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NOTES

! If the only restrictions on the motions of the particles are that they move rectilinearly
between collisions and behave like elastic billiard balls in collisions, then the motions
are demonstrably non-deterministic except for some very special kinds of collisions; see
Ch. ITI below.

2 Laplace (1820), Preface; translation from E. Nagel (1961), pp. 281—282. Laplace
seems to have given the wrong initial data problem for Newtonian gravitation; see Ch.
1L

3 There is an indirect but important connection between determinism and simplicity.
Determinism (as I formulate it below) is a property of laws of nature, and simplicity is
one of the features used to separate lawful from non-lawful regularities (see Ch. V).

4 This assumes that the allowed instantaneous states are the same at every moment of
time, an assumption which may fail if the laws are not time translation invariant (see Ch.
VII). If the laws are time translation invariant, only the interval & — f; matters and we
can write s() = F(s(#), &, — ;). This is the sense in which the new Russell function
need not involve time explicitly.

7 This is the theme of most of the recent attempts to characterize natural laws; see
Ch. V.

% Note, however, that Montague’s approach is not without its potential pitfalls. Since
any one of the standard formal systems of the type Montague studies is capable of
representing at most a countable number of magnitudes, the possibility that there are an
uncountable number of distinct physical magnitudes which interact with one another so
as to produce a deterministic evolution has to be ignored. Russell's notion of deter-
minism can be rchabilitated by requiring that there is a function which is definable in the
formal system and which expresses the state at ¢ in terms of ¢ 4, and the state at £,
Montague shows that for what he calls predicative theories this requirement is strictly
stronger than determinism.

SUGGESTED READINGS FOR CHAPTER 11

A fair sampling of how philosophers have sought to analyze the meaning of determinism
is to be gained from Chs. 1 and 2 of Popper’s (1982) The Open Uhniverse, Russell's
(1953) “On the Notion of Cause,” E. Nagel's (1953) “The Causal Character of Modern
Physical Theory,” and Montague’s (1974) “Deterministic Theories.” The chapter on
“Fate” from Taylor's (1983) Metaphysics and Cahn’s (1967) Fate, Logic, and Time
contain information on the standard philosophical views of fatalism.

CHAPTER III

DETERMINISM IN CLASSICAL PHYSICS

All events, even those which on account of their
insignificance do not seem to follow from the great
laws of nature, are a result of it just as necessarily as
the revolutions of the sun. In ignorance of the ties
which unite such events to the entire system of the
universe, they have been made to depend upon final
causes or upon hazard, according as they occur and
are repeated with regularity, or appear without regard
to order; but these imaginary causes have gradually
receded with the widening bounds of knowledge and
disappear entirely before sound philosophy, which
sees in them only the expression of our ignorance of
the true causes.

(P.S. Laplace, A Philosophical Essay on Probabilities)

This passage has been taken as a classic statement of determinism, and
if it is then it is easy to appreciate how determinism came to occupy
such an exalted status: if the only alternatives to determinism are final
causes (e.g., divine intervention) and hazard (e.g., accident or chance),
then determinism is attractive as an a priori truth or a methodological
imperative of scientific inquiry. But some care is needed here, as
already hinted in Ch. II; for Laplacian determinism as I have proposed
to understand it need not be true even though all events are subject to
laws that leave no room for divine intervention or accident. Classical
physics would seem to be a poor choice of hunting grounds for such
examples since, as we all know, the laws of classical physics are
deterministic in the Laplacian sense. We know no such thing, at least if
knowledge implies truth.

1. CLASSICAL WORLDS

The initial setting for the doctrine of determinism was what I called the
classical world picture. It is time to be more specific about how that
picture is composed. There are three features which require special
emphasis. (1) All the members of the set # of physically possible
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classical worlds are assumed to have a common space-time back-
ground. This common space-time is the canvas on which the possible
worlds are painted. The details of the structure of the canvas will turn
out to be as crucial to the success or failure as what is painted on it: 00
little structure of the right kind or too much structure of the wrong kind
and determinism will never succeed no matter how furiously or cleverly
we paint. This important but largely unappreciated moral will be drawn
in detail in this and succeeding chapters, but for now I will reemphasize
only one element of classical space-time structure. Namely, (2) the four-
dimensional space-time canvas is ruled by a family of three-dimensional
hypersurfaces called the planes of absolute simultaneity; two events are
simultaneous just in case they lie on the same plane. (3) The canvas is
filled in by specifying the values of a collection of physical magnitudes,
each of which is assumed to be a point valued quantity.

If, for sake of definiteness, we think of the physical magnitudes as
geometric object fields on space-time, then classical worlds can be
presented in the form of a triple (M, {G,}, | Py}), a €/, BEB (4, FB
index sets) where M is the space-time manifold (usually assumed to be
R*), the G, are geometric object fields on M characterizing the struc-
ture of space-time (including, of course, the simultaneity structure (2)),
and the P; are geometric object fields characterizing the physical
contents of space-time. In keeping with (1), M and the G, are common
to all members of %" while the P, vary from world to world. Agreement
of two worlds (M, {G,}, {Ps}) and (M, {G,}, {Pj}) at a given time
means agreement on a plane of absolute simultaneity of the values of
the physical magnitudes.!

Modern physics contradicts or challenges each of the assumptions
(1)—(3). The special theory of relativity contradicts (2); the general
theory contradicts (1); and, according to some interpretations of quan-
tum physics, quantum theory undermines (3). What happens to the
doctrine of determinism when one or more of the props of the classical
worlds is kicked out will have to be discussed in detail in later chapters.
For the moment, let us assume that the props are secure. What is
surprising is that even with their support, classical worlds prove to be
an unfriendly environment for any form of Laplacian determinism. To
the extent that determinism passes the Scylla of triviality, it appears to
run a ground on the Charybdis of falsity. In Ch. II we viewed the Scylla.
We must now face the Charybdis.
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2. THE APPARENT FAILURE OF DETERMINISM IN LEIBNIZIAN
PHYSICS

Some of the versions of Leibniz’s multi-faceted principle of sufficient
reason either entail or presuppose determinism. And yet, as Howard
Stein (1977) has shown, Leibniz’s views on the nature of space and
time seem to preclude any interesting form of Laplacian determinism.

Let us recall Leibniz’s version of the space-time structure of classical
worlds. In accordance with the characterization of Sec. 1 above he
agreed that there is an absolute notion of coexistence or simultaneity.
And like all 17th century natural philosophers, he assumed that the
instantaneous three-spaces have a Euclidean E* structure and, further,
that there is a well-defined sense of duration or temporal distance for
non-simultaneous events. Finally — and this is the crucial point — he
held that these elements completely exhaust the structure of space-time.
The symmetry mapping of this Leibnizian space-time can be presented
in the following form. Let x% a = 1, 2, 3, stand for a Euclidean
coordinate system; and let ¢ stand for absolute time, ie., & M — R is
such that its level surfaces coincide with the planes of absolute simul-
taneity and the intervals |#, — 1,| give the duration between the events
e, and e, lying respectively on the planes /= ¢, and ¢t = t,. Then the
symmetry maps have the form:

(L)  x2- x'"=RYnx* + a%(t)
t=t'=t+b

where b is a constant, a%(¢) is an arbitrary smooth function of ¢, and
Rj(r) is a time dependent orthogonal matrix. In words, the structure
preserving maps of Leibnizian space-time onto itself are time transla-
tions and (possibly) time dependent Euclidean spatial translations and
rotations.

On this canvas Leibniz painted a plenum of matter; but for ease of
illustration it suffices to consider more sparsely populated worlds
containing, say, three particles.
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Such a world is completely described by drawing in the world lines of
the three particles (the solid curves of Fig. IIL1). Consider how the
mappings (L) act on the particle histories. From among the mappings
we can choose one which reduces to the identity for all < 0 but which
is non-trivial for ¢ > 0. It leaves fixed the entire past history of the
particles but changes their future behavior, as indicated schematically
by the dashed lines. Thus, if the Leibnizian laws of motion satisfy the
demand that the space-time symmetries are also symmetries of the
laws (i.e., carry a physically possible history to another physically pos-
sible history), then we have a violation of even the weakest form of
Laplacian determinism; for given any physically possible history of the
particle trio, there will be another physically possible history which
agrees with the first for all past times but disagrees in the future.

The announced demand is eminently reasonable, as is the stronger
demand that the space-time symmetries and the symmetries of the laws
of motion coincide. If the symmetries of the laws were more inclusive
than ,the symmetries of the space-time, then the space-time would
contain more structure than is needed to support the laws and Occam’s
razor would slice it away. On the other hand, the symmetries of the
laws should be at least as wide as the symmetries of the space-time; for
if the laws allow one history but not another, then those histories
cannot be connected by a space-time symmetry — otherwise, there
would be no way to express the difference between the allowed and the
prohibited histories in terms of the behavior of physical magnitudes on
the space-time canvas. Technically, the underlying assumption is that
the set of models of the laws are closed under automorphisms of the
space-time background, ie., if (M, {G,}, {Ps}) is a model and d is a
diffeomorphism of M onto itself such that d*G, = G, for each a, then
(M, {G,}, {d*Pg}) is also a model, where d* denotes the ‘drag along’
by d. Conceivably, a theory of motion could postulaie different lawlike
behaviors in different space-time regions. But such a difference would
be grounds for distinguishing the regions in terms of absolute structure;
that is, for adding, if necessary, elements to { G,} so that the regions in
question are not connected by a space-time symmetry. And it seems
that in this manner our assumption can always be vouchsafed (see
Earman (1986) for details).

There are two ways to bridge the abyss which has opened between
the vision of determinism and its fulfillment. One relies on the reinter-
pretation of Leibnizian space-time, the other on an enrichment of it.
The two moves will be briefly reviewed in turn.
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3. LEIBNIZ’S RESPONSE

Leibniz would have welcomed this challenge as an opportunity to expose
the Achilles’ heel of the Newtonian conception of the space-time mani-
fold, or as he put it in the famous correspondence with Samuel Clarke,
to “confute the fancy of those who take space to be a substance.”

Note that the transformations (L) preserve all relative particle
quantities such as relative distances, relative velocities, relative accelera-
tions, etc. According to Leibniz, facts about the values of these relative
quantities exhaust the factual content of the physical world. Thus, the
‘two’ world histories pictured in Fig. III.1 do not really correspond to
objectively different worlds but only to different descriptions of the
same world. Consequently, the alleged violation of determinism is only
an illusion due to the descriptive fluff packed into our presentation of
classical space-time worlds.

Leibniz’s position here does not result from a question-begging desire
to save determinism, but is arrived at by an independent route that
passes through his meta-physics and his metaphysics. According to the
former, which owes much to Descartes and Huygens, all motion must be
analyzed as the relative motion of bodies. According to the latter, there
would be a violation of the principle of sufficient reason if Fig. III.1 did
illustrate objectively different world histories; for in deciding which of
the two worlds to actualize, God would find Himself in a Buridan’s ass
situation, unable to choose between two worlds which are not separated
by any properties that provide sufficient grounds for choice. As Leibniz
put it in the third letter to Clarke:

I say then, that if space was an absolute being, there would something happen for which
it would be impossible there should be sufficient reason. Which is against my axiom.
And I prove it thus. Space is something absolutely uniform; and, without the things
placed in it, one point of space does not absolutely differ in any respect whatsoever
from another point of space. Now from hence it follows, (supposing space to be some-
thing in itself, besides the order of bodies among themselves,) that 'tis impossible there
should be a reason, why God, preserving the same situations of bodies among them-
selves, should have placed them in space after one certain particular manner, and not
otherwise; why every thing was not placed the quite contrary way, for instance, by
changing East into West. But if space is nothing else, but that order or relation; and is
nothing at all without bodies, but the possibility of placing them; then those two states,
the one such as now is, the other supposed to be quite the contrary way, would not all
differ from one another. Their difference therefore is only to be found in the chimerical
supposition of the reality of space in itself. But in truth the one would exactly be the
same thing as the other, they being absolute indiscernible; and consequently there is no
room to enquire after a reason of the preference of the one to the other. (Alexander
(1956), p. 26)
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The philosophical reaction to Leibniz’s critique has tended to divide:
those who share with him the notion that all motion is relative bodily
motion are naturally sympathetic while those who are impressed by the
fact that neither classcial nor relativistic physics supports this notion
are less sympathetic. What both sides have failed to see (and what
Leibniz himself was not clear about) is that the issue of relationism is
not equivalent to the key issue Leibniz raises about our mode of
presentation of space-time worlds. As I read it, his objection is first and
foremost to the view that space-time is a kind of substance or container
which exists over and above the events it houses. The objection can be
stated in a form that is independent of the intertwined questions of
whether all motion is the relative motion of bodies and what goes into
the G,. Let d be any diffeomorphism of the space-time manifold M
onto itself. For fields G, and P;, 4 induces new ones d*G and d*P
respectively (the fields ‘dragged along’ by d). Any two models (M,
{ Ga}s {Pg}) and (M, {d*G,}, {d*Pg}) related in this way are by Leibniz’s
lights just different modes of presentation of the same physical reality.
And this is so even if the structure of space-time, as specified by { G},
falsifies the slogan “All motion is the relative motion of bodies,” as it is
falsified for orthodox Newtonian and special relativistic space-time,
both of which contain inertial structure that permits the definition of
absolute or invariant dynamical quantities, such as acceleration, which
are not relative particle quantities (see below). Further, this is so even if
space (or space-time) is not “absolutely uniform” but is, say, variably
curved; for this curvature is represented by some appropriate object in
{G,} and is dragged along by d along with everything else so that again
the original model and its image model “do not at all differ from one
another” and are “absolutely indiscernible.”

Thus, on my interpretation the essence of Leibniz’s objection is to
treating points and regions of M as real existents, as substances in the
proper logical sense of objects of predication. There is a quick and
cheap way to reform our presentation of space-time models so as to
escape the objection; namely, take equivalence classes of “indiscernible”
models and declare that each class corresponds to a single Leibnizian
world. The more interesting challenge is to start from the other end and
give a direct and intrinsic characterization of the Leibnizian worlds and
then show that the members of an equivalence class of ordinary models
arise as different but equivalent representations of the same intrinsic
reality. For someone like myself who is not a relationist and who does
not believe that all motion is the relative motion of bodies, the
challenge takes the form of erasing the underlying manifold M of

CLASSICAL PHYSICS 29

space-time points while keeping the non-relational structure of space-
time, a kind of Cheshire cat trick.>

Whatever the ultimate decision on the ontological status of space-
time, there remains the problem of what geometric structure G, and
physical magnitudes P4 are needed in an adequate theory of motion.
And here the weight of evidence goes strongly against Leibniz. From
Galileo to Newton to Einstein, every successful theory of motion makes
use of physical quantities which cannot be reduced to relative particle
quantities. This opens up a new avenue along which determinism can
move; for in order to have well-defined absolute, or non-relative,
quantities of motion, the structure of Leibnizian space-time must be
beefed up. Consequently, the symmetries (L) must be cut down. Such a
cutting down may also cut down the counterexamples to determinism.

4. NEWTONIAN SPACE-TIME

Newton’s space-time canvas is much more complex than Leibniz’s. In
addition to simultaneity, duration, and Euclidean Space structure, it also
contains a preferred family of motions, called inertial frames, and a
distinguished family member called absolute space. The addition of the
inertial structure makes into well-defined quantities ones which are
not well-defined or invariant in Leibnizian space-time — in particular,
the instantaneous (non-relative) acceleration of a particle — and it
linearizes the space-time symmetries to form the familiar Galilean
transformations:

(G) 2% T X = Ry o "
t=t'=¢t+5b

where 9% and ¢® are constants and R§ is now a constant orthogonal
matrix.

The further addition of absolute space in the sense of a distinguished
inertial frame makes (non-relative) velocity as well as acceleration a
well-defined dynamical quantity and reduces the space-time symmetries
to

(N) et = RO A L e
Lt L b
The objection to full-blown Newtonian space-time, with this form of
absolute space, as a setting for mechanics is that it violates the principle

enunciated in Sec. 2 above connecting symmetries of space-time and
symmetries of laws; for the Newtonian laws of motion are invariant
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under (G). It is perfectly conceivable, however, that additional laws
might break the Galilean invariance, necessitating the introduction of
additional space-time structure and narrowing (G) to (N); in fact, it
was thought in the 19th century that the laws of optics and electro-
magnetism did just that. I will return to this matter in Sec. 14 below, but
for the moment it can be ignored since the addition of the inertial
structure to Leibnizian space-time is in itself sufficient to block the
argument which threatened Leibnizian determinism; for any member of
(G) which reduces to the identity for any finite interval of time, no
matter how short, is the identity map everywhere. Note, however, that
without the help of absolute space there are limitations to Newtonian
determinism. For example, it is not possible to write a law which allows
a scalar quantity @ to vary in space at a fixed moment of time and
which determines the future values of ® from its initial value ®(x, 0),
—o0 < x < 400, at r = (). For the law has to be Galilean invariant so
that the application of Galilean transformation to any solution must
produce a new solution. Choose the transformation so that it is the
identity for ¢ = 0 but not for later times. Since the initial data are
preserved, we then will have two solutions which agree at ¢t = 0 but
differ in the future.

5. NEWTONIAN PARTICLE MECHANICS

Because the above considerations have been very abstract, it is useful to
have before us some concrete examples of determinism triumphant.
Since Laplace’s espousal of determinism was prompted by his reflec-
tions on Newtonian celestial mechanics, it would be natural to look
there for the desired example, but actually it turns out to be cleaner to
envision a force law different from Newton’s 1/ law.

Consider N point masses m; (m; > 0), i=1, 2, 3, ..., N, and
suppose that they attract each other in pairs with a force which acts
along the line joining them and which is proportional to the product of
their masses and the distance separating them.? Combining this force
law with Newton’s second law of motion yields:

L1y mF= ) Cmm(r; — 1) (C = positive constant)
7
i*k

It is always possible to find an inertial system in which the center of
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mass is at rest at the spatial origin. In such a system, the equations
(IIL.1) decouple and as a result, the initial value problem with given
initial data

(I1.2) 7 (0) = 7y, 5,(0) = 7 (0) = 3,

not only has a unique solution, but the general solution can be written
down in closed form. Every physically possible history of the system is
thus comprehended in a single analytic formula, and the possible pasts
and possible futures of the system are, in Laplace’s words, present
before our eyes.

For Newtonian gravitation, the equation of motion is

(L3) myf, = L Gmmyr, —n)ry  (=|r, —nl)
')

f#*k

The initial value problem has a unique solution, at least locally in time.
Ifall r;, # 0, i # j, at t = 0, there exist unique functions r, of f and a
time interval (¢, t,) such that for any ¢ € (¢, #,) (IIL.3) holds and for
t =0 (IIL2) holds. When N 2= 3, there are initial conditions for which
t, or t, (or both) are finite. If the solution cannot be extended as a
smooth function of f to 4, =+ and f, = —o0, the solution is said to
be singular.

If all such singularities were due to collisions of two or more of the
point particles, we could affirm a qualified doctrine of determinism:

(9) Barring collisions, Newtonian gravitational theory of point
mass particles is Laplacian deterministic.

And we can make (Q) sound more impressive by adding that the
antecedent is almost always satisfied, for it is known that the set of
initial conditions which lead in a finite time to collisions is of
(Lebesgue) measure zero (Saari (1973)).

There are, however, some caveats about (Q). First, measure zero
need not imply either insignificant or ignorable. We would not judge
the set of initial conditions giving rise to collisions to be insignificant if,
for example, it proved to be dense within the set of states that eventuate
in strong interactions (in some appropriate sense) among the particles.
Nor would we regard the measure zero set as ignorable if it loomed
large within the range of cases we regard, for whatever reason, to be
physically interesting. To illustrate, take the case of N = 2. Here it is
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easy to see that the set of states leading to collisions has measure zero
since a collision cannot occur unless the angular momentum is zero and
since for N = 2 the set of zero angular momentum states has measure
zero. But if we are interested in zero angular momentum states, then
collisions loom large — indeed, for N = 2 such states always lead to
collisions,

The second and more important caveat is that (Q) may be false!
Define r(¢) = min(r;(¢)), i # j. Then if (¢, 1,) is the maximal interval
for which the solution exists, ¢, is finite iff » = 0 as ¢ — 3, and
similarly, ¢, is finite iff » = 0 as ¢ — ¢}. Further, for N < 3, r — 0 iff
there is a collision. But for N = 4 it is an open question as to whether or
not r = 0 implies a collision, though the evidence now available
indicates a negative answer (see Sec. 7 below). How might the implica-
tion fail? One can first try to imagine that the occupant of the role of
the minimum r; switches around and around. But since there are only a
finite number of particles, at least one of the potential occupiers, say
734, must actually occupy the role an infinite number of times as (say) ¢,
is approached. Thus, we are forced to imagine an oscillatory behavior
in ry, with lim inf 5, = 0 but lim sup r;, > 0. Such wiggling is used in
constructing anomalous solutions, as we will see below in Sec. 7. But
note that even if ry, does go to zero there need not of mathematical
necessity be a collision in the proper sense that the position vectors of
particles 3 and 4 both approach the same fixed point in space. For it is
mathematically possible that these particles accelerate themselves off
the space-time manifold and cease to exist at £,. And a theorem of
Sperling (1970) shows that such unbounded behavior must occur in
non-collision singularities, should they exist.

It is shocking that determinism may break down for the very case
which was supposed to serve as a paradigm example of determinism at
work. But worse still, reflecting on the way determinism might break
down in this case leads to a general worry about how determinism
could ever be securely established in classical worlds.

Before examining the reasons behind this paradoxical worry, let us
take note of the somewhat less paradoxical opposite side of this coin.
We will see in Ch. VI that to the extent that determinism holds in this
case, its course can be traced out by a dumb (# stupid) digital com-
puter, if the initial data are computable. Thus, although Laplace was
overly optimistic in one way he was overly pessimistic in another; for to
the extent that his demon is possible, it need not remain “infinitely
remote” but can be instantiated by an uncreative mechanical calculator.
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6. DETERMINISM AT BAY

Only a little reflection on some of the commonplaces of classical
physics is needed to switch the Gestalt of determinism safely and
smoothly at work in Newtonian worlds to puzzlement about how
Laplacian determinism could possibly be true. The first commonplace
is that it is hopeless to try to establish determinism for a system which
is not closed to outside influences. Trying to determine the weather in
Minneapolis tomorrow from even the most precise meteorological data
today in Minneapolis is a thankless task since tomorrow’s weather
can be influenced by what is now happening in North Dakota and
Wisconsin (Fig. III.2). Two remedies may be contemplated. This first is
to erect imaginary boundary walls (W, and W, of Fig. II1.3) to record
the incoming influences as they penetrate the boundaries of the system.
This gives rise to a non-Laplacian initial-boundary value problem: given
the appropriate initial data on S and the appropriate boundary data
on W, U W,, determine the state in the interior region R. For field
theories where there is action by contact such initial-boundary value
problems are often well posed; a successful example will be considered
below in Sec. 11. But success cannot bce expected for action at a
distance theories where effects are transmitted without leaving any
traces on the intervening spaces. Furthermore, even when the initial-
boundary value approach is successful, the success relies on a departure
from pure Laplacian determinism by requiring a specification of future
data. I therefore turn to a second remedy which seeks to preserve
Laplacian determinism in its pristine form.
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The outside influences coming from the Dakotas and Wisconsin can
be co-opted by extending the boundaries of the system to take in the
hinterlands. For practical purposes, a finite extension of the original
initial data surface § may suffice for a pretty good determination of
tomorrow’s weather. But in a spatially infinite universe, § must be
extended to infinity in all directions to make sure that the co-option is
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complete enough to rule out any possibility of a nasty surprise coming
from without. In this way we are driven from the local form of
Laplacian determinism to the global form.

The second commonplace threatens even the global form. The laws
of classical physics place no limitations on the velocity at which causal
signals can propagate. This fact is intimately related to the structure
of Newtonian space-time. Without absolute space, velocity is not a
Newtonian invariant; whatever the finite value of a particle velocity as
measured in one inertial frame, there will always be another inertial
frame in which the value is as large as you like. Thus, no law of motion
invariant under the Galilean transformations can entail the existence
of a fixed finite bound on particle velocity. An infinite velocity is,
however, an invariant concept within the Galilean group, and this in
turn leads back to the justification for absolute simultaneity: distant
clocks can, in theory, be brought into absolute synchronization by
means of a sequence of signals whose velocities tend towards infinity.

Signals with actually infinite velocities will be considered a little later,
but for the moment it is sufficient to contemplate particle or wave
motions where the velocities of propagation are everywhere finite but
unbounded. Fig. I11.4 illustrates the space-time history a of a particle
with velocity [X(#)] < o for all ¢ but with finite ‘escape time’ * = high
noon on April 1, 1988.

Fig. IIL.4

As t — t* from below, x(f) — < and the particle disappears from the
universe, even though |¥(f)| < «. The curve g is the temporal mirror
image of and it represents the history of a particle which springs the
April Fool’s joke by appearing from spatial infinity. Thus, in Newtonian
space-time the co-option strategy appears to be doomed to failure, for
even if the system is extended to include the entire universe, it is not
automatically ‘closed’ in the operative sense to outside influences.*
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Please do not complain that we never have observed such disturbing
disappearing and appearing acts and that, by induction, it is reasonable
to expect that we never will. Determinism is a doctrine not just about
the actual world but about all physically possible worlds. So even if we
can safely employ induction to conclude that no such particles are
actual, Laplacian determinism is still threatened if such processes are
physically possible. The possibility of B(a) is a prima facie insult to
futuristic (historical) determinism since f(a) influences points to the
future (past) of ¢ = t*, e.g. p(q), but does not register on ¢ = r* and so
leaves no initial data which can be projected into the future (past).

The threat can be restated by borrowing a concept used extensively
in the discussion of relativistic determinism. Let S be a global or local
time slice (here, a plane of absolute Newtonian simultaneity or a
portion thereof). The future domain of dependence D*(S) of § is to
consist of all points p of space-time such that (i) p lies to the future of §
and (ii) the state at p depends only on the state on S. The past domain
of dependence D™(S) of § is defined analogously. And the rotal domain
of dependence D(S) is then the union D*(8) U D7(S). How to interpret
the crucial clause (ii) turns on assumptions about the physics of the
situation, but this much seems clear: p ¢ D*(S) (respectively, D7(S)) if
there is a space-time curve, representing a physically possible causal
signal, which passes through p but which never meets S no matter how
far it is extended into the past (respectively, the future). The point of
the preceding paragraph can now be restated thusly: Whatever the
choice of § in Newtonian space-time, domains of dependence are
trivial, for D(S) = D*(S) = D7(S) = S. Laplacian determinism not
only doesn’t get to first base, it never even has the chance to come out of
the on deck circle! In relativistic space-times, as we will see in the next
chapter, determinism at least can be brought to bat in that domains of
dependence extend non-trivially.

7. DETERMINISM AT SEA

The threat to determinism is, so far, only a prima facie one. To make it
palpable, it must be shown that physically possible force functions can
generate the kind of behavior picture in Fig. IIl4. And more, it must
also be shown that the sources which generate the forces either them-
selves escape contact with ¢ = r* or else that their behavior at r* does
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not code up enough information to make a unique determination of the
past and future.

Newtonian gravitational theory of point mass particles provides a
relevant example. Mather and McGehee (1975) studied a system of four
point mass particles moving colinearly under their mutual Newtonian
gravitational forces. Particles 3 and 4 approach one another ever more
closely, giving up potential energy in the process. Some of this energy
is used fo accelerate 3 and 4 and some of it is transferred to
particle 1 by means of particle 2 which bounces back and forth
between 1 and 3 (see Fig. IIL.5). Collision singularities are involved, but
for the binary collisions the solutions can be extended in a physically
reasonable way on the model of elastic bounces. Using this device,
Mather and McGehee establish that the solution can become un-
bounded in a finite time 7*: as ¢ = £* from below, x,(f) = =0, x,(1),
Xy(f) =+, while x,(r) executes an infinite number of bounces
between particles 1 and 3. Since the laws of Newtonian gravitation
are invariant under time reversal we can invert the Mather-McGehee
scenario to produce a solution which insults futuristic determinism
by presenting an empty universe up to £* but thereafter having four
particles, three of which appear from spatial infinity and the other of
which oscillates infinitely back and forth.

Fig. IIL5

Perhaps the problem for determinism is due to collisions. If so we
could retreat to the qualified form (Q) of determinism asserting that,
barring collisions, Newtonian gravitational theory of point mass parti-
cles is Laplacian deterministic. However, it now seems that this retreat
does not take us onto safe ground. In a recent article, Gerver (1984)
presents a model with five coplanar point masses that never collide.
The messenger particle 5 shuttles around the triangle, picking up
energy from particle 1 and transferring part of it to 2, 3, and 4, with the
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result that the triangle expands with each round trip of the messenger
(see Fig. IIL.6). Gerver makes it plausible that the speed of the mes-
senger and the rate of expansion of the triangle can be arranged so that
within a finite time the messenger completes an infinite number of
round trips while the triangle becomes infinitely large. The details of a
rigorous proof remain to be given.

Fig. I1L6

It is known that for N = 4 the set of initial conditions which could
potentially eventuate in a noncollision sin gularity has measure zero (see
Saari (1977)), essentially because, as in the Mather-McGehee construc-
tion, all four particles must approach a fixed line in space. But as
argued in Sec. 5, measure zero does not necessarily mean insignificant
or ignorable, and, moreover, cases for N > 4 remain to be settled.

It is not immediately clear to what extent singular but noncollision
solutions, should they exist, would undermine Newtonian determinism;
for it is not obvious under what conditions such solutions can be
joined onto a normal solution. In the case of the heat equation, to be
studied below in Sec. 10, the existence of a single solution which is null
before ¢ = 0 but non-null afterwards is sufficient to completely destroy
futuristic determinism since, by the linearity of the equation, the self-
exciting solution can be added onto any other solution to produce a
new solution.

8. LIFE RAFTS

The true believer in determinism will be undaunted by the examples of
Mather-McGehee and Gerver. There is, he will contend, only an
apparent failure of determinism, the false appearance being due to
considering a space of solutions that is too large in the sense that it
encompasses solutions that are not genuinely physically possible; and
once these impostors are rooted out, the triumph of determinism will
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again become apparent. That is the general strategy. Three concrete
suggestions for implementing it come to mind.

() Impose boundary conditions at infinity. By the imposition of
appropriate boundary conditions at spatial infinity we can rule out
influences coming from or disappearing to God knows where. This
achieves by fiat what the laws of motion were supposed to achieve on
their own. Given the present state of the universe, the laws determine
the future state — as long as there are no rude surprises. Boundary
conditions at infinity are just a way of asserting that rude surprises will
not be counteranced.

(i) Add additional laws. The escape solutions discussed in the
preceding section appear to violate conservation of mass and momen-
tum, so in so far as conservation principles are sacred, the escape
solutions are physically impossible. Distinguish two principles of con-
servation of mass: (C1) particle world lines do not have beginning or
end points and mass is constant along a world line, and (C2) for all
time ¢, and 1,, the total mass at ¢, = the total mass at ,. (C1), I claim, is
a fundamental principle of classical physics, and it is satisfied even in
the anomalous escape solutions. Further, if the laws of motion do not
allow escape solutions, then (C1) entails (C2). Some people have been
misled into thinking that (C2) is a basic law of classical physics because
they have not recognized the possibility of escape solutions.

A similar response is to be made to the invocation of conservation of
momentum. Given that a system is closed and that the interactions
among the particles satisfy certain restrictions, we can prove conserva-
tion of momentum as a theorem. But there is not the ghost of a hope of
proving or securing conservation of momentum if the system is open.
And the question here is precisely that of whether the universe as a
whole is an open system.

(iii) Object to the idealization of point mass particles. There are three
responses to the objection. (a) Idealizations are always involved in
science, and this idealization of point mass particles moving under their
mutual gravitational forces was supposed to provide the paradigm of
Laplacian determinism at work. So the objection is both querulous and
self-defeating. (b) Remove the idealization and consider corpulent
particles. You must then say what happens when a collision takes place.
Classical physics suggests that we impose laws of elastic impact. But
binary collisions of unequal mass particles in two or more spatial
dimensions or triple collisions of unequal masses in one spatial dimen-
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sion are generally non-deterministic. (¢) Consider binary collisions of
equal mass particles in one spatial dimension. Each collision is deter-
minstic. But with enough particles anomolous non-deterministic solu-
tions can be created, as we will now see.

9. INFINITE BILLIARDS

Consider a system of billiard balls strung out in (two-dimensional)
space as shown in Fig. II.7. The balls are assumed to interact only by

A

Fig. I1L.7

contact and then according to the Newtonian laws for perfectly elastic
bodies. If for r < r* all the balls are at rest, then barring outside
intervention, the balls will remain at rest for ¢ > ¢* If, however, the
system is infinitely expanded, letting the number n of balls increase
without limit, non-uniqueness of future behavior can result. In addition
to the ‘normal’ solution in which all the balls are at rest for ¢ > ¥,
Lanford (1975) shows how to construct an anomalous solution in
which all the balls are at rest for £ < #* but for ¢ > r* all but a finite
number of them are in motion. This solution is obtained by taking the
limit of standard solutions in which the spacing of the particles and the
initial direction of the nth particle are arranged so that the nth particle
just grazes the n-1th particle, sending it into a grazing collision with the
n-2nd particle, etc. If the velocity of the nth particle increases rapidly
enough as n increases, then the limiting solution as n — © contains
within itself an analogue of the body of Fig. IIl.4 which appears from
spatial infinity. If we plot successively the trajectories of the n-1st
particle between the time when it is hit by n and the time it hits n-2, we
get a zig-zag approximation to the trajectory f. Running this scenario
backwards in time produces an infinite billiard ball analogue of the
curve o of Fig. II1.4 and an insult to historical determinism.

We have here a very curious situation. The billiard ball example
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conforms to Lucretius’ vision of a world composed of nothing but
atoms moving in a void. It also displays a non-deterministic spontaneity
but not of the sort Lucretius thought necessary for free will, for not one
of the billiard balls freely or spontaneously swerves in contravention to
the laws of motion.

The self-exciting feature of Lanford’s anomalous solution can be
ruled out and determinism restored either by imposing population
control and limiting the billiard game to a finite one or by setting
boundary conditions limiting the behavior of the billiard balls at spatial
infinity. Unless such limitations can be independently motivated we
have yet another depressing example where determinism is achieved by
fiat.

The need for the classical form of Laplacian determinism to appeal
to boundary conditions at infinity arises not only in particle mechanics
but in field theories as well, as is illustrated in the next section.

10. HEAT

The classical heat equation in one spatial dimension has a very simple
appearance which belies the wealth of peculiarities it contains; it states:
ou ’u

e ot -
where for convenience the thermometric conductivity coefficient has
been normalized to unity.

From the remark at the end of Sec. 5 it seems to follow that the heat
equation cannot support any form of determinism, for it allows the
scalar quantity u to vary in space and it is first order in time so that
the appropriate initial data at =0 is u(x, 0). However, the remark
does not apply since the heat equation is not Galilean invariant. The
intended physical interpretation of u(x, ) is the temperature at time ¢
and point x of some heat conducting medium, say, an iron bar. The rest
frame of the medium is thus a preferred frame for describing thermal
history. For the moment I will ignore the intended application and
consider (II1.4) as an abstract partial differential equation.

The abstract problem of Laplacian determinism is then to find a
solution u(x, ¢) of (IIL4) satisfying initial conditions u(x, 0) = ¢(x),
—o < x <+ and to prove uniqueness of the solution. In this
abstract form the problem is not well-posed, for there are null solutions

CLASSICAL PHYSICS 41

to (IIL.4) which vanish at £ = 0 but which are different from zero for
t > 0. Since (II1.4) is linear, such solutions may be added to any other
solution to produce a new solution different from the original one but
satisfying the same initial conditions at # = 0. Some null solutions are
very smooth — indeed, C® — so the breakdown in futuristic deter-
minism is not due to the development of a singularity.®

Reflecting on the way heat is propagated according to (II1.4) might
make one despair of achieving any interesting uniqueness result for the
initial value problem. (IIL.4) is a parabolic partial differential equation
with characteristics coinciding with the planes of absolute simultaneity.®
From this we deduce that heat is propagated infinitely fast so that
influences coming from infinity would seem to be the norm. The
deduction of infinite propagation velocity is supported by examining
the fundamental source solution.

exp(—x?/41) fort> 0

[I1.5) k(x, t)=
Lt fort <0

Using the facts that for a solution u, [Ju(x, r)dx is taken to be the
amount of heat contained in the medium at ¢ between the points a and
b, and that [ZZk(x,¢)dx =1, we interpret (IIL5) as describing the
temperature distribution of an initially cold bar into which a unit
quantity of heat has been introduced at the origin. Since k(x, ¢) > 0 for
any |x| > 0 and any ¢ > 0, the heat is seen to spread instantaneously
to the most remote parts of the medium.

However, the form of (IIL.5) also shows that the effects of the heat
source are rapidly attenuated as one moves away from the spatial
origin, This makes us hopeful that if the influences coming from infinity
will not wreck uniqueness unless they are unboundedly strong. This
hope is fulfilled with the aid of a formal condition limiting the growth of
a solution u of (II1.4) at infinity:

(B) There are constants C and a such that
lu(x, t)] < Cexp(ax?)
forall —e0 < x < 4o andallt > 0
Any solutions of (II1.4) which satisfy (B) and which agree at # = 0 must

agree for ¢ > 0. Condition (B) can be weakened but not substantially;
e.g., replacing x? by |x|>* ¢, ¢ > 0, does not secure uniqueness.
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The boundary condition (B) might be promoted by the argument
that if the temperature grows beyond all bounds the conditions of the
problem are, physically speaking, undercut since our bar of iron will
vaporize. But if determinism is going to break down it might as well go
down with a bang, and complaining about the breakdown of the
problem situation is just a way of bemoaning the demise of deter-
minism. In any case, (B) can be violated without having the medium
become as hot as Hades at spatial infinity; u might, to the contrary,
become unboundedly negative.

This observation leads to another approach to establishing unique-
ness. In view of the interpretation of u as temperature, we might want
u 2z 0 everywhere and always. If our desire is fulfilled, then futuristic
determinism is secured in this fashion: suppose that u, and u, solve
(11L.4), that u,, u, 2 0, and that u,(x, 0) = u,(x, 0) for —0 < x < +o0;
then u(x, £) = uy(x, t) for ¢t > 0.

For the intended application of (IIl.4) we may agree that u=> 0 is a
condition sine qua non for physical possibility. But what we would like
is for: this condition to result from a single initial stipulation and
thereafter from the unfolding of determinism. That is, we would like

(H)  If u solves (IIL4) and u(x, 0) 2 0 for —o < x < +oo, then
u(x, t) = 0fort > 0.

But (H) is false, as the alert reader will already have seen. For let
u, and u, be any solutions of (IIL4). By linearity, & = u; — u, and
U = u, — u, are also solutions. If u; and u, conform to the same initial
conditions, then u(x, 0) = u(x, 0) = 0, so by (H) #(x, r) > 9 and
u(x, t) 2 0 for ¢ > 0, implying that i, = u,, i.e., general uniqueness
which we have seen does not hold. Thus in matters of heat once is not
enough; the stipulation that u > 0 has to be repeated anew at each
moment of time.

Finally, it may be well to note that the wringers through which heat
puts determinism are not all peculiar to the heat equation. The type of
field law appropriate for Newtonian space-time is a parabolic partial
differential equation, the heat equation being only a special instance of
the type. And for parabolic partial differential equations in general,
uniqueness for the Laplacian initial value problem cannot be expected
without the help of supplementary boundary conditions.
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11. WALLING OUT

As an alternative to giving boundary conditions at infinity we could
revert to the non-Laplacian wall strategy mentioned above. For the heat
equation this would amount to specifying the function # both on the
initial time slice § and on the boundary walls W, U W, (refer to Fig.
II1.3 again) and then trying to determine u within the interior region.
This problem is well-posed under seemingly mild continuity assump-
tions, as follows from the maximum principle for parabolic partial
differential equations. In the case of the heat equation, this principle
asserts that if a solution u is uniformly continuous over the closed box
of Fig. IIL.3, then u assumes its maximum value on the bottom or the
side walls S U W, U W, of the box. To derive uniqueness, it suffices to
take the case where u =0 on § U W, U W,; applying the maximum
principle to both u and —u gives u = 0.

Instead of a portion of an infinite bar we can focus on a finite bar
whose temperature at £ = 0 is given and whose ends x =0 and x = 1
are maintained by two stokers at prescribed temperatures over the
interval from 7 = 0 to, say, £ = 1. For this set up it is natural to require
that the temperature (x, ¢) on the bar is continuous in x for any fixed ¢
and continuous in ¢ for any fixed point x of the bar. But as Hartman
and Wintner (1950) note, the two-dimensional uniform continuity
demanded by the maximum principle is not natural if we imagine that
the stokers operate independently of one another and independently of
the initial temperature distribution. But if two-dimensional uniform
continuity is abandoned and what is required of a solution is ordinary
continuity and the boundary conditions

ufr, Oy =), 0 <5 <0
w0, N=y(),0 <t <1
a(l = w() 0~ <1

then the solution is not necessarily unique. Nor does the imposition of
the one-sided boundedness condition u 2> 0 suffice for uniqueness for
the modified problem. However, Hartman and Wintner show that
ordinary continuity plus boundedness of u on the box do suffice for
uniqueness. The latter condition is reasonable if we imagine that the
stokers work with a finite fuel supply and stoke at a finite rate (con-
servationism and unionism in the service of determinism).
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12. OLD HEAT

The problem of historical determinism for heat in an infinite bar has an
uninteresting dissolution. In the first place, the instantaneous tempera-
ture of the bar, regarded as the final temperature, cannot be arbitrarily
prescribed, for the assumption that heat has been diffusing according to
(IIL.4) for any length of time, no matter how short, forces u(x, f) to
be analytic in x. Worse still, we know that without supplementary
boundedness conditions uniqueness cannot be expected; but bounded-
ness conditions coupled with the assumption that the heat equation
holds for all past times tends to reduce the situation to an uninteresting
static one. Suppose that u satisfies (111.4) for all ¢ < 0. If either | u(x, t)|
is uniformly bounded for ¢ < 0 (i.e., there is a constant C such that
lu(x, t)| < C for t < 0), or else u(x, r)2 0 for + < 0 and u(x, 0) does
not grow too fast as | x| — <, then u = constant for + < 0 (Hirschman
(1952)). Interesting initial or final conditions can arise only if the
system is open, either to influences coming from infinity or to home
town stokers.

Introducing stokers we can formulate a backwards final-boundary
value problem where the temperature distribution is known for the final
time S and for the ends of the bar W, and W, for earlier times, and the
temperature is sought for the interior R’ of the bar at earlier times
(Fig. 111.8). The maximum principle which was used to prove unique-
ness for the forwards looking initial-boundary problem is asymmetrical
in time and does not yield uniqueness for the backwards looking
problem. (Recall: It asserts that for a closed box in the x—¢ plane, the
temperature takes its maximum either on the bottom or the sides.)
Uniqueness is equivalent to the proposition that a solution which is 0
on $ U W; U W, vanishes in the interior R’. Physically this would
mean that a finite bar whose ends are maintained at a zero temperature
cannot rid itself of all of its heat within a finite time.

tt

Fig. 11L.8
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To investigate this possibility, assume that the temperature distri-
bution at =0 is nice enough to be written as a Fourier series.
For a bar extending from x =0 to x =1, this means that u(x, 0)
=X, .4, sin(mnx). The unique future solunon is then u(x, f)=
2 -1 a,, sin(mmux) exp(— m?t). Uniqueness for the backwards final-
boundary problem is then established by showing that for any finite
t > 0, u(x, r) =0 implies u(x, 0) = 0. Unfortunately, backwards unique-
ness is of little help in practical cases of retrodiction since, as the form
of the solution indicates, any error in the final data is exponentially
expanded in trying to project into the past. Problems for prediction and
retrodiction caused by instability will be discussed in Ch. IX.

It is of interest to note that if we append a non-linear term f(u(x, ¢))
to the classical heat equation equation, so that it now reads

&t_az

ot

then the solution of the modified equation can be driven to zero in a
finite time, wrecking backward uniqueness.®

The heat equation can be used to make inferences about the past by
using predictive models retrodictively. If we assume that at some time
in the distant past the earth was in a molten state and neglect heat
generated by chemical reaction, radioactivity, extra-terrestrial visitors,
etc., then the heat equation can be solved forwards in time to give the
present temperature distribution. In the simple models studied by
Fourier and Kelvin, the temperature gradient near the earth’s surface
furns out to be proportional to the temperature of the molten material
and inversely proportional to the square root of the period T since the
molten state. In this way observations of current temperature gradients
can be used to estimate the ‘age’ 7 of the earth. (Aside: Kelvin’s
estimate of 100—200 million years and later estimates by Tait which
pushed the value down to 10—20 million years caused some consterna-
tion among geologists and the followers of Darwin. Of course, we now
know that Kelvin’s model contained a number of false assumptions.®)

13. DON'T FENCE ME IN

We have seen that for determinism to succeed in Newtonian particle
and field theories, either the erection of boundary walls or the imposi-
tion of boundary conditions at infinity is needed. For field theories
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these needs would disappear if space were compactified, eliminating
spatial infinity. For particle theories, however, the situation is less clear.

Roll up the Euclidean x—¢ plane along the x-axis to produce the
cylindrical version of Newtonian space-time shown in Fig. ITL9.

i
tf%
B

Sit= t';y

Fig. 11L9

Even though there is no spatial infinity for particles to escape to or
appear from, domains of dependence may still be trivial. The curves a’
and f’ result from a and B of Fig. L4 when this figure is subjected to
the rolling process. Since a” and 8’ have no end points, are everywhere
time-like (i.e., are oblique to the planes of simultaneity and have finite
velocities), but never meet S, D(S) = D*(S) = D~(S) = S. Similarly,
for a three- or four-dimensional space-time, the initial-boundary value
problem is threatened by particles which do higher dimensional
analogues of the death spirals of those in Fig. IIL9. Thus, in Fig. II1.10,
itseemsthat D*(S U W)=8S U Wand D (SU W)=8§U W.

Fig. IIL.10

The point of erecting imaginary boundary walls was to prevent the
unannounced invasion of influences from without. But if the processes
illustrated in Fig. IIL10 are live possibilities, then the invaders can
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invade from within. Examples of such fifth-columnist invaders cannot
be constructed in Newtonian gravitational theory of point masses, at
least not without collisions. A result of Sperling (1970) proves that
if the solution ceases to exist after a finite time and there are no
collisions, then the mutual particle distances cannot remain bounded;
some of the particles must escape to infinity and in so doing will
register on the walls. But perhaps fifth-columnists can be created with
the help of binary collisions, as in the Mather-McGehee example, or by
using a different kind of force function.

By now the determinist is becoming tired of having to fight a
guerrilla war against the invaders who seek to overthrow a deterministic
regime; but in Newtonian worlds there is no clear-cut path towards a
once-and-for-all victory. For, to repeat, to incorporate into the space-
time structure an unbreachable barrier to the invaders is to break
Galilean invariance, and Galilean invariance is the Newtonian expres-
sion of the well-supported principle of the equivalence of inertial
frames. Only a radical change in the structure of space-time can resolve
this impasse in favor of the determinist. The special theory of relativity
turns out to be an answer to the determinist prayers, as will be seen in
the following chapter. But before leaving the classical domain, I want tc
discuss some other problems for determinism, one of which does and
the other of which does not derive from very fast particles or waves.

14. CLASSICAL ELECTROMAGNETISM

The source free Maxwell equations in empty space read

1 B ; E
(IIL6) ittt OB g i il OB
Felil ¢ Ot

V:-B=20 V-E=0

Since these equations are not Galilean invariant they require the
support of a special frame of reference. In the 19th century this frame
was taken to be the rest frame of a ponderable medium, the lumini-
ferous aether, which was thought to be a necessary substratum for
electromagnetic waves. However, in keeping with the dematerialization
of the aether which took place at the turn of the century, I will construe
the aether frame to be a special inertial frame, absolute space, which is
unoccupied by a material substratum.!’
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It then follows from (IIL.6) that electromagnetic waves are prop-
agated with a speed c relative to absolute space and a speed ¢ £ vina
frame moving relative to absolute space with a speed ». This puts the
theory into conflict with actual observational results, but let us imagine
that Nature has spoken against Galilean invariance and then ask
whether the theory provides us with an example of determinism. It
does. If the values of E and B, subject to the instantaneous constraints
V-B = V-E = 0, are specified at one time, then the top two of the
Maxwell equations determine the future values, guaranteeing in the
process that the constraint equations continue to hold.

This success for determinism becomes tainted when we attempt to
add sources. Formally, the second of the top two Maxwell equations is
modified by adding the current density to the right hand side and the
second of the bottom two is modified by adding the charge density to
the right hand side. The theory is completed by adding the Lorentz
force law governing the motion of charges. The resulting formalism
admits a well-posed initial value problem as long as the charges move
with subluminal velocities, but there is nothing in the formalism as
stated to prevent the presence of charged tachyons. With tachyonic
sources it remains to be seen whether the system admits a coherent
initial value problem and, if so, whether there are solutions in which the
tachyons accelerate themselves off the space-time manifold. If in either
of these ways classical tachyons should undermine Laplacian deter-
minism we could consider modifying the laws of classical electro-
magnetism so as to prevent a charged particle from becoming a
classical tachyon by accelerating itself from a sub to a superluminal
velocity. But this already takes us part way towards relativity theory.
And it leaves unexplained why classical charged tachyons couldn’t have
existed from time immemorial in a superluminal state of motion.

15. SHOCK(ING) WAVES

We made repeated use of two characteristics of the classical heat
equation: linearity and infinitely fast propagation of heat. Another
interesting feature is that the heat equation has a soothing effect on
temperature: whatever roughness exists in the initial temperature dis-
tribution is smoothed out in ever so short a time, for solutions u(x, f)
become analytic in x (though notin ¢) for £ > 0.
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Hyperbolic partial differential equations imply finite signal velocities.
But non-linear versions of these equations may not have the soothing
effect of the heat equation; indeed, solutions may shed whatever
smoothness exists in the initial data and become non-differentiable or
even discontinuous, thus ceasing to exist as ordinary solutions.

A very simple example studied intensively by mathematicians is the
first order equation.

du i=

(II1.7) a + -~ 0 (where f = f(u(x, r)).

Setting f* = dfidu, (IIL.6) can be rewritten as
94
ot

It follows that a solution u is constant along the characteristic curve
x(1) which has velocity

(IL9)  dx(r)/dt = f'(u(x, 1))

To get a solution corresponding to initial data u(x, 0) = uy(x), we
just propagate the initial data along the characteristics thus: u(x, L=
Uy(x = #f"). In the linear version of (IIL.8), f = constant and the
characteristics are independent of the particular solution. Also the
characteristics radiating from the line ¢ = 0 simply cover the upper half
of the x—¢ plane, and thus the initial data at time O can be propagated
forward in time to give a solution for all ¢ > 0. But suppose that (IL8)
is genuinely non-linear with, say, f” > 0. If the initial data are chosen so
that uy(x;) > uy(X,), X; < x,, then the characteristic radiating from (%1,
0) has a greater velocity than the one from (x,, 0). So the two must
intersect at some point (x*, £*) with * > 0, with the result that u takes
on two different values at the same point. Solutions in the ordinary
sense may fail to exist after a finite time.

(ITL.8) Fo LA
dx

(x4

T(%4,0) (x2.0) x

Fig. IIL11
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Anarchists will be happy to conclude that the law of motion breaks
down and chaos reigns. Those more disposed towards law and order
will seek a generalized sense of ‘solution’ on which u can be said to
solve (IIL.8) even though it is not differentiable or even continuous. The
mathematical theory of distributions is tailor made for this situation. u
is said to be a weak solution of (IIL7) in the sense of distributions just

in case
el o U <
(1IL.10) J:H ey u+ Py f] dxdr=0

for every test function ¢(x, ) which is C* and which vanishes outside
of some compact region of the x—¢ plane.

Weak solutions overcome the existence problem, but at the expense
of uniqueness since more than one weak solution can correspond to the
same initial data.!! The committed determinist will be convinced that
the space of all weak solutions is too large, that it extends beyond the
bounds of real physical possibility, and that uniqueness will be restored
when the unphysical solutions are cut out. But lest he be accused of
chicanery in cutting out solutions, the determinist must allow his hand
to be guided by independent considerations as to what is and is not
physically possible. Just such a guide comes from experience with shock
waves, which provide the physical motivation for studying weak solu-
tions in the first place. As a piston compresses a cylinder of gas it
creates a wave which travels through the gas with the speed of sound s.
But as the gas is compressed, s increases so that the later waves move
faster than the earlier ones. In some conditions, the later waves over-
take the earlier ones and in such a way that the resulting waveform
develops a shock discontinuity where the velocity gradient blows up.'?
If u in our equation (II1.7) is interpreted as the velocity of the gas, then
it provides a simple mathematical model for the formation of shocks.
The velocity gradient is

7% 1) Pl L
Jdx 14 st
In keeping with the above assumptions, we set f* > 0 and " < 0 and
find that a gradient catastrophe occurs at the positive time ¢ = —1/u'f".

Suppose then that we assume that the only way ordinary solutions
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degenerate into weak ones is through the formation of shocks, which
we will idealize in the following way: there is a smooth curve y = x(r)
across which the solution # may be discontinuous but on either side of
which it is smooth. The determinist will then want to show that cor-
responding to any initial value problem there is a weak solution of this
form. This can be done, but alas it still may not be unique. Further
surgery on the class of weak solutions is required. If we think of the
formation of shocks as an irreversible process, it is natural to require
that matter which crosses the shock show an increase in entropy.
Analytically, this amounts to requiring that the velocity dy/d¢ of the
shock is less than the characteristic velocity f'(¢,) on the left but greater
than that f'(u,) on the right; or equivalently, each point on the shock
properly reflects the initial data by being connectible to the initial data
surface by a characteristic. With these restrictions in place, uniqueness
of weak solutions can be proved, if, as we assumed, * > 0. If f is not
an increasing function of # a more complicated form of the entropy
condition is needed.!?

For the determinist, the lesson to be drawn is clear. The apparent
problem with determinism was a welcome opportunity to investigate in
detail the physics of the situation and to show that when that is done
determinism works its way in a more subtle and wondrous form than
we could have otherwise imagined. The skeptic will complain that the
determinist should have been able to say in advance what all the
constraints were and should not have been allowed to cut the cloth of
physical possibility to suit the needs of determinism.

16. VISCOUS FLUIDS

As a final example, I mention the Navier-Stokes equation, which is the
classical equation of motion for a viscous fluid. For appropriate initial
_data at ¢ = 0, a regular solution is known to exist at least for a finite
interval [0, *), and when it exists it is unique. A weak solution exists for
all future time, and in the case of two-dimensional motion is unique.
But global uniqueness for weak solutions in real three-dimensional
space remains an open question.'*

In the 1930’s Leray (1934) conjectured global uniqueness does not
hold for all initial data and that the breakdown of uniqueness (in weak
solutions) is associated with the development of turbulence in the fluid.
More recently opinion has swung away from Leray’s point of view
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towards determinism and towards an alternative explanation of tur-
bulence, advocated by Ruelle (1981), in terms of “strange attractors.” If
the evolution of the fluid is indeed deterministic, then its possible
motions can be described as a flow on a phase space, each point of
which represents a possible instantaneous state of the system. An
attractor A is a point or more generally a compact region of the phase
space such that the phase orbit uniquely determined by any point
sufficiently near to A converges upon A. Conservative dynamical
systems (e.g, those described by Hamiltonian mechanics) where the
phase flow preserves volume in phase space cannot have attractors.
But dissipative systems, such as viscous fluids, where the internal
friction dissipates mechanical energy, generally do have attractors. An
attractor A is strange if, roughly, the phase orbits determined by points
near A are unstable. More will be said about these issues in Ch. IX. The
only point I wish to convey here is that determinism in the classical
description of this most earthy of processes (tea sloshing in a cup,
whirlpools in rivers, etc.) is very much a live issue.

17. CONCLUSION

Several important morals can be drawn from our discussion of deter-
minism in classical worlds. The overarching moral concerns the impor-
tance of the status and structure of space-time. On a Newtonian
substantivalist conception of space-time, Laplacian determinism is not a
free-standing doctrine but requires sufficiently strong space-time scaf-
folding to support it. A Leibnizian non-substantivalist conception of
space-time may avoid the need for some of the scaffolding, but the
Leibnizian alternative has never been worked out in sufficient detail to
permit judgments to be made with any confidence."?

Newtonian space-time, whose structure is rich enough to support the
possibility of Laplacian determinism, nevertheless proves to be a none
too friendly environment. The principal irritant derives from the pos-
sibility of arbitrarily fast causal signals, threatening to trivialize domains
of dependence. It is not surprising, therefore, to find non-uniqueness
for the initial value problem for some of the most fundamental equa-
tions of motion of classical physics, both for cases of discrete particles
(ordinary differential equations) and for continuous media or fields
(partial differential equations). Whether such non-uniqueness entails the
falsity of determinism is a difficult and delicate question, turning in
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large part on the status of supplementary conditions that might be
imposed on the problem. We encountered a variety of such cases,
ranging from those where the supplementary conditions needed to
restore uniqueness are both physically well-motivated and nonquestion-
begging to others where the supplementary conditions amount to little
more than a hypocritical refusal to consider the possibility of un-
pleasant surprises. Individual attitudes on the classification of cases is
naturally influenced by one’s predispositions towards determinism.
Such a circularity is not unexpected; nor is it entirely unwelcome since
it provides a means by which determinism can be used to probe issues
about physical possibility and necessity.

Though they are perhaps obvious, there are two other points worth
emphasizing. First, the trials and tribulations determinism is forced to
undergo in classical physics are purely ontological. None of the ones I
have described above derive from epistemological considerations, such
as the ability of observers, embodied or disembodied, smart or dumb,
to access and process information about the universe. Second, despite
the residual and irremediable vagueness in the ontological doctrine of
determinism, the threats discussed above are sharp enough to be
recognizably threats. And I would add, the issues are not sharpened
by vielding to the current philosophical fashion of formalization. If
philosophers had spent less time fiddling with axioms, subscripts, n-
tuples, and the like, and more time on physics, they would no doubt
have produced a better assessment of classical determinism than I have
managed.

Whatever the outcome on the substantive issues, it is clear that
the long-standing confident pronouncements about classical deter-
minism have been premature. It wasn’t until quite recently that hard
mathematical results on existence and uniqueness were obtained, and
important questions remain open. Classical determinism is not the
mummified relic that philosophical literature portrays it to be, but a

living and breathing creature capable of generating surprising twists and
turns.

NOTES

. Foliov\ffing the discussion in Sec. 2 below on the connection between space-time
symmetries and symmetries of laws, the condition for Laplacian determinism can be
formulated as follows. For any physically possible (M, {G,}, {P,}) and (M, {G,}, {P5])
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