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way to cool the atmosphere as required by the thickness tendency is by adiabatic
cooling through the vertical motion field. Thus, the vertical motion maintains a
hydrostatic temperature field (i.e., a field in which temperature and thickness are
proportional) in the presence of differential vorticity advection. Without this com-
pensating vertical motion, either the vorticity changes at 500 hPa could not remain
geostrophic or the temperature changes in the 500- to 1000-hPa layer could not
remain hydrostatic.

To summarize, we have shown as a result of scaling arguments that for synoptic-
scale motions where vorticity is constrained to be geostrophic and temperature is
constrained to be hydrostatic, the vertical motion field is determined uniquely by
the geopotential field. Further, we have shown that this vertical motion field is just
that required to ensure that changes in vorticity will be geostrophic and changes in
temperature will be hydrostatic. These constraints, whose importance can hardly
be overemphasized, are elaborated in the next subsection.

6.4.2 The Q Vector

In order to better appreciate the essential role of the divergent ageostrophic motion
in quasi-geostrophic flow, it is useful to examine separately the rates of change,
following the geostrophic wind, of the vertical shear of the geostrophic wind and
of the horizontal temperature gradient.

On the midlatitude β-plane the quasi-geostrophic prediction equations may be
expressed simply as
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These are coupled by the thermal wind relationship
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or in vector form: (
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Equations for the evolution of the thermal wind components are obtained by taking
partial derivatives with respect to p in (6.38) and (6.39), multiplying through by
f0, and applying the chain rule of differentiation in the advective part of the total
derivative to obtain



January 27, 2004 16:51 Elsevier/AID aid

6.4 diagnosis of the vertical motion 169

Dg

Dt

(
f0
∂ug

∂p

)
= −f0

[
∂ug

∂p

∂ug

∂x
+ ∂vg

∂p

∂ug

∂y

]
+ f 2

0
∂va

∂p
+ f0βy

∂vg

∂p
(6.43a)

Dg

Dt

(
f0
∂vg

∂p

)
= −f0

[
∂ug

∂p

∂vg

∂x
+ ∂vg

∂p

∂vg

∂y

]
− f 2

0
∂ua

∂p
− f0βy

∂ug

∂p
(6.43b)

However, by the thermal wind relations (6.41a) and (6.41b), the first terms on the
right-hand side in each of these may be expressed, respectively, as
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Using the fact that the divergence of the geostrophic wind vanishes,
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The above terms can be expressed, respectively, as
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If we now take partial derivatives of (6.40) with respect to x and y, multiply the
results by Rp−1, and again apply the chain rule of differentiation to the advection
terms, we obtain
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Using the definitions of (6.45a,b), we can rewrite (6.43a,b) and (6.46a,b) as
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Suppose that Q2 > 0 and that the thermal wind is westerly (∂ug/∂p < 0 and
∂T /∂y < 0). Then from (6.47), Q2 forces an increase in the westerly shear fol-
lowing the geostrophic motion (∂ug

/
∂p becomes more negative). However, from

(6.48), Q2 > 0 forces a positive change in the meridional temperature gradient
following the geostrophic motion (∂T

/
∂y becomes less negative). Q2 thus tends

to destroy the thermal wind balance between the vertical shear of the zonal wind
and the meridional temperature gradient. Similarly,Q1 destroys the thermal wind
balance between vertical shear of the meridional wind and the zonal temperature
gradient. An ageostrophic circulation is thus required to keep the flow in approxi-
mate thermal wind balance.

Subtracting (6.47) from (6.48) and using (6.41a) to eliminate the total derivative
gives
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Similarly, adding (6.50) to (6.49) and using (6.41b) to eliminate the total deriva-
tive gives
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If we now take ∂(6.52)/∂x + ∂(6.49)/∂y and use (6.12) to eliminate the
ageostrophic wind, we obtain the Q vector form of the omega equation:
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Equation (6.54) shows that vertical motion is forced by the sum of the divergence
of Q, the Laplacian of the diabatic heating, and a term related to the β effect that
is generally small for synoptic-scale motions. Unlike the traditional form of the
omega equation, the Q vector form does not have forcing terms that partly cancel.
The forcing of ω for adiabatic flow can be represented simply by the pattern of the
Q vector. By the arguments of the last subsection, the left-hand side in (6.54) is
proportional to the vertical velocity. Hence, a convergent Q forces ascent, and a
divergent Q forces descent.
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