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has been applied to spectra to help organize the spectral results, and to help focus our ) ; PO
understanding about turbulence. WWMM‘P«%@ o hgﬂs__guwg}‘gl

As discussed in the previous chapter, the discrete power spectral intensity measures subrange is to plot the spectrum (S vs. K) on a lo ;lagg?ﬂbfiﬁ;;mﬂﬂub&w
portion should appear @s a straight line with a -5/3 slope (see Fig 9.12). The

Ll SRR TR T el et e e o 43 ~~ demonstration spectra plotted in Fig 8.9 all have an inertial subrange at normalized

. . . . . 2
represents any variable, then the discrete power spectral intensity Ei(f) has units of &7, frequencies greater than 2.5, assuming that Taylor's hypothesis can be used to relate

An obvious way to make the spectral intensity dimensionless is to divide it by the total : ? -
frequencies to wavenumbers via f=M-K.

variance F,'z. A continuous spectrum with power spectral density of Sg(f) has the same

units as E%/f, and can be made dimensionless by dividing by &'z/f . Analogous

Inertial
expressions can be made for wavenumber spectra instead of frequency spectra. In both of Subrange
these cases, the result is a spectrum that gives the fraction of total variance explained by a
wavelength or wavelength band. Fig. 9.12

Alternately, if the turbulence is driven or governed by specific mechanisms, such as On a log-log In (S)
. B A ; i : ) spectral plot, the
wind shear, buoyancy, or dissipation, then the spectral intensities can be normalized by inertial subrange
scaling variables appropriate to the flow. The next three Sections show normalized appearsas a
spectra for the inertial subrange, for surface layer turbulence generated mechanically, and sén}gugrggge path
for mixed layer turbulence generated buoyantly.

9.9.1 Inertial Subrange DY, o LE:?\D

As discussed in Chapter-S,-there are many situations where middle size turbulent

eddies "feel" neither the effects of viscosity,-nor thengeng,ration,kofw,IKE.‘,Thése eddies get

their energy inertially from the larger-size eddies, and lose their energy the same way to 9.9.2 Surface Layer Spectra
smaller-size eddies. For a steady-state turbulent flow, the cascade rate of energy down the : ;
spectrum must balance the dissipation rate at the smallest eddy sizes. Hence, there are Suppose that the velocity spectra fS,(f) for a surface layer in a state of forced
“L;?;nc;héﬁmzbﬁz;:gﬁ%z; s Obl.lljov a 9?8 E. (Hhis similarity approacitwas convection were likely to be affected by the following variables: u,, w'—ev's ,z, U (or M),
By performing a Buckingham Pi dimensional analysis, we can make only one f, and e. Buckingham Pi analysis of the above variables gives three dimensionless

dimensionless group from these three variables: Lok
; groups: 1t1=fSu(f)/(kze)2’3,1t2=fz/M, and my=z/L.

S K Fig 9.13a shows the result when these  groups are plotted (Kaimal, et al, 1972). We
see some important characteristics: (1) The peak spectral intensity is reduced as the static
stability is increased, because stability is opposing turbulent motions. (2) The peak is
shifted to higher frequencies as stability is increased, possibly because th _lower

~ frequencies are more Strongly damped by the buoyancy forces—(3) At high frequencies,
the spectral intensity is no longer dependent on the static stability (at least for the weak
stabilities plotted), suggesting that the smaller size eddies in the inertial subrange receive
all of their energy via the cascade process from larger eddies, with 7o direct interaction ...

_ with the mean flow o the mean stratification. (4) Finally, there is a curious occurrence of

an excluded region in-the spectral plot near neutral stratification (lightly shaded in the

We know that this Pi group must be equal to a constant, because there are no other Pi
groups for it to be a function of. e
Solving the above equation for S yields: -
ety
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where the o is known as the Kolmogorov constant. The value of this constant has

iy e das ! ﬁgure).
yet to be pinned down (Gossard, et.al., 1982), but it is in the range ot’}v”ak =153t 1.68./\' i Ly -%h,
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