2 8’(/1/
I — 92 + 9,2 + — 20> (N2 92 ) (19.6)
o _0\ oy 6w’ ou B
<8t + ué)ac) ER 97 D2 =0 at z=0,zr. (29.7)

Notice that, if the basic state is barotropic (i€w/0z = 0), and if there are no potential temperature perturbations
(i.e.,0v'/0z = 0), then (19.7) is trivially satisfied and the last term in @9disappears, resulting in the barotropic
instability problem studied in the last chapter. Wherns a function of bothy and z, we have the possibility of
combined barotropic-baroclinic instability.

Substituting the assumed form of solution

W (,y,2,t) = U(y, 2)et =Y (19.8)
into (19.5)—(19.7), we obtain
0w 9 0 (pf?ov oq [ u—c*
v (e )] o () v=e (199
ov  ou ( u-c*

19-1



CSU ATS601/602 Spring 2011

Taking the complex conjugate of (19.9) and (19.10), we obtai

o2vr L, .0 [pf?ovr 0q [ u—c .
S N S P T RS P w11
ov* Odu( u—c . B
Multiplying (19.9) by U* and (19.11) by, and then taking the difference of these two results, weinbta
0 ov ov* 0 LPfov pf? ov* 0q 2ic; 2
Oy <\Ij By -7 Oy ) + pOz <\Ij N2 9z \IJNQ 0z Ay |u — c|2|l1}| =0, (19.13)

We now multiply (19.13) by and integrate ovey andz. The flow is assumed to be confined within a zonal channel,
with & = 0 and¥* = 0 on the northern and southern edges of the channel. The ati@gthen yields

(0PN gy, [ 20108 _
/[Nz <\I/ P U 9z )], dy + 2ic; By |a_c|2pdyd2—0. (19.14)

The first term in (19.14) can be rewritten using the boundaryditions (19.10) and (19.12). Multiplying (19.10) by
U* and (19.12) byr, and then taking the difference of these two results, weinbta

g0V _ GOV _0u Zici o

9z 9z Oz|u—cf? (19.15)

Using (19.15) in (19.14), we obtain

,0f28u w2 1% -
“ {/{NQ Oz |u — c|2}( //ay|—, 2” dydz}_o_ (19.16)

For unstable waves:{ # 0), the term in braces must vanish, which is the Charney-Steggessary condition for
combined barotropic-baroclinic instability. This meahatta necessary condition for instability is that the fuoresi
0q/0y, (00/0y).=0, —(00/0y).=., cannot all have the same sign everywheréyinz). We can distinguish two
different types of instability: Eady-type (or boundarypg) instability and internal-type instability.

Eady-type instability can occur wheélg/9y = 0 in the interior of the fluid. The Charney-Stern necessandiam

for instability then reduces to
pf?ou [w]* 17"
—_— dy = 0. 19.17

e , W0 (1940

Since|¥|* > 0, |u — c|[> > 0, andp > 0, (19.17) requires th&Hd /dy).—o have the same sign 480/0y).—...
Internal barotropic-baroclinic instability can possiloigcur when06/0y) .—o and(96/9y) .-, both vanish. The
Charney-Stern necessary condition for instability thetuses to

|w|?
// 9y |u— |2pdydz:O. (19.18)

Since|¥|? > 0, |u — ¢|? > 0, andp > 0, (19.18) requires thalg/dy have both signs in the interior of the fluid.

Burpee (1972) investigated the origin and structure ofexbstvaves that form in the lower troposphere of North
Africa. He argued that these waves are directly relateddamifd-tropospheric easterly jet (now usually referred to as
the African easterly jet) that is found within the baroatizione to the south of the Sahara. This zonal flow is rather
unique because easterlies increase with height and watiesaio the north. A north-south cross section of the African
easterly jet is shown in Fig. 19.1, which depicts the Augusamzonal flow. The jet is centered at approximately 600
mb and 15 N. Burpee also constructed the August mean mealdiooss section of potential vorticig(y, =), which is
shown in Fig. 19.2. Note that, as you proceed poleward fraetiuator at 600 mb, the potential vorticity increases to
approximately 12 N and then decreases. TBgg0y has both signs, and the necessary condition (19.18) idisdtis

In 1974 a large international field program called GATE (GbAtmospheric Research Program Atlantic Tropical
Experiment) was conducted in the region of the eastern Atland west Africa. Reed et al. (1977) carefully examined
this dataset for the period 23 August—19 September 197#Hgluhich 8 easterly waves propagated across the region.
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Figure 19.1: August mean meridional cross section of zotadlwT he African easterly jet is centered at approximately
600 mb and 15 N. From Burpee (1972).

A 700 mb streamline map of one of these easterly waves is shioviig. 19.3. The mean wavelength of the 8
waves was 2500 km and the mean period was 3.5 days (i.e., thes\yweopagate westward at 8 msor 6-7 degrees
longitude per day). Reed et al. made mean meridional crag®se with respect to the E-W axis of each wave
(e.g., the E-W line at approximately 11 N in Fig. 19.3. The meeoss sections for zonal wind, absolute vorticity,
temperature and relative humidity are shown in Fig. 19.4 Strded region in Fig. 19.4b shows where the meridional
gradient of absolute vorticity is reversed. Thus, the nsagscondition for barotropic instability is satisfied. Mdhat
the troughs and ridges in Fig. 19.3 have a northeast to sagttit. This tilt is against the horizontal shear of theibas
flow, which has strong easterlies at 17 N, as depicted in Figlal Such a wave tilt against the basic state horizontal
shear is characteristic of barotropic instability, as shawFig. 18.1 of Chapter 18. However, it should be noted that
our adiabatic stability arguments are only part of the wigitery because easterly waves are often embedded with
strong cumulus convection.

In the next section we shall isolate the baroclinic instBbprocess by considering to be a function ok only.
The simplest in this class of pure baroclinic instabilitpllems is the Eady problem, in whictiz) is a linear function
of z (i.e.,0u/0z is a constant).

19.3 TheEady problem

In what follows we shall assumgis a constant (thg-plane approximation)V? is a constant, angis a constant
(the Boussinesq approximation). For the Eady problegndoes not depend omand is a linear function of, i.e.,
a4 = Az, whereA is the constant vertical shear. The basic state potentititity is uniform and we obtaig’ = 0
from (19.5), i.e., the Eady wave has no potential vorticitpaly in the interior of the fluid. In summary, the Eady
problem is
82 ¢/ 82 ¢/ f2 82 ¢/

92 97 T NT 02 =0, (19.19)

(Gat +Az &B) aai/ %ﬁl 0 at z=-HH. (19.20)
To solve (19.19) and (19.20) we first note that the solutiof16f19) is
¢'(x,y,2,t) = [Asinh(kz) + B cosh(kz)] cos(ly)et(@=ct) (19.21)
whereA and B are complex constants and= (N/f)(k? + 12)'/2. Substituting (19.21) into (19.20) yields
(AH — ¢)k [Acosh(kH) + Bsinh(xH)] — A [Asinh(kH) + B cosh(xH)] = 0, (19.22)

(AH + ¢)k[Acosh(kH) — Bsinh(kH)] — A[Asinh(kH) — Bcosh(kH)] = 0. (19.23)
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Figure 19.2: August mean meridional cross section of p@kt@mperature (dashed lines labeled in degrees Kelvin)
and potential vorticityj(y, z). From Burpee (1972).

Taking the sum and difference of (19.22) and (19.23) we alitee simpler system

1 c
(coth(nH) - /«iH) A— (m) B =0, (19.24)
- (L> A+ (tanh(xH) — =) B =0, (19.25)
AH kH
For a nontrivial solution of this algebraic systemArand B we must have
2 = (AH)? (tanh(sH) — —— ) (coth(kH) — —— (19.26)
N kH kH )~ '

When the eigenvalue relation (19.26) is substituted back(it®.24) or (19.25), we obtain

A _ (tanh(kH) — (kH)™! 1/2 (19.27)
B\ coth(kH) — (kH)~! ' '
When this result is used in (19.21) we obtain
, tanh(kH) — (kH) ™! vz ik(z—ct)
¢ (x,y,2,t) = B |cosh(kz) + coth(rH) — (H) 1 sinh(kz) | cos(ly)e : (19.28)

Equations (19.26) and (19.28) are our main results so fai, (D.26) giving the two eigenvalues and (19.28) giving
an eigenfunction corresponding to each eigenvalue. Natdhie constanB remains undetermined because in general
eigenfunctions are only determined to within a multiplicatconstant.
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Figure 19.3: Streamline analysis for 1200 UTC 7 Septemb@&a1®ne full barb corresponds to 5 mis one-half
barb to 2.5 ms?!, and no barb to 1 ms'. From Reed et al. (1977).

The two eigenvalues determined from (19.26) are either besthor both pure imaginary. In the latter case the
eigenvalues are= ic; and the factoe’*(*—<) in (19.28) can be written ag**¢*<it, so thatkc; is the growth rate, with
¢; > 0 corresponding to growing waves and< 0 corresponding to damping waves. Sirogh(xH)— (kH)™! > 0,
we conclude from (19.26) that instability occurs whenh(xH) — («H)~! < 0, which corresponds teH < 1.1997.

In other words NH
T(k:2 +1%)12 <1.1997  for instability.

The unstable region of thg:, [)-plane is enclosed by the circle in Fig. 19.5, and since

1 1 1/2
in this region, there occurs both a growing and a damping nfioele the eigenvaluesoccur in conjugate pairs). We
generally concentrate our attention on the growing modesigmore the damping modes since the growing modes
must eventually dominate the total solution. In fact, weeagalty concentrate on only the fastest growing mode since
it will be “naturally selected” from the other growing moddsolines of the growth ratgc;, for the positivec; root
computed using (19.29), are shown in Fig. 19.5. Note thatrtagimum growth rate occurs fér= 0 (i.e., on thek
axis in Fig. 19.5). To pinpoint the value éfyielding maximum instability, let us consider (19.29) witk= 0. Then,
definingn = NHE/ f, we have

fA

ke; = N [(1 —ntanhn)(ncothn — 1)]1/2 . (19.30)

From (19.30) we find thai(kc;)/dn = 0 when

(1 —ntanhn) (cothn - — 772 > = (ncothn — 1) <tanh17 + 7I2> . (19.31)
sinh” n cosh”n

Multiplying this out and noting that the termsif cancel, we obtain

tanhn 4 cothn
n= 2 5 (19.32)
anh”n + coth” n

This transcendental equationsjrhas the solutiory ~ 0.8031, or equivalentlyN Hk/f = 0.8031. Substitution of this
value of7 into (19.30) yields(kc;)max &~ 0.3098(f/N)A. For (N/f) = 100, H = 5 km, andA = 3 x 1073 s~}
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Figure 19.4: Zonal mean fields for GATE. “Zero” latitude igpapximately 11 N over land and 12 N over ocean. (a)
Zonal wind (ms™!); (b) absolute vorticity (0~°s™!); (c) temperature deviations (degrees Celsius) from theding
at A latitude= —12; (d) relative humidity (percent). From Reed et al. (1977).

(i.e., a vertical shear of 30 m$ over a depth of 10 km), the wavelength of maximum instabit$912 km and the
e-folding time is 29.9 hours.
For the fastest growing mode, (19.27) simplifies to

B 1/2
g —i <1thanh717) — icothn, (19.33)
ncovhn —

where the last equality in (19.33) follows from the use of.8B). Then, defining” = iB cosh(NHk/f), the real
part of the eigenfunction (19.21), or equivalently (19,285uces to

sinh(Nkz/f)

cosh(NK2/1) ] o
sinh(NkH/ f)

+ Sin(kx)cosh(NkH/f) et

&' (z,y,2,t) =C [COS(kl‘) (19.34)

from which we can easily calculate the potential tempeeaparturbation (proportional ¢’ /0z) and the meridional
wind perturbation (proportional t6¢’/dx). The structure of the most unstable mode, as determined®©4), is
shown in Fig. 19.6.

To illustrate the horizontal structure of the Eady wave,gmential anomaly contours and temperature contours
for a growing squarei( = [) Eady wave at the steering level are shown in Fig. 19.7.
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Figure 19.5: Isolines of the growth rake; for an Eady wave as a function of the horizontal wavenumbeasd!.
The zero isoline occurs whén= 0 and when( N/ f)H (k? + 12)'/? ~ 1.1997. The maximum growth rate occurs at
wavenumbersVHE/ f =~ 0.8031 and! = 0, where the growth rate i§:c; ) max =~ 0.3098(f/N)A. From Gill 1982.
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Figure 19.6: Structure of the most unstable Eady wave, asméated by (19.34). The most unstable wave is inde-
pendent ofy and its horizontal structure at the upper boundary is shaw(@) and at the lower boundary in (d). The
phase shift between the pressure field and the temperatidafithe boundaries i1°. The streamfunction for the
ageostrophic flow in the, z plane is shown in (b). In (c), the dashed lines indicate thteng@l temperature surfaces
and the solid lines the meridional component of the windhwlibw into the page denoted by and flow out of the
page by®. Note that colder air is moving southward and warmer airmwerd, so there is a net poleward heat flux.
The phase lines for thefield tilt westward with height, with 40° westward phase shift between the bottom and top.

From Gill 1982.
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Figure 19.7: Geopotential anomaly contours (solid) andoenature contours (dashed) for a growing squére=(1)
Eady wave at the steering level. From Gill 1982.

19.4 Thetwo-layer model
Consider quasi-geostrophic flow on @fplane. The two-layer model for such a flow is

g1 0Y19q1 | OY1 Oq1

Bt oy or " om oy (19.35)
aQZ a¢2 acp 31/)2 31]2

9t oy or om oy (19.36)
@ = [+ V¢ — (Y1 — ), (19.37)
@ = f+ V2 + 12 (Y1 — 2), (19.38)

whereg; andy, are the quasi-geostrophic potential vorticity and straarafion in the upper layer, ang andqy, are

the corresponding fields in the lower layer. The consjarg the inverse of the Rossby length. Equations (19.35)—
(19.38) constitute a system of four equations in the foumemknsg, (x, y, t), ¢2(z, y,t), ¥1(z, y, t) andyq(z, y, t).

We now linearize (19.35)—(19.38) about a zonal flow which isastant westerly/ in the upper layer and a

constant easterly U in the lower layer. Thusy; (z,y,t) = q1(y) + ¢, (z,y,t) andyy (z,y, ) = ¥1(y) + ¥} (z,y, 1),

with similar relations forgy (z,y,t) ands(x,y,t), wheret; = —diy/dy = U anday = —di/dy = —U. It

is easily shown from (19.37) and (19.38) that = f — p?(¢y — 4s) andga = f + p(h1 — 1), so that the
poleward gradients of basic state potential vorticity ia thpper and lower layers are given 8y, /dy = 2U u? and
dgz/dy = —2Uu?. The reversal of the poleward gradient of basic state piaevarticity in the lower layer allows

counterpropagating Rossby waves in the two layers, whishvgashall see below) leads to baroclinic instability. The
linearized versions of (19.35)—(19.38) are

o0 00 0

B UGy T, =0 (19:39)
o0y 0% ouy

Bt Ve Mg, =0 (19.40)
4, = V2, — 12— ), (19.41)
&b = V2 + (] — ). (19.42)

Equations (19.39)—(19.42) constitute a linear system of &guations in the four unknowng (z, y,t), ¢5(z,y,t),
Vi (z,y,t) andys(z, y, t).
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We now search for solutions of (19.39)—(19.42) having thienfg, (x, y, t) = G1e**©@ ) sin(ly) andy| (z,y,t) =
et sin(ly), with similar forms forg,(z,y,t) and v, (z,y,t). Substituting these into (19.39)—(19.42) we
obtain the following four algebraic equations for the coexptonstantg , v, Go ands:

(c=U)d1 — Giytr =0, (19.43)
(c+U)do + quythe =0, (19.44)

i = —(k* + 1+ p?) iy + 1, (19.45)
= 1?1 — (B + 1 + p?) s (19.46)

To reduce the algebraic system (19. 43) (19 46) to a systéwna unknowns, we have a choice. We can elimirate
andg. to obtain a system ig; andi),, or we can eliminate); and, to obtain a system ig; andg». We choose
the latter. This can be accomplished by first solving (19at%) (19.46) for); and, in terms ofg; andg., and then
substituting the results into (19.43) and (19.44). Thubjisg (19.45) and (19.46) for;, ands), in terms ofg, and
g2, we obtain

- k2—|—12+u /42
K+ = —— = — T 19.47
(k* +17) <k2+12+2 2>q1+<k2+l2+2u2>%’ (19.47)
R 2 k2+12+,u2
SRy = [ — P )6 AN N Y LN 19.4
(K + )92 <k2+l2+2u2 Tt \eErEroe)? (19.48)

Equations (19.47) and (19.48) constitute the spectralespalution of the invertibility principle, with (19.47) givg

the vorticity in the upper layer in terms of the potential ticity in both layers and (19.48) giving the vorticity in
the lower layer in terms of the potential vorticity in botlyéas. There are two interesting limits. For disturbances
whose horizontal scale is much smaller than the RossbyHe@gt+ 1> >> 2u2), (19.47) and (19.48) reduce to
—(k® + 12)1[)1 ~ ¢ and—(k* + 12)1@2 ~ (o, i.€., the potential vorticity in each layer looks like thetwal vorticity in
that layer, and the layers are nearly decoupled. For diahats whose horizontal scale is much larger than the Rossby
length ¢:2+12 << 2u2), (19.47) and (19.48) reduce ta( k2 +12); ~ 1/2(G1+G2) and—(k2+12)ts ~ 1/2(G1+G2),

i.e., the vorticity in each layer depends equally on the i vorticity in both layers, and the layers are strongly
coupled. Since baroclinic instability depends on the ciogpbf the counterpropagating Rossby waves in the two
layers, we might expect baroclinic instability to be abdentshort waves. This will indeed turn out to be the case.
Continuing our analysis, we now substitute (19.47) and4@pinto (19.43) and (19.44) to obtain

- 2+ 4 p = .2 .
c—U+quy {(k2+l2)(k2+llé+2u2)} d1y [(k2+z2)(1é2+l2+2u2)} ) <q1> 0 (19.49)
_ 2 _ k212402 ~ - '
—q1y |:(k2+l2)(k#2+l2+2#2):| c+U— q1y |:(k2+l2)(k2+ll;+2;¢2):| 42

This pair of equations can be regarded as a concise mattoaagiscription of the interaction of two counterprop-
agating Rosshy waves. The upper right term in the matrix 8f49) gives the effect of the lower potential vorticity
anomaly on the behavior of the upper layer, while the lowktézm in the matrix gives the effect of the upper potential
vorticity anomaly on the behavior of the lower layer. Notattthe effect of these interactions decays with increasing
wavenumber and decreasifig, according taz,, [/ (k? + 1?)(k? + 1? + 2u?)]. If the basic state poleward potential
vorticity gradient in the lower layer were not present, thesBby wave in the upper layer would propagate with phase
speed: = U — Gy [(K* + 1% + p?) /(K* 4+ 1?) (k* + 1? + 2p2)]. Similarly, if the basic state poleward potential vortjcit
gradient in the upper layer were not present, the Rossby wathe lower layer would propagate with phase speed
c= U+ qy[(k* + 12 + p?)/(k? + 1?)(k® + 12 + 2u2)].

Regarding (19.49) as a linear homogeneous system in theowmlgd; andg., we require that the determinant of
the coefficients vanish, which yields, for unstable wavies, donditionk? + 12 < 242, in which case

202 — k2 — 2 1/2

The growth rate igc;, and the fastest growing wave occurs fot 0. Takingd(kc;)/dk = 0, we find that the fastest
growing wave has

1/2

1/2
B (22 1) " (202)"? ~ 10,6436 (242) (19.51)
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When (19.51) is substituted in (19.50) we find that the fagiestith rate is

(Bi)ma = (2= 2V/2) Upi = 0.5859U 1, (19.52)

Problems

1. Derive the linearized potential vorticity equation @Pfrom the nonlinear potential vorticity equation (19.1).

2. Show that, under the assumptions of the Eady model, the &tase potential vorticity is uniform, and therefore
that the disturbance potential vorticity vanishes.

3. From (19.26), prove that instability occurs whe¥/ f) H (k% + 12)'/2 < 1.1997.

4. For the two-layer model, what does the eigenfunctionesponding to the eigenvalue (19.52) look like? Do the
PV anomalies tilt against the basic state shear?
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