Quantum oscillations under the Magnetic breakdown regime in Nodal line semimetals ZrSiS and HfSiS

¹F. Orbanić, ¹M. Novak, ¹B. Gudac ²A. McCollam, ²L. Tang, ¹I. Kokanović

¹Department of Physics, Faculty of Science, University of Zagreb, Croatia ²High Field Magnet Laboratory, Radbound University, Nijmegen, the Netherlands

E-mail: forbanic@phy.hr

Dirac nodal fermions physics:

- Nontrivial topology
- Peculiar transport properties
- Surface states
- Long-range Coulumb interactions

Symmetry protected band degeneracies which form lines. Linear energy dispersion near these lines \rightarrow Dirac line nodes.

Measurement technique

Piezoresistive cantilever method was used.

Sample

glued on

If material posses anisotropy, sample produces torque on

Electrons in a strong magnetic field \rightarrow Landau levels.

Calculated FS of WSiS consist of electron (β) and hole pockets Nodal loop Calculated *F* for ZrSiS: Calculated *F* for HfSiS: (α). There is a small energy gap [2,4] $\alpha = 235$ T, $\alpha = 294$ T, between pockets due to the spin $\frac{1}{2}$ | $\beta = 631$ T. $\beta = 596$ T. orbit interaction.

Torque measurements

Torque signal

Acknowledgments

This work has been fully supported by Croatian Science Foundation under the project IP-2018-01-8912.

Conclusion

- Magnetic torque was measured by cantilever method up to 35 T in single crystalline samples of NLS ZrSiS and HfSiS. Strong quantum oscillations where observed.
- FFT of quantum oscillations reveals two sets of frequencies: low frequencies (up to 1000) T) and high frequencies between 7-20 kT.
- High frequency contribution can be explained by the effect of magnetic breakdown whose appearence is highly dependent on the angle between field and crystal c-axis.
- High frequency FFT spectrum analysis confirms predicted α and β -pockets in FS of WSiS (W = Zr, Hf) with corresponding frequencies.

References:

[1] Chen, C. et al (2017). Physical Review B. 95, 125126 [2] Pezzini, S. et al (2017). Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. nature physics **14**, 178–183 [3] Solyom, J. (2009). Fundamentals of the physics of solids (volume 2). [4] M. R. van Delft et al. Electron-Hole Tunneling Revealed by Quantum Oscillations in the Nodal-Line Semimetal HfSiS. Phys. Rev. Lett. 121, 256602