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 1. INTRODUCTION
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Indoor air pollution is a major public health challenge, particularly in urban and residential setting. 

Household air pollution was associated with 1.8 million deaths and 60.9 million disability-adjusted 

life years (DALYs) in 2017, with the majority of the afflictions occurring in low- and middle-

income countries (1,2). Contaminants such as particulate matter (PM), volatile organic compounds 

(VOCs), and biological agents (pollen, house dust mites, microbes, etc.) contribute significantly 

to indoor air quality (IAQ). Poor IAQ is linked to a range of health problems such as asthma, acute 

respiratory infection in both adults and children, chronic obstructive pulmonary disease, lung 

cancer, and tuberculosis [1,2]. 

While chemical pollutants are relatively well studied, the role of biological pollutants, particularly 

the microbiome, is less understood. The microbiome, defined as the collection of microorganisms 

and their genetic material in a specific environment, plays a pivotal role in maintaining human 

health [4]. The respiratory microbiome, in particular, interacts closely with the immune system, 

influencing inflammation and susceptibility to diseases such as asthma [5–7]. Asthma is a 

multifactorial disease influenced by genetic predisposition and environmental exposures [8]. 

While significant progress has been made in understanding outdoor air pollution and its role in 

asthma [9–12], the impact of indoor microbiomes remains underexplored. Recent research 

highlights that early-life exposure to diverse microbial environments, such as farms or homes with 

pets, may reduce asthma risk through immune modulation [13–15]. On the other hand, certain 

microbial taxa have been implicated in the onset or aggravation of respiratory conditions [16,17] 

Household dust serves as a significant reservoir for airborne microbial communities, including 

Bacteria, Fungi, and viruses. These microorganisms are continuously resuspended into the air, 

where they can be inhaled and potentially impact respiratory health. Studies suggest that the 

microbial composition of indoor environments is influenced by a range of factors, including human 

occupancy, pets, ventilation, and the surrounding outdoor environment [5,15,16,18–23]. Despite 

these observations, there remains a critical gap in understanding how specific microbial exposures, 

such as those found in dust, may aggravate or protect against respiratory illnesses like asthma. In 

addition, the majority of existing research is focused on bacterial component of microbiome, while 

Fungi have been relatively overlooked. This is a significant oversight, given the allergenic 

potential of many fungal species [24–26]. Moreover, the functional interactions between bacterial 

and fungal communities in dust are poorly understood, further limiting ability to assess their 
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combined effects on health. Understanding the composition and dynamics of the dust microbiome 

is necessary for identifying potential microbial risk factors or protective agents in asthma. 

Traditional microbiological methods, such as culturing, have provided fundamental knowledge of 

indoor microbiomes. However, they have limited ability to obtain the full diversity of microbial 

communities. The application of advanced culture-independent molecular techniques, supported 

by high-throughput sequencing technologies, has significantly improved understanding of the 

microbial ecosystems [13,27–29]. These methods allow simultaneous identification and 

quantification of bacterial and fungal taxa, including those that are unculturable. Moreover, 

metagenomics provides insights into the functional potential of microbial communities, enabling 

researchers to link microbial composition with ecological and health-related outcomes [30,31]. 

The integration of bioinformatics tools has further enhanced the resolution and accuracy of 

microbiome studies. Statistical analyses, such as differential abundance testing and diversity 

metrics, allow researchers to identify microbial taxa or community patterns associated with 

specific environmental or health conditions [31–33].  

By clarifying the role and differences in microbiome in homes of asthmatic and healthy children, 

this study provides a foundation for developing evidence-based interventions. For instance, 

understanding the influence of pets on the dust microbiome could inform household 

recommendations for families managing asthma. Additionally, the findings may contribute to 

broader efforts to improve IAQ and reduce its burden on health. This study is the first of its kind 

in Croatia [34], aiming to gain a deeper understanding of the interaction between the microbiome 

and environmental factors, and their potential impact on asthma development. Overall, this 

research aims to broaden knowledge of the complex interactions between the environmental 

microbiome and children's health, providing critical insights to inform public health strategies. 
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1.1. Objectives and hypotheses 

Hypothesis 1: There is a difference in the environmental microbiome between children with and 

without asthma. 

I. Research Objective 1: Conduct metagenomic analysis of samples. 

II. Research Objective 2: Understand the microbial composition of dust samples in the 

homes of children with and without asthma. 

III. Research Objective 3: Understand the relevance of alpha and beta diversity in relation to 

phenotypes. 

Hypothesis 2: Environmental factors influence the environmental microbiome in children's 

homes. 

I. Research Objective 1: Determine how environmental factors qualitatively and 

quantitatively affect the microbiome. 

Hypothesis 3: The environmental microbiome differs compared to other cohorts. 

I. Research Objective 1: Compare the obtained results with other cohorts in terms of alpha 

and beta diversity. 

II. Research Objective 2: Clarify possible patterns of differences compared to other cohorts. 
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2. LITERATURE REVIEW
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2.1. Introduction to asthma  

Asthma is a significant noncommunicable disease that affects both children and adults. It is the 

most common chronic illness among children, but it impacts people of all ages. Asthma is a long-

term lung condition caused by airway inflammation and muscle constriction, making breathing 

difficult [35,36]. The pathogenesis of asthma results from complex interactions among different 

cell types, including immune cells, airway epithelial cells, smooth muscle cells, and inflammatory 

cells, along with numerous biologically active proinflammatory mediators [37]. Typical symptoms 

include coughing, wheezing, shortness of breath, and chest tightness. These symptoms vary in 

severity and can appear intermittently. Though asthma can be serious, it is manageable with 

appropriate treatment [35,36]. 

Certain conditions, such as colds or weather changes, can worsen symptoms. Triggers also include 

dust, smoke, pollen, pet dander, and strong odours. Several factors are associated with an increased 

risk of developing asthma, although identifying a single cause can be challenging as is a highly 

heterogeneous disease [14,36]. Asthma is an immune-mediated disease that likely originates in 

early life, when the developing immune system is especially vulnerable to changes influenced by 

the exposome [14]. Asthma is a multifactorial disease, so choosing a single cause is very difficult. 

It results from complex interactions between genetic and environmental factors, leading to an 

exaggerated immune response [8]. Some of the risk factors include a family history of asthma, 

other allergies such as eczema or hay fever, urbanization, early-life events such as low birth weight, 

premature birth, tobacco smoke exposure, air pollution, and respiratory infections. Other risk 

factors are exposure to environmental allergens and irritants, including air pollution, dust mites, 

moulds, and workplace chemicals or dust. Overweight or obese children and adults are at a higher 

risk of developing asthma [36,38–40]. 

A visual comparison of asthma's impact across different regions globally is presented in Figure 1. 

The world map illustrates the geographical distribution of asthma-related DALYs, where one 

DALY represents a lost year of "healthy" life. DALYs are a widely used metric to assess the impact 

of various health conditions on both mortality and morbidity, providing a comprehensive measure 

of public health burden [41]. As depicted, asthma is a global issue and a significant public health 

challenge. According to this metric, Croatia stands out for its relatively low incidence of asthma-
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related DALYs, indicating a lower asthma burden compared to other regions. This suggests that 

Croatia is performing well in managing asthma. 

 

Figure 1. Age-standardised DALY rates (per 100,000) by location, both genders combined, 2021. 

Sourced from [41]. 

According to the Croatian Institute of Public Health, the annual incidence rate of asthma (new 

cases per year) in Croatia is 3.0 per 1,000 inhabitants, or approximately 12,000 new asthma cases 

per year. The age-specific incidence distribution is as expected, the incidence rate is higher among 

younger individuals, with a rate of 5.9 per 1,000 people under the age of 20, and 2.5 per 1,000 

people over the age of 65. The prevalence of asthma (total number of cases) in Croatia is 5,048.1 

per 100,000 inhabitants, or 5.0% of the total population, which is approximately 200,000 people. 

As with incidence, the prevalence rate is higher among younger age groups [42]. 

Asthma can be life-threatening in severe cases, but more commonly, it disrupts everyday life and 

diminishes quality of life, particularly for children. For young people, asthma can interfere with 

daily activities, school attendance, and participation in physical activities, limiting their social 

interactions and physical development [36,43,44]. 
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2.2. The role of the microbiome in respiratory health 

The microorganisms in, on, and around our bodies make up a significant portion of the biodiversity 

we encounter in our lives. While Bacteria represent the most diverse kingdom on Earth, Fungi 

remain relatively unexplored, and it is believed that our understanding of them is still quite limited. 

Each body niche is colonized by a microbiome, composed of organisms from all domains of the 

tree of life: Eukarya, Bacteria, and Archaea, as well as viruses. Together, these microorganisms 

contribute to the human body's overall composition, affecting various phenotypes. The 

microbiome has a profound effect on our health, both positively and negatively. Humans are more 

than just their physiology, they also rely on diverse symbiotic microbes. These microbes provide 

unique metabolic pathways that perform important physiological functions [45,46]. 

Over the last years more and more is talked about interaction of microbiome with immune system 

[47–49]. Health problems that increasingly affect the population, such as allergies, autoimmune 

diseases, and inflammatory disorders, are result of unsuccessful regulation of immune responses 

against self. Although the causes of previously mentioned pathologies are highly complex, they 

can also originate from the microbiome. Changes in the composition and function of the 

microbiota, due to factors like antibiotic use, dietary shifts, or stress, can change once symbiotic 

or commensal species into parasitic ones. The relationships between humans and microbiome is 

often referred to as commensal one although the symbiotic relationship includes a range of 

interactions, mutualistic, parasitic, and commensal, among other [50]. 

2.2.1. Healthy respiratory microbiome 

The composition of the respiratory microbiota in humans is increasingly well-characterized. At the 

phylum level, Proteobacteria, Firmicutes, and Bacteroidetes are the most frequently identified. At 

the genus level, dominant groups include Pseudomonas, Streptococcus, Prevotella, Fusobacteria, 

and Veillonella, with smaller contributions from potential pathogens such as Haemophilus and 

Neisseria. Although the anatomy of respiratory system must be taken into consideration. The upper 

respiratory tract is predominantly inhabited by bacterial families such as Dolosigranulum and 

Corynebacterium, viral families like Anelloviridae, and fungal species including Aspergillus spp., 

Penicillium spp., Candida spp., and Alternaria spp. Similarly, the lower respiratory tract is 

primarily colonized by bacteria such as Haemophilus spp., Moraxella spp., Streptococcus spp., 

Staphylococcus spp., and members of the phyla Firmicutes and Bacteroidetes, along with fungi 
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from genera like Eremothecium, Systenostrema, and Malassezia. Characterizing the lung 

microbiome is expected to offer valuable insights into the underlying mechanisms of most 

common respiratory related diseases [51,52].  

The human nasal passages harbour diverse bacterial communities that play a key role in resisting 

pathogens and modulating immune responses. Across various studies and age groups, the genera 

most frequently reported as dominant include Moraxella, Streptococcus, Haemophilus, 

Staphylococcus, Corynebacterium, Dolosigranulum, Neisseria, Gemella, Granulicatella, 

Cutibacterium, Turicella, and Alloiococcus [53]. As for the age-related differences, in children, 

the microbiota is typically dominated by Proteobacteria and Firmicutes, particularly Moraxella, 

Haemophilus, and Streptococcus [54]. In adulthood, a notable change occurs toward 

Actinobacteria, with genera such as Corynebacterium, Cutibacterium, and Turicella becoming 

more prominent [53]. 

Beyond the lung microbiome, the gastrointestinal microbiota plays a critical role in shaping and 

maintaining lung immunity and regulating inflammation. Investigating the interactions between 

the gut and respiratory systems holds significant potential for advancing understanding of the 

pathogenesis of pulmonary diseases, including asthma. A hypothesis linking asthma to the 

microbiome suggests that disruptions in gastrointestinal microbiota composition, caused by factors 

such as antibiotic use and poor dietary habits in western countries, have interfered with the 

development of immunological tolerance. Supporting this "microbiota hypothesis" are data 

showing correlations between asthma or allergies and antibiotic use in industrialized countries, as 

well as associations between altered gut microbiota and atopic diseases [52]. 

2.2.2. Respiratory microbiome and asthma 

Although the link between bacterial infections and asthma exacerbations is well-established, more 

intriguing are the differences between the "healthy" lung microbiota and that of individuals with 

asthma. In healthy individuals, the lung microbiota is characterized by diverse taxa, including 

those mentioned in previous chapter. In contrast, the asthmatic lung microbiome is often 

dominated by pathogenic Proteobacteria, with Haemophilus spp. being more prevalent in the 

bronchi of asthmatics and COPD (Chronic obstructive pulmonary disease) patients compared to 

controls. On the contrary, Bacteroidetes, particularly Prevotella spp., are more common in healthy 

individuals [52,55]. Significant bacterial differences between asthmatic and non-asthmatic 
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individuals have been identified, primarily within the phyla Bacteroidetes, Firmicutes, 

Fusobacteria, and Proteobacteria (mostly Haemophilus, Moraxella, and Neisseria spp). Similarly, 

notable fungal differences have been observed within the phyla Ascomycota, Basidiomycota, and 

other unclassified fungi. Differential abundance analysis based on asthma status shows a marked 

depletion of Penicillium aethiopicum and Alternaria spp. in individuals with poorly controlled 

asthma. Additionally, the data indicate a significant increase in Malassezia spp. and other 

unclassified fungi in the airways of individuals receiving therapy [51,56]. 

2.2.3. Interaction between respiratory microbiome and immune system  

The role of the lung microbiome in the pathogenesis and progression of respiratory diseases 

remains incompletely understood, but emerging evidence emphasizes its significance in shaping 

and maintaining immune responses. Dysbiosis in the lung microbiome is thought to contribute to 

the onset of respiratory diseases, while the immune response, in turn, influences the composition 

of the pulmonary microbiome [57,6]. Interactions between the immune system and the lung 

microbiome appear to have a crucial role in the development of conditions like asthma and 

allergies, similar to the gut microbiome [56,58]. For instance, studies in mouse models have shown 

that members of the phylum Bacteroidetes, particularly Prevotella spp., can mitigate pulmonary 

inflammation, neutrophil recruitment, and proinflammatory cytokine production via Toll-like 

receptor 2, whereas Haemophilus influenzae has a proinflammatory effect [56,59]. In humans, 

asymptomatic adults with lung microbiota enriched in taxa typically found in the oral cavity 

exhibit increased inflammatory cells in the lower airways and elevated exhaled nitric oxide levels 

[56,60]. Furthermore, early-life exposure to a diverse array of bacteria has been associated with a 

reduced risk of asthma and atopy, likely due to interactions occurring in the airways, the body’s 

largest interface with the external environment [18]. Recent studies have also suggested a gut-lung 

axis, wherein the lung and gut microbiomes communicate via blood circulation, enabling 

reciprocal modulation of immune responses and microbial composition, as demonstrated in mouse 

models [56,57]. 

2.3. Dust as a reservoir of microbiota  

With the modernization of lifestyle comes increased urbanization, which results in people spending 

more time indoors. Whether in offices, schools, kindergartens, or recreational spaces like gyms, 

restaurants, or metros, a significant portion of free time is spent in indoor environments. 
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Consequently, individuals are exposed to a substantial diversity of microorganisms residing in 

indoor dust. Studies have estimated that house dust can harbour up to 1,000 different species of 

microbes [21,61]. The composition and diversity of the indoor dust microbiome have a significant 

impact on health. Dust-associated microorganisms and their by-products represent a significant 

source of exposure through inhalation [21].   

2.3.1. Bacteria 

House dust microbiomes are rich in bacterial taxa, dominated by Gram-positive genera such as 

Deinococcus, Bacillus, Enterococcus, Lactococcus, Staphylococcus, Arthrobacter, 

Corynebacterium, Micrococcus, Nocardiopsis, Rhodococcus, and Streptomyces, primarily 

belonging to the phyla Firmicutes and Actinobacteria [21,62]. These taxa reflect the contributions 

of human and environmental inputs. Gram-negative bacteria, though less dominant, are 

represented by taxa such as Pseudomonas, Stenotrophomonas maltophilia, and Pantoea. Other 

prevalent families include Sphingomonadaceae, Xanthomonadaceae, Oxalobacteraceae, and 

Rhizobiaceae [21,61,63]. 

Specific genera consistently identified in house dust include Corynebacterium, Streptococcus, 

Acinetobacter, and species Propionibacterium acnes, which are strongly associated with human 

microbiota [45,64]. Klebsiella and Alloprevotella are genera frequently enriched in environments 

with higher human occupancy [19]. Staphylococcus and Streptococcus are among the most 

consistently detected genera, reflecting their prevalence in human-associated environments 

[65,66]. Other significant bacterial genera, such as Rothia, Haemophilus, and Paracoccus, have 

been observed in specific contexts, such as infant bedding dust [67]. Notably, a significant number 

of mattress dust samples from farm children's beds were found to contain Listeria monocytogenes, 

interestingly found in farm-related environments as well [19,21,68]. Pseudonocardia, a soil-

associated genus is frequently detected in HEPA filter dust [19,21]. Mycobacteria have also been 

shown to be abundant and diverse in house dust collected from vacuum cleaner bags [21,69].  

Farm-related environments contribute additional bacterial taxa to house dust, enriching it with 

genera such as Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas. These genera 

highlight the influence of agricultural practices on indoor microbial communities, particularly in 

homes situated rurally [70].  
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Dust samples from offices and other public indoor spaces have revealed the presence of specific 

bacterial classes, including Bacteroidia, Clostridia, Bacilli, Gammaproteobacteria, and 

Alphaproteobacteria, with genera such as Streptococcus and Pantoea dominating microbial 

profiles in these settings. Sphingomonas, a genus within Alphaproteobacteria, is a notable 

contributor to house dust bacterial diversity, often linked to environmental reservoirs. Similarly, 

Bacillus, a widely distributed genus within Firmicutes, is consistently identified in household dust 

samples and is strongly associated with environmental inputs such as soil and agricultural sources 

[19].  

Overall, house dust harbours a complex and dynamic bacterial community, with a wide array of 

taxa originating from human, environmental, and soil-associated sources. The dominance of 

certain genera, such as Staphylococcus, Streptococcus, Corynebacterium, and Bacillus, highlights 

their prevalence in the diverse indoor settings. Meanwhile, the presence of less common taxa, 

including Listeria monocytogenes and Pseudonocardia, shows the influence of specific 

environmental factors on dust microbial composition. 

2.3.2. Fungi 

Dust fungal communities have traditionally been studied using standard culture methods, revealing 

a dominance of specific species. Commonly identified species include Aureobasidium pullulans, 

Alternaria alternata, Penicillium chrysogenum, Aspergillus penicilloides, and Aspergillus 

restrictus, with Eurotium repens emerging as one of the most frequently identified species [21,71]. 

Yeasts such as Candida, Cryptococcus, Rhodotorula, Saccharomyces, and Sporobolomyces were 

also prevalent, along with sterile isolates from both ascomycetous and basidiomycetous colonies. 

In carpet dust samples Eurotium repens, Penicillium chrysogenum, Alternaria alternata, 

Aureobasidium pullulans, and Phoma herbarum were identified as the predominant species 

[21,72]. Similarly, in floor dust the most commonly identified genera included Penicillium, 

Alternaria, and Cladosporium [21,73].  

Using culture-independent methods, such as high-throughput DNA sequencing, researchers have 

uncovered previously undetected fungal taxa, providing new insights into the diversity and 

complexity of dust fungal communities beyond what traditional culture methods could reveal. 

Household dust contains a diverse range of fungal taxa, dominated by species within the phyla 
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Ascomycota and Basidiomycota, which consistently appear in studies across various 

environments. Commonly identified genera include Cladosporium, Aspergillus, Penicillium, 

Alternaria, Epicoccum, Phoma, Saccharomyces, Aureobasidium, Cryptococcus, Rhodotorula, 

Cyberlindnera, and Candida, which together represent a wide range of fungal diversity. These 

genera are often associated with both indoor and outdoor environments and exhibit considerable 

adaptability [74–77]. 

Yeasts are an integral part of fungal communities in house dust, with genera like Cyberlindnera, 

Cryptococcus, Aureobasidium, Rhodotorula, Candida, and Saccharomyces frequently identified. 

These yeasts are particularly notable for their prevalence in damp indoor environments and their 

association with human activity [76,77]. Additionally, moisture-associated fungi such as 

Malassezia, Phaeococcomyces nigricans, Aureobasidium pullulans, Leptosphaerulina americana, 

Macrophoma spp., and Thekopsora areolata have been documented, often under specific 

environmental conditions that support their growth [74,75,77]. 

Mold species commonly detected in indoor dust include Cladosporium cladosporioides, 

Cladosporium herbarum, Penicillium chrysogenum, Aspergillus fumigatus, and Alternaria 

alternata, all of which are known for their potential health impacts and allergenic properties. Other 

frequently identified genera include Epicoccum and Phoma, which are prevalent in areas with high 

human activity, and Eurotium repens, often found in poorly ventilated spaces or homes with 

carpets [21,66]. Additional mould species such as Trichoderma spp., Epicoccum nigrum, and 

Wallemia spp. have also been reported [21]. 

Specific fungal taxa that dominate seasonal profiles include Saccharomyces and Penicillium 

during winter, while outdoor-derived fungi such as those in the orders Agaricales and Polyporales 

are abundant in summer and fall [78,79]. Notably, the class Dothideomycetes, including genera 

like Epicoccum and Alternaria, is among the most abundant taxa identified, while Agaricomycetes, 

which includes various basidiomycetous fungi, exhibits significant richness [74–77]. 

Rare and moisture-associated fungal genera such as Malassezia (associated with human skin), 

Sphaerellopsis, Curvularia, and Aureobasidium further highlight the taxonomic variety within 

indoor dust [67,80]. The presence of yeasts like Cryptococcus and Saccharomyces shows their 

prevalence in indoor spaces correlating with human-associated environments [65]. Meanwhile, 
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moulds such as Alternaria alternata and Cladosporium cladosporioides are recognized as 

dominant allergens in house dust, frequently linked to respiratory and allergic symptoms [21,66]. 

In total, the diversity of fungi in house dust encompasses a vast range of taxa, including 

filamentous moulds, yeasts, and other less common genera.  

2.3.3. Dust microbiome diversity in relation to asthma  

The relationship between the microbiome and asthma has become an increasingly prominent area 

of research, offering insights into novel mechanisms underlying asthma development and its 

progression. Studies have shown that microbial diversity, composition, and specific taxa in indoor 

environments significantly influence allergic and inflammatory pathways. Cox et al. [16] 

investigated childhood respiratory conditions, including asthma and wheeze, identifying bacterial 

taxa such as Staphylococcus aureus, Alkanindiges illinoisensis, and Gardnerella vaginalis as 

positively associated with these conditions. In contrast, bacteria like Coprococcus eutactus, 

Sphingomonas parvus, Stenotrophomonas maltophilia, and Kineosporia rhamnosa showed 

negative associations, indicating potential protective roles [16]. Similarly, Ege et al. [81] identified 

a range of bacteria inversely associated with asthma, suggesting their protective effect. These taxa 

included Listeria monocytogenes, Bacillus spp. (Bacillus licheniformis), Corynebacterium spp., 

Methylobacterium spp., Xanthomonas spp., and Enterobacter spp. [81]. In line with this, the 

protective effects of specific bacterial genera were proven, primarily from the Actinomycetales 

order, such as Brevibacterium, Brachybacterium, Nocardioides, and Dietzia, which were 

negatively associated with asthma. In contrast, Lactococcus and Streptococcus were positively 

associated, indicating increased risk. These findings underline the importance of early-life 

exposure to specific microbial communities in shaping asthma outcomes [20]. The concept of a 

"pro-asthmatic protective environment" explains the importance of exposing children to a diverse 

range of taxa in early childhood, with children living on farms as an example. The protective role 

of farm-like microbiota was highlighted, identifying taxa such as Bacteroidales, Clostridiales, 

Lactobacillales, Methanobrevibacter, and Actinomycetales as more abundant in farm homes and 

associated with reduced asthma risk. Human-associated bacteria like Streptococcaceae and 

Staphylococcus were more prevalent in non-farm homes and linked to higher asthma risk. This 

contrast between farm and non-farm environments underscores the role of microbial exposure and 

community composition in influencing asthma outcomes [20]. 
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In adult populations, taxa such as Porphyromonas, Bacteroides, and Fusobacterium were found to 

be positively associated with asthma, suggesting a harmful role. Notably, some taxa, including 

Porphyromonas and Fusobacterium, were found to be associated with both asthma and hay fever, 

indicating overlapping microbial influences. Homes of individuals with asthma or atopy were also 

observed to have reduced microbial diversity, consistent with the hygiene hypothesis of “pro-

asthmatic protective environment” [82]. 

In relation to asthma phenotypes and severity, bacterial taxa including Sphingomonadaceae, 

Methylocystaceae, Erwinia, Sphingomonas, and Pseudomonas were found to be enriched in 

patients with Type 2 (T2)-high severe asthma. These patients exhibited higher fractional exhaled 

nitric oxide (FENO) levels, a biomarker of airway inflammation, further supporting the link 

between specific microbial exposures and asthma pathophysiology [23]. 

Fungal taxa have been extensively studied in relation to asthma, as well, revealing both positive 

and negative associations that depend on species and environmental context. Candida tropicalis 

and Aspergillus sydowii were identified as positively associated with asthma and aeroallergen 

sensitivity, while Toxicocladosporium irritans, Gibberella intricans, and Coniosporium apollinis 

were negatively associated, indicating potential protective effects [16]. Similarly, Ege et al. [81] 

found that Eurotium spp. were inversely associated with asthma, suggesting a protective role, 

although the inverse association for Penicillium spp. was not statistically significant after adjusting 

for multiple comparisons [81]. In contrast, fungal taxa that were found to be associated with 

asthma, included Aspergillus spp., Cladosporium spp., Epicoccum nigrum, Candida spp., 

Rhodotorula spp., and Cryptococcus spp. Specific species such as Aspergillus versicolor and 

Cladosporium sphaerospermum were linked to elevated FENO levels, highlighting their role in 

asthma exacerbation. Medically relevant fungi like Epicoccum and Cryptococcus were also 

enriched in the indoor environments of patients with Type 2 (T2)-high severe asthma, further 

emphasizing their impact on respiratory health [23]. Kirjavainen et al. [15] explored the 

abovementioned concept of a "pro-asthmatic protective environment", noting significant 

differences in fungal richness between farm and non-farm environments. Even though specific 

fungal taxa were not directly associated with asthma, a higher Farm-Like Microbiota Index 

(FaRMI), indicative of microbial compositions similar to farm environments, was linked to a 

reduced risk of asthma. This finding refers to the importance of fungal community composition 



16 
 

and diversity in providing asthma protection [15]. The "pro-asthmatic protective environment" 

concept in question highlights the importance of early childhood exposure to diverse microbial 

taxa, particularly for children living on farms. Farm environments, characterized by naturally 

higher microbial diversity, expose children to a wider variety of bacteria and Fungi, which has 

been associated with lower asthma prevalence compared to non-farm children [15,81]. Increased 

bacterial diversity in the home environment has also been linked to a reduced risk of asthma [81]. 

Similarly, Tischer et al. [22] found that higher fungal diversity in urban house dust during early 

life was inversely associated with aeroallergen sensitization at six years of age and wheezing up 

to ten years. However, these protective effects of fungal diversity diminished with age, likely due 

to changing microbial exposures in school and other environments. While bacterial diversity 

showed no significant protective or adverse associations in this study, other research has 

demonstrated its importance. For example, Karvonen et al. [20] reported that higher bacterial 

richness and Shannon diversity were inversely associated with asthma risk, with notable 

differences in community composition (β diversity) between homes of asthmatic and non-

asthmatic children. Similarly, it was observed that homes of individuals with atopy or hay fever 

exhibited significantly less diverse bacterial communities, consistent with the hygiene hypothesis 

("pro-asthmatic protective environment") [82]. On the contrary, decreased fungal diversity and 

increased bacterial diversity in indoor environments were characteristic of patients with Type 2 

(T2)-high severe asthma. During asthma exacerbations, a greater overlap between fungal taxa in 

indoor dust and sputum samples was observed, linking indoor fungal exposure and respiratory 

inflammation [23]. Despite these findings, Cox et al. [16] emphasized the complexity of microbial 

community interactions, noting that microbial diversity did not directly correlate with health 

outcomes but that a combination of taxa, rather than individual species, influenced asthma and 

wheeze risks.  

These studies collectively highlight the critical role of microbial diversity and the influence of 

specific microbial compositions on asthma risk. While diverse microbial exposure, particularly in 

early life, appears protective, the presence of specific bacterial and fungal taxa can either mitigate 

or exacerbate asthma-related outcomes, emphasizing the need for targeted strategies to improve 

indoor microbiota for respiratory health.   
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2.3.4. Factors influencing dust microbiome composition 

Numerous studies have showed that specific environmental factors play a crucial role in shaping 

the microbiological composition of household dust. These factors include humidity, the presence 

of pets, building characteristics such as construction year and type, and demographic aspects like 

the number of household members. Indoor fungal communities are primarily influenced by the 

outdoor environment, while indoor bacterial communities are more affected by household 

occupants, pets, and ventilation methods [21,64,83]. A strong geographic pattern has been 

observed in indoor fungal communities [21,74], which are also subject to seasonal variations 

[21,25,77]. Household residents have a significant and homogenizing effect on indoor bacterial 

communities [21,84]. Non-human occupants, such as dogs and household insects, also have a 

notable influence on the indoor dust microbiota [21,85,86]. The most common environmental 

factors that impact the microbiome, along with their specific effects and references, are 

summarized below. 

Occupancy and human activity significantly shape the composition of dust bacterial communities. 

Research has demonstrated that bacterial diversity in household dust correlates with the number 

of inhabitants; for instance, homes with more than three occupants display greater bacterial 

diversity than those with fewer [66,87]. The number and activity levels of occupants also influence 

microbial communities, with skin-associated bacteria being more prevalent in densely populated 

homes [88]. Higher human occupancy, such as in daycare main rooms, increases the abundance of 

human-associated microbial taxa like Streptococcus while reducing taxa typically found outdoors. 

In contrast, auxiliary rooms with lower occupancy exhibit microbiomes resembling outdoor 

environments [79]. Similar findings were reported by Nygaard and Charnock [65], who observed 

that in daycare centres, the number of children and their level of interaction directly influenced 

microbial diversity. Higher interaction promoted diversity in human-associated taxa, while less-

used rooms maintained fungal communities resembling those found outdoors.  

The presence of pets is a significant factor affecting the microbiota of indoor environments. Homes 

with pets, particularly dogs and cats, tend to exhibit higher bacterial diversity and altered fungal 

composition in bed dust. Pet presence has been linked to specific taxa, such as Staphylococcus and 

Saccharomyces [67]. Additionally, homes with pets show increased bacterial and fungal diversity 
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overall, with the microbiota composition being shaped by interactions between humans, pets, and 

their shared environment [80,88]. 

Seasonal changes play a critical role in shaping indoor fungal communities. Outdoor-derived taxa, 

such as those from the Basidiomycota phylum, are more abundant during summer and fall, while 

taxa originating indoors dominate in winter and spring. Geographic and climatic factors, including 

humidity and temperature, also influence the composition of indoor mycobiomes, with distinct 

taxa prevailing in humid coastal regions compared to drier inland areas [78]. Fungal diversity tends 

to increase from winter to fall, reflecting the significant influence of outdoor environments on 

indoor fungal communities through seasonal succession [77] . Fungal concentrations in house dust 

are generally higher during warmer seasons, with seasonal heating and air conditioning further 

impacting these concentrations by creating variable amplification patterns depending on indoor 

climate controls [89]. Overall, fungal communities exhibited clear seasonal variations, while 

bacterial compositions remained relatively stable across seasons [90]. 

Air pollution and urbanization significantly impact indoor microbial communities. Changes in air 

pollutant levels, such as reduced SO₂ and increased NO₂ and PM₁₀, are associated with shifts in 

bacterial and fungal composition. For example, high NO₂ levels are linked to an enrichment of 

taxa like Alphaproteobacteria, while lower NO₂ levels favour Bacilli and Clostridia [91]. 

Urbanization and surrounding vegetation also play a crucial role, particularly in shaping indoor 

fungal communities. Homes near natural environments exhibit higher fungal diversity, while 

bacterial diversity appears to be less influenced by these factors [88]. 

Building environmental factors, including building features and renovations, significantly 

influence the indoor microbiome. Characteristics such as construction year, ventilation type, and 

the number of rooms can shape indoor microbial communities, often reflecting outdoor microbiota 

depending on ventilation efficiency and geographic location [78].  Age of the home, specifically 

older homes are associated with higher fungal richness and diversity. Elevated Environmental 

Relative Moldiness Index (ERMI) values and higher relative humidity further influence fungal 

communities, while bacterial diversity often correlates with dog ownership [80]. Homes renovated 

using "green" practices show no consistent trends in fungal community composition compared to 

non-green homes. Variations were instead linked to sample types (air, bed dust, and floor dust) 

and temporal changes, indicating instability in the indoor mycobiome [75]. Homes with effective 
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ventilation systems host fungal communities resembling those found outdoors, highlighting the 

role of air exchange in promoting fungal diversity [66,88]. Building materials, namely the use of 

green versus conventional construction materials does not significantly alter fungal community 

structures. However, "tight" building designs that reduce ventilation can increase humidity levels 

and microbial loads, showing the importance of proper air circulation [75]. In that way, water 

damage promotes mould growth, which is associated with less diverse fungal communities but an 

increased abundance of specific taxa, such as Cyberlindnera and Cryptococcus [76]. Such factors 

show the importance of building features and maintenance on indoor microbial dynamics. 

Finally, the antibiotic resistance, a pressing issue of the 21st century, has been detected with high 

diversity in household dust. This diversity is influenced by bacterial taxa and factors associated 

with human occupancy. These findings point out the role of indoor environments in harbouring 

antibiotic resistance genes [92]. 

The complex interplay of environmental, anthropogenic, and design factors shape indoor 

microbiomes, affecting both their structure and potential health impacts. Each factor offers insights 

into specific determinants, contributing to a broader understanding of indoor microbial ecology. 

2.4. Analytical approaches in metagenomics  

2.4.1. High-throughput sequencing and bioinformatics tools in metagenomics 

Metagenomics, the study of genetic material recovered directly from environmental samples, has 

revolutionized understanding of microbial communities. This approach relies on high-throughput 

sequencing and bioinformatics tools. Among the most extensively used methods are 16S rRNA 

gene sequencing for taxonomic determining of Bacteria and Archaea (Figure 2a), and Internal 

Transcribed Spacer (ITS) sequencing for fungi (Figure 2b), offering a prospective into microbial 

diversity and community composition [67,93,94]. 
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(a) (b) 

Figure 2. Ribosome structure. (a) Procariotic ribosome and Bacteria genomic arrangement. 

(b) Eucariotic ribosome and genomic arrangement. 

Metagenomic studies of the microbiome are conducted through the analysis of prokaryotic 16S 

ribosomal RNA, which contains approximately 1500 base pairs and nine variable regions. The V3-

V4 regions contain variable segments that are characteristic of different Bacteria and Archaea 

species. As for fungi, metagenomic studies are conducted through the analysis of fungal ribosomal 

RNA, particularly the ITS region, which is widely used for fungal identification. The ITS region, 

located between the small and large ribosomal subunits, contains highly variable segments that are 

characteristic of different fungal species, enabling detailed taxonomic resolution in metagenomic 

analyses [93]. This is the “gold standard” for characterizing microbial diversity in diverse 

environments, including water systems, soil, and indoor dust microbiomes. This method relies on 

polymerase chain reaction (PCR) to amplify the targeted regions, followed by sequencing and 

bioinformatic analysis to classify organisms into operational taxonomic units (OTUs) or amplicon 

sequence variants (ASVs) [93–95]. Both approaches are cost-effective and widely used in 

environmental microbiome studies, where the aim is to investigate microbial communities in 

ecosystems ranging from soil to wastewater. However, limitations include the inability to capture 

functional genomic information and biases introduced by primer selection and PCR amplification 

[96]. 
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In contrast to targeted approaches, whole-genome shotgun (WGS) sequencing captures the entire 

genetic content of a sample, offering a comprehensive view of microbial communities. This 

method allows for taxonomic classification, functional profiling, and even genome assembly of 

uncultured organisms. WGS sequencing has been used to investigate microbial community 

structure and function in environments ranging from the human gut to extreme ecosystems [97,98].  

The development of sequencing platforms like Illumina has significantly reduced costs and 

improved accuracy, making metagenomics accessible to a broader range of researchers. Inventions 

such as paired-end sequencing and longer read lengths enhance assembly quality and taxonomic 

resolution. However there are still challenges, including biases from DNA extraction, primer 

design, and sequence depth, which can influence the representation of low-abundance taxa [99]. 

In addition to mentioned technical challenges, computational complexity is also worth mentioning 

when referring to microbiome sequencing. Assembling genomes from microbial communities is 

complicated because of high heterogeneity and the presence of closely related strains. Mentioned 

obstacles require advanced algorithms and computing resources [96,98]. 

2.4.2. Statistical methods for microbiome data analysis 

The analysis of microbiome datasets relies on statistical methods to interpret complex and multi-

dimensional data. With advances in next-generation sequencing, statistical tools have become 

essential in uncovering patterns, relationships, and insights within microbial communities.  

Ordination methods, such as principal component analysis (PCA), non-metric multidimensional 

scaling, and redundancy analysis (RDA), are widely used to reduce the complexity of microbiome 

data into lower dimensions, making it easier to visualize patterns and relationships among 

microbial communities. These methods rely on distance or dissimilarity matrices, such as Bray-

Curtis or UniFrac, to represent relationships between samples based on microbial composition 

[30,32]. 

Permutational Multivariate Analysis of Variance (PERMANOVA) is a non-parametric method 

used to test whether the composition of microbial communities differs significantly across existing 

groups (asthma vs. control). It operates on a distance matrix, making it suitable for compositional 

microbiome data. PERMANOVA has been used extensively in microbiome studies to identify 

significant differences in community structure related to environmental, clinical, or experimental 

factors [31,33]. 
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2.4.3. Challenges in dust microbiome analysis 

Despite the abovementioned new approaches and solutions, the challenges remain in microbiome 

data analysis. Issues such as compositionality, sparsity, and batch effects can lead to biases if not 

appropriately addressed. Other challenges include high host DNA content, low microbial biomass, 

and high heterogeneity within samples, which can impact the quality and accuracy of metagenomic 

analyses.  

One of the primary challenges in dust microbiome analysis is the vast presence of host DNA, often 

derived from human skin cells, pets, or plants. This contamination can dominate over microbial 

DNA during sequencing and data analysis. Bharti and Grimm [30] emphasize the importance of 

using selective DNA extraction methods and host DNA depletion techniques, such as methylation-

specific enzymatic digestion, to reduce host DNA contamination and enhance microbial signal 

reliability. 

Dust samples typically contain low microbial biomass, which complicates DNA extraction and 

library preparation. The limited quantity of microbial DNA can lead to biases during amplification, 

such as overrepresentation of certain taxa. Ju and Zhang [32] recommend employing optimized 

DNA extraction protocols to maximize DNA yield while minimizing biases. Using advanced 

sequencing platforms with high sensitivity can also help in detecting low-abundance taxa. 

The microbial composition of dust is highly variable, influenced by factors such as geographic 

location, building design, occupant behaviour, and environmental conditions. This heterogeneity 

poses challenges for standardization and reproducibility across studies. The importance of rigorous 

sampling protocols and metadata collection should be emphasized, to capture variability 

systematically. Standardized sampling tools, can help ensure comparability across studies [30,31]. 

Same should be applied to statistical analyses and computational workflow [32]. 

2.5. Current gaps in the literature and future directions 

Despite significant advancements in understanding the microbiome and its influence on asthma, 

numerous gaps remain in the literature that limit a comprehensive understanding of its role in 

respiratory health, dust-associated microbiota, and analytical methodologies. 

Although studies have demonstrated the association between the microbiome and asthma, the 

mechanistic pathways linking specific microbial taxa to asthma phenotypes remain poorly 
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understood. Research has identified specific bacteria as enriched in Type 2 (T2)-high severe 

asthma [23], but causal relationships between microbial exposure and immune modulation are still 

unclear. In the same manner, some fungal taxa have been linked to asthma [16], yet the interaction 

between bacterial and fungal communities in shaping asthma outcomes requires further 

exploration. 

Dust microbiome research faces unique technical and methodological challenges. The presence of 

high host DNA content, low microbial biomass, and the inherent heterogeneity of dust samples 

complicate data interpretation [32,100]. Furthermore, most studies have focused on either bacterial 

or fungal communities, often neglecting the interplay between these domains. Future research 

should aim for integrative approaches that analyse bacterial, fungal, and viral communities 

simultaneously to gain a general view of the dust microbiome. 

Although numerous environmental factors are known to influence the microbiome, the relative 

contribution of each remains unclear. The combined effects of these factors have not been 

systematically studied, which limits our understanding of their interactions and overall impact on 

the microbiome. Additionally, the influence of individual practices, such as cleaning habits and 

ventilation preferences, on microbiome dynamics is poorly understood and requires further 

investigation. 

Metagenomics has revolutionized microbiome research, limitations in current analytical 

approaches slow down the progress. Statistical methods like PERMANOVA and ordination 

techniques offer important perspectives but often fail to capture the full complexity of microbiome 

datasets, particularly in highly heterogeneous environments like dust [31,33]. Additionally, 

machine learning techniques have shown promise in identifying microbial signatures, yet their 

interpretability and reproducibility remain a challenge [100]. Future advancements in 

bioinformatics tools and algorithms will be critical to overcoming these limitations. 

This study represents the first of its kind in Croatia, contributing novel insights into the dust 

microbiome and its potential role in asthma within this unique regional context.
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3. MATERIALS AND METHODS
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The research for EDIAQI project began in December 2022. The project partners in Zagreb pilot 

include Children’s hospital Srebrnjak, the Institute for Anthropological Research, the Institute for 

Medical Research and Occupational Health, and Ascalia Ltd. Patient recruitment began in the 

spring of 2023, with the first examinations conducted in May 2024. Dust sample collection started 

alongside the children's examinations, with samples for this cohort collected from May 2023 to 

March 2024. 

3.1. Participants 

The cohort was divided into two parts, children with asthma, and healthy children as the control 

group. Children with asthma were recruited during the regular exams that are a part of their asthma 

management regime at Children’s hospital Srebrnjak. Control group was recruited through public 

calls in newspapers, on social media, and via acquaintances of those involved in the project. All 

children underwent a medical examination at Children’s Hospital Srebrnjak, and parents were 

asked to fill out the ISAAC and other relevant questionnaires. Asthma was assessed through a 

questionnaire filled out by the parents, answering whether asthma had been previously diagnosed 

by a doctor. 

Our research initially included 100 children, with 50 being patients at Children’s Hospital 

Srebrnjak and 50 being healthy, asymptomatic children. Out of these, 1 participant was not 

included in further analysis because not all medical check-ups could be completed (the blood 

sample could not be taken). Additionally, 2 participants withdrew from the study, and 2 

participants were excluded because their place of residence is not within the City of Zagreb or 

Zagreb County. Therefore, 95 samples entered laboratory processing. However, 1 sample was 

removed due to unsuccessful DNA isolation, and 4 additional samples were removed because of 

an insufficient number of reads after sequencing, 3 after ITS sequencing and 1 after 16S 

sequencing, which is explained in the section about sequencing results. In the end, 10% of the 

initial cohort could not be processed, resulting in a final number of 90 participants (samples). 

The cohort consists of 59 asthmatic children (65.5%) and 31 children without asthma (34.4%, 

control group), making up a total of 66 households. Some initially asymptomatic children from the 

control group were later diagnosed with asthma. All children were between 5 and 18 years (9.51 

± 3.58), and were from the City of Zagreb or Zagreb County. The sampling sites are illustrated in 
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Figure 3. The cohort includes 49 boys (54.5%) and 41 girls (45.6%), and the asthma distribution 

by gender is shown in the Figure 4.  

 

Figure 3. Sampling sites. Red markers represent asthmatic children, and green markers represent 

control group. 

 

Figure 4. Prevalence of asthma by gender in Zagreb Pilot cohort. 
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3.2. Chemicals 

• DNeasy PowerSoil Pro Kit (Qiagen, Germantown, Maryland, USA)  

• Ethanol (96%, Gram-mol, Zagreb, Croatia)  

• Qubit dsDNA BRAssay Kit (Invitrogen- Thermo Fisher Scientific, Eugene, Oregon, 

USA) 

• Agilent D1000 ScreenTape (5067- 5582) (Agilent Technologies, Waldbronn, Germany)  

• Agilent D1000 Reagents (5067- 5583) (Agilent Technologies, Waldbronn, Germany) 

• PCR grade water (Corning® Molecular Biology Grade Water) 

• KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland)  

• Fungal forward primer gITS7F (5′- TCG TCG GCA GCG TCA GAT GTG TAT AAG 

AGA CAG GTG ART CAT CGA RTC TTT G-3′) (Integrated DNA technologies, 

Leuven, Belgium)  

• Fungal reverse primer ITS4ngs (5′- GTC TCG TGG GCT CGG AGA TGT GTA TAA 

GAG ACA GTT CCT SCG CTT ATT GAT ATG C-3′) (Integrated DNA technologies, 

Leuven, Belgium 

• Bacterial forward primer 341F (5′- TCG TCG GCA GCG TCA GAT GTG TAT AAG 

AGA CAG CCT ACG GGN GGC WGC AG -3′) (Integrated DNA technologies, Leuven, 

Belgium) 

• Bacterial reverse primer 806r (5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA 

GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3′) (Integrated DNA technologies, 

Leuven, Belgium)  

• Fungal forward primer ITS_fwd_1 (5’-TCG TCG GCG TCA GAT GTG TAT AAG 

AGA CAG CTT GGT CAT TTA GAG GAA GTA A –3') (Integrated DNA technologies, 

Leuven, Belgium) 

• Fungal reverse primer ITS_rev_1 (5’- GTC TCG TGG GCT CGG AGA TGT GTA TAA 

GAG ACA GGC TGC GTT CAT CGA TGC –3') (Integrated DNA technologies, 

Leuven, Belgium) 

• Fungal reverse primer ITS_rev_4 (5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA 

GAG ACA GGC TGC GTT CTT CAT CGA TGT –3') (Integrated DNA technologies, 

Leuven, Belgium) 
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• ZymoBIOMICS Microbial Community DNA Standard (Zymo Research, Irvine, CA, 

USA) 

• Magnesium chloride solution (Sigma Aldrich, Merck, Darmstadt, Germany) 

• MagSi-NGSPREP Plus* beads (Magtivio, Nuth, The Netherlands) 

• Nextera XT Index Kit v2 (Illumina, San Diego, California, USA) 

• NaOH Reagecon Sodium Hydroxide 0.2M Analytical Volumetric Solution (Reagecon 

Diagnostics, Shannon, Co. Clare, Ireland) 

• 10 mM Tris-HCl pH 8,5 (Omega Bio-tech Inc., USA)  

• PhiX Control Kit v3 (Illumina, San Diego, California, USA) 

• MiSeq Reagent Kit v3, 600 cycles (Illumina, San Diego, California, USA) 

3.3. Instruments 

• Vacuum cleaner Dyson V8 Absolute (Malmesbury, Wiltshire, UK) 

• DUSTREAM® Collector vacuum cleaner nozzle and filters (Indoor Biotechnologies, 

Cardiff, Wales, UK) 

• Freezer Thermo Scientific, -20°C (Thermo Fisher Scientific, Asheville, North Carolina, 

USA) 

• Analytical scale Axis ALN120 (Axis, Gdańsk, Poland) 

• MPS-1 High-Speed Multi Plate Shaker (BIOSAN, Riga, Latvia) 

• Thermo Scientific™ MicroCL 21 R microcentrifuge (Thermo Fisher Scientific, Waltham, 

Maryland, USA) 

• mySPIN™ 12 Mini Centrifuge (Thermo Fisher Scientific, Waltham, Maryland, USA) 

• Thermo Heraeus Multifuge 3LStuart SA8 Vortex Mixer (Stuart, Stone, Staffordshire, 

UK) 

• IKA MS 3 basic Vortexer (Staufen, Germany) 

• Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, Maryland, USA) 

• 4200 TapeStation (Agilent Technologies, Santa Clara, California, USA) 

• Agilent SureCycler 8800 (Agilent Technologies, Santa Clara, California, USA) 

• Thermo Scientific™ Thermal Mixer with Blocks (Thermo Fisher Scientific, Waltham, 

Maryland, USA) 
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• Thermo Scientific Megafuge 40R Refrigerated Centrifuge (Thermo Fisher Scientific, 

Waltham, Maryland, USA) 

• Milli-Q® IQ 7000 Ultrapure Water Purification System (Sigma-Aldrich® Solutions, 

Darmstadt, Germany) 

• Illumina MiSeq System SY-410-1003 (Illumina, San Diego, California, USA) 

3.4. Preparation of the solutions 

3.4.1. Qubit Assay 

Solutions for fluorescence measurement were prepared using Qubit dsDNA HS Assay Kit 

following QubitTM Assays Reference Card [101]. Before preparation, all solutions must be left at 

room temperature to equilibrate. The Qubit Working Solution was prepared by diluting Qubit 

reagent 1:200 in Qubit buffer to final volume of 200 µL. For each sample and standard, 200 µL is 

needed. For standards, 190 µL of Working Solution was mixed with 10 µL of each standard from 

the Qubit dsDNA HS Assay Kit. For samples, 199 µL of Working Solution is mixed with 1 µL of 

extracted DNA.  

3.4.2. Agilent 2200 TapeStation system  

Samples were prepared according to the Agilent  D1000 ScreenTape System Quick Guide [102]. 

Prior to use, all reagents were equilibrated to room temperature. The Agilent D1000 Reagents 

include D1000 Ladder and Sample Buffer. The reagents are vortexed, and the Ladder was prepared 

by mixing 1 µL of Ladder with 3 µL of Sample Buffer. Samples were prepared in same way, using 

1 µL of extracted DNA and 3 µL of Sample Buffer. The prepared strips containing the samples 

were vortexed for 1 min and spun down to ensure the samples are at the bottom of the tube.  

3.4.3. Controls 

PCR-grade water was used as a negative control and processed in the same way as the samples. 

The ZymoBIOMICS Microbial Community DNA Standard was the positive control. It was diluted 

from its original concentration of 10 ng/μL to 5 ng/μL to match the concentrations of the other 

samples [103]. The positive control was then processed following the same protocol as the 

samples.  
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3.4.4. Primers 

The study design protocol was initially based on Gupta et al., 2020 [5], but the ITS sequencing 

results were not optimal. Therefore, we experimented with different primers and optimized the 

PCR conditions. The first primer set used was from the Gupta et al. paper, and the second set 

consisted of ITS3F and ITS4R primers for the ITS1 region. Both sets were initially tested under 

standard PCR conditions. Since these attempts didn’t yield improved results, we further modified 

the PCR protocol by trying the following variations: the Gupta et al. protocol with 30 cycles; Gupta 

et al. with 33 cycles; Gupta et al. with 30 cycles, an annealing temperature of 60°C, and a final 

elongation step of 7 minutes; the original Illumina protocol (Illumina, 2013); the Illumina protocol 

with an annealing temperature of 56°C; and nested PCR with 15 cycles. None of these adjustments 

improved the ITS results, so we decided to proceed with the original method from Gupta et al. 

Figure 5a. shows the automated gel electrophoresis results from the TapeStation for 16S, and 

Figure 5b. shows gel electrophoresis results using the final method by Gupta et al. with ITS2 

primers (gITS7F and ITS4ngs).  
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(a) 

 

(b) 

Figure 5. TapeStation gel electrophoresis results for (a) bacterial, and (b) fungal samples. 

Both bacterial (341F and 806r) and fungal (ITS7F and ITS4ngs) primers were diluted from stock 

solutions. According to the Integrated DNA Technologies (Leuven, Belgium) protocol the primer 

concentration needs to be 1 nM for further use. To achieve this, 10 µL of stock primer was added 

to 990 µL of PCR-grade water, resulting in working primers used in the PCR mix. 

3.4.5. PCR mix 

The PCR mix was made following 16S Metagenomic Sequencing Library Preparation Protocol 

[94]. The PCR mix for each sample was prepared by adding 5 µL of PCR Forward Primer, 5 µL 
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of PCR Reverse Primer, 12.5 µL of KAPA HiFi HotStart ReadyMix, and 2.5 µL of DNA diluted 

to 5 ng/ul. 

3.4.6. Ethanol 80%  

80% ethanol for 96-well plate was prepared by mixing 41.6 mL of 96% ethanol with 8.4 mL of 

Milli-Q water (H₂O). 

3.4.7. NaOH – Sodium Hydroxide 0.2M (0.2N) 

NaOH Reagecon Sodium Hydroxide 0.2M (0.2N) Analytical Volumetric Solution was a ready to 

use solution for the denaturation of DNA libraries. 

3.5. Detail description of methods 

3.5.1. Sample collection 

In accordance with the parents' agreement, during the house visits, dust samples were collected in 

participants homes. Children’s mattresses were vacuumed using DUSTREAM® Collector vacuum 

cleaner filters placed in the DUSTREAM® Collector vacuum cleaner nozzle, which was placed 

on Dyson V8 Absolute vacuum cleaner, shown in Figure 6. The entire mattress, along with all 

items on it, including the bedding and stuffed animals, was vacuumed for 10 minutes. Dust samples 

were stored in DUSTREAM® Collector filters which were kept in labelled plastic resealable bags. 

 

Figure 6. DUSTREAM® Collector vacuum cleaner filters and nozzle. 
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3.5.2. Sample preparation 

Sample processing was done at the Laboratory for Molecular Anthropology at the Institute for 

Anthropological Research. The samples were stored at -20°C until DNA isolation to preserve 

genetic material and to eliminate mites.  

Dust was weighted on analytic scale Axis ALN120 in special weighing plates (LLG, Meckenheim, 

Germany). Dust samples were carefully transferred into the weighing plates using tweezers with a 

straight blunt tip, which were disinfected with 80% ethanol between each sample transfer. Target 

mass of each sample was between 50-80 mg, if possible. This range was chosen after several trial 

isolations and has showed to have the best yield. Masses of samples are shown in the Results, and 

whole weighing process in Figure 7. For samples with a mass less than 50 mg, the entire dust 

sample was used, as it was sometimes difficult to extract more dust from the mattress. 

 

Figure 7. Dust weighing process. 

3.5.3. Genetic material isolation 

Genetic material was isolated using the DNeasy® PowerSoil® Pro Kit. This kit was chosen after 

a literature review, as no specific kit exists for dust sample isolation. Kit is designed for isolation 

of microbial genomic DNA from all soil types and difficult samples such as sediment.  

Isolation steps were performed following DNeasy ® PowerSoil ® Pro Kit Handbook (QIAGEN, 

2023). The first step was mechanical shredding. Weighted dust was transferred into PowerBead 

Pro Tubes for homogenization and lysis. The tube contains buffer and beads that help with sample 
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dispersion while protecting nucleic acids from degradation. Samples were homogenized using 

MPS-1 High-Speed Multi Plate Shaker. PowerBead Pro Tubes were horizontally attached to 

shaker and shaken at 1500 rpm for 15 minutes. In order to separate dust particles, samples were 

centrifuged in Thermo Scientific™ MicroCL 17R Microcentrifuge at 15,000 g for 2 minutes. This 

is the only change in the steps from the Handbook. Since dust particles are lighter than soil, in 

order to effectively separate the dust from the supernatant, centrifugation for 1 min longer showed 

better results. Supernatant that still contains some dust particles was transferred and mixed with 

CD2 solution which contains IRT, a reagent that precipitates non-DNA organic and inorganic 

material. This step ensures DNA purity for downstream DNA applications. After another 15,000 

g 1 minute centrifugation, samples were transferred once again. The supernatant was now clear, 

without dust particles. Next, CD3 was added, a high-concentrated salt solution so the DNA binds 

tightly to silica. The solution allows DNA binding but inhibits binding non-DNA organic and 

inorganic material. Silica in question is part of MB Spin Column tubes. Supernatant and CD3 

solution mix was loaded to Spin Columns and centrifuged 15,000g for 1 min so the mix passes 

through the silica membrane in the Spin Column tubes. DNA bounds to the membrane and the 

contaminants passes through and are being discarded. Next, solution EA was added. EA is a wash 

buffer that removes protein and other non-aqueous contaminants. Washing is performed with 

centrifugation on 15,000 g for 1 minute. Next is ethanol-based solution CD5 which is used for 

further cleaning of DNA. Solution CD5 eliminates residual salt, humic acid and other impurities, 

while leaving DNA bound to silica membrane. Washing was again performed in centrifuge at 

15,000 g for 1 minute. After discarding the flow-through, next step was drying the membrane in 

the centrifuge at 16,000 g for 2 minutes. This step is important because it removes all of the ethanol 

which can interfere with downstream DNA applications such as PCR. After the membrane was 

dry, 50 µL of solution C6 was added. C6 is 10 mM Tris solution which bounds all DNA from the 

membrane into the flow through. The elution contains isolated DNA and is ready for further use. 

Isolated DNA was stored at -20 °C as recommended in the protocol. 

3.5.4. Fluorometer 

Quantity of isolated DNA was examined on Qubit® 3.0 Fluorometer. Samples were prepared with 

Qubit dsDNA BR Assay Kit as described previously.  
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Qubit 3.0 Fluorometer was set up with DNA Broad Range and 1 µL of sample DNA settings. 

Standards were read first, and then samples. The results of DNA concentrations following isolation 

and sample weights prior to isolation are presented in the Supplementary Table 3. 

3.5.5. Normalisation of the samples  

Since NGS requires equal sample concentrations, after determining the concentrations using a 

fluorometer, the next step was to dilute the samples. For samples with concentrations below 5 

ng/mL, DNA extraction was repeated. However, if the entire dust sample had already been used, 

those samples were processed further without additional dilution. The remaining samples were 

diluted to equal concentration of 5 nmol/mL using Corning® Molecular Biology Grade Water, 

according to the following formula: 

𝑐1 ∗ 𝑉1 = 𝑐2 ∗ 𝑉2 

3.5.6. Amplicon PCR (1st step PCR) 

Diluted samples were amplified in PCR Agilent SureCycler 8800. Preparation of PCR mix was 

described in chapter 3.4.5. The PCR protocol consisted of an initial denaturation at 95 °C for 3 

minutes, followed by 30 cycles of 95 °C for 30 seconds, 56 °C for 30 seconds, and 72 °C for 30 

seconds, with a final step at 72 °C for 5 minutes. 

3.5.7. Automated electrophoresis platform 

After the PCR, quality of PCR products and size of the fragments was verified through automated 

electrophoresis platform 4200 TapeStation System. Sample preparation for electrophoresis was 

described in chapter 3.4.2.  

Before starting the Software, D1000 ScreenTape was put into the 4200 TapeStation instrument, 

the tips were loaded, and the waste compartment was emptied. Ladder and samples were placed 

into the stands. On the computer, in the Agilent TapeStation Controller Software 4.1, the first step 

is to label sample and ladder positions. After that, the Software was launched, and the results were 

shown in the Tape Station Analysis Software 4.1.1. 

3.5.8. Library Preparation 

Libraries for both bacterial and fungal DNA were prepared following the 16S Metagenomic 

Sequencing Library Preparation Protocol [94]. The steps in libraries preparations are shown in 

Figure 8, which has been adapted from the protocol.  
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1st stage PCR was described before in 3.6.5. section. 

 

Figure 8. Library preparation workflow, adapted from Illumina protocol [94]. 
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Next step, PCR clean-up uses MagSi-NGSPREP Plus* beads to purify the amplicons by removing 

free primers and primer-dimer species. Before starting the process, the beads must equilibrate at 

room temperature. The Amplicon PCR plate was then centrifuged at 1,000 g for 1 minute to bring 

down any condensation. The entire 25 µL of amplicon PCR product was added to the wells of the 

MIDI plate. 

Next, beads were vortexed and 20 µL was transferred from the reagent reservoir to the MIDI plate 

using a multichannel pipette. Tips were changed between each column. The entire volume was 

gently pipetted up and down 10 times, then placed on MPS-1 High-Speed Multi Plate Shaker at 

1800 rpm for 2 minutes. After shaking, the plate was incubated for 5 minutes without shaking. The 

plate was then placed on a magnetic stand for 2 minutes to allow the supernatant to clear. Using a 

multichannel pipette, the supernatant was removed and discarded, with tips changed between 

samples. 

The beads were washed with 200 µL freshly prepared 80% ethanol, incubated for 30 seconds on 

the magnetic stand, and the supernatant was removed and discarded. A second ethanol wash 

follows the same steps. After this the beads were left to dry for 10 minutes, with plate still on 

magnetic stand. 

The plate was then removed from magnetic stand and 52.5 μL of 10 mM Tris pH 8.5 was added 

to each well of the Amplicon PCR plate. The plate was sealed and placed on MPS-1 High-Speed 

Multi Plate Shaker at 1800 rpm for 2 minutes to fully resuspend beads. The plate was then 

incubated on room temperature for 2 minutes. After the incubation, the plate was placed on the 

magnetic stand for 2 minutes to clear the supernatant. Using a multichannel pipette, 50 μL of the 

supernatant was transferred from MIDI plate to new 96-well PCR plate.  

Following this is indexing step. This process involves attaching dual indices and Illumina 

sequencing adapters using the Nextera XT Index Kit. From PCR plate prepared in the previous 

step, 5 μL was transferred to a new MIDI plate, with the remaining 45 μL stored in the freezer. 

The Indices were arranged with Index 2 primer tubes aligned vertically from rows A to H and the 

Index 1 tubes aligned horizontally across columns 1 to 12, as shown in Figure 9.  
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Figure 9. Index plate scheme, from Illumina protocol [94] 

Each well contained 5 μL of DNA sample, 5 μL of appropriate Index Primer 1, 5 μL appropriate 

Index Primer 2, 25 μL of KAPA ReadyMix, and 10 μL of PCR grade water. After adding reagents 

to the wells, the mixture was gently pipetted up and down 10 times, covered with a microseal and 

centrifuged at 1,000 g for 1 minute. This was followed by another PCR using the same set up as 

previously described.  

The second PCR Clean-Up begins with centrifuging the Index PCR plate at 280 g for 1 minute to 

collect condensation. The entire Index PCR product (50 μL) was then transferred from the PCR 

plate to a MIDI plate. Next, the MagSi-NGSPREP Plus* beads were vortexed for 30 seconds to 

ensure even dispersion, transferred to a reagent reservoir, and 56 μL of beads was added to each 

well using a multichannel pipette. The mixture was gently pipetted up and down 10 times, sealed, 

and placed on the shaker at 1800 rpm for 2 minutes. After shaking, the plate was incubated at room 

temperature for 5 minutes, then placed on a magnetic stand for 2 minutes for the supernatant to 

clear. With the plate still on the magnetic stand, the supernatant was removed and discarded using 

a multichannel pipette, with tips changed between samples. The beads were washed by adding 200 

μL of freshly prepared 80% ethanol to each sample well, incubating on the magnetic stand for 30 

seconds, followed by carefully removing and discarding the supernatant. The ethanol wash was 

repeated a second time. To ensure the beads were completely dry, a 20 μL multichannel pipette 

with fine tips was used to remove excess ethanol, and the beads were left to air-dry for 10 minutes 
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while still on the magnetic stand. Once dry, the plate was removed from the magnetic stand and 

27.5 μL of 10 mM Tris pH 8.5 was added to each well. The mixture was pipetted up and down 10 

times to fully resuspend the beads, then sealed and placed on the shaker at 1800 rpm for 2 minutes. 

The plate was incubated at room temperature for additional 2 minutes, then returned to the 

magnetic stand for 2 minutes for the supernatant to clear. Last step was to transfer 25 μL of the 

supernatant to a new 96-well PCR plate, changing tips between samples to prevent cross-

contamination. 

The next step involves library quantification, normalization, and pooling. Quantification was first 

performed using the Qubit® 3.0 Fluorometer, steps were described before. DNA concentration 

was then calculated in nM using the following formula:  

𝑐 (
𝑛𝑔
𝜇𝐿) ∗ 10^6

660 𝑔
𝑚𝑜𝑙

∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 (650𝑏𝑝)
= 𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 (𝑛𝑀) 

Afterward, the samples were diluted to 4 nM with 10 mM Tris pH 8.5. All samples were 

successfully diluted to 4 nM. Once diluted, the libraries were ready for pooling. A 5 μL aliquot 

from each library was combined into a single pooled sample.   

The final step before sample loading involves library denaturing. The preparation steps include 

setting a heat block at 96°C, preparing an ice bath with a 1:3 water to ice ratio and leaving MiSeq 

reagent cartage at room temperature to equilibrate.  

Denaturing began by combining 5 μL of 4 nM pooled library with 5 μL of freshly prepared 0.2 N 

NaOH. The mixture was then vortexed and centrifuged at 280 g for a minute. After centrifugation, 

the mixture was incubated at room temperature for 5 minutes to ensure complete denaturation. 

Once denaturated, 990 μL of pre-chilled HT1 was added to the sample, resulting in a 20 pM 

denaturated library in 1 nM NaOH. The mixture is kept on ice until further steps.  

Next, the denaturated DNA is diluted to the desired concentration. Based on a literature review, 

an 8 pM final concentration was selected. To achieve this, 240 μL of 20 pM denatured library was 

mixed with 360 μL pre-chilled HT1. The mixture was gently inverted several times and put on ice.  

The PhiX control needs to be denatured and diluted similarly to the DNA library. To prepare a 4 

nM PhiX library, 2 μL of 10 nM PhiX was combined with 3 μL 10nM Tris pH 8.5. This 4nM PhiX 
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library was then mixed with 5 μL of 0.2 N NaOH, vortexed, and incubated for 5 minutes to ensure 

complete denaturation. After denaturation, 990 μL of pre-chilled HT1 was added to bring the 

concentration to 20 pM. The denaturated PhiX library was diluted to 8pM by combining 240 μL 

of 20 pM denaturated PhiX library with 360 μL pre-chilled HT1. Mixture was inverted to mix and 

put on ice.  

The final step involves combining the amplicon library with PhiX Control. To achieve a final PhiX 

concentration of at least 5%, 30 μL of the denatured and diluted PhiX control was added to 570 

μL of denatured and diluted amplicon library. The combined mix was heated in a heating block at 

96°C for 2 minutes. The mixture is then inverted and placed in the ice bath for 5 minutes.  

Loading the sample on the Miseq begins by pipetting the entire contents of the microtube into the 

reagent cartridge, specifically into the position marked "Load Sample." The cartridge was then 

placed into the MiSeq device. In the Local Run Manager “16S Metagenomics” run option was 

selected for bacteria and “GenerateFASTQ” run option was selected for fungi. Read length of 300 

bp was chosen for both analyses.  Before sequencing began, the device was calibrated to ensure 

the accuracy and precision of the results. 

3.6. Bioinformatics methods 

3.6.1. Data preprocessing 

Data preprocessing and taxonomic classification were performed at the Institute of Environmental 

Biotechnology, University of Technology of Graz. The obtained 16S rRNA gene and ITS fastq 

files were further processed using well-established bioinformatic pipelines [104,105]. The raw 

sequences were demultiplexed by Illumina software during the sequencing process. Primers were 

removed from the raw sequences using Cutadapt [106]. Next the sequences underwent quality 

control, where low-quality and chimeric sequences were removed using the DADA2 algorithm 

within the QIIME2, which is highly effective in denoising, correcting errors, and identifying true 

biological sequences by modelling error rates in Illumina sequencing data [107]. After quality 

filtering, feature tables and amplicon sequencing variants (ASVs) were generated again with 

DADA2 within the QIIME2 platform, providing a high-resolution view of the microbial 

communities [108]. The ASVs were then classified using the vsearch algorithm for sequence 

alignment and taxonomy assignment [109]. For bacteria, the most recent SILVA v132 database, a 

well-curated resource for ribosomal RNA sequences [110], was used, while fungal ITS sequences 
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were classified using the UNITE database [111], ensuring accurate identification and classification 

of the microbial diversity and composition within the samples. 

3.6.2. Statistical analysis 

Further analysis were performed with R (version 4.3.0) [112] in RStudio (version 2024.04.1.748) 

[113]. The data, taxonomy files, ASV tables and metadata, were combined into phyloseq object 

using the package Phyloseq [114]. The data was then normalised applying CSS (Cumulative Sum 

Scaling) normalization. Next step was filtering out sequences (ASVs) that could not be classified 

to at least the phylum level, meaning that unclassified reads were removed as these were likely 

contaminants, such as human genomic DNA. Additionally, chloroplast and mitochondrial 16S 

sequences were removed. Following, low-abundance taxa were removed based on prevalence and 

abundance thresholds: ASVs had to be present in at least three samples with a total read count 

exceeding 1000. This filtering reduced noise and preserved 88% of the reads for downstream 

analysis. 

For bacterial alpha diversity assessment, the dataset was normalized by randomly subsampling to 

16,400 reads per sample using the rarefy_even_depth function, with the seed set to 5,163. The 

same approach was applied to fungal alpha diversity, with subsampling to 4,228 reads per sample. 

These read counts were selected as a compromise between maintaining sequencing depth and 

preserving a large number of biological replicates. After this 4 samples in total had to be removed 

because of low number of reads (3 for ITS and 1 for 16S). Microbial richness and diversity metrics, 

including Observed species, Shannon index, Chao1 richness estimator, and inverse Simpson index, 

were calculated using the estimate_richness function.  

For beta diversity analysis, the dataset was normalized using cumulative sum scaling, and Bray-

Curtis dissimilarity matrices were calculated. Significant differences between groups were 

assessed using the adonis2 function (PERMANOVA, 999 permutations) from the VEGAN 

package, used for ecological analysis [115].  

Further analysis focused on relative abundance using the rabuplot [116] and microeco [117] 

packages. Data visualization was customized for clarity and reproducibility. Bar plots highlighted 

the dominant taxa in the dataset at both the genus and phylum levels, grouped by variables such 

as the number of siblings and parental education level, while violin plots illustrated community 

composition at the genus level with statistics. The choice of statistical tests depended on the data 
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structure and the number of categories in the predictor variable. For comparisons between two 

groups (e.g., pet ownership: "Yes" vs. "No"), a non-parametric Wilcoxon rank-sum test was 

applied. For comparisons involving more than two groups (e.g., number of siblings: "0," "1," "2," 

and "3 or more"), Kruskal-Wallis tests were used. To ensure the reliability of results when 

analysing multiple microbial taxa simultaneously, a multiple testing correction was applied to 

control the false discovery rate (FDR). Ultimately, these statistical methods were integrated into 

the visualization workflow. 
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4. RESULTS
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4.1. Overview of sequencing and taxonomic data 

Preliminary overview of sequencing results for bacterial and fungal taxa in 95 dust samples is 

presented in Table 1. For bacterial taxa (16S rRNA), 94 out of 95 samples were successfully 

sequenced, generating a total of 6,164,389 reads. A total of 16,010 ASVs (amplicon sequence 

variants) were identified, distributed across 36 phyla. For fungal taxa (ITS), 92 out of 95 samples 

were successfully sequenced, yielding a total of 3,232,715 reads. The sequencing identified 4,361 

ASVs, spanning 10 phyla. 

Table 1. Zagreb pilot 1st run preliminary sequencing results. 

Parameter name Bacterial taxa, 16S Fungal taxa, ITS 

Number of samples 95 95 

Successfully sequenced 

samples 
94/95 92/95 

Total number of reads 6,164,389 3,232,715 

Mean number of reads 65,579 35,138 

Maximum number of reads 333,337 135,972 

Minimum number of reads 4,228 1,640 

Number of ASVs 16,010 4,361 

Number of phyla 36 10 

 

The Figure 10. shows quality scores for paired-end reads. Figure 10a is forward reads and 10b are 

reverse reads. The base quality scores are along the x-axis and the corresponding Phred quality 

scores are on the y-axis. The forward reads have better quality, and the quality drops with amplicon 

lengths. The forward reads are cut at 270 base position to maintain quality for the most reads at 

25. The reverse was cut at 220 base position for the same reason.  

 

(a) (b) 

Figure 10. Quality scores in 16S sequencing. (a) forward reads. (b) reverse reads. 
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Figure 11. shows quality scores for pair-end reads for ITS region. Figure 11a. is forward reads and 

11b. is reverse reads. The base quality scores are on x axis and Phred quality scores are on the y 

axis. Here the forward reads show better quality as well, while show a sharp drop in quality. 

Although the quality begins to decrease earlier, to maintain the majority of reads with a quality 

score of 25 or higher, the forward reads were cut at 220 and reverse at 210 base position. 

 

(a) (b) 

Figure 11. Quality scores in ITS sequencing. (a) forward reads. (b) reverse reads. 

These specific cut-offs were chosen to retain a higher proportion of reliable reads, which is crucial 

for downstream analyses such as diversity and taxonomic profiling. 

The rarefaction curves presenting different subsampling depths for 16S sequencing are shown in 

Figures 12a and b.  
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(a) 

 

(b) 

Figures 12a and b. 16S rarefaction curves. 

Figure 12a was created with a lower subsampling depth, to show both the positive and negative 

controls with the samples. Figure 12b was generated with a much higher subsampling depth, as 

indicated by the x-axis extending beyond 4000 sequences. The red line represents the positive 

control, which initially shows an increase in species richness in Figure 12a but levels off in Figure 

12b. The green line represents the negative control, which shows consistently low or flat species 

richness in Figure 12a. The blue lines represent individual samples. In Figure 12b, the increased 
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sequencing depth results in much higher observed species richness for each sample. Many of these 

samples reach an asymptote at higher sequencing depths. 

 

(a) 

 

(b) 

Figure 13a and b. ITS rarefaction curves. 

Figures 13a and b present rarefaction curves for fungal samples. Figure 13a uses a lower 

subsampling depth to display both positive and negative controls alongside the samples, resulting 

in relatively low observed species richness across all samples. Whereas, Figure 13b uses a much 

higher subsampling depth, as shown by the x-axis extending beyond 4000 sequences. The red line 

represents the positive control, which initially shows an increase in species richness in Figure 13a 
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but plateaus in Figure 13b. The green line, representing the negative control, remains low and flat 

in Figure 13a, as expected for controls with minimal biological content. In Figure 13b, the negative 

control line disappears, due to the very low number of reads. The blue lines correspond to 

individual samples. In Figure 13b, the higher sequencing depth results in much greater observed 

species richness across the samples. 

4.2 Microbial composition of dust samples 

4.2.1 Taxonomic composition 

Figure 14. displays the taxonomic composition of samples at the genus level, illustrating the 

relative abundance of various microbial genera. The most prominent genera are Staphylococcus, 

Anaerococcus, and Enhydrobacter, along with a range of less abundant genera grouped as “Other”. 

Staphylococcus is notably dominant across a large portion of samples, indicating its high 

prevalence in this dataset, followed by Enhydrobacter as the next most abundant genus. Additional 

genera, such as Corynebacterium, Cutibacterium, and Streptococcus, contribute to the overall 

diversity observed in the microbiome. These patterns suggest that while Staphylococcus is often 

dominant, other genera add to a more diverse yet less abundant microbial profile across samples. 

 

Figure 14. Taxonomic composition at Genus levels Bacteria. 
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Figure 15. presents the relative abundance of fungal genera across various samples. The most 

prominent genera are Malassezia, Unassigned Didymosphaeriaceae, and Cyberlindnera, with less 

abundant genera grouped under "Other." Malassezia is the dominant genus in many samples, 

followed by Unassigned Didymosphaeriaceae and Cyberlindnera. Additional genera, such as 

Aspergillus, Alternaria, and Cladosporium, appear in smaller proportions, contributing to the 

overall diversity of the fungal communities. These distribution patterns indicate that while 

Malassezia dominates, other genera play a role in creating a more diverse, though less abundant, 

microbial profile. This variability in fungal composition may be influenced by various 

environmental or individual factors affecting microbial diversity within the studied group. 

 

Figure 15. Taxonomic composition at Genus levels Fungi. 

4.2.2. Associations between Fungi and Bacteria 

Figures 16a and b display the associations between fungal and bacterial α diversity metrics. In 

Figure 16a, the relationship between Fungal Observed Richness and Bacterial Observed Richness 

is shown, with a p-value of 0.476 and an R² of 0.00579. The high p-value and low R² indicate that 

the association is not statistically significant, with bacterial observed richness explaining only 

about 0.6% of the variability in fungal observed richness. This suggests minimal evidence of a 
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meaningful relationship between bacterial and fungal richness. Similarly, Figure 16b illustrates the 

association between fungal Shannon Diversity and bacterial Shannon Diversity, with a p-value of 

0.562 and an R² of 0.00383. These values are comparable to those in the Observed Richness plot, 

again indicating a lack of statistical significance and a very low explained variance. Thus, there is 

no substantial association between bacterial and fungal diversity based on the Shannon index. 

  

(a) (b) 

Figure 16. Associations between fungal and bacterial α diversity, (a) observed richness, (b) 

Shannon index. 

4.2.3. Associations between diversity measures and asthma status 

The diversity analysis included both alpha (α) and beta (β) diversity measures, focusing on 

bacterial and fungal alpha diversity between individuals with and without asthma. The p-value for 

bacterial alpha diversity is 0.077, while the p-value for fungal alpha diversity is 0.473. 

As for β diversity, the results are shown in Table 2. Participants without asthma (n=31, 34.4%), 

bacterial β diversity showed a significant association with asthma, with a p-value of 0.009. This 

suggests that there are notable differences in microbial community composition between 

individuals with and without asthma. In the ITS data, β diversity presented an R² of 0.013 and a p-

value of 0.1.  
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Table 2. β diversity for asthma.  

Category Variable Total (n, %) 
16S β diversity 

(R2/p) 

ITS β diversity 

(R2/p) 

Asthma 
No 31 (34.4) 

0.015/ 0.009 0.013/ 0.1 

Yes 59 (65.6) 

*Bold p < 0.05 

Figures 17a and b display Principal Coordinate Analysis (PCoA) plots illustrating the variation in 

microbiome composition between individuals with and without asthma. The plots show 

considerable overlap between the two groups. The overlap suggests that, while some variation 

exists, the differences in microbiome composition between individuals with and without asthma 

are not strongly pronounced in these principal coordinates. 

 

(a) 
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(b) 

Figure 17. PCoA of microbiome composition by asthma status, (a) for Bacteria, (b) for Fungi. 

 

4.2.4. Environmental microbiome differences in children with and without asthma 

Many environmental factors have been shown to influence microbiome communities. The factors 

identified in the EDIAQI study are grouped into socioeconomic factors, household characteristics, 

cleaning practices, and environmental conditions. 

4.2.4.1. Socioeconomic factors 

Socioeconomic factors include categories such as the child’s gender, household monthly income, 

and parents' education level. The results are presented in Table 3. 
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Table 3. Influence of socioeconomic factors on microbial diversity and interaction with asthma  

Category Variable 

Total 

(n, 

%) 

16S ITS 

β 

diversity 

(R2/p 

val) 

β diversity 

interaction 

with 

asthma 

(R2/p val) 

α 

diversity 

(p val) 

β diversity 

interaction 

with 

asthma 

(R2/p val) 

β 

diversity 

(R2/p 

val) 

α 

diversity 

(p val) 

Gender 

Female 
41 

(45.6) 0.015/ 

0.009 

0.012/ 

0.264 
0.913 

0.010/ 

0.623 

0.009/ 

0.814 
0.823 

Male 
49 

(54.5) 

Education 

parents 

Middle 
23 

(25.6) 

0.043/ 

0.003 
0.0256/ 

0.025 
0.928 

0.041/ 

0.032 
0.030/ 

0.008 
0.262 High 

48 

(53.3) 

PhD 
19 

(21.1) 

Household 

monthly 

income 

< 1500 

€ 

7 

(7.8) 

0.025/ 

0.068 

0.021/ 

0.575 
0.759 

0.029/ 

0.026 

0.022/ 

0.424 
0.018 

1500 € - 

2500 € 

25 

(27.8) 

> 2500 

€ 

58 

(64.4) 

*bold p < 0.05 

The results demonstrate the influence of socioeconomic factors on microbial diversity in both 

bacterial and fungal datasets, as well as their interaction with asthma status. For gender, there is a 

significant association with β diversity in the bacterial dataset (p = 0.015), though no significant 

interaction with asthma is observed. Parental education shows a significant association with β 

diversity in both the bacterial (p = 0.003) and fungal (p = 0.032) datasets, with a notable interaction 

with asthma in both cases (p = 0.025 for bacterial and p = 0.008 for fungal). Household income is 

marginally significant for β diversity in the bacterial dataset, while the fungal dataset shows a 

significant association with β diversity (p = 0.026). For α diversity, only household monthly 

income has shown a significant association (p = 0.018). Figure 18. illustrates observed richness 

across income groups, with similar median richness values among the three income categories (< 

2000€, 2000-2500€, and > 2500€), showing a slight difference in richness for the lowest income 

group.  



54 
 

 

Figure 18. Observed richness by household income in ITS dataset. 

4.2.4.2. Household characteristics 

Household characteristics encompass factors such as the living environment, type of housing, 

number of siblings, presence and types of pets in the household, and the number of plants within 

the home. These variables provide insight into the household’s potential influence on microbiome 

composition. The results are presented in Table 4. 
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Table 4. Influence of household factors on microbial diversity and interaction with asthma 

Category Variable 
Total (n, 

%) 

16S ITS 

β diversity 

(R2/p val) 

β diversity 

interaction with 

asthma (R2/p 

val) 

α 

diversity 

(p val) 

β diversity 

(R2/p val) 

β diversity 

interaction with 

asthma (R2/p 

val) 

α diversity (p 

val) 

Living 

environment 

Suburban 19 (21.1) 

0.029/ 0.002 0.030/ 0.001 0.993 0.030/ 0.005 0.029/ 0.026 0.548 

Urban (built 

surroundings) 
35 (38.9) 

Urban (green 

spaces) 
36 (40.0) 

Type of 

home 

House 30 (33.3) 

0.016/ 0.004 0.012/ 0.190 0.267 0.014/ 0.054 0.011/ 0.397 0.451 

Apartment 60 (66.7) 

Number of 

siblings 

None 12 (13.3) 

0.051/ 0.001 0.042/ 0.001 0.045 0.045/ 0.009 0.037/ 0.123 0.893 

1 54 (60.0) 

2 15 (16.7) 

3 9 (10.0) 

Pet 

ownership 

No 61 (67.8) 

0.019/ 0.001 0.014/ 0.021 0.061 0.010/ 0.005 0.013/ 0.111 0.117 

Yes 29 (32.2) 
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Dog 

No pet 61 (67.8) 

0.035/ 0.001 0.028/ 0.003 0.060 0.035/ 0.001 0.024/ 0.187 0.012 Yes 21 (23.3) 

Other pet 8 (8.9) 

Cat 

No pet 61 (67.8) 

0.031/ 0.001 0.028/ 0.007 0.172 0.034/ 0.003 0.022/ 0.444 0.054 Yes 7 (7.8) 

Other pet 23 (24.4) 

Plants 

No/ outside 14 (15.6) 

0.028/ 0.005 0.032/ 0.001 0.433 0.027/ 0.041 0.027/ 0.035 0.123 ≤ 5 53 (58.9) 

> 5 23 (25.5) 

*bold p-value < 0.05 
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Living environment significantly influences β diversity, for both bacterial (p = 0.002) and fungal 

(p = 0.005) datasets, along with notable interactions with asthma (p=0.001 and 0.026, 

respectively). Type of home shows significant associations with β diversity in the bacterial dataset 

(p = 0.004). The number of siblings appears to play a role, particularly in the bacterial dataset, 

where presence of siblings significantly affects both β diversities (p = 0.001, and p= 0.009) and 

interacts with asthma status for bacterial dataset (p= 0.001). Here there is also a significant 

association with bacterial α diversity. As it can be seen on Figure 19., while the median richness 

appears relatively similar across groups, the distribution shows slight variability. This significance 

implies that sibling presence, even though not showing a clear linear trend in median richness, is 

associated with variations in microbial diversity, potentially due to the different environmental 

exposures and microbial sharing that siblings might bring into the household. 

 

Figure 19. Observed richness by number of siblings in the household in 16S dataset. 

Pet ownership, especially dog and cat ownership, has a marked effect, with significant associations 

for β diversity and asthma interaction in both bacterial and fungal datasets (p = 0.001, p= 0.005 

respectively; bacterial interaction P = 0.021). For instance, dog ownership in the bacterial dataset 

shows p = 0.001 and p = 0.003 for interaction, same for cat with p = 0.001 and p = 0.007 for 

interaction. In fungal dataset there are only associations with fungal α diversity with p = 0.001 for 
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dogs and p = 0.003 for cats. As for α diversity, although cat shows borderline association, those 

for dogs is shown to be statistically significant with p= 0.012, which is shown in Figure 20. The 

median richness appears higher in households with a dog compared to those with no pets or other 

types of pets. The interquartile range is also broader for households with a dog, indicating more 

variability in richness among these samples. Households with no pets and those with other pets 

show similar median richness values. These patterns suggest that the presence of a dog in the 

household may be associated with greater microbial richness. 

 

Figure 20. Observed richness by dog in the household in ITS dataset. 

Additionally, the presence of plants in the household influences microbial diversity, with 

significant β diversity associations in both datasets (p = 0.005, and 0.042 respectively) and 

interaction with asthma (p = 0.001, and 0.035 respectively). Overall, these results indicate that 

various household factors influence microbial community composition, and many of these factors 

interact with asthma status. 
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4.2.4.3. Cleaning practices 

Cleaning practices include the frequency of dusting within the home each week and the annual 

frequency of mattress vacuuming. These practices offer insight into household hygiene levels and 

their potential impact on microbiome composition. The results are presented in Table 5. 

Table 5. Cleaning practices and diversity measures  

Category Variable 

Total 

(n, 

%) 

16S ITS 

β 

diversity 

(R2/p 

val) 

β diversity 

interaction 

with 

asthma 

(R2/p val) 

α 

diversity 

(p val) 

β diversity 

interaction 

with 

asthma 

(R2/p val) 

β 

diversity 

(R2/p 

val) 

α 

diversity 

(p val) 

Dusting 

furniture 

Occasionally 
15 

(16.7) 

0.040/ 

0.006 

0.042/ 

0.003 
0.752 

0.048/ 

0.002 

0.036/ 

0.185 
0.169 

Once a week 
45 

(50.0) 

Several 

times a week 

24 

(26.6) 

4 or more 

times a week 

6 

(6.7) 

Mattress 

vacuuming 

Never od 

once a year 

19 

(21.1) 

0.027/ 

0.011 

0.028/ 

0.002 
0.038 

0.027/ 

0.037 

0.027/ 

0.046 
0.193 

2 - 4 times a 

year 

43 

(47.8) 

< 4 times a 

year 

28 

(31.1) 

*bold p < 0.05 

Dusting furniture is significantly associated with both bacterial and fungal β diversity (p = 0.006 

and p = 0.002, respectively), with an interaction observed between dusting and asthma in the 

bacterial dataset (p = 0.003). Nonetheless, no significant effect on α diversity is seen across 

different dusting frequencies. Mattress vacuuming also shows significant associations with both β 

diversities and with interactions in both datasets. In the bacterial dataset, β diversity is significantly 

associated with vacuuming (p = 0.011) and shows an interaction with asthma (p = 0.002). For 

fungal β diversity, the association is significant at p = 0.037, with an interaction at p = 0.046. 

Mattress vacuuming frequency also significantly affects bacterial α diversity (p = 0.002). Figure 
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21. illustrates that median richness is highest in households that vacuum their mattress "1 to 4 

times a year" and lowest for those that "Never or rarely" vacuum. The "Never or rarely" group 

shows greater variability in microbial richness, indicated by a wider interquartile range and longer 

whiskers, while the "1 to 4 times a year" group displays less variability. This suggests that 

moderate mattress cleaning might support a more diverse microbial community compared to both 

very frequent and infrequent cleaning. 

 

Figure 21. Observed richness by mattress vacuuming frequency in 16S dataset. 

 

4.2.4.4. Environmental conditions 

The only environmental condition considered is the sampling season, as external factors can 

influence microbial communities. This impact is evident from the results presented in Table 6. 
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Table 6. Environmental variables and diversity measures.  

Category Variable 

Total 

(n, 

%) 

16S ITS 

β 

diversity 

(R2/p 

val) 

β diversity 

interaction 

with 

asthma 

(R2/p val) 

α 

diversity 

(p val) 

β diversity 

interaction 

with 

asthma 

(R2/p val) 

β 

diversity 

(R2/p 

val) 

α 

diversity 

(p val) 

Season of 

sample 

collection 

Spring 
18 

(20.0) 

0.114/ 

0.001 

0.093/ 

0.001 
0.130 

0.104/ 

0.001 

0.086/ 

0.031 
0.615 

Summer 
20 

(22.2) 

Autumn 
15 

(16.7) 

Winter 
37 

(41.1) 

*Bold p< 0.05 

Examining β diversity reveals significant associations in both groups. For bacteria, there is a 

significant association with p = 0.001, as well as a significant interaction with asthma (p = 0.001). 

For fungi, β diversity is also significant (p = 0.001), with an interaction with asthma showing 

significance at p = 0.031. However, no significant association is observed for α diversity.  

Overall, factors such as socioeconomic status, living environment, season, pet ownership, and 

household cleaning practices significantly shape bacterial and fungal community composition, 

with some of these associations interacting with asthma status. However, Principal Coordinate 

Analysis (PCoA) plots do not reveal distinct groupings for any of these variables (data not shown). 

These results suggest that while these factors influence β diversity, the variations in microbial 

composition are subtle and do not form distinct clusters based on the analysed variables. 

4.2.5. Relative Abundance 

4.2.5.1. Asthma 

The presented plots provide insights into the bacterial composition in relation to asthma. Bar plot 

(Figure 22a), represents relative abundance of bacterial taxa in individuals with and without 

asthma. The plot reveals a consistent distribution of dominant taxa, including Staphylococcus, 

Corynebacterium, and Cutibacterium, across both groups. However, subtle differences in the 

abundance of less prevalent taxa, such as Enhydrobacter and Paracoccus, are visible. These 



62 
 

observations can be seen in the violin plot (figure 22b). Notably, genera such as Enhydrobacter 

(p= 0.036), Micrococcus and Paracoccus show statistically significant differences in abundance 

between the two groups, as indicated by the p-values (p = 0.011 for both Paracoccus and 

Micrococcus).  

 

 

(a) 
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(b) 

Figure 22. Relative abundance of bacterial genera by asthma. (a) Stacked bar plot highlights the 

top ten genera, with others grouped as “Other”, ordered by mean abundance across samples. (b) 

Violin plot illustrates genus-level distribution and variability, with p-values indicating 

significant differences between groups. 

Figure 23a presents the relative abundances of fungal genera in household dust grouped by the 

presence or absence of asthma (Yes/No). Each bar represents the microbial composition for the 

respective group, with genera showed as stacked segments. Prominent genera such as Malassezia 

and Cladosporium are shown to contribute substantially to the overall microbiome in both groups, 

although visual differences are noticeable. Conversely, other genera like Aspergillus and 

Alternaria show relatively stable distributions between the two groups. Figure 23b visualizes the 

relative abundance of individual taxa within the two asthma groups (Yes/No). The width of each 

violin represents the density of samples with a specific relative abundance for each taxon. The 

numerical annotations such as p-values and q-values, indicate the statistical significance of 

differences between the groups for each taxon.  
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(a) 

 

(b) 



65 
 

Figure 23. Relative abundance of fungal genera by asthma. (a) Stacked bar plot highlights the 

top ten genera, with others grouped as “Other”, ordered by mean abundance across samples. (b) 

Violin plot illustrates genus-level distribution and variability, with p-values indicating 

significant differences between groups. 

 

4.2.5.2. Socioeconomic factors 

This chapter presents the relative abundance of microbial taxa in relation to socioeconomic factors, 

including the child’s gender, parental education, and household monthly income. Factors not 

shown here are included in the supplementary materials, as they did not reveal any statistically 

significant differences in taxa. 

Figure 24 presents relationship of bacterial relative abundance and parental education. Bar plot, 

illustrates the relative abundance of bacterial taxa across the three educational groups. The 

distribution of dominant taxa such as Staphylococcus, Corynebacterium, and Cutibacterium 

appears relatively stable across the groups, but subtle differences in the relative proportions of less 

abundant taxa like Paracoccus, Unclassified Rhisobabiaceae and Anaerococcus are present. The 

violin plot reveals that certain bacterial taxa, such as Staphylococcus (p = 0.023) and 

Cutibacterium (p = 0.043), show significant differences in abundance across the groups, indicating 

a potential impact of parental education on the home microbial environment. 
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(a) 

 

(b) 
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Figure 24. Relative abundance of bacterial genera by parental education. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

The bar plot shows (Figure 25a) slight variations in microbial composition among Basic, Graduate, 

and Master/PhD categories, with taxa like Malassezia and Cyberlindnera dominating. The violin 

plot (Figure 25b) reveals significant differences for Unassigned Didymellaceae (p = 0.010) and 

Alternaria (p= 0.048). 

 

(a) 
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(b) 

Figure 25. Relative abundance of fungal genera by parental education. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

In terms of household monthly income, the bar plot (Figure 26a) also indicates that Malassezia is 

a substantial percentage of the microbial composition across income levels. Other taxa display 

minor variations, apart from visible abundance of Aspergillus and Debariomyces in lowest income 

category. The violin plot (Figure 26b) highlights significant differences for Malassezia (p = 0.030), 

Debaryomyces (p = 0.042) and other genus (p = 0.034) between income groups. 

 



69 
 

 
(a) 

 
(b) 
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Figure 26. Relative abundance of fungal genera by household monthly income. (a) Stacked bar 

plot highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance 

across samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

4.2.5.3. Household characteristics  

The results highlight the relative abundance of microbial taxa in relation to various household 

characteristics, including living environment, home type, number of siblings, presence of plants 

and animals, and specific household pets (cats and dogs). Characteristics not presented here, 

whether for bacteria or fungi, are included in the Supplement, as they did not display statistical 

significance. 

Figures 27-35 explore the relationship between bacterial relative abundance and environmental 

factors: number of plants in the household, home type, and living environment. The bar plots 

demonstrate that the overall microbial community composition is largely stable across the different 

categories, with dominant taxa such as Staphylococcus, Corynebacterium, and Cutibacterium 

consistently abundant. Subtle variations in less dominant taxa, such as Paracoccus and 

Enhydrobacter, are observed but do not strongly affect the overall microbial structure. In contrast, 

the violin plots offer a more detailed insight, revealing significant differences in specific taxa. For 

the living environment (Figure 27 a and b), both Enhydrobacter and Acinetobacter show notable 

differences (p = 0.043) with more abundance in urban area surrounded with built environment.  
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(a) 

 

(b) 
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Figure 27. Relative abundance of bacterial genera by living environment. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

Both houses and apartments (Figure 28 a and b) show similar relative abundance, with slight 

differences in certain taxa.  Genus Enhydrobacter is also significantly different between houses 

and apartments (p = 0.005). 

 

 

(a) 
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(b) 

Figure 28. Relative abundance of bacterial genera by home type. (a) Stacked bar plot highlights 

the top ten genera, with others grouped as “Other”, ordered by mean abundance across samples. 

(b) Violin plot illustrates genus-level distribution and variability, with p-values indicating 

significant differences between groups. 

 

Regarding the number of plants (Figure 29 a and b), relative abundance is similar across all three 

groups. Streptococcus and Gemella exhibit significant differences, with p-values of 0.024 and 

0.042, respectively. 
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(a) 

 

(b) 
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Figure 29. Relative abundance of bacterial genera by number of plants. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

For the living environment (Figure 30 a and b), the barplot indicates that microbial compositions 

are broadly similar across suburban, urban-built, and urban-green environments, with Malassezia 

being prevalent. The violin plot identifies Unassigned Didymellaceae as significantly different (p 

= 0.044), while other taxa show no substantial differences.  

 

(a) 
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(b) 

Figure 30. Relative abundance of fungal genera by living environment. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

For the number of siblings (Figure 31 a and b), the bar plot shows consistent dominance of 

Malassezia, with slight variations in other taxa. Saccharomyces shows a notable difference in the 

group with three siblings, while the same group has a lower abundance of Cyberlindnera 

compared to other groups. Additionally, this group shows a lower abundance of other genera, 

suggesting that the microbial community composition in households with three siblings is more 

specialized or dominated by specific taxa. The violin plot highlights statistically significant 

differences for Candida (p = 0.001), while most taxa, including Malassezia, show no significant 

differences. Candida shows most abundance in the households with 2 siblings.  
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(a) 

 

(b) 
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Figure 31. Relative abundance of fungal genera by number of siblings. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

Relative abundance plot for plants (Figure 32 a and b) shows minimal differences in microbial 

compositions across categories, with Malassezia remaining dominant. However, there is a slight 

decrease in its abundance in homes without plants or with plants located outside the home. The 

violin plot indicates statistically significant differences for Unassigned_unassigned taxa (p= 

0.042). 

 

(a) 
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(b) 

Figure 32. Relative abundance of fungal genera by number of plants. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

The results highlight the relative abundance of microbial taxa in relation to the presence of pets in 

the household (Figure 33 a and b), including specific analyses for dogs (Figure 34 a and b) and 

cats (Figure 35 a and b). Across all categories, Malassezia remains the dominant taxon, showing 

greater abundance in homes without pets. When considering household pets in general, a greater 

number of significant taxa are observed compared to all other environmental factors. Violin plots 

(Figure 31 b) show significant differences for Malassezia (p = 0.001), Cladosporium (p = 0.044), 

Vishniacozyma (p = 0.028), and other genus (p = 0.007). Other genus is also significant in 

households with cats (p = 0.027, Figure 35 b) and dogs (p = 0.026, Figure 34 b). Additionally, both 

dogs and cats show significant differences for Malassezia (cats: p = 0.004; dogs: p = 0.002) and 

Filobasidium (cats: p = 0.028; dogs: p = 0.046). In households with cats, Candida is also 

significant (p = 0.046). 
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(a) 

 
(b) 

Figure 33. Relative abundance of fungal genera by pets in the household. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 
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samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

 
(a) 
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(b) 

Figure 34. Relative abundance of fungal genera by dog in the household. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 
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(a) 

 
(b) 

Figure 35. Relative abundance of fungal genera by cat in the household. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 
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samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

4.2.4.3. Cleaning practices 

The results show the relative abundance of microbial taxa based on mattress vacuuming and 

dusting frequency. Interestingly, both practices exhibit some statistically significant taxa for both 

bacteria and fungi. 

Figures 36.- 39. show the relationship between microbial relative abundance and cleaning 

practices, specifically mattress vacuuming and dusting. The bar plots demonstrate a consistent 

microbial composition across different frequencies of mattress vacuuming and dusting. Dominant 

taxa such as Staphylococcus, Corynebacterium, and Cutibacterium remain stable across all groups, 

with only minor differences in less abundant taxa like Enhydrobacter and Paracoccus. The violin 

plots provide finer detail and highlight specific taxa with statistically significant differences. For 

dusting (Figure 36b), Staphylococcus shows significant differences (p = 0.004) alongside 

Neisseria and other genus, both with equal p= 0.048. For mattress vacuuming (Figure 37b), 

Staphylococcus (p = 0.017), is also significant, and other genera show significance (p=0.007) as 

well. 
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(a) 

 

(b) 
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Figure 36. Relative abundance of bacterial genera by dusting frequency. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

 

(a) 



87 
 

 

(b) 

Figure 37. Relative abundance of bacterial genera by vacuuming mattress frequency. (a) Stacked 

bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups 

 

Across all categories, Malassezia remains the dominant taxon. For dusting, the bar plot (Figure 

38a) demonstrates consistent dominance of Malassezia across all dusting frequencies (daily, 

weekly, several times per week, and never/rarely). There are slight differences in represented 

genera, but the category of daily dusting shows lower abundance of other genera. The violin plot 

(Figure 38b) highlights Malassezia as significant (p = 0.050), with no other taxa showing notable 

differences.  
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(a) 
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Figure 38. Relative abundance of fungal genera by dusting frequency. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups 

 

For mattress vacuuming, the bar plot (Figure 39a) shows minimal differences in microbial 

composition between occasional, frequent, and no vacuuming. Although the Aspergillus seems to 

be more abundant in never or rarely vacuuming category. The violin plot (Figure 39b) identifies a 

significant difference only for Wallemia (p = 0.022). 

 

(a) 
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(b) 

Figure 39. Relative abundance of fungal genera by vacuuming mattress frequency. (a) Stacked 

bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups 

4.2.4.4. Environmental conditions 

No significant differences were observed in the season of sampling for either fungi or bacteria; 

therefore, these results are included in the supplementary materials. 

4.2.6. Comparison with other cohorts 

Although a large amount of publicly available microbiome data exists, the comparison in this study 

was made using the COPSAC (Copenhagen Prospective Study on Asthma in Childhood) dataset. 

These samples were collected and processed using the same protocols as the EDIAQI samples. It 

is worth emphasizing that the “Croatian” samples are localized to the Zagreb area, just as the 

“Danish” samples are specific to the Copenhagen area. Therefore, neither set of samples can be 

considered fully representative of the entire country, but rather provide preliminary insights into 

the microbiome composition of urban households. The comparison with other cohorts, countries 
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and papers will be in the Discussion chapter. Table 7 presents the diversity metrics of dust 

microbiome samples to assess whether community composition differs between countries (Croatia 

vs. Denmark). Both alpha and beta diversity metrics were examined to show a comprehensive 

understanding of microbial variation across cohorts.  

Table 7. Alpha and beta diversity of dust microbiomes by country. 

Category Variable 
Total 

(n, %) 

16S α 

diversity 

(p val) 

16S β 

diversity 

(R2/p val) 

ITS α 

diversity 

(p val) 

ITS β 

diversity 

(R2/p val) 

Country 

Croatia 

(EDIAQI) 

90 

(49.18) 
6.98 e-13 

0.044/ 

0.001 
3.74e-10 0.113/ 0.001 

Denmark 

(COPSAC) 

93 

(50.82) 

 

PCoA based on 16S rRNA gene sequencing revealed a clear separation in bacterial community 

composition between  EDIAQI and COPSAC dust samples (Figure 40). Samples clustered 

distinctly by country, indicating significant differences in β diversity (PERMANOVA, R² = 0.044, 

p = 0.001). Croatian samples (green) showed greater within-group dispersion compared to Danish 

samples (red), suggesting higher bacterial variability within Croatian households. 

 

Figure 40. PCoA of bacterial community composition in dust samples by country. 
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Similarly, PCoA based on ITS region sequencing demonstrated distinct clustering of fungal 

communities by country (Figure 41). The fungal composition in Croatian samples also differed 

significantly from that in Danish samples (PERMANOVA, R² = 0.113, p = 0.001). The separation 

along PC1 and PC2, which explained 9.9% and 5.3% of the variance, respectively, supports a 

strong country-specific pattern in the fungal dust microbiome. These findings indicate that both 

bacterial and fungal communities differ significantly between the two countries 

 

Figure 41. PCoA of fungal community composition in dust samples by country. 

To assess alpha diversity, the number of observed ASVs was compared between Croatian and 

Danish samples for both bacterial and fungal datasets. Bacterial diversity was significantly higher 

in Danish samples compared to Croatian ones (Figure 42a). Danish dust samples exhibited a 

broader range and higher median number of observed ASVs, suggesting a more diverse bacterial 

community. Fungal diversity followed a similar pattern, with Danish samples showing a 

significantly greater number of observed ASVs than Croatian samples (Figure 42b). This indicates 

a richer fungal community in household dust from Denmark. These results align with beta diversity 

findings and reinforce the presence of country-specific differences in microbial richness. 
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(a) (b) 

Figure 42. (a) bacterial and (b) fungal observed ASVs in dust samples. 

Observed ASV richness can be seen in relative abundance plots (Figure 43 and 44) as well. 

Bacterial community profiles revealed that both countries shared many dominant genera, but 

differences in their relative abundances were evident (Figure 43). Staphylococcus, Streptococcus, 

Cutibacterium, and Corynebacterium were among the most abundant genera in both countries. 

However, Danish samples showed a relatively higher abundance of genera such as Neisseria and 

Haemophilus, while Croatian samples had a greater proportion of Staphylococcus. 

 

Figure 43. Relative Abundance of bacterial genera in dust samples from Croatia and Denmark. 
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Fungal communities also displayed distinct patterns between countries (Figure 44). Malassezia 

was the most dominant genus in both cohorts, but Denmark exhibited a higher relative abundance 

of Cladosporium and Debaryomyces, whereas Croatian samples were richer in Saccharomyces and 

several unclassified genera within the Didymellaceae and Didymosphaeriaceae families. These 

compositional differences further support the observed variation in microbial diversity and 

community structure between the two countries. 

 

 

Figure 44. Relative Abundance of fungal genera in dust samples from Croatia and Denmark. 
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5. DISCUSSION
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This research represents a novel study in Croatia, investigating the relatively underexplored subject 

of indoor microbiomes. While microbiome studies have gained significant attention globally, the 

focus has mainly been on human-associated and outdoor environmental microbiomes. 

Consequently, indoor microbiomes, particularly in the context of health conditions such as asthma, 

remain relatively understudied. This gap is especially evident in Croatia, where this research marks 

the first comprehensive study of the dust microbiome in indoor environments and its potential link 

to childhood asthma. 

5.1. Cohort 

Descriptive results of the cohort show that there are more participants with asthma (N=59) 

compared to healthy children (N=31). This disparity can be explained with the fact that a 

significant number of children who initially entered the study as healthy, asymptomatic individuals 

were ultimately diagnosed with asthma. Furthermore, the wide age range, involving children from 

5 to 18 years old, plays an important role in the observed prevalence of asthma. The cohort spans 

multiple developmental stages, including toddlers, pre-schoolers, primary schoolers, and 

adolescents, which influences variability in the prevalence data. Additionally, asthma is more 

frequently diagnosed in younger children, and the cohort average age is 9.51 (±3.58) years. 

Furthermore, it is worth noting that in the cohort asthma is more common in boys than in girls. 

These findings align with well-known clinical observations and previous research [8]. Finally, the 

cohort size of only 90 children is relatively small, which limits the scope of the findings. 

The collection sites in Zagreb are relatively evenly distributed, ensuring a broad representation of 

different living environments within the city. This geographic balance reduces potential biases 

related to location-specific factors. 

5.2. Optimisation of the protocols 

Given that there is no specific kit designed for dust DNA isolation, the DNeasy PowerSoil Pro Kit 

was chosen based on a thorough review of the literature. This kit is specifically designed for 

extracting DNA from environmental samples, offering several advantages. These include its ability 

to mitigate inhibitors present in the material and the inclusion of beads for mechanical shredding, 

which ensures thorough homogenization during the extraction process [19,23,67,70,82,118]. 
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The kit protocol had to be optimized for dust samples, as dust has a different consistency compared 

to soil. The first challenge was the variability in sample composition. Samples containing fine 

particles were relatively easy to work with, whereas samples with "dust bunnies" were challenging 

since the dust would absorb all of the extraction solution. Whenever possible, fine particles were 

used for DNA extraction. In cases where this was not possible, the dust bunnies were manually 

broken into smaller pieces before processing. Furthermore, it was necessary to determine which 

weight provided the best DNA yields. As shown in Supplementary Table 2., the optimal extraction 

weight for dust samples was determined to be 50–80 mg, which provided the best DNA yield. 

The optimization of PCR conditions for fungal ITS sequencing proved to be another challenge. 

Initially, the study design continued to follow the protocol outlined by Gupta et al. [67], but the 

ITS sequencing results were not satisfactory. Two primer sets were tested: the original primers 

from Gupta et al. and ITS3F/ITS4R targeting the ITS1 region. Both primer sets were first tested 

under standard PCR conditions but did not generate optimal amplicons. Subsequently, multiple 

modifications to the PCR protocol were explored, including variations in the number of cycles (30 

and 33 cycles), adjustments to the annealing temperature (56°C and 60°C), the inclusion of a 

prolonged final elongation step, and nested PCR approaches. Additionally, the original Illumina 

(2013) [94] protocol and its modifications were tested. Despite these extensive efforts, none of the 

adjusted protocols yielded better results than the original Gupta et al. method. Ultimately, we 

decided to work with the Gupta et al. protocol using ITS2 primers (gITS7F and ITS4ngs), which 

provided the most reliable outcomes [67].  

These findings show the complexity and challenges of optimizing PCR for fungal ITS regions, 

particularly the inherent variability in DNA amplification and sequencing workflows. Firstly, the 

challenge with DNA extraction is that the fungal cells belong to domain Eucarya, which means 

that when extracting fungal DNA, it is necessary to remove the thick layer of polysaccharides, 

proteins, and glycoproteins, melanin, chitin, and other polymers that encapsulate the fungal 

mycelium. This poses as significant challenge for enzymes and chemicals. Next, ITS sequencing 

has unique difficulties due to the high genetic variability within fungal communities, potential 

biases introduced by primer specificity, and the presence of contaminants or inhibitors in 

environmental samples. Additionally, the dual role of ITS as both a conserved and variable region 
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can complicate primer design and alignment, leading to inconsistent amplification across diverse 

fungal taxa [119–122].  

5.3. Sequencing preparation and results 

The normalization of DNA concentrations to 5 ng/µL was a crucial step to ensure the accuracy 

and comparability of downstream sequencing results, since NGS protocols require consistent DNA 

input across all samples. Variations in DNA yields were uniformed by dilution or, in cases of 

insufficient DNA, repeating the extraction process. If further extraction was not possible due to 

limited sample dust mass, the initial DNA was used without additional dilution. This might have 

had a slight influence on inconsistencies in sequencing depth for these samples. 

The library preparation process was carefully carried out following the Illumina 16S Metagenomic 

Sequencing Library Preparation Protocol [94]. This multi-step process, which includes indexing 

and PCR clean-up, was designed to results in sequencing-ready libraries with minimal 

contaminants. Quantification and normalization of the final libraries to 4 nM were critical for 

achieving uniform sequencing depth across all samples. The pooling of libraries and preparation 

for sequencing were conducted with strict adherence to protocol, ensuring a successful sequencing 

run. 

Preliminary sequencing results for bacterial and fungal taxa indicate that one sample for 16S and 

three samples for ITS were sequenced unsuccessfully. All samples initially showed sufficient DNA 

concentrations when measured using the Qubit fluorometer, therefore the unsuccessful sequencing 

could be attributed to other factors. One potential explanation is the presence of inhibitors in the 

DNA. Environmental samples, such as dust, often contain residual contaminants (humic acids, 

proteins, or polysaccharides) that may interfere with PCR amplification or downstream library 

preparation [123,124]. Another possible reason could be inconsistencies or errors during the 

library preparation process, such as insufficient indexing, uneven bead clean-up, or incomplete 

removal of primer dimers. Additionally, issues during sequencing itself, such as cluster generation 

failures on the flow cell, could have led to the lack of successful reads for these samples.  

The bacterial dataset yielded a significantly higher total number of reads (6,164,389) compared to 

the fungal dataset, which produced 3,232,715 reads. The higher number of reads in the bacterial 

dataset could be attributed to the greater abundance of bacterial DNA in environmental samples, 

as well as the natural stability of the 16S rRNA region for amplification and sequencing. As 
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mentioned before, fungal DNA often poses challenges due to its more complex cell wall and 

variability in ITS regions [119–122], which could explain the lower read count. Regarding the 

ASV and phyla results, the detection of 16,010 ASVs and 36 phyla in the bacterial dataset, 

compared to 4,361 ASVs and 10 phyla in the fungal dataset, highlights the higher taxonomic 

resolution achieved for bacteria. This difference can be attributed once again to the complexities 

and challenges associated with ITS sequencing [125,126]. 

The quality scores showed in chapter 4.5 Quality control and rarefaction analysis of Results, show 

the base-level quality of paired-end reads during sequencing. The quality is high and consistent at 

the beginning of the reads, with scores typically above 35, indicating reliable base-calling 

accuracy. For both bacterial and fungal sequencing, the forward reads have consistently higher 

quality compared to the reverse reads, as seen by the Phred quality scores. However, as the 

sequence progresses, particularly beyond 150 bases, the quality begins to decline, with more 

variation and a marked drop below 25 toward the end of the reads, especially in the reverse reads. 

This is a common limitation in NGS due to the cumulative effects of base miscalling and signal 

decay over read length. This is partly due to the increasing difficulty in distinguishing between 

true signals and background noise [127]. The Phred score is useful to filter and trimming 

sequences. To ensure reliable sequencing data and better alignment against a reference genome, 

the bacterial forward reads were trimmed at 270 bp and fungal at 220 bp, while the reverse reads 

for bacteria at 220bp and for fungi at 210 bp. This step minimizes the inclusion of low-quality 

bases, which could reduce the accuracy of taxonomic alignment and further microbiome analysis. 

By applying appropriate trimming thresholds based on Phred quality scores, the overall reliability 

of the dataset is improved. When comparing sequencing reads, it is clear that bacterial reads are of 

higher quality than fungal reads, confirming the challenges faced during this research with ITS 

sequencing. 

Rarefication curves showed in chapter 4.5 Quality control and rarefaction analysis of the Results 

show sampling depths of samples and controls. The green lines represent the negative control, 

which shows consistently low or flat species richness. This is expected for negative controls, as 

they should contain minimal biological material. The red lines represent the positive control, which 

initially shows an increase in species richness, but levels off in higher subsampling depth plot. 

This levelling suggests that the positive control has a stable species richness, even as sequencing 
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depth increases. Both controls behave as expected, positive having low species diversity, and 

negative having no diversity and disappearing at higher sampling depth as there is very low read 

counts. The blue lines represent individual samples. Initially, a lower subsampling depth was tested 

to ensure inclusion negative controls, which had relatively low sequencing depth (Figures 12a and 

13a). At this initial lower depth, the observed species richness was relatively low across all 

samples, as expected. This was due to insufficient sequencing depth to fully capture the microbial 

diversity present. For that reason, a much higher subsampling depth was applied, showing that 

between 3,000 and 4,000 sequences, many samples have captured most of their species diversity, 

as the lines flatten out.  The literature suggests that the optimal rarefaction depth is the point where 

most samples begin to plateau, typically between 2,000 and 5,000 sequences [128]. To ensure 

comparability across samples, all samples must be rarefied to the same sequencing depth 

[128,129]. Although this may exclude some rare ASVs, subsampling ensures comparability in 

diversity metrics estimates across samples, and the impact on relative richness comparisons is 

minimal [130]. The increase in richness resulted also in detection of less abundant taxa that were 

not captured at the lower depth. This helps identify an appropriate rarefaction depth for 

downstream analysis, ensuring sufficient coverage. 

5.4. Discussion of findings 

5.4.1. Alpha and beta diversity 

Diversity measures related to asthma included both β diversity and α diversity (measured by p-

values). While bacterial β diversity showed a significant association with asthma status among 

non-asthmatic participants (p = 0.009), suggesting notable differences in bacterial community 

composition. Fungal β diversity did not demonstrate significant differences (p = 0.1), which may 

highlight the greater variability or complexity of fungal communities in these environments, as 

also noted by Kirjavainen et al. [15]. When looking at PCoA plots, a considerable overlap between 

the two groups can be observed, suggesting no distinct clustering of microbiome composition 

based on asthma status. This overlap implies that, while there may be some variation, the 

differences in microbiome composition between the asthma and non-asthma groups are not 

strongly pronounced according to these principal components. This aligns with findings by 

Vandenborght et al. [23], who observed that differences in microbial communities associated with 

asthma are often subtle and may overlap with those of healthy individuals due to shared 

environmental exposures. Furthermore, no significant interaction effects were observed between 
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α diversity and asthma status for either bacterial or fungal samples. This lack of significant 

difference in α diversity could be explained with heterogeneity of asthma as a disease, as well as 

the broad environmental and genetic factors that influence individual microbial diversity. These 

findings are consistent with studies by Lee et al. and Ege et al. [18,82], which found that microbial 

diversity alone does not necessarily correlate with asthma outcomes but rather the composition of 

specific taxa plays a critical role. 

When considering α and β diversity in relation to other factors, several significant findings emerge. 

Parental education showed a notable association with microbial β diversity for both bacterial and 

fungal communities. In the bacterial dataset, β diversity was significantly associated with 

education level (p = 0.003), and there was also a significant interaction with asthma (p = 0.025). 

Similarly, in the fungal dataset, β diversity was significantly influenced by education (p = 0.032) 

and its interaction with asthma (p = 0.008). These findings suggest that higher parental education 

might correspond to lifestyle and household practices, such as cleaning habits or dietary 

preferences, that influence indoor microbial communities. For example, more educated parents 

may prioritize cleanliness or specific dietary practices that shape microbial exposure. Similar 

associations have been observed in studies like Tischer et al. [22], which found links between 

socioeconomic status, seasonality, and asthma-related outcomes. This aligns also with the 

household income results, which showed association with significant differences in fungal α 

diversity (p = 0.018) and β diversity (p = 0.026), and marginally significant differences in bacterial 

β diversity (p = 0.068). Higher-income households may have access to better ventilation systems, 

higher-quality housing materials, or different cleaning practices, all of which can shape microbial 

diversity. As shown in Figure 13 of the results, households with the lowest income had slightly 

higher median fungal richness compared to higher-income groups, although the differences were 

subtle. While specific studies directly linking household income to fungal richness are limited 

research indicates that various environmental and structural factors associated with wealthier 

households, such as modern building designs and advanced air filtration systems, can influence 

indoor microbial diversity. For instance, the study by Benton et al. [131] found significant 

differences in microbial dust composition related to housing characteristics, when comparing 

U.S.A. and Mexican homes. Economically richer U.S.A. had more paved roads, flushing toilets, 

piped water and air conditioning which influenced microbiome composition. Additionally, the 

paper by Adams et al. [27] discusses how ventilation types and air filtration can alter indoor 
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microbial profiles, noting that buildings with natural ventilation or modest supply air filtration 

exhibit microbial communities similar to outdoor air, whereas more mechanically ventilated 

buildings with enhanced filtration show distinct indoor microbial profiles. These studies imply that 

characteristics connected to the wealth in the households may influence indoor microbial diversity, 

including richness. 

Gender also influenced bacterial β diversity (p = 0.009), although no significant interaction with 

asthma was observed. Gender is a challenging variable to interpret in microbiome-asthma research. 

As it was already pointed out, asthma is a multifactorial disease influenced by a wide range of 

environmental and physiological factors. Moreover, it is well-established that asthma prevalence 

tends to be slightly higher in boys, particularly during childhood and early adolescence, which can 

further complicate the analysis. Our findings may reflect gender-related variations in behaviours, 

activities, or environmental exposures, such as time spent outdoors or engagement in specific 

activities. 

Household characteristics demonstrate the role of the immediate home environment in shaping the 

microbiome and its interactions with health outcomes, including asthma. The living environment 

(suburban vs. urban - surrounded by built or green environment) significantly influenced β 

diversity in both bacterial (p = 0.002) and fungal (p = 0.005) datasets. According to Weikl et al. 

[90], fungal community is significantly affected by surrounding greenery and urbanisation grade. 

This is supported by study in Finland, where areas with higher proportions of built environment 

and less natural greenery exhibited reduced microbial diversity [132]. In contrast,  Barberán et al. 

[133] reported no significant differences in microbial alpha or beta diversity between urban and 

rural outdoor environments. These differing findings likely reflect the fact that urban and rural 

environments vary widely across geographic regions in terms of land use, vegetation, climate, and 

human activity. Moreover, interaction with asthma was also significant for both bacterial (p = 

0.001) and fungal (p = 0.026) β diversity, suggesting that the microbiota in different living 

environments may modulate asthma risk or severity. For example, the protective role of natural 

environmental exposure, as noted in farm environments, could be extended to suburban areas as 

well, reducing asthma prevalence through increased microbial diversity [18,20]. Logically, the 

housing type (house vs. apartment) was also included. The results showed that the type of housing 

significantly influenced bacterial β diversity (p = 0.004). Houses, which generally have more direct 
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interaction with outdoor environments (gardens, yards), may harbour more diverse microbial 

communities compared to apartments. However, fungal diversity did not show significant 

associations with housing type. Although other research show opposite results [64,74,78], it is 

possible that specific outdoor taxa are better suited to indoor conditions and may be favoured in 

such environments.  

Other factors that have potential influence on indoor environment is number of siblings, pets and 

plants. The number of siblings and the presence of pets in a household are among the most 

frequently cited factors influencing indoor microbial communities 

[45,64,65,67,79,80,85,87,88,134]. The number of siblings was associated with significant 

differences in microbial diversity. For bacterial β diversity, both the presence of siblings (p = 

0.001) and its interaction with asthma (p = 0.001) were significant. Bacterial α diversity was also 

significantly associated with sibling presence (p = 0.045). As it can be seen on Figure 14 in the 

Results, there is a general increase in observed microbial richness with the number of siblings. 

Households with 3 or more siblings show the highest median richness, while those with no siblings 

exhibit the lowest median richness, which can be explained with having more siblings contributes 

to greater microbial diversity within a household, likely due to increased microbial sharing and 

exposure to diverse environmental microbes brought in by siblings. Fungal β diversity was also 

significant (p = 0.009). Pet ownership, particularly dogs, had a notable impact on microbial 

diversity. Dog ownership significantly influenced bacterial and fungal β diversity (p = 0.001 and 

p = 0.005, respectively) and showed significant interactions with asthma in both datasets. Fungal 

α diversity was also significantly higher in households with dogs (p = 0.012), and borderline in 

those with cats (p = 0.054). As shown in Figure 15, microbial richness was higher in households 

with dogs, likely due to their frequent interaction with outdoor environments and their role in 

transporting diverse microbial taxa into the home  [67,80]. It is important to consider that, due to 

the small cohort size, these results are closely intertwined. Among the 29 children with pets, 21 

have dogs, 7 have cats, and only 2 have other animals (a hamster and a parrot). Additionally, since 

some children come from the same household, this variable becomes even more interdependent, 

potentially introducing shared environmental influences that may affect the results. It is also worth 

noting that, uniquely within this cohort, children without siblings also did not have pets. This 

overlap may amplify the combined influence of these two variables in other groups (“Yes pets” 
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and number of siblings: “1”, “2”, and “3 and more”), as both siblings and pets are known to 

introduce outdoor-associated microbes into the indoor environment. 

Lastly, the presence of indoor plants significantly influenced microbial β diversity for both 

bacterial (p = 0.005) and fungal (p = 0.041) communities, consisted with research by Dockx et al. 

[135] where an increase in indoor plants and density was associated with increased microbial 

diversity. Plants are known to contribute to indoor microbial diversity through the release of 

microbial spores and other organic materials [90]. Interaction with asthma was also significant (p 

= 0.001 for bacterial and p = 0.035 for fungal datasets), suggesting that plant-associated microbiota 

may play a role in modulating asthma-related outcomes. This is particularly relevant given that 

pollen, a major component of plant-derived microbial exposure, is well known to exacerbate 

asthma and allergic symptoms. These findings are consistent with studies that emphasize the role 

of greenery and natural elements in composition of indoor microbiome [78]. 

When interpreting these results, it is essential to consider the structure of the cohort. While the 

study includes 90 children, they originate from only 66 distinct households, meaning a significant 

proportion of participants are siblings. This shared household composition has a substantial impact 

on the findings, as siblings are likely exposed to similar environmental conditions, including 

microbial communities, cleaning practices, socioeconomic factors, and pet ownership. The 

influence of siblings within the cohort can lead to clustering effects, where the microbial diversity 

and environmental exposures of children within the same household are more similar compared to 

those from different households. This similarity could reduce the variability in the data, making it 

harder to distinguish individual-level factors from household-level factors. Furthermore, siblings 

often engage in shared activities, including playing together and interacting with pets, which may 

amplify the homogenization of their microbial profiles. Therefore, the household dynamic within 

the cohort must be carefully accounted for when analysing and interpreting the results, as it could 

confound the relationships between environmental factors, microbial diversity, and health 

outcomes. 

Another important factor to consider is the influence of cleaning practices and the season of sample 

collection on microbial composition. Surprisingly there are no many studies about the role of 

cleaning practices in shaping the indoor microbiome. It is well established that cleaning practices 

can reduce the human microbial fingerprint in indoor environments [45], influence specific 
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microbial groups through the use of cleaning products [27] and frequency [136], and ultimately 

shape the composition of indoor fungal communities [137]. Cleaning frequency and practices, such 

as dusting furniture and vacuuming mattresses, were significantly associated with microbial β 

diversity in both bacterial and fungal datasets (bacterial β diversity: p = 0.006 for dusting and p = 

0.011 for vacuuming). Same results are for interactions with asthma and bacterial α diversity. This 

suggests that households with more frequent cleaning practices have tendency to have different 

microbial compositions, likely due to the removal of certain microbial taxa and changes in 

community structure caused by cleaning agents. Figure 16. shows that ASV richness is highest in 

moderate mattress vacuuming group (1 to 4 times a year), compared to never (never or rarely) and 

frequent (more than 4 times a year) groups. As mentioned by Nevalainen et al. [137] frequent 

vacuuming can reduce fungal concentrations in floor dust but may simultaneously increase 

airborne fungal levels due to resuspension. Although the present study analysed mattress dust 

rather than floor dust, a similar pattern might apply. It is possible that mattresses that are frequently 

vacuumed experience microbial disturbance and resuspension, reducing microbial richness. 

Conversely, mattresses that are rarely or never cleaned may accumulate low-diversity communities 

dominated by a few persistent taxa. In contrast, moderate cleaning might strike a balance, allowing 

for microbial accumulation without excessive disruption, thus supporting higher richness. 

Seasonal variations affect microbial influx into homes through temperature, humidity, and outdoor 

microbial sources. Seasonal fluctuations influence factors like ventilation, outdoor activity levels, 

and exposure to environmental microbes, which are all pathways for microbial entry into homes 

[78,88,90]. In this study, specific seasonal effects were not directly tested as independent variables, 

however, the impact of seasonality on microbial diversity was indirectly assessed through the 

sampling design, as homes were sampled during different seasons. This variation in sampling 

periods revealed significant differences in both fungal and bacterial β diversities, as well as their 

interaction with asthma status (all p = 0.001, except fungal interaction where p = 0.031). 

5.4.2. Ecology and distribution of the most abundant genera 

The bacterial genera identified in this study represent a diverse array of microorganisms commonly 

associated with human, animal, and environmental microbiomes. In the studies of indoor microbial 

communities, the top ten genera often include those found in this study, such as Staphylococcus, 

Corynebacterium, Streptococcus, Enterobacteriaceae, Cutibacterium, Lactococcus, and 
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environmental taxa like Acinetobacter, Sphingomonas, and Pseudomonas [27]. A significant 

portion of these, including Staphylococcus, Corynebacterium, Cutibacterium, Streptococcus, and 

Anaerococcus, are primarily human-associated [138,139]. Staphylococcus species, including both 

commensals like Staphylococcus epidermidis and potential pathogens such as Staphylococcus 

aureus, are frequent inhabitants of human skin and mucosal surfaces [50]. Staphylococcus 

epidermidis has also been detected in the healthy lung microbiota [50,92]. Staphylococcus was 

found to be more abundant in in asthma-associated environments [82,140–142]. Corynebacterium 

often co-occurs with Staphylococcus, and studies have shown a positive correlation between the 

two [16,50,67,143]. Both genera are associated with human skin, so their abundance is expected 

given the sampling site. Cutibacterium also a skin commensal, is commonly found in sebaceous 

areas of the body but may also inhabit the oral cavity and gastrointestinal tract [138]. Its increased 

abundance in environments with more tree canopy, as observed by Maestre et al. [144]. 

Streptococcus is another important genus in this study, known for its presence in the salivary 

microbiome and frequent identification in indoor air and dust [70]. While generally considered a 

commensal organism, its presence has clinical relevance. Early colonization with Streptococcus in 

infancy has been linked with increased asthma and wheeze risk later in life [51], it is also prominent 

in the lungs of patients with severe asthma [47] and is considered an influential genus in the cystic 

fibrosis microbiome [145]. Interactions between Streptococcus and Staphylococcus are a 

characteristic for skin and mucosal microbiome, which may also account for their co-occurrence 

in the samples [67,141]. Anaerococcus, though less frequently studied, is part of the normal 

microbiota of human skin and mucosal surfaces including the oral cavity, gastrointestinal tract, 

and female urogenital tract [146]. Its presence in dust samples reflects anthropogenic influences. 

Enhydrobacter, a skin-associated genus [147]. 

Beyond human-associated taxa, several environmental genera were also detected. Paracoccus, an 

ecologically versatile genus, is known to inhabit both pristine and anthropogenically influenced 

environments such as soil and water [148]. Another prominent environmental taxon is 

Acinetobacter, widely distributed in soil, water, and dust. Some species are opportunistic 

pathogens, while others are harmless environmental bacteria [149]. The family Enterobacterales 

encompasses diverse members from gut-associated bacteria to environmental strains commonly 

found in soil and water [150]. Family Rhizobiaceae is typically associated with soil ecosystems 
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[151]. Their detection in indoor dust suggests the infiltration of outdoor microbiota, likely via 

airborne particulates or tracked-in soil. 

The source of almost all found fungal genera is predominantly associated with outdoor 

environments, where they inhabit diverse ecosystems such as soil, air, water, plants, and decaying 

organic matter, before potentially being introduced into indoor spaces [77,152,153]. Particularly 

dominant genus is human-associated Malassezia. Some species of Malassezia are associated with 

human skin and sebaceous environments, making occupants significant contributors to its presence 

in indoor dust [78,154]. Because it relies on fat for growth, Malassezia predominantly inhabits 

areas rich in sebaceous glands, such as the scalp, face, and upper body [155]. Other most abundant 

genera were Cladosporium and Unassigned Didymellaceae (family Didymellaceae). 

Cladosporium is found both indoors and outdoors. Its abundance reflects outdoor air and climatic 

conditions, frequently associated with damp conditions and in poor indoor air quality [78,156]. It 

is also among the most frequently detected fungi in indoor spaces [157]. The family Didymellaceae 

is distributed across diverse hosts and habitats [158]. Its presence indoors suggests contributions 

from plants or outdoor air [79,156]. Other dominant genera include Alternaria, Debaryomyces, 

Saccharomyces, Cyberlindnera, Aureobasidium and family Didymosphaeriaceae. Saccharomyces 

is globally distributed, occurring in soil, seawater, and various foods [159], while Debaryomyces 

is also commonly found and has been identified in clinical samples [160]. Both genera are linked 

to human-related activities, with Saccharomyces and Debaryomyces present in the human gut, and 

Saccharomyces additionally detected on children’s skin [78,161,162]. This presence is consistent 

with the sampling context. Alternaria is widely distributed in the environment, commonly found 

in soil and as an airborne fungus worldwide. Indoors, it is often present in higher concentrations 

in carpet dust and rural areas [72,163]. This genus is among the most frequently detected moulds 

in indoor environments [72] and is a well-known trigger of allergic diseases, including asthma 

[92]. Aspergillus is one of Earth's most common and ubiquitously distributed fungi [163]. It is 

found in indoor damp environments [72], but can also be part of children’s skin microbiome [78]. 

Cyberlindnera is broadly distributed and associated with soil and decomposition processes [164]. 

This genus is also identified in damp environments, with high prevalence observed in water-

damaged classrooms [76]. Family Didymosphaeriaceae is commonly found on plant substrates, 

across various ecosystems, including marine, terrestrial, and mangrove environments [165]. 
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In summary, the composition of indoor microbial communities reveals an obvious duality between 

bacteria and fungi. Bacterial genera identified in this study were predominantly associated with 

human-related sources and indoor environments. The prevalence of skin and mucosa associated 

taxa shows clear influence of human occupancy, physical contact, and indoor lifestyle on bacterial 

community. In contrast, fungal communities were more heavily influenced by outdoor 

environmental inputs, with dominant genera typically originating from soil, vegetation, and 

outdoor air. This distinction draws attention to the differential ecological pathways shaping the 

indoor microbiome: bacteria largely reflect human presence and activities, while fungi reflect the 

surrounding natural environment and outdoor influences. Such patterns are consistent with 

previous studies emphasizing the human dominated nature of indoor bacterial communities versus 

the outdoor-driven fungal influx [27,64,78]. 

5.4.3. Relative abundance and asthma 

The relative abundance plots for bacterial and fungal genera highlight differences in microbial 

community composition between children with and without asthma. These differences provide 

insight into the potential roles of specific taxa in asthma development and severity.  

The bacterial relative abundance plots demonstrate that Staphylococcus, Streptococcus, 

Paracoccus, and Acinetobacter are particularly prevalent in both groups. Although Staphylococcus 

has been linked to asthma severity, is known to contribute to severe airway inflammation by 

manipulating mucosal immunity, and has been found in the house dust of asthmatic children 

[55,82,141,142,166], our relative abundance data show it to be more prevalent in healthy children. 

Similarly, Fu et al. also did not found health associations [167]. Staphylococcus is a common 

colonizer of the upper respiratory tract, skin, and gut mucosa, and in healthy individuals, it 

typically exists as a commensal organism without causing disease [6,50]. Other explanation could 

be that Staphylococcus is influenced by specific environmental conditions, or the nature of the 

sampling site. House dust from mattresses may reflect skin-associated microbiota more strongly 

and not fully capture the microbial dynamics relevant to the asthmatic airway environment. 

Streptococcus is part of the healthy human microbiome, particularly within the oral cavity, 

respiratory tract, and skin. However, while many species are commensal, certain Streptococcus 

species have been associated with the host immune response and contributing to airway 

inflammation [23,55,56,168]. These bacteria can influence immune development and modulation, 
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potentially shaping allergic and inflammatory airway conditions. This dual role, commensal in 

some contexts and immunomodulatory or pathogenic in others, may explain our findings, where 

Streptococcus was found in great abundance in both groups, but slightly more abundant in the 

asthmatic group. Acinetobacter species are commonly found in different sites on the human body, 

including the skin, respiratory tract, and urinary tract. They are frequently associated with hospital 

acquired infections, with a significant proportion involving the respiratory tract [169]. In the 

context of our findings, the presence of Acinetobacter in indoor dust samples likely reflects its 

ability to survive on surfaces and persist in the environment, which also explains its role as a 

common source of infection, particularly in healthcare settings.  

The genera Micrococcus, Paracoccus, and Enhydrobacter are detected to be statistically 

significant within relative abundance data comparing individuals with and without asthma. Both 

Micrococcus and Paracoccus are commonly found in the indoor environments occupied by 

humans [82,152,152,170]. The analysis indicates that Micrococcus shows low relative abundance 

in both groups, with slightly higher levels observed in the asthma group. A p-value of 0.011 

suggests a statistically significant difference between the groups, however, the q-value implies that 

this significance may not hold after adjusting for multiple testing. The increased abundance in the 

asthma group could be explained by recent findings which have suggested that Micrococcus luteus 

may have a regulatory role in airway inflammation. It is possible that Micrococcus may have a 

protective or immunomodulatory role in asthma, though further research is needed to determine 

its functional significance in the respiratory tract [171].  Paracoccus is a genus of bacteria known 

for its metabolic diversity and its ability to thrive in both pristine and anthropogenically shaped 

environments [148]. Its relative abundance is also low in both groups but shows a statistically 

significant difference (p = 0.011), supporting higher abundance in the asthma group. Similar to 

Micrococcus, the q-value suggests caution in interpreting this difference. This genus's presence in 

dust microbiomes could stem from soil, water, or outdoor environments introduced into indoor 

spaces. Paracoccus is primarily studied in environmental contexts, and its potential health-related 

effects, are unexplored and require further investigation. Enhydrobacter is commonly associated 

with the human skin microbiome [67,147,172]. The plot shows slightly elevated levels in the 

asthma group, with a p-value of 0.036, indicating a significant difference between the groups, but 

again, this significance does not show persistence if multiple testing corrections (q = 0.194, Figure 

21.). Its prevalence in skin-associated microbiomes and dust samples reflects the role of human 
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activity in shaping the indoor microbial composition. Notably, a study by Ling et al. [173] 

identified Enhydrobacter as a resident of human skin, with potentially higher relative abundance 

in Chinese individuals, and our study focuses on children and young adults. In the context of 

respiratory health, there is currently no evidence supporting its involvement in disease 

pathogenesis 

Regarding fungi, a visible difference in the relative abundance of the genera Malassezia, 

Saccharomyces, and Debaryomyces was observed between the asthma and healthy groups, but 

none of the fungal genera showed statistically significant differences overall. Some species of 

Malassezia are commonly found on the skin of animals, including humans. Since Malassezia 

depends on lipids for growth, it mainly colonizes areas rich in sebaceous glands, such as the scalp, 

face, and upper body [155].  Its dominance in asthmatic children suggest a potential role in airway 

inflammation or hypersensitivity, as indicated by previous research [13,23,49,51,87]. An early-life 

exposure to Malassezia could influence the development of asthma in children [51]. Similarly, 

Beigelman et al. reported an association between the presence of Malassezia and increased airway 

hyperresponsiveness in asthmatic patients [13]. The genus includes allergenic species [87], and 

has been connected not only with asthma but also with disease exacerbations in conditions such as 

cystic fibrosis [23]. However, the exact mechanisms by which Malassezia may contribute to 

airway inflammation or hypersensitivity remain under investigation. 

Saccharomyces is found globally in soil, seawater, various foods [159] as well as Debaryomyces, 

which also occurs in clinical samples [160].  Both genera are linked to human-related activities, as 

well [78,161,162]. There is a slight increase in the abundance of Saccharomyces in healthy 

children and Debaryomyces in asthmatic children. Given that both are often linked to the gut 

microbiome [49,78,159,161] their observed abundance may reflect underlying differences in host 

microbiota composition. Also, both are found in food and typically ingested that way. 

Saccharomyces with plant-based food [174] and Debaryomyces with fermented food [160], so this 

result could be explained by host-related factors such as diet and lifestyle choices.  

While bacterial diversity patterns were similar between groups, the fungal dataset revealed that 

non-asthmatic children exhibited a slightly more diverse fungal community. This is likely due to 

the dominance of genera commonly associated with outdoor environmental exposures. This 



111 
 

increased exposure to outdoor fungi may contribute to a more balanced fungal community, 

potentially supporting immune system development and reducing the risk of asthma. 

In our dataset, a portion of the sequences was labelled as 'Unassigned_unassigned,' indicating that 

these sequences could not be matched to any known taxonomic rank in the reference database. The 

substantial abundance of these sequences in the results suggests potential limitations in the 

database, issues with sequence quality, or the presence of uncharacterized or novel organisms. 

5.4.4. Relative abundance and environmental factors 

The findings of this study reveal the substantial influence of socioeconomic factors on the 

microbial composition of household dust, which may have significant implications for children’s 

health outcomes, particularly regarding asthma. These factors include child gender, parental 

education, and household income. Dominant taxa remained consistent between male and female 

participants, but exceptions were observed in less abundant taxa. For instance, differences in the 

"Other genera" category suggest gender-specific microbial interactions, potentially linked to 

varying activity levels or hormonal differences [21,62]. Parental education was notably associated 

with microbial diversity in both bacterial and fungal datasets. This may reflect differences in 

lifestyle, hygiene practices, and home environments, as higher education levels often correlate 

with improved living conditions and access to healthcare [18]. Significant differences were 

observed in taxa such as Staphylococcus and Cutibacterium (bacteria) and Alternaria and family 

Didymellaceae (fungi), consistent with studies highlighting the impact of socioeconomic factors 

on microbial exposure and diversity [20,21]. Variations in microbial communities linked to 

parental education levels underscore the importance of early-life environmental exposures in 

shaping immune responses [6,58]. In line with education results, household income exhibited 

significant associations with fungal diversity but weaker effects on bacterial diversity. Specific 

fungal taxa, such as Malassezia, Debaryomyces, and other genera, showed income-related 

differences in abundance. These findings align with earlier research linking lower income to higher 

exposure to fungal allergens, which are often prevalent in poorly ventilated or humid conditions 

typical of lower-income households [66]. The higher sensitivity of fungal communities to 

socioeconomic disparities may result from environmental and lifestyle factors unique to lower-

income settings, such as increased exposure to mould and dampness [21,73]. 
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Household characteristics, including living environment, housing type, sibling presence, pet 

ownership, and indoor plants, play an essential role in shaping the microbial diversity and 

composition of household dust. These factors interact with microbial communities in ways that 

may have significant health implications, particularly in the context of asthma. Suburban, urban-

green, and urban-built environments showed distinct microbial compositions. Taxa such as 

Enhydrobacter and Acinetobacter varied significantly, suggesting that access to greenery or 

proximity to build environments influences microbial exposure. These findings support previous 

research indicating that urbanization alters microbial diversity, often reducing beneficial outdoor-

derived taxa [64,175]. The subtle differences in fungal communities, with taxa like the family 

Didymellaceae, are consistent with studies linking fungal diversity to geographic and climatic 

factors [74]. Houses and apartments exhibited differences in bacterial diversity, with 

Enhydrobacter showing significantly higher abundance in houses. This may be attributed to 

structural and ventilation differences that influence microbial inflow and preservation [78]. In 

contrast, fungal communities were not as much affected by housing type, reflecting the dominant 

role of outdoor environments in shaping indoor fungal diversity [66,77]. The presence of siblings 

significantly influenced bacterial β diversity and specific fungal taxa like Candida. Homes with 

more siblings likely have increased microbial sources due to shared activities and diverse exposure 

environments. This aligns with findings by Nygaard and Charnock that larger households, 

particularly those with children, display greater bacterial diversity due to increased human-

associated microbial inputs [65]. The observed effects on bacterial rather than fungal diversity 

suggest that sibling interactions predominantly impact human-associated bacterial communities 

[84].  

The presence of pets, particularly dogs and cats, significantly influenced microbial composition of 

fungi. Homes with dogs exhibited higher microbial richness and increased taxa such as Malassezia, 

Filobasidium, and other genera while cats were associated with shifts in Malassezia, Candida and 

other genera. These findings corroborate earlier studies demonstrating that pet ownership enhances 

microbial diversity and introduces distinct taxa into the home environment [67,85,134], and 

abovementioned that fungal composition is influenced more by outdoor environment [66,77], in 

this case through the influence of the pets. The observed interactions with asthma highlight the 

dual role of pets, which may both mitigate and exacerbate asthma risk depending on microbial 
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exposure and sensitivity [15]. Homes with more indoor plants showed differences, particularly in 

bacterial taxa like Streptococcus and Gemella. Fungal communities also shifted, with 

“Unassigned_unassigned” genera meaning that there is a lot of different taxa influenced by 

presence of the plants. These results are consistent with studies suggesting that plants act as 

reservoirs or moderators of microbial communities, introducing beneficial outdoor-associated 

microbes while influencing fungal diversity [78,176]. Household related findings align with the 

"pro-asthmatic protective environment" hypothesis, which theorises that early exposure to diverse 

microbial communities, such as those introduced by pets or siblings, reduces asthma risk [15,18]. 

The findings of this study emphasize the significant impact of cleaning practices on the microbial 

diversity and composition of household dust. Frequent dusting was associated with reduced 

microbial diversity, particularly among less dominant taxa, while taxa such as Staphylococcus and 

Malassezia remained predominant. These findings align with earlier research suggesting that 

frequent cleaning may selectively alter microbial profiles, often reducing diversity and potentially 

diminishing beneficial microbial exposures [88,137]. All statistically significant taxa, 

Staphylococcus, Neisseria, Haemophilus (for bacteria), and Malassezia (for fungi), showed 

significant differences across cleaning frequency categories. These taxa were more abundant in 

homes with frequent or daily cleaning, which aligns with previous studies suggesting that regular 

cleaning practices favour the persistence of certain resilient microbial taxa [65]. Only Wallemia 

shows highest abundance in households that vacuum mattress never or yearly, indicating that 

infrequent mattress cleaning may allow for the accumulation or persistence of Wallemia, a 

xerophilic fungus known for thriving in dry and dust-rich environments [153,177], like mattresses 

where is commonly found [153,178]. Reduced microbial diversity due to frequent dusting may 

have implications for immune tolerance, particularly in children, as exposure to a diverse range of 

microbes in early life is linked to lower asthma risk [18]. Mattress vacuuming frequency also 

influenced microbial diversity, with never or rarely vacuuming associated with the highest 

microbial richness. Interestingly the frequent vacuuming showed similar results, slightly less 

abundance than infrequent vacuuming. This can be explained by vacuum cleaning process, where 

vacuum cleaner disperses particles into the air. But it can be debated that the dispersion depends 

on the vacuum cleaner model [72]. Cleaning practices are the matter of debate. Even though 

frequent dusting and excessive vacuuming were associated with reduced microbial diversity, 

potentially limiting beneficial exposures that may protect against asthma [15], on the other hand 
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infrequent cleaning practices increased the risk of allergenic exposures, which are known to 

exacerbate asthma symptoms [85]. These findings align with the “hygiene hypothesis”, which 

suggests that reduced microbial exposure due to rigorous cleaning practices may impair immune 

development and increase susceptibility to asthma and other allergic conditions [18,21]. These 

results show the delicate effects of cleaning on the communities, which are often influenced by 

environmental factors such as humidity and dust accumulation [77]. 

Although no significant seasonal differences were observed, as noted by Estensmo et al. [79], it is 

important to consider that the traditional distribution of months per season (Spring ≈ March, April, 

May) no longer aligns with current climatic patterns. Significant changes in weather factors, such 

as temperature, humidity, and sunlight, directly influence the microbiome. Consequently, it can be 

argued that using conventional seasonal categories may not be optimal. Instead, environmental 

variables like temperature and humidity should be considered for a more accurate analysis. 
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6. CONCLUSION
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1. Bacterial reads were more abundant (6,164,389) and of higher quality compared to fungal 

reads (3,232,715), reflecting differences in the stability of bacterial 16S and fungal ITS 

regions.  

2. Asthma status was significantly associated with bacterial β diversity, indicating distinct 

bacterial community compositions between groups. In contrast, fungal β diversity showed 

no significant differences, reflecting the variability of fungal communities. 

3. No significant α diversity differences were observed for asthma, suggesting that overall 

microbial richness may not directly correlate with asthma outcomes. These results align 

with studies emphasizing the importance of specific microbial taxa over diversity alone in 

asthma development. 

4. Higher parental education and income were associated with distinct bacterial and fungal β 

diversity, likely reflecting lifestyle factors such as cleaning practices and dietary 

preferences.  

5. Suburban homes exhibited higher microbial diversity compared to urban homes, 

supporting the hypothesis that natural environments promote richer microbial exposures. 

Housing type also influenced bacterial diversity, with homes showing greater microbial 

diversity than apartments, likely due to increased outdoor exposure. 

6. The presence of siblings and pets was associated with a significant increase in microbial 

richness and diversity, supporting the hygiene hypothesis. Larger households and pet 

ownership contributed to diverse microbial inputs, which may play a role in shaping 

immune system development. Homes with indoor plants demonstrated greater bacterial 

and fungal diversity, likely because plants serve as reservoirs for beneficial outdoor 

microbes and influence indoor fungal communities. Pet ownership, particularly of dogs, 

introduced distinct microbial taxa into homes, further enhancing microbial richness. This 

finding aligns with studies highlighting pets as vectors for outdoor-derived microbes. 

However, the relationship between pets and asthma was complex, with pets both mitigating 

and exacerbating asthma risk depending on the child’s microbial exposure and individual 

sensitivity. 

7. Frequent cleaning practices, such as dusting and vacuuming, significantly altered microbial 

diversity, often reducing less dominant taxa while resilient ones persisted. Excessive 
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cleaning potentially reduces beneficial microbial exposures, which are critical for immune 

development, particularly in children. 

8. Seasonal variations did not influence microbial compositions, suggesting more important 

the role of environmental factors like temperature, humidity, on microbiome. 

9. Dominant bacterial genera found in the samples are all commonly associated with human 

skin and mucosal surfaces. Specific environmental genera reflected outdoor microbial 

contributions, while statistically significant taxa showed higher abundance in asthmatic 

children, suggesting potential links to asthma. 

10. The fungal genera dominating the samples were primarily anthropogenic and 

environmental taxa. Specific genera found to be statistically significant were more closely 

associated with outdoor influences and variations in housing conditions, such as 

ventilation, dampness, and other structural factors. 
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9.1. Supplementary Materials and Methods 

3.5.3.1. Genetic material isolation- protocol optimisation 

The protocol required adjustments to account for the sample weights, since the original protocol 

recommends using up to 250 mg of soil as a starting point (QIAGEN, 2023). The initial dust 

weights are presented in Supplementary Table 1. 

Supplementary Table 1. Isolation test 

Name Weight [mg] Supernatant [μL] 
DNA concentration 

[ng/mL] 

Sample 1. 250 very low 0.214 

Sample 2. 126 220 5.4 

Sample 3. 60 400 10.7 

Sample 4. 122 200 7.76 

Sample 5. 80 350 11.1 

Sample 6. 194 very low 0.14 

Sample 7. 69 350 3.6 

Sample 8. 116 200 3.0 

Sample 9. 226 150 2.74 

Sample 10. 
negative control  

(no dust) 
- too low 

 

After weighting, the dust was added in the PowerBead Pro Tubes, which contain beads for 

mechanical shredding. According to the protocol, 800 μL of Solution CD1 is added, and the tubes 

are then horizontally shaken to ensure homogenization.  However, samples containing more than 

80 mg of dust showed the difficulty with the Solution CD1, as the dust would absorb the entire 

volume. The protocol does not specify the shaking speed, but it does suggest a maximum speed 

for a duration of 10 minutes. In our experiment, shaking at 1,800 rpm for 15 minutes was found to 

be optimal, accomplishing thorough homogenization of the samples. Extending the duration 

beyond this point did not produce any additional visible changes. 
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Following homogenization, the samples were centrifuged, and the supernatant was transferred to 

new tubes, with an expected volume between 500 and 600 μL. As it can be seen in comment 

section of Table X, samples with the highest dust weights had the lowest volumes of supernatant. 

After isolation, the DNA quantification was performed using Qubit® 3.0 Fluorometer, and the 

concentrations are shown in Table X. As expected, samples with lower initial supernatant volumes 

(and higher dust weights) had the lowest DNA yield. The best yields were observed in samples 

with masses ranging from 60 to 122 mg.  

To refine the protocol, an additional isolation trial was conducted, focusing specifically on the 

finesse of the dust samples. The samples included fine dust, dust bunnies, and various combination 

of both. The challenge with dust bunnies is that they absorb entire solution volume during the 

initial step, and many of the samples consisted solely of this type of dust. Details of the new 

isolation batch can be found in Supplementary Table 2.  

Supplementary Table 2. Isolation test- dust finesse. 

Name Weight [mg] Dust 
Supernatant 

[µL] 

DNA 

concentration 

[ng/mL] 

Sample 1. 80.5 fine dust 600 6.30 

Sample 2. 19.0 dust bunnies 500 2.54 

Sample 3. 41.5 fine dust + dust bunnies 500 5.40 

Sample 4. 59.0 fine dust + dust bunnies 400 33.8 

Sample 5. 25.1 dust bunnies 500 4.84 

Sample 6. 119.2 dust bunnies 500* 10.1 

Sample 7. 51.8 fine dust + dust bunnies 500 0.140 

Sample 8. 103.9 fine dust + dust bunnies 300 0.88 

Sample 9. 30.2 fine dust + dust bunnies 500 too low 

Sample 

10. 

negative 

control 
no dust 600 too low 

* Additional 400 µL CD1 solution added. 



138 
 

After adding the CD1 solution, as shown in Supplementary Figure 1, samples containing dust 

bunnies absorbed a significant amount of the solution. For Sample 6, an additional 400 µL of 

solution was required to enable effective mechanical shredding. While the supernatant yields 

improved in this trial, DNA concentrations were highest in samples containing only fine dust or a 

mix of fine dust and dust bunnies. Therefore, it was decided to proceed with using 60-80 mg of 

dust, using fine dust whenever possible. 

 

Supplementary Figure 1. Initial step of isolation test. 

Supplementary Table 3. Sample mass and Qubit-measured DNA concentration.

Sample 

ID 

mass 

[mg] 

Quibit 

concentr

ation 

[ng/mL] 

S001 31,5 27,6 

S004 63,2 27,4 

S006 74,3 37,0 

S007 24,8 29,2 

S009 45,5 47,2 

S010 68,1 45,4 

S011 57,8 39,0 

S012 25,7 18,7 

S013 55,7 41,6 

S015 53,9 28,2 



139 
 

Sample 

ID 

mass 

[mg] 

Quibit 

concentr

ation 

[ng/mL] 

S016 48,1 34,6 

S017 49,0 23,2 

S018 51,2 48,6 

S019 55,3 45,4 

S020 41,5 24,0 

S021 52,5 37,2 

S022 38,2 34,2 

S023 62,6 34,6 

S024 43,6 33,2 

S025 5,0 8,6 

S026 50,3 17,3 

S027 19 17,4 

S028 51,4 28,6 

S029 59 76.8 

S033 73,8 40,0 

S034 39,1 32,4 

S035 62,6 30,8 

S036 55,1 65,4 

S037 69,7 76,6 

S038 61,5 31,2 

S039 72,3 49,2 

S040 62,7 60,0 

S042 28,2 35,8 

S044 77,8 74,8 

S047 83,8 29,2 

S048 81,3 61,2 

S049 83,4 15,3 

S050 31,4 56,2 

S051 47,2 55,6 

S052 32,9 56,8 

S053 44,7 24,6 

S054 44,4 11,8 

S056 49,1 39,2 

S057 63,2 25,2 

S058 51,4 19,0 

S059 62,2 48,4 

S060 53,5 76,0 

S061 54,0 90,0 

S062 58,7 56,0 

S063 40,3 27,8 

S064 45,9 56,0 
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Sample 

ID 

mass 

[mg] 

Quibit 

concentr

ation 

[ng/mL] 

S065 76,7 31,2 

S068 70,9 58,0 

S069 44,4 79,6 

S071 60,4 26,8 

S072 66,6 51,2 

S073 56,8 47,8 

S074 33,3 56,0 

S075 47,8 76,4 

S076 38,9 49,4 

S079 45,6 39,4 

S080 49,8 8,68 

S081 53,7 4,66 

S082 57,9 27,0 

S083 11,0 9,36 

S084 61,5 7,02 

S086 49,5 16,1 

S087 46,5 4,40 

S088 58,5 8,80 

S089 47,5 17,2 

S090 35 2,64 

S091 53,8 7,78 

S092 54,2 8,44 

S093 27,7 19,6 

S094 46,9 8,18 

S095 53,3 17,5 

S096 39 19,4 

S097 55,6 26,8 

S098 51,6 10,5 

S099 51,3 49,8 

S100 59,5 17,3 

S101 51,5 3,60 

S102 58,9 5,24 

S103 43,2 7,38 

S104 47,4 8,06 

S105 57,6 17,0 

S109 66,5 7,1 

S110 76,7 6,44 

S111 71,9 too low 

S112 80,2 7,5 

S113 63,0 6,32 

S114 53,4 5,8 
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Sample 

ID 

mass 

[mg] 

Quibit 

concentr

ation 

[ng/mL] 

S115 71,9 14,5 

S117 42,0 5,18 

S118 81,5 11,2 

 

 

9.2. Supplementary Results 
 

 
(a) 
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(b) 

Supplementary Figure 2. Relative abundance of bacterial genera by gender. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

 
(a) 
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(b) 

Supplementary Figure 3. Relative abundance of fungal genera by gender. (a) Stacked bar plot 

highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance across 

samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 

 
(a) 
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(b) 

Supplementary Figure 4. Relative abundance of bacterial genera by household monthly income. 

(a) Stacked bar plot highlights the top ten genera, with others grouped as “Other”, ordered by 

mean abundance across samples. (b) Violin plot illustrates genus-level distribution and 

variability, with p-values indicating significant differences between groups. 

 

 
(a) 
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(b) 

Supplementary Figure 5. Relative abundance of fungal genera by home type. (a) Stacked bar 

plot highlights the top ten genera, with others grouped as “Other”, ordered by mean abundance 

across samples. (b) Violin plot illustrates genus-level distribution and variability, with p-values 

indicating significant differences between groups. 

 
(a) 
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(b) 

Supplementary Figure 6. Relative abundance of bacterial genera by number of siblings. (a) 

Stacked bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups. 

 
(a) 
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(b) 

Supplementary Figure 7. Relative abundance of bacterial genera by pets in the home. (a) Stacked 

bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups. 

 
(a) 
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(b) 

Supplementary Figure 8. Relative abundance of bacterial genera by dog in the home. (a) Stacked 

bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups. 
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(b) 

Supplementary Figure 9. Relative abundance of bacterial genera by cat in the home. (a) Stacked 

bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups. 
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(b) 

Supplementary Figure 10. Relative abundance of bacterial genera by sampling season. (a) 

Stacked bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups. 
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(b) 

Supplementary Figure 11. Relative abundance of fungal genera by sampling season. (a) Stacked 

bar plot highlights the top ten genera, with others grouped as “Other”, ordered by mean 

abundance across samples. (b) Violin plot illustrates genus-level distribution and variability, 

with p-values indicating significant differences between groups. 

 


