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has been applied to sPectra to help organize the spectral results, and to help focus our

understanding about turbulence.
As discuised in the previous chapter, the discrete power spectral intensity measures

how much of the variance of a signal is associated with a particular frequency, f. If (
represents any variable, then the discrete power spectral intensity Eq(fl has units of (2.

An obvious way to make the spectral intensity dimensionless is to divide it by the total

--
variance E''. I continuous sPectrum with power spectral density of SE(O has the same

units as E2f , and can be made dimensionless by dividing ov{?n. Analogous

expressions can bc made for wavenumber spectra instead of frequoncy spectra' In both of

tlrise cases, the result is a spectrum that gives the fraction of total variance explained by a

wavelength or wavelength band.

Alteirately, if the turbulence is driven or govemed by specifrc mechanisms, such as

wind shear, buoyancy, or dissipation, then the spectral intensities can be normalized by

scaling variables appropriate io the flow. The next three Sections show normalized

spectr; for the inertial tubt*ge, for surface layer turbulence genemted mechanically, and

for mixed layer turbulence generated buoyantly.

9.9.1 Inertial Subrange

s3 15
[1 =

We know that this Pi group must be equal to a constant, because there are no other Pi

groups for it to be a function of'- 
Siotving the above equation for SJie.lds-*

s({) = u, JB r'5R (9.e.1)

SE PBC
Al-dissu$cdin-Chapt€s+-thers a'e many situations -vherg.-gri-ddle**?9j9!!g!9!!*

eddies"feel"_ncithe.r-rhe-e*ffe_g1-s"oJ:ir"osi@eseeddiesget
tfreii en6i.gli inertially fromthe larger-size eddies, and lose their energy the same way to

smaller-size eddies. For a steady-state turbulent flow, the cascade rate of energy down the

spectrum must balance the dissipation rate at the smallest eddy sizes. Hence, Ibgf93re*.

only three variables relevant to thc-Il$u: S-I-and This simitarity approach was

ffi 1941) and obukhov (1941).- 
By performing a Buckingham Pi dimensional analysis, we can make only one

dimensionless gloup from ttrese tlree variables:
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frequencies to wavenumbers via f = M'r.

Fig. 9.12
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9.9.2 Surface LaYer SPectra

Suppose that the velocity spectra fSu(f for a surface layer in a state of forced

convection were likely to be affected by the following variables: o*, i 01, , z, U (or tvt),

f, and e. Buckingham Pi analysis of the above variables gives three dimensionless

groups: nr =f S.(f) t(kze)m ,ltz=f zlfr', and n3 =zlL.
Fig 9.13a shows the result when those ,r groups are plotted (Kaimal, et al, tr972). We

*"" ,oir" important characteristics: (l) The peak spectral intensity is reduced as the static
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where the cr1 is known as the Kolmog;i))-coasrcl. t" value ofjlisjolllSl! ha\
yet to be pinned down (Gossard, et.al.' 1982), but it is in the range of'o,r= 1'53 to 1'68r'

M^'Stl.) -*J d"' ilb

One of the easiest to determine

speclrum (S vs. r) on a

e (see Fig 9.12). The

subrange at normalized

frequencies gf"ut"t than 2.5, assuming that Taylor's hypothesis can be used to relate


