Prof. dr. sc. Dražen Balen

PETROLOGIJA

www.pmf.unizg.hr/geol/predmet/pet

preddiplomski studij Znanosti o okolišu II godina

On-line predavanja prilagođena CoViD pandemiji

Background photo by Fusion Medical Animation on Unsplash

CILJ KOLEGIJA:

Savladavanje osnovnih znanja iz petrologije magmatskih, metamorfnih i sedimentnih stijena potrebnih za postizanje titule prvostupnika na studiju znanosti o okolišu. Osposobljavanje u prepoznavanju, klasifikaciji i osnovnoj interpretaciji geneze najčešćih magmatskih, metamorfnih i sedimentnih stijena. Stječu se znanja potrebna za samostalan rad u kabinetu, laboratoriju, korištenje polarizacijskog mikroskopa, rad na terenu i osnove za praćenje nastave na diplomskom studiju. Na temelju poznavanja raznih stijenskih značajki, studenti će biti u stanju protumačiti procese aktivne u vrijeme nastanka stijene i interpretirati značajke nekadašnjih okoliša, kao i karakter izvornih predjela u kontekstu tektonike ploča. Studenti također stječu znanja o procesima koji utječu na konačni izgled stijena.

Terenska nastava

⇒Hrvatsko zagorje, Moslavačka gora
⇒ slavonske planine (Psunj, Papuk, Krndija)

Što je petrologija i zašto je studirati?

- Jednostavno studij stijena
- Grč.; *Petra* stijena and *Logos* pojam, misao, razum, objašnjenje
- Studij stijena je praktički izvor svih ideja o Zemljinoj prošlosti
- Poznavanje porijekla, starosti, rasprostiranja stijena pridonosi rješavanju velikog broja problema s kojima se susreće geologija a i prirodoslovlje općenito
- Npr. evolucija magme i procesi nastajanja kore, tektonika ploča, nastanak mineralnih ležišta, ...

Why, what, where?

Od čistog užitka do ispitnog roka

Magmatske stijene

- Magmatska stijena nastala skrutnjavanjem rastaljenog ili djelomično rastaljenog materijala kojeg nazivamo magma
- Metamorfna stijena je nastala iz bilo koje ranije postojeće stijene mineralnim, kemijskim i strukturnim promjenama u čvrstom stanju kao odgovor na promjene P, T, c u dubini Zemlje

Petrogeni minerali

- kristaliziraju iz magme
- Glavni (bitni) minerali nastali procesom koji je dao stijenu, ima ih >10%, klasifikacija stijene
- Sporedni (značajni) minerali < 10%, određuju podvrstu stijene
- Akcesorni nastali specifičnim geološkim događajima ali NE iz primarnih minerala

- Minerali mogu biti:
 - primarni nastali direktno kristalizacijom iz magme u okviru magmatskog ciklusa
 sekundarni - svi minerali koji nastaju u
 - postmagmatskom stadiju iz primarnih minerala
 - trošenjem P, T na površini
 - alteracijom >P, >T

Melanokratski minerali, mafitni, femski

Olivin $(Mg, Fe)_2SiO_4$ Piroksen XYZ_2O_6 • rompski (orto-) • monoklinski (klino-) Amfibol $A_{0-1}X_2Y_5Z_8O_{22}(OH, F, Cl)_2$ • rompski (orto-) • monoklinski (klino-) Biotit $XY_{2-3}Z_4O_{10}(OH)_2$ Flogopit

Leukokratski minerali, salski, felsični

Kvarc SiO₂ Feldspati (alk. felspati i plagioklasi) -KAlSi₃O₈, NaAlSi₃O₈, CaAl₂Si₂O₈ Feldspatoidi << SiO₂

Minerali

• Kristalizacija iz magme

Teksture i strukture magmatskih stijena

Tekstura - način na koji su minerali zauzeli prostor u stijeni homogena, fluidalna, vezikularna, mandulasta, aglomerirana

Struktura - važna za određivanje uvjeta postanka (geneza) i za klasifikaciju stijena Izražena je:

- stupnjem kristaliniteta (holokristalina, hijalina, hipokristalina, hipohijalina)
 - veličinom zrna (makrokristalina, afanitska, mikrokristalina, kriptokristalina)

oblikom zrna (idiomorfna, hipidiomorfna, alotriomorfna)
međusobnim odnosom i rasporedom minerala (zrnata, porfirna)

Magmatske strukture

Slika I-1 Grafički prikaz odnosa količine nukleacije i brzine rasta rasta kristala u funkciji temperature ispod točke tališta.

Hlađenje koje neznatno odmiče temperaturu (Ta) od tališta pogoduje brzom rastu i malom broju kristalizacijskih jezgara (nukleacija) te daje svega nekoliko krupnih zrna (efuziv).

Naglo hlađenje udaljava ravninu undercooling (Tb), tako da sporiji rast i brojna nukleacija daje sitnozrnati mineralni agragat (intruziv). Vrlo naglo hlađenje daje malo ili ništa jezgara, nema rasta (Tc) i nastaje staklo.

Zrnata struktura

Ofitska struktura Porfirna struktura

Intruzivne stijene

- idiomorfno zrnata
- hipidiomorfno zrnata
- alotriomorfno (ksenomorfno) zrnata

- gabro struktura
- poikilitska struktura

http://www.alexstrekeisen.it

•kelifitska struktura

- pertitska
- mirmekitska
- mikrografska

http://www.alexstrekeisen.it

Figure I-3. Idiomorfan piroksen i intersticijski plagioklas čine intruzivnu holokristalinu zrnatu strukturu. Stillwater complex, Montana. Širina slike 5 mm. © John Winter and Prentice Hall.

Slika I-4. Ofitska struktura. Piroksen uklapa isprepletene štapiće plagioklasa. Širina slike 1 mm. Skaergård intrusion, E. Greenland. © John Winter and Prentice Hall.

Slika I-5. a. Granofirsko prorastanje kvarca i alkalnog feldspata. Golden Horn granite, WA. Širina slike 1mm. b. mikrografska struktura: kvarcni kristal (tamnije) prorasta s alkalnim feldspatom (svijetlo) Laramie Range, WY. © John Winter and Prentice Hall.

Slika I-6. Poikilitska, sitasta (sieve) struktura u fenokristalu plagioklasa. Rub i manja zrna bez uklopaka. Andesite, Mt. McLoughlin, OR. Širina slike 1 mm. © John Winter and Prentice Hall.

Slika I-8. Mirmekit formiran u plagioklasu na granici prema K-feldspatu. © L. Collins. http://www.csun.edu/~vcgeo005

Efuzivne stijene

- holokristalina porfirna struktura
- vitrofirna
- ofitska
- sferulitska

http://www.alexstrekeisen.it

wikipedia

- perlitska
- hijalina

Efuzivne strukture

I-9. a. Zonalni fenokristal (utrusak) hornblende u sitno-kristaliziranoj osnovi. Širina slike 1 mm. b. Zonalni sraslac plagioklasa (Karlovarski sraslački zakon). Andezit, Crater Lake, OR. Širina slike 0.3 mm. © John Winter and Prentice Hall.

Slika I-11. Olivin okružen ortopiroksenom (a) N-; (b) N+, vidljiva korona od ortopiroksena. Bazalt-andezit, Mt. McLaughlin, Oregon. Širina slike ~ 5 mm. © John Winter and Prentice Hall.

Slika I-12. Tragovi tečenja i deformacija (flow banding) u andezitu. Mt. Rainier, WA. © John Winter and Prentice Hall.

Slika I-13. Intergranularna struktura u bazaltu. Columbia River Basalt Group, Washington. Širina slike 1 mm. © John Winter and Prentice Hall.

Slika I-14. Fenokristal hornblende s opacitskim rubom od Fe-oksida plus piroksen. Struktura nastala uslijed pada pritiska tijekom erupcije, andezit. Crater Lake, OR. Širina slike 1 mm. © John Winter and Prentice Hall.

Slika I-15. Trahitna struktura kod koje su mikrokristali plagioklasa usmjereni uslijed tečenja lave i povijaju se oko fenokristala. (P). Trahit, Njemačka. Širina slike 1 mm. Prema MacKenzie et al. (1982). © John Winter and Prentice Hall.

Slika I-16. Pilotaksitska struktura kod koje su mikrokristali slučajno orijentirani. Bazalt-andezit, Mt. McLaughlin, OR. Širina slike 7 mm. © John Winter and Prentice Hall.

Kemijski sastav: Elementi

 Geokemija magmatskih i metamorfnih stijena
 Magma - prirodna, homogena, kompleksna uglavnom silikatna taljevina koja se odlikuje svojim kemijskim sastavom, viskozitetom, gustoćom, temperaturom i tlakom

⇔ stijena

"Mokra kemija": gravimetrija/volumetrija, klasične metode, spore

Moderne spektroskopske tehnike - fazne i elementne analize (AES, AAS, XRF, XRD)

Slika I-18. Relativna zastupljenost sedam najčešćih elemenata koji čine 97% mase Zemlje. An Introduction to Igneous and Metamorphic Petrology, by John Winter , Prentice Hall.

Element	Wt % Oxide	Atom %
0		60.8
Si	59.3	21.2
AI	15.3	6.4
Fe	7.5	2.2
Ca	6.9	2.6
Mg	4.5	2.4
Na	2.8	1.9

Zastupljenost elemenata u zemljinoj kori

Makro (major) elementi: > 1% SiO₂ Al₂O₃ FeO* MgO CaO Na₂O K₂O H₂O Mikro (minor) elementi: 0.1 - 1% TiO₂ MnO P₂O₅ CO₂ Elementi u tragovima (trace) < 0.1%

Udio SiO₂ u sastavu minerala

Mineral	tež. % SiO ₂	
albit	69	
amfiboli	44-58 (30)	
anortit	43	
biotit	35-39	
fajalit	30	
forsterit	41	
kvarc	100	
leucit	54	
ortoklas	64	
pirokseni	46-57 (30)	

Kemijska analiza stijene

	Peridotit	Bazalt	Andezit	Riolit	
SiO2	42.26	49.20	57.94	72.82	
TiO2	0.63	1.84	0.87	0.28	
AI2O3	4.23	15.74	17.02	13.27	
Fe2O3	3.61	3.79	3.27	1.48	
FeO	6.58	7.13	4.04	1.11	
MnO	0.41	0.20	0.14	0.06	
MgO	31.24	6.73	3.33	0.39	
CaO	5.05	9.47	6.79	1.14	
Na2O	0.49	2.91	3.48	3.55	
K2O	0.34	1.10	1.62	4.30	
H2O+	3.91	0.95	0.83	1.10	
Total	98.75	99.06	99.3	99.50	

CIPW Normativni sastav

Modalni - volumen opaženih minerala (%)
Normativni - izračunati "idealizirani" sastav

Varijacijski dijagrami Kako prikazati kemijske podatke?

Magmatske serije

Može li se kemija iskoristiti za razlikovanje magmatskih serija (familija, tipova)? Neki od kemijskih elemenata vrlo upotrebljivi za razlikovanje magmatskih grupa

- Ukupne alkalije (Na₂O + K₂O)
 Silicij (SiO₂) i zasićenje silicijem saturation
- Aluminij (Al₂O₃)

Bazaltni tetraedar i Ne-Ol-Q trokomponentni dijagram Alkalne i subalkalne magme

Q

AFM dijagram: dalje dijeli subalkalne magme na toleitnu i kalcijsko-alkalijsku seriju

Slika I-22. AFM dijagram pokazuje razliku između toleitnih stijena Islanda, Mid-Atlantic Ridge, Columbia River Basalta i Havaja (crveni krugovi) i kalcijsko-alkalijskih stijena Cascad-a (rozi krugovi). Prema Irving and Baragar (1971). Can. J. Earth Sci., 8, 523-548.

Calc-alkaline

Istraživanja širom svijeta pokazuju značajne razlike između te tri serije

Karakteristična	Rub ploče		Unutar ploče	
serija	Konvergent.	Divergent.	Oceanske	Kontinent.
Alkalijska	da		da	da
Toleitna	da	da	da	da
Kalcijsko-alkal.	da			

Prema Wilson (1989). Igneous Petrogenesis. Unwin Hyman - Kluwer

Načini pojavljivanja magmatskih stijena

• Batolit

- velike dimenzije
- nepravilan oblik
- odsutnost podloge (nepoznata)
- diskordantan odnos
- izduženi II osima planinskih vijenaca
- Štok (greda)
 - manje površine od 100 km²
 - Apofize
 - Ksenoliti (enklave)

Slika II-7. Blok dijagram solnih dijapira ispod površine, sjeverna Njemačka. Prema Trusheim (1960), Bull. Amer. Assoc. Petrol. Geol., 44, 1519-1540 © AAPG.

Načini pojavljivanja magmatskih stijena

5

Slika II-3. Postupni prijelaz između homogene magmatske stijene (bijelo) i okolne stijene (tamno). Prema Compton (1962), Manual of Field Geology. © R. Compton.

Načini pojavljivanja magmatskih stijena

Slika II-9. Oblici konkordantnih plutonskih tijela. a. Lakolit, gljivasta forma, veličinom između sila i štoka (nekoliko km2), ravna podina zakrivljena krovina. b. Lopolit intrudirao u bazen, tanjurasto tijelo, konkordantno, stratificirano s bazičnim donjim dijelom . Skala nije jednaka za oba plutona, lopolit je obično znatno veći. © John Winter and Prentice Hall.

Načini pojavljivanja magmatskih stijena

Slika II-10. Pločasta magmatska tijela unutar uslojenih sedimenata. dajk (žica) remeti slojeve, diskordantan odnos. Sil konkordantan odnos, ulaganje II slojnoj plohi. © John Winter and Prentice Hall.

Dajk (žica)

• Dajkovi bazalta u granitu (Djedovica, Slavonija)

Efuzivi, površinske efuzije, tokovi, vulkani

- Centralni izljev
- Pukotine
- Slijev velike površine, male debljine, ovisi o sastavu lave
 - kisele
 - bazične

PAHOEHOE lava

• fluidne, niski viskozitet, čvoraste, nalik užetu, unutarnje cijevi, fire fountain, pukotine

AA lava

• manje pokretne, viši viskozitet, deblji tokovi, manje plinova i para

• ili eruptira kao aa ili evoluira iz pahoehoe, fire fountain

Blok lava

• glatka u usporedbi s aa lavom, nepravilna površina, reljef do nekoliko m, visok viskozitet i naglo istjecanje

Slika II-13. "Vatrena fontana" (fire fountain) i tok lave, Hawaii

Viskozitet

Slika II-15. a. Izračunati viskoziteti bezvodne silikatne taljevine pri tlaku od 1 atmosfere - Bottinga and Weill (1972), Hess (1989), Origin of Igneous Rocks. Harvard University Press. b. Varijacije u viskozitetu bazalta tijekom kristalizacije (prema Murase and McBirney, 1973), Geol. Soc. Amer. Bull., 84, 3563-3592. Varijacije u viskozitetu riolita pri 1000oC s povečanjem sadržaja H2O (prema Shaw, 1965, Amer. J. Sci., 263, 120-153).

Slika II-16. Površina aa lave nalikuje užetu, 1996 flows, Kalapana area, Hawaii. © John Winter and Prentice Hall.

Slika II-17. Pahoehoe (lijevo) iaa (desno) 1974 slijev iz Mauna Ulu, Hawaii. © John Winter and Prentice Hall.

Riolitna lava

- visok sadržaj SiO₂, stakla
- visok viskozitet, tokovi lave
- da bi uopće mogle teči potrebne su visoke temperature
- Jastučasta lava (pillow)
- jastučasti oblik, 10 cm 6 m, bazaltnog sastava
- submarinske efuzije, reakcija s hladnom morskom vodom, koncentrična građa (sitnozrnata jezgra + staklasti rub)
- alteracije minerala (klinopiroksen, plagioklas ⇔ klorit, albit)
- srednjeoceanski hrptovi
- najzastupljeniji tip lave, pokriva 70 % zemljine površine

Slika II-18. Pillow lava. Fotografija Gordon Tribble i U.S. Geological Survey

Vulkani

• Štitasti (shield) vulkan

– fluidni slijev lave, relativno niski, velike površine, h/d omjer nizak

- Stratovulkan (složena kupa, composite)

 iznjene slijevova i naslaga piroklastičnog materijala
- Piroklastični vulkan (cinder)
 - izgrađen od piroklastičnog materijala (litoklast, kristaloklast, vitroklast)
 - vrlo strmi, h/d omjer visok

Pepeo - < 4 mm Lapili - 4 do 32 mm Bombe - > 32 mm Slika II-22. Presjeci manjih ekspozivnih vulkana. Prema Wohletz and Sheridan (1983), Amer. J. Sci, 283, 385-413.

Scoria - je vezikularna staklasta lava bazaltnog do andezitnog sastava nastala izbacivanjem tijekom eksplozivne erupcije.

Slika II-23. a. Maar: Hole-in-the-Ground, Oregon (slika USGS). b. Tuff prsten: Diamond Head, Oahu, Hawaii (slika Michael Garcia). c. Scoria cone, Surtsey, Iceland, 1996 (© slika Bob and Barbara Decker).

Prema karakteru eksplozivnosti:

• Hawaii i Stromboli

bazični sastav, 1200 °C, brzina toka lave 8-10 m/s, protežu se do 80 km, neksplozivan

• Etna i Vezuv

andezitni do bazični sastav, viskozne, spore, ~ 1000 °C, začepljenje dimnjaka dovodi do eksplozije, izbacuju kruti materijal (bombe, lapili), kratki i debeli tokovi

• Pele

 andezitni, vrlo visok viskozitet, 800 °C, skrutnjavanje u dimnjaku, kolosalne eksplozije (krutina + plin)

• Krakatoa

•kiseli, vrlo visok viskozitet, eksplozije, velike količine krutine, KALDERA

Slika II-25. Oblak pepela i njegovo rasprostiranje nakon erupcije Mt. St. Helens 1980. a. Mt. St. Helens vertikalni stup pepela, Svibanj 18, 1980 (slika USGS). b. Razvoj oblaka pepela u prvih 13 minuta. c. Debljina naslaga pepela (u cm). Prema Sarna-Wojcicki et al. (1981) in The 1980 Eruptions of Mount St. Helens, Washington. USGS Prof. Pap., 1250, 557-600.

Slika II-27. Tipovi nastanka piroklastičnih naslaga (pyroclastic flow). Prema MacDonald (1972), Volcanoes. Prentice-Hall, Inc., Fisher and Schminke (1984), Pyroclastic Rocks. Springer-Verlag. Berlin. a. kolaps vertikalne eksplozije ili Plinijskog stupca, materijal pada natrag i kreće se duž površine. b. Bočna eksplozija, Mt. St. Helens in 1980. c. Ključanje "Boiling-over" magme bogate plinom. d. Gravitatcijski kolaps vruće dome (Sl. II-28).

Slika II-29. Presjek kroz ignimbrit pokazuje u bazi kaotične naslage (basal surge deposit), u sredini tokove piroklastičnog materijala (flow deposit), i u gornjem dijelu pokrov pepela (ash fall). Rozo predstavlja plovučac (pumice), tamno predstavlja fragmente stijena (gušći). Prema Sparks et al. (1973) Geology, 1, 115-118. Geol. Soc. America

Vitroklast Litoklast Kristaloklast

burgelastic Elo

Pyroclastic Surge Deposit

LUČENJE

pločasto kockasto

prizmatsko kuglasto

nepravilno

Slika II-30. a. Yellowstone National Park, Wyoming, USA prizmatsko lučenje ; b. kuglasto lučenje Girraween National Park Australija

↑ Kuglasto lučenje Garjavica, Moslavačka gora

← Prizmatsko lučenje Rupnica, Voćin, Slavonija

Post vulkanski fenomeni

- vrući izvori
- gejziri
- fumarole

Old Faithful, Yellowstone, USA

Slika II-1. Unos točaka u trokomponentni dijagram: 70% X, 20% Y, and 10% Z. An Introduction to Igneous and Metamorphic Petrology, John Winter, Prentice Hall.

lagioclase

Slika II-4. Klasifikacija magmatskih stijena (efuzivi). Prema IUGS.

Slika II-5. Kemijska klasifikacija efuzivnih stijena temeljena na sadržaju SiO2 i ukupnih alkalnih oksida (tež. %). Prema Le Bas et al. (1986) J. Petrol., 27, 745-750. Oxford University Press.

Slika II-6. Klasifikacija piroklastičnih stijena. a. Temeljena na vrsti materijala. Prema Pettijohn (1975) Sedimentary Rocks, Harper & Row, and Schmid (1981) Geology, 9, 40-43. b. Temeljena na veličini čestica. Prema Fisher (1966) Earth Sci. Rev., 1, 287-298.

.*	Serija alkalijska	Serija monzonitska	Serija kalcijsko- -alkalijska	N.
Mineralni . sastav	K-feldspati ± feldspatoidi	K-feldspati + plagioklasi	Plagioklasi	Mineralni sastav
intruziv	granit •	adamelit	granodiorit	kvarc + biotit •
efuziv	riolit	delenit	dacit	(amfibol)
intruzıv	sijenit	monzonit	diorit	amfibol ± biotit •
efuziv	trahit	trahl-andezit	andezit	(piroksen)
intruziv	alk. gabro	kentalenit	gabro ·	piroksen, ± olivin
efuziv	alk. bazalti	trahi-bazalt	bazalt ·	
				olivin , piroksen dunit peridotiti pirokseniti

Slika II-7. Terenska klasifikacija magmatskih stijena.