
Ever since its discovery by Christian de Duve in the 1950s1, 
the lysosome has been known as a membrane-enclosed 
cytoplasmic organelle responsible for the degradation of a 
variety of biological macromolecules, including proteins, 
lipids, carbohydrates and nucleic acids2,3. These macro-
molecules reach the lysosome by various routes, includ-
ing the endocytic, phagocytic and autophagic pathways, 
to be degraded in the lysosomal lumen by more than 
60 acid hydrolases for subsequent reutilization by the 
metabolic processes of the cell. In addition to the lumi-
nal hydrolases, the lysosome also contains specific sets 
of integral membrane proteins and lysosome-associated 
proteins, the latter category being represented by proteins 
that dynamically interact with the lysosomal surface 
under certain conditions (Fig. 1).

Each mammalian cell comprises between 50 and 
1,000 lysosomes distributed throughout the cytoplasm. 
Owing to their role in terminal degradation, lysosomes 
have often been referred to as the ‘garbage-disposal sys-
tem’ of the cell. In addition, lysosomes have long been 
regarded as ‘housekeeping’ organelles that perform their 
degradative function irrespective of the cell’s status and 
in relative isolation from other organelles. Moreover, 
lysosomes have been thought of as static organelles 
whose cytoplasmic localization does not change over 
time. Lastly, lysosomal dysfunction has been histori-
cally associated with rare diseases such as lysosomal 
storage disorders (LSDs) caused by impaired degrada-
tion of lysosomal substrates. For all of these reasons, the 
study of lysosomes remained a highly specialized area 

of research, with few connections to other aspects of cell 
and organismal physiology.

This narrow view of the lysosome has been dramati
cally overturned by several recent discoveries. First,  
lysosomes have been found to participate in many other 
cellular processes besides degradation, including meta
bolic signalling, gene regulation, immunity, plasma 
membrane repair and cell adhesion and migration. 
Second, the number, composition and functions of lyso
somes have been shown to vary in response to environ-
mental cues, as well as to cellular and organismal needs. 
Third, lysosomes have been found to engage in physical 
and functional interactions with other cellular struc-
tures, including the formation of membrane contact sites. 
Fourth, lysosomes have been observed to move around 
the cytoplasm, often changing their size and shape, or 
undergoing fusion or fission, as they go. Finally, changes 
in lysosomal function have been implicated in the patho-
genesis of common diseases, including neurodegenera-
tive and metabolic disorders, as well as cancer. In this 
article, we review these recent developments in lysosome 
biology that now place the lysosome at the centre of a 
complex regulatory network for the control of cellular 
and organismal homeostasis.

The lysosome as a signalling hub
Cellular organelles constantly communicate with each 
other by either establishing contacts or sending sig-
nals. While the core function of an organelle is typically 
executed in the lumen, signalling occurs at its surface. 

Membrane contact sites
Membrane domains where 
organelles are closely 
(10–30 nm) held together by 
tethering proteins.
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Recent studies revealed that several organelles, including 
mitochondria4, melanosomes5, peroxisomes6 and lyso-
somes7, act as ‘launch pads’ for signals to other cellular 
compartments, including the nucleus8. Here we will focus 
on specific types of lysosomal signalling pathways that 
respond to different environmental stimuli and play criti-
cal roles in the regulation of various functions, ultimately 
allowing maintenance of cellular homeostasis.

Lysosomal nutrient sensing and mTORC1 signalling. 
Being the main mediator of cellular catabolism, the 
lysosome is in a unique position to use information on 
cellular degradation and recycling processes as a proxy 
to sense the cell’s nutritional status. The mechanisms 
that underlie lysosomal nutrient sensing have recently 
become a hot topic in cell biology. A major advance in 
this field was the discovery that nutrient-regulated mech-
anistic target of rapamycin complex 1 (mTORC1), a key 
regulator of cellular biosynthetic pathways9, dynamically 
associates with the lysosome under specific conditions7 
(Fig. 2). A key function of mTORC1 is to support cell 
anabolism and growth in the presence of nutrients and 

growth factors, while inhibiting catabolic pathways, such 
as autophagy through the phosphorylation of Unc-51-
like kinase 1 (ULK1)10. Of note, mTORC1 also regulates 
lysosome re-formation during autophagy, a process 
that helps to restore a full complement of functional  
lysosomes during prolonged starvation11.

Activation of mTORC1 requires its dynamic recruit-
ment to the lysosomal surface, which is mediated by 
the amino acid-dependent activation of heterodimeric 
RAG GTPases and their interaction with Ragulator7,12–17. The 
RAG-dependent recruitment of mTORC1 to the lyso
somal surface can also be induced by cholesterol through 
the involvement of cholesterol-binding Niemann–Pick 
type C1 protein (NPC1)18. In addition to mTORC1, RAG 
GTPases modulate the lysosomal recruitment of other 
nutrient-responsive molecules, including the mTORC1 
regulators tuberous sclerosis complex (TSC)19 and 
folliculin (FLCN)–folliculin-interacting protein 1 (FNIP)  
complexes20, as well as TFEB21, a master modulator of 
lysosome biogenesis and autophagy8 (see also the sec-
tion Lysosomal adaptation) (Fig. 2). Additional details 
on lysosomal nutrient sensing and on the regulation and 
functions of mTORC1 at the lysosomal membrane can be 
found in other recent reviews9,17.

Lysosomal Ca2+ signalling. Lysosomal Ca2+ is key for var-
ious lysosomal functions. Release of Ca2+ is required for 
the fusion of lysosomes with other cellular structures, 
including endosomes, autophagosomes and the plasma 
membrane22,23, thereby regulating endocytic membrane 
trafficking, autophagy and repair of membrane damage 
(see also the section Interactions with other organelles). 
Furthermore, lysosomal Ca2+ release is involved in the 
formation of contact sites with the endoplasmic retic-
ulum (ER), which in turn is able to refill the lysosome 
with Ca2+ (ref.24). Ca2+ homeostasis is also important for 
lysosomal acidification, a requirement for the activity 
of lysosomal hydrolases25. Three main types of Ca2+ 
channels have been identified in the lysosomal mem-
brane of mammalian cells: transient receptor potential 
cation channels of the mucolipin family (TRPML), 
two-pore channels (TPC) and the trimeric Ca2+ two- 
transmembrane channel P2X4 (refs22,23) Some of these 
channels are found exclusively on endolysosomes, 
whereas others have additional locations.

Lysosomal Ca2+ channels respond to a variety of stim-
uli, such as pH, nutrients and cellular stress, as well as 
to small molecules such as ATP, nicotinic acid adenine 
dinucleotide phosphate, phospholipids and sphingosine, 
suggesting that their activities can be differentially mod-
ulated depending on cell conditions, thus allowing more 
selective Ca2+ signalling responses that are tailored to the 
needs of the cell.

Perhaps the best characterized lysosomal Ca2+ chan-
nel is TRPML1, also known as mucolipin 1 (ref.26). The 
gene encoding TRPML1 is mutated in an LSD named 
mucolipidosis type IV, which is characterized by early 
onset and progressive neurodegeneration27,28. TRPML1 
activity mediates Ca2+ release from the lysosomal lumen 
to the cytosol and can be activated by several stimuli, 
including starvation29,30 and reactive oxygen species31. 
TRPML1 is also activated by a specific phosphoinositide, 
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Fig. 1 | Properties of lysosomes. The lysosome comprises a specific set of luminal, 
integral-membrane and peripherally associated proteins. The lysosomal lumen contains 
acid hydrolases that degrade different substrates, enzyme activators and protective 
factors that aid in the degradation, as well as transport factors such as lipid transfer 
Niemann–Pick type C2 protein (NPC2), which shuttles free cholesterol to NPC1 for 
export from the lysosome. The acidic pH of the lysosomal lumen is maintained by a 
vacuolar ATPase (v-ATPase) embedded in the limiting membrane. In addition, the 
lysosomal membrane comprises highly glycosylated lysosome-associated membrane 
proteins (L AMPs) that among other functions protect the lysosomal membrane from 
degradation, ion channels and transporters that maintain ion homeostasis, cholesterol 
and other lipid transporters, solute carriers that participate in the export of sugars, 
nucleosides, amino acids and other products of lysosomal degradation, and SNAREs that 
mediate fusion of lysosomes with other organelles. The cytosolic face of lysosomes serves 
as a platform for the dynamic association of proteins and protein complexes (shown in 
the right part of the figure), including the mechanistic target of rapamycin complex 1 and 
its regulators that transduce nutrient and growth factor signals (Fig. 2), transcription 
factors such as TFEB and TFE3 that regulate lysosome biogenesis, autophagy and energy 
metabolism (Fig. 3), tethering factors that promote lysosome fusion or contacts with 
other organelles (Figs 4,5), adaptor or scaffold complexes that couple lysosomes to 
microtubule motors such as kinesins and dynein–dynactin (Fig. 6) and small GTPases that 
control the recruitment and activation of all of the aforementioned molecules.

RAG GTPases
RAGA, RAGB, RAGC and RAGD 
are small GTPases that belong 
to a subfamily of the RAS- 
related GTPases. They act as 
heterodimers in which RAGA or 
RAGB interacts with RAGC  
or RAGD. Their activation by 
amino acids mediates the 
recruitment of mechanistic 
target of rapamycin complex 1 
to the lysosomal surface.

Ragulator
Protein complex composed of 
five subunits (LAMTOR1–
LAMTOR5). It is located on the 
lysosomal surface, where it 
interacts with RAG GTPases for 
the recruitment of mechanistic 
target of rapamycin complex 1 
to the lysosome. It also 
interacts with BORC for the 
regulation of lysosome 
positioning.
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phosphatidylinositol 3,5-bisphosphate, which links 
lysosomal Ca2+ signalling to intracellular trafficking 
processes32.

Figure 2 shows the main lysosomal processes that  
are regulated by TRPML1-mediated Ca2+ release: 

lysosomal exocytosis and plasma membrane repair33, 
autophagosome–lysosome fusion26, endosome–lysosome  
fusion, lysosome size34 and lysosome re-formation 
from hybrid organelles following fusion35. TRPML1 is 
also involved in a positive-feedback loop with TFEB, 
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Fig. 2 | The lysosome as a signalling hub. Multiple cellular processes are 
modulated by signalling pathways initiated from the lysosomal surface. RAG 
GTPases mediate the dynamic association of several nutrient-modulated 
protein complexes to the lysosomal surface, including the key regulator of 
lysosomal function TFEB (Fig. 3), as well as the nutrient sensor and growth 
regulator mechanistic target of rapamycin complex 1 (mTORC1), together 
with its regulators tuberous sclerosis complex (TSC), and folliculin (FLCN)–
FLCN-interacting protein (FNIP). Ca2+ release from lysosomes modulates the 
induction of several cellular processes, including lysosomal re-formation 
from hybrid organelles, endosome–lysosome fusion, TFEB nuclear 
translocation, autophagosome–lysosome fusion and lysosomal exocytosis. 
In addition, at least in Caenorhabditis elegans, the lysosomal lipase LIPL-4 
generates the lipid oleoylethanolamide (OEA), which binds to lipid-binding 
protein 8 (LBP8). The OEA–LBP8 complex is exported from the lysosome and 
translocated into the nucleus for the activation of the nuclear hormone 
receptors NHR49 and NHR80, which drive genes responsible for the 
adaptation of mitochondrial metabolism and oxidative stress response, 
thereby contributing to animal longevity. Lysosomal damage triggers the 
recruitment of galectins (GAL3, GAL8 and GAL9), which regulate lysosomal 
removal through autophagy (lysophagy) via the modulation of mTORC1, 
5′-AMP-activated protein kinase (AMPK), and Unc-51-like kinase 1 

(ULK1)–tripartite motif-containing protein 16 (TRIM16). Small disruptions of 
the lysosomal membrane activate a lysosomal repair mechanism that is 
dependent on the recruitment of the endosomal sorting complex required 
for transport (ESCRT) machinery that allows membrane sealing. The lysosome 
is also able to sense the incoming autophagic cargo via the recognition of 
mitochondrial DNA (mtDNA) by Toll-like receptor 9 (TLR9), which is 
recruited to lysosomes on autophagy induction. This mediates a ‘lysosomal 
cargo response’ that involves TLR9 activation and consequent recruitment 
of phosphatidylinositol 4-phosphate 5-kinases (PIP5K) and generation of 
phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which mediates the 
recycling of SNAREs involved in autophagosome–lysosome fusion. However, 
to maintain autophagic flux, PtdIns(4,5)P2 generation needs to be controlled 
in time and space, as PtdIns(4,5)P2 inhibits the lysosomal Ca2+ channel 
TRPML1, which is required for autophagosome–lysosome fusion events. This 
control over PtdIns(4,5)P2 levels is provided by the inositol polyphosphate 
5-phosphatase activity of Lowe oculocerebrorenal syndrome protein 
(OCRL). In addition to the regulation of autophagic flux, TLR9-mediated 
signalling also governs the activation and nuclear translocation of the 
transcription factor nuclear factor-κB (NF-κB) and an increase in  
the transcription of proinflammatory cytokine and interferon-β genes, 
which when uncontrolled can lead to chronic inflammation.
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in which TRPML1 regulates TFEB phosphorylation 
and subcellular localization, while TFEB regulates the 
expression of the TRPML1 gene29,36 see also the section 
Lysosomal adaptation) (Figs 2,3). In addition, TRPML1 
activity has been associated with specific cellular pro-
cesses in immune cells, including large particle phago-
cytosis37, as well as fast and directional migration of 
dendritic cells through activation of the actin-based 
motor protein myosin 2 (ref.38). Finally, TRPML1 is a 
main mediator of the ability of TFEB to promote intra-
cellular clearance of accumulating substrates in LSDs36. 
Together, these properties make TRPML1 an attractive 

target for pharmacological modulation in a variety  
of diseases.

Lysosome-dependent cell death and endolysosomal 
damage response. Several conditions, such as infections 
and hyperuricaemia, or treatment with lysosomotropic  
drugs may damage the lysosome by inducing lysosomal 
membrane permeabilization or rupture. This dam-
age eventually results in leakage of cathepsins, often 
leading to a form of programmed cell death known as 
lysosome-dependent cell death39–41. Lysosome-dependent 
cell death can take the form of apoptosis, whereby 
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S142/S138 phosphorylation62,98,109. On nuclear export, mechanistic target  
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Tuberous sclerosis complex
(TSC). Protein complex, 
composed of TSC1 (hamartin), 
TSC2 (tuberin) and TBC1D7, 
which functions as a 
GTPase-activating protein for 
the small GTPase RHEB.
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cathepsins proteolytically activate the proapoptotic pro-
teins BID and BAX, leading to caspase activation39,40, or 
other forms of cell death such as pyroptosis42, ferroptosis43  
and necroptosis44.

Lysosomal damage can also trigger a process known 
as the endolysosomal damage response45, whereby 
damaged lysosomes are either eliminated or repaired, 
to prevent the activation of cell death pathways45 (Fig. 2). 
Elimination and recycling of damaged lysosomes 
occurs through a selective autophagy pathway termed 
‘lysophagy’46, which is mediated by members of the 
galectin protein family acting as lysosomal damage sen-
sors. Galectins mediate lysophagy by several mecha-
nisms, including binding of galectin 3 to TRIM16 (ref.47), 
a member of the tripartite motif (TRIM) protein family48, as 
well as binding of galectin 8 to the autophagy receptor 
NDP52 (ref.49). Galectins can also regulate autophagy 
by both galectin 8-mediated inhibition of mTORC1 and 
galectin 9-mediated activation of AMPK — a key sensor of  
reduced cellular energy50. One of the consequences  
of mTORC1 inhibition caused by lysosomal damage is 
the activation of TFEB, which induces lysosomal bio-
genesis and autophagy, further facilitating the recycling 
of damaged lysosomes and their replacement by newly 
generated ones45 (see the section Lysosomal adaptation). 
Recent studies showed that whereas severe lysosomal 
damage induces galectin-mediated lysophagy, small dis-
ruptions instead activate a lysosomal repair mechanism 
that is independent of lysophagy and is mediated by the 
Ca2+-dependent recruitment to lysosomal membranes of 
the endosomal sorting complex required for transport 
(ESCRT) machinery that seals the damage51,52.

Autophagic cargo sensing and proinflammatory 
response. Lysosomes sense not only nutrients and 
metabolites, but also nucleic acids. This task is achieved 
through members of the Toll-like receptor (TLR) family, 
which are highly, although not exclusively, expressed 
in macrophages and dendritic cells53,54. TLRs are able 
to recognize pathogen-associated molecular patterns, 
and have a pivotal role in the innate immune response.  
Of the 13 members of the TLR family, three of them 
(TLR3, TLR7/8 and TLR9) signal from endolysosomes.  
These receptors are activated by microbial nucleic acids 
and, through signal transduction cascades that include 
different kinds of adaptors, induce the nuclear transloca-
tion of either nuclear factor-κB or interferon regulatory factors 
to stimulate the production of inflammatory cytokines 
and/or interferons. The endolysosomal site of action of 
the aforementioned TLRs restricts their function or site  
of activation to a confined environment; here, the encounter  
with exogenous nucleic acids is facilitated, because endo-
cytosis is one of the common mechanisms of pathogen 
entry into host cells55.

TLR9 also has a driving role in the lysosomal response 
to mitochondrial DNA, which bears similarity to bacte-
rial DNA and can be delivered to the lysosome in the pro-
cess of autophagy (Fig. 2). This lysosomal cargo response 
includes local remodelling of phosphoinositides with 
the production of phosphatidylinositol 4,5-bisphosphate 
(PtdIns(4,5)P2), followed by the recruitment of the endo-
cytic adaptor AP2 and clathrin, which mediate recycling 

of SNAREs, such as STX17, used for autophagosome– 
lysosome fusion. However, PtdIns(4,5)P2 also inhibits 
the activity of the lysosomal Ca2+ channel TRPML1, 
which is required for autophagosome–lysosome fusion 
(Fig. 2). Thus, to sustain the autophagic flux, PtdIns(4,5)
P2 levels need to be controlled in time and space. Such 
control is governed by the inositol polyphosphate 
5-phosphatase activity of Lowe oculocerebrorenal syn-
drome protein (OCRL)56. Overall, this mechanism allows 
the sensing of the arrival of autophagic cargo at the lyso
some to adapt the degradative potential of the cell on  
autophagy induction.

Apart from supporting autophagic flux, following 
recognition of mitochondrial DNA, TLR9 also induces 
nuclear translocation of nuclear factor-κB and subse-
quent production of proinflammatory cytokines. In 
steady-state conditions, this is a self-limiting response; 
however, this response may be sustained under other 
conditions that impair the degradative capacity of 
the lysosome, such as LSDs, leading to a pathological 
inflammation.

Prolongevity lipid signalling from the lysosome. The 
lysosome has a critical role in the control of lipid homeo
stasis and in lipid-mediated signalling57. One important 
lipid family integrated into lysosome biology is the 
phosphoinositides, which regulate various aspects of 
lysosome dynamics and function, including its posi-
tioning, biogenesis, fusion with autophagosomes and 
function in lipid transfer at membrane contact sites 
(recently reviewed elsewhere58). Recent studies per-
formed in Caenorhabditis elegans also revealed a role 
for the lysosome in prolongevity signalling mediated by 
the lipid oleoylethanolamide (OEA) and the lipid-binding 
protein LBP8 (ref.59) (Fig. 2). OEA is generated by lyso
somal lypolysis through the activity of lipase LIPL-4, the 
orthologue of human LIPA. The OEA–LBP8 complex is 
subsequently exported to the cytosol and translocates 
to the nucleus to activate the nuclear hormone receptors 
NHR49 and NHR80 (ref.59). These receptors then induce 
a transcription programme that regulates mitochondrial 
β-oxidation and oxidative stress tolerance. This cooper-
ation between lysosomes and mitochondria promotes 
longevity60. At present, it is unclear whether this pathway 
also operates to promote longevity in mammals58.

Lysosomal adaptation
Cellular energy metabolism is influenced by environ-
mental cues. Thus, the lysosome should be able to adapt 
its function in response to diverse environmental condi-
tions to maintain homeostasis. The question that arises 
from such hypothesis is how the cell modulates the func-
tion of an entire organelle, which is made of hundreds 
of different proteins. An in silico-based approach led 
to the identification of a transcriptional gene network 
named ‘CLEAR’ (for ‘coordinated lysosomal expression 
and regulation’), which includes genes involved in dif-
ferent aspects of lysosomal function and autophagy. This 
was followed by the discovery of TFEB as the master 
regulator of this transcriptional network. TFEB and the 
CLEAR gene network allow lysosomal function and 
autophagy to be globally controlled61,62.

Folliculin
(FLCN). Tumour-suppressor 
protein that exists as part of a 
complex with the folliculin- 
interacting protein and 
functions as a GTPase-activating 
protein for the RAGC and RAGD 
GTPases.

Endolysosomes
Generic term for various types 
of endosomes and lysosomes.

Sphingosine
Long-chain unsaturated amino 
alcohol that forms the 
backbone of a class of 
membrane lipids known as 
sphingolipids.

Phosphoinositide
A class of phospholipids 
comprising a myo-inositol head 
group linked by a glycerol 
moiety to two fatty acyl chains. 
Phosphoinositides are minor 
components of cellular 
membranes involved in 
signalling and regulation of 
membrane dynamics.

14-3-3 proteins
Family of proteins that bind 
phosphorylated serine or 
threonine residues on various 
regulatory proteins such as 
kinases, phosphatases, 
transcription factors and 
signal-transduction proteins.

Hyperuricaemia
Elevated levels of uric acid  
in blood.

Lysosomotropic drugs
Drugs that concentrate within 
the acidic lumen of lysosomes 
and modify lysosomal function.

Pyroptosis
A type of programmed cell 
death most often triggered by 
infection with intracellular 
pathogens and mediated by 
pore-forming gasdermin D, 
which permeabilizes the 
plasma membrane.

Ferroptosis
Iron-dependent form of cell 
death triggered by inactivation 
of cellular glutathione- 
dependent antioxidant 
defences with consequent 
accumulation of lipid reactive 
oxygen species.

Necroptosis
A programmed form of 
necrosis that is downstream of 
cell-death receptor signalling, 
which is generally induced by 
cell damage but can also be 
promoted by lysosomal 
membrane permeabilization.
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TFEB and the CLEAR gene network. TFEB belongs to the  
MiT-TFE family of helix–loop–helix leucine zipper trans
cription factors together with MITF, TFE3 and TFEC63. 
TFEB exerts broad control on autophagy and lyso
somal function by regulating genes involved in multiple 
steps of autophagosome biogenesis62, autophagosome– 
lysosome fusion62,64 and lysosomal degradation path-
ways61,64, including lysosomal acidification61,64, lysosomal  
Ca2+ homeostasis36,64, lysosome exocytosis36 and lyso-
some positioning65 (Fig. 3a). Thus, TFEB behaves as a 
master regulator of autophagic flux by controlling both 
cargo delivery and substrate degradation62. Remarkably, 
TFEB overexpression also increases the number of  
lysosomes by promoting the biogenesis of new lyso-
somes. This aspect may have a crucial role in a disease 
context in which old lysosomes may be dysfunctional 
due to accumulation of undegraded substrates61,64.

Notably, other members of the MiT-TFE family, 
such as TFE3, also regulate lysosome biogenesis and 
autophagy66, and there is evidence for cooperation  
and partial redundancy between TFEB and TFE3 in the 
context of metabolic regulation67. Overexpression of 
TFEB, and in some cases TFE3, promoted intracellular 
clearance and rescued phenotypic abnormalities in a 
variety of cellular and mouse models of diseases asso-
ciated with the accumulation of autophagic/lysosomal 
substrates, such as several types of LSDs36,68,69, common 
neurodegenerative diseases70–73 and metabolic disor-
ders74–76. These observations suggest that manipulation 
of the MiT-TFE-driven CLEAR network may have broad 
therapeutic applications.

Furthermore, both TFEB and TFE3 regulate other 
important cellular processes, such as the unfolded protein  
response77, endocytosis78, stem cell differentiation79–81 
and endosomal recycling through the retromer com-
plex82. A recent study showed that TFEB and TFE3 also 
have roles in the regulation of the circadian rhythm, thus 

linking nutrient-driven and circadian clock-driven regu-
lation of gene expression83. Table 1 lists additional, tissue- 
specific, functions of TFEB that were identified by in vivo 
gain-of-function and loss-of-function studies.

Regulation of TFEB by environmental cues. Early stud-
ies showed that under normal, steady-state conditions 
(non-stressed cells under standard culture medium 
conditions), TFEB is located predominantly in the cyto-
plasm61, and that its subcellular localization is dependent 
on nutrient availability, with TFEB translocating to the 
nucleus on starvation62. A number of conditions were 
subsequently found to affect TFEB nuclear transloca-
tion, including infections84, phagocytosis85, inflamma-
tion86, physical exercise87, ER stress77, oxidative stress88 
and mitochondrial damage89 (Fig. 3b). The main mecha-
nism that regulates the subcellular localization of TFEB, 
as well as that of the other MiT-TFE factors, is the phos-
phorylation status of specific serine residues62,90 (Fig. 3c). 
The lysosome-associated, nutrient-sensitive mTORC1 
kinase has a major role in the phosphorylation of 
MiT-TFE factors91–95. Notably, TFEB behaves as an atypi-
cal mTOR substrate as it binds to RAG GTPases21 and its 
phosphorylation is resistant to treatment with the mTOR 
inhibitor rapamycin94.

Whereas mTORC1-mediated phosphorylation inhib-
its the nuclear translocation of MiT-TFE factors, in a 
feedback response, MiT-TFE factors promote mTORC1 
lysosomal recruitment and activity96. This effect is medi-
ated by the transcriptional induction of RAGD and 
RAGC to activate mTORC1, thereby enhancing suppres-
sion of the CLEAR pathway and favouring anabolism 
over catabolism96. This mTORC1–TFEB feedback loop 
has an important role in organismal adaptation to differ-
ent metabolic conditions, as shown by the impaired abil-
ity to reactivate mTOR and protein synthesis in response 
to leucine after starvation or physical exercise in mice 

Table 1 | Tissue/cell-type-specific functions of TFEB

Tissue (cell type) Function Loss of function Refs

Bone (osteoclasts) Bone resorption Increased bone mass 229

Liver (hepatocytes) Lipid catabolism Enhanced high-fat diet-induced obesity 67,75

Immune system 
(macrophages, microglia, 
dendritic cells)

Cytokine production and secretion, 
phagocytosis, macrophage polarization, 
migration of dendritic cells, defence 
against pathogens

Reduced inflammatory response and 
antimicrobial response, increased 
susceptibility to infections

84–86,230

Muscle Glucose homeostasis, mitochondrial 
biogenesis

Mitochondrial abnormalities, 
hypoglycaemia, reduced ATP 
production, intolerance to physical 
exercise

87

Vascular system Regulation of vascular development, 
postischaemic angiogenesis and 
endothelial cell proliferation

Defects in vascular development and 
maturation, impaired vessel sprouting, 
reduced endothelial cell proliferation

231,232

Adipose tissue Induction of mitochondrial biogenesis  
in white adipose tissue

Defective browning of white adipose 
tissue

233

Intestine Restoration of intestinal epithelial 
barrier, assembly of Paneth cell 
secretory granules

Defects in Paneth cell granules, 
impaired defence against injury , colitis

234

Glia (oligodendrocytes) Repression of myelination Induction of remyelination, ectopic 
myelination

235

Galectin protein family
Endogenous carbohydrate- 
binding proteins (lectins) with 
specificity for β-galactoside 
sugars.

Tripartite motif (TRIM) 
protein family
Family of E3 ubiquitin ligases 
having RING, B-box and 
coiled-coil domains.

AMPK
AMP-activated protein kinase 
that functions as a master 
regulator of cellular energy 
metabolism.

ESCRT machinery
Ensemble of complexes known 
as endosomal sorting 
complexes required for 
transport that perform various 
membrane bending and 
scission reactions away from 
the cytoplasm.

Toll-like receptor (TLR) 
family
Family of transmembrane 
receptors that recognize 
pathogen-associated molecular 
patterns as part of the innate 
immune response.

Pathogen-associated 
molecular patterns
Microbial molecules that trigger 
innate immune responses.

Nuclear factor-κB
Family of transcription factors 
that regulate the expression of 
genes involved in both innate 
and adaptive immunity.

Interferon regulatory factors
Transcription factors that 
control both innate and 
adaptive immunity against 
invading pathogens.

SNAREs
Soluble N-ethylmaleimide-
sensitive factor attachment 
protein receptors, which 
orchestrate membrane fusion 
events in the cytoplasm.

Oleoylethanolamide
(OEA). Monounsaturated  
fatty acid ethanolamide that 
functions as a bioactive lipid in 
many physiological processes.

Nuclear hormone receptors
Ligand-activated receptors that 
bind to specific DNA sequences 
and regulate gene transcription.

β-oxidation
Catabolic process by which 
fatty acids are broken down  
to generate acetyl-CoA in 
mitochondria.
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lacking TFEB in liver and muscle, respectively. This met-
abolic adaptation mechanism is hijacked by cancer cells 
to support their demanding metabolic needs96 (see also 
the section Lysosome dysfunction in disease). Overall, 
this relationship between MiT-TFE factors and mTORC1 
links global control of lysosome biogenesis to lysosomal 
nutrient sensing and explains how lysosomal function 
can adapt to environmental cues.

In addition to mTOR, other kinases phosphorylate 
MiT-TFE factors and may affect their subcellular local-
ization, highlighting a complex relationship between 
MiT-TFE phosphorylation and subcellular localiza-
tion90. Another important player in the regulation of 
TFEB nuclear translocation is the Ca2+-dependent 
phosphatase calcineurin. During starvation, calcineu-
rin is activated by lysosomal Ca2+ release through the 
Ca2+ channel TRPML1, leading to TFEB dephosphoryl-
ation and nuclear translocation29 (Fig. 2). TFEB and TFE3 
were also shown to be dephosphorylated by protein  
phosphatase 2A88.

More recently, it was shown that TFEB continuously 
shuttles between the cytoplasm and the nucleus, and 
that its overall localization is the result of the net rates 
of nuclear import and export97. TFEB nuclear export is 
mediated by the major exportin CRM1, which binds to a 
TFEB nuclear export sequence97–99. TFEB nuclear export 
is strictly dependent on the phosphorylation of specific 
serine residues and is blocked by mTOR inhibition, indi-
cating that mTOR promotes TFEB cytoplasmic localiza-
tion not only by inhibiting its nuclear import but also by 
inducing its export97 (Fig. 3c). The picture that emerges 
from these studies is that of a signalling mechanism94  
in which the nucleocytoplasmic shuttling of TFEB, as 
well as other MiT-TFE transcription factors, conveys 
information on the lysosomal status to the nucleus.

In addition to phosphorylation-mediated nucleo
cytoplasmic shuttling, TFEB is also regulated at the 
level of protein stability. The chaperone-dependent E3 
ubiquitin ligase STUB1 is involved in the preferential tar-
geting of phosphorylated TFEB for degradation by the 
ubiquitin–proteasome pathway100. Finally, a recent study 
presented evidence of translational regulation of TFEB 
through spermidine-mediated induction of the transla-
tion factor eIF5A. This mechanism was shown to play an 
important role in the rejuvenation of old human B cells101.

Other transcriptional regulators of lysosome biogenesis.  
Additional factors were found to regulate lysosomal 
biogenesis and autophagy. The bromodomain protein 
BRD4 and the methyltransferase G9a act as repressors 
of the transcription of lysosomal and autophagy genes102. 
This pathway appears to be independent of MiT-TFE 
factors and is induced by starvation through a signalling 
cascade that involves AMPK and the histone deacetylase 
SIRT1. The mechanism by which nutrient depletion is 
relayed to these regulators is still unclear.

STAT3, a member of the STAT family of transcrip-
tion factors, is also able to regulate lysosomal function. 
In particular, in the context of mammary gland invo
lution, STAT3 was shown to have a role in the regulation 
of cathepsins and of lysosome-dependent cell death103. 
Recent studies showed that STAT3 activity is induced 

by lysosomal substrate overload in conditions associ-
ated with deficiencies of lysosomal proteases, resulting 
in increased expression of their corresponding genes. 
This mechanism operates in normally fed cells, and 
thus is independent of the starvation-induced MiT-TFE 
pathway104. Independently of its function in the nucleus, 
STAT3 was also found to enhance the activity of the 
vacuolar ATPase (v-ATPase) at the lysosome membrane, 
thereby increasing lysosomal acidification105. This leads 
to inactivation of STAT3 transcriptional activity and fur-
ther recruitment of STAT3 to the lysosome. Therefore, 
STAT3 appears to regulate lysosomal function both 
through transcription regulation of lysosomal genes in 
the nucleus and through a transcription-independent 
regulation of the v-ATPase at the lysosomal membrane105.

Furthermore, AMPK-regulated protein coactivator- 
associated arginine methyltransferase 1 (CARM1) was 
shown to act as a transcription coactivator of TFEB in 
the regulation of lysosomal and autophagic genes106. 
Finally, the zinc-finger transcription factor ZKSCAN3 
and the helix–loop–helix leucine zipper oncoprotein 
MYC were reported to act as suppressors of lysosomal 
biogenesis and autophagy by repressing the expression of 
autophagic and lysosomal genes107–109. The MYC inhibi
tory effect is mediated by competition of MYC with 
TFEB and TFE3 for the binding to lysosomal and auto-
phagic gene promoters. Inhibition of histone deacetylase 
activity abolishes MYC promoter binding and allows 
TFEB and TFE3 to activate lysosomal autophagic gene 
expression108.

Interactions with other organelles
Although lysosomes were originally thought to exist 
in relative isolation within the cytoplasm, in recent 
years they have been found to engage in interactions 
with other organelles. Some of these interactions lead 
to fusion, while others involve non-fusogenic contacts 
with neighbouring organelles (Fig. 4a).

Lysosome fusion with other organelles. All lysosome 
fusion events — including those with other lysosomes 
(homotypic fusion) as well as late endosomes, auto-
phagosomes, phagosomes, macropinosomes and the 
plasma membrane (heterotypic fusion) — are mediated 
by the assembly of a trans-SNARE complex composed of  
one R-SNARE and two or three Q-SNAREs (Fig. 4b), and 
are promoted by the release of Ca2+ from the lumen of 
the lysosome3 (Fig. 4c). Lysosome fusion with each orga-
nelle type depends on a specific trans-SNARE complex 
and a different set of regulators (Fig. 4b,c). A well-studied 
fusion event is the merger of lysosomes with late endo-
somes, the last step in the itinerary of endocytic cargos 
destined for lysosomal degradation3. Regulators of this 
particular fusion event include the small GTPase ARL8 
and its effector, the heterohexameric tethering complex 
HOPS, which orchestrate the assembly of the trans- 
SNARE complex110 (Fig. 4c). ARL8 and another small  
GTPase, RAB7, additionally interact with the tethering  
protein PLEKHM1 to promote lysosome–late endosome 
fusion111,112 (Fig. 4c). Lysosome–lysosome fusion likely 
relies on the same machinery, except that the R-SNARE 
VAMP8 replaces VAMP7 in the process113.

MiT-TFE family
Family of helix–loop–helix 
leucine zipper transcription 
factors that regulate expression 
of genes involved in the 
biogenesis and function  
of lysosomes and 
autophagosomes.

Unfolded protein response
Cellular stress response 
triggered by accumulation of 
unfolded proteins in the 
endoplasmic reticulum.

Spermidine
Organic polycation that 
regulates various cellular 
processes, including translation.

Vacuolar ATPase
(v-ATPase). Multisubunit, 
ATP-driven proton pump 
responsible for the acidification 
of intracellular compartments.

Tethering complex
Protein complex that promotes 
SNARE-dependent fusion of 
membrane-bound organelles.
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A more complex lysosome fusion event is the merger 
of lysosomes with autophagosomes in the process of 
autophagy114 (Fig. 4c). Whereas early studies of autophagy 
focused mainly on the mechanisms of induction and 
autophagosome formation, in recent years there has been 
growing interest in the role of the lysosome in autophagic 
degradation. This role is indeed critical, as lysosomes 
provide the hydrolases and the acidic pH necessary to 
degrade the autophagic substrates. Lysosomes also con-
tribute a subset of SNAREs involved in fusion (Fig. 4b,c). 
Furthermore, lysosomes serve as platforms for various 
effectors and regulators of autophagosome–lysosome 
fusion, some of which are similar to those involved in 
lysosome–late endosome fusion (Fig. 4c); these effectors 
include the heterooctameric BLOC1-related complex 
(BORC) that promotes sequential recruitment of ARL8 
and HOPS115, and RAB7, which recruits the tethering pro-
teins PLEKHM1 (ref.111) and EPG5 (ref.116), as well as the  
negative regulator of fusion events, Rubicon117 (Fig. 4c). 
The lysosome-tethered HOPS, PLEKHM1 and EPG5 in 
turn interact with phosphatidylethanolamine-conjugated 
(lipidated) forms of the Atg8/LC3/GABARAP family of dock-
ing proteins on the autophagosomal membrane, bringing 
together the lysosomal and autophagosomal membranes. 
Lastly, recent studies showed that autophagosome–
lysosome fusion is negatively regulated by mTORC1, 
which catalyses phosphorylation of the tumour suppres-
sor protein UVRAG, leading to its enhanced interaction 
with Rubicon and decreased interaction with HOPS, and 
thereby inhibiting fusion events118.

Lysosomes can also fuse with the plasma membrane 
by a process referred to as ‘lysosomal exocytosis’ (Fig. 4c). 
This process mediates a number of important lysosomal 

functions, such as plasma membrane repair33, formation 
of invasive protrusions in cancer cells119 and secretion of  
lysosomal contents into the extracellular space36, as 
happens in the process of bone resorption120.

Maintenance of cellular homeostasis requires that 
lysosome fusion events are followed by lysosome 
re-formation from hybrid organelles121. For example, 
in the process of autophagic lysosome re-formation, 
prolonged starvation induces the mTORC1-dependent 
extension of protolysosomal tubules from autolyso
somes, which eventually detach and fuse to form new 
lysosomes11. Likewise, re-formation of lysosomes after 
their fusion with phagosomes (phagolysosome resolu-
tion) also involves extension of protolysosomal tubules122 
and regulation by mTORC1 (ref.123). The molecular 
mechanisms involved in these re-formation processes, as 
well as in other lysosome tubulation and fission events, 
are still poorly understood121.

Lysosome contact sites. Over the past few years, it 
has been realized that lysosomes can also engage in 
non-fusogenic contacts with other membrane-bound 
organelles, such as the ER, peroxisomes, Golgi complex 
and mitochondria (Fig. 4a). These interactions involve 
the formation of membrane contact sites — organellar 
domains where closely apposed membranes are held 
together by various tethering proteins124 (Fig. 5).

Lysosome–organelle contacts have important func-
tional consequences. For example, maturation of early 
endosomes to late endosomes and then lysosomes 
was shown to be accompanied by increased formation 
of contacts with the ER125. These contacts cause rear-
rangement of ER tubules125, while also contributing to 
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autophagy-related protein 8 
(Atg8); ubiquitin-like  
proteins that function  
in cargo recruitment to 
autophagosomes and 
autophagosome–lysosome 
fusion.
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the budding of recycling endosomal tubules126. Another 
major function of lysosome–ER membrane contact 
sites is the non-vesicular transfer of lipids between 
these organelles. For example, free cholesterol gener-
ated by hydrolysis of cholesterol esters in the lumen of 
lysosomes is exported out of the lysosome by the con-
certed action of the proteins NPC1 and NPC2 (Fig. 5). 

Subsequent transfer of free cholesterol into the ER is 
thought to occur at membrane contact sites and to be 
mediated by lipid-transfer proteins such as ORP5 and  
ORP1L, and ER-resident proteins such as VAPA 
and VAPB127 (Fig. 5). Another lipid-transfer protein, 
STARD3, mediates cholesterol transport in the oppo-
site direction — from the ER to endolysosomes128. 
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Fig. 5 | Membrane contacts between lysosomes and other organelles. Lysosomes establish versatile contacts with 
various organelles. Several of these contacts now have well-established functional consequences. An important function 
of contacts with the endoplasmic reticulum (ER) is lipid transfer, likely mediated by STARD3–VAP (step 1), ORP5–NPC1 
(step 2), VPS13C–VAP (step 3) and/or RAB7–ORP1L–VAP (step 4) (of note, VAP exists as VAPA and VAPB paralogue with at 
least partially redundant functions)127–129. STARD3, ORP5, Niemann–Pick type C1 protein (NPC1) and ORP1L serve as lipid 
transfer proteins. VAPs are ER-resident proteins and, other than for their contribution to membrane contacts, their roles in 
lipid transport processes are not clear. Lysosome–ER contacts also control lysosome positioning and movement. This can 
occur by the dynamic attachment of lysosomes to perinuclear ER via the RNF26–p62–TOLLIP–USP15 system. Here, 
lysosomes can be tethered to the ER via p62 in a manner that is regulated by the ubiquitylation status of p62, which is in 
turn dynamically modulated by the opposing activities of the ubiquitin (Ub) ligase RNF26 and the deubiquitylating 
enzyme USP15 (step 5)131. Proteins at lysosome–ER contacts also regulate coupling of lysosomes to cytoskeletal motors. 
For example, ORP1L regulates the cholesterol-dependent coupling of lysosomes to dynein–dynactin via RAB7 and RILP 
(step 6)130, whereas protrudin regulates the coupling of lysosomes to kinesin 1 via RAB7 and FYCO1 (step 7)154 (Fig. 6). 
Contacts with the Golgi complex via RAB34, RILP and folliculin promote perinuclear clustering of lysosomes in response 
to nutrient starvation (step 8)134. Contacts with peroxisomes via synaptotagmin 7 (SYT7) and phosphatidylinositol 
4,5-bisphosphate (PtdIns(4,5)P2) mediate NPC1-dependent cholesterol transfer (step 9)133. Annexin 11 (ANXA11)-mediated 
contacts promote the axonal transport of RNA granules for local translation of mRNAs encoding mitochondrial proteins 
(step 10)140,141. Finally , lysosomes establish dynamic contacts with mitochondria, where tethering is promoted by RAB7 and 
counteracted by FIS1, which inhibits RAB7 via the activity of the RAB7 GTPase-activating protein TBC1D15 (step 11)136.  
For a more detailed description of these mechanisms, see refs3,114,124. PtdIns3P, phosphatidylinositol 3-phosphate; 
PtdIns4P, phosphatidylinositol 4-phosphate; PtdIns(3,5)P2, phosphatidylinositol 3,5-bisphosphate.
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This reverse transport process is independent of the 
global transcriptional control of cholesterol-regulated 
genes and might serve to maintain cholesterol homeo
stasis in endolysosomal organelles without the need for 
more cholesterol synthesis128. The protein VPS13C has  
recently been shown to interact with VAPs at lysosome–
ER membrane contact sites129 (Fig. 5). VPS13C has an 
amino-terminal lipid-binding domain that transfers 
phospholipids between lysosomes and the ER129. The 
direction and function of this transfer, however, have not 
been established. In addition to lipid transfer, a number 
of proteins at lysosome–ER membrane contact sites have 
been implicated in the regulation of lysosome positioning 
and movement (see the section Lysosome positioning and 
motility), in some cases in response to changes in cho-
lesterol or phosphatidylinositol 3-phosphate (PtdIns3P) 
levels130–132 (Fig. 5).

Lysosomes have also been shown to transfer free cho-
lesterol to peroxisomes through membrane contact sites 
involving lysosomal synaptotagmin 7 and peroxisomal 
PtdIns(4,5)P2 (ref.133) (Fig. 5). An additional membrane 
contact site between the lysosome and the Golgi com-
plex contributes to perinuclear clustering of lysosomes 
and consequent mTORC1 regulation by a non-lysosomal 
pool of its activator RHEB134,135. This non-lysosomal pool 
of RHEB is at least in part associated with the Golgi 
complex itself, and is thought to contribute to mTORC1 
activation at lysosome–Golgi contact sites135. Finally, 
lysosomes form contact sites with mitochondria136. These 
contacts are promoted by lysosome-associated RAB7 
and counteracted by mitochondria-associated FIS1 
through recruitment of the RAB7 GTPase-activating 
protein TBC1D15 (ref.136). In addition to allowing con-
trol of lysosomal RAB7 activity by mitochondria, these 
contacts mark sites for mitochondrial fission, thereby 
allowing the regulation of both mitochondrial and lyso
somal dynamics136 (Fig. 5). Additional molecules have 
been shown to mediate contacts between the yeast vacu-
ole (the equivalent of mammalian lysosomes) and other 
organelles137–139, but the orthologous molecules have  
not yet been demonstrated to participate in lysosome 
contacts in mammalian cells.

Non-fusogenic lysosome interactions are not limited 
to membrane-bound organelles but have recently been 
found to include membraneless organelles such as RNA 
granules140,141 (Fig. 4). RNA granules are condensates 
of RNAs and proteins formed by liquid–liquid phase 
separation. Neuronal RNA granules were shown to be 
tethered by annexin 11 (ANXA11) to a subpopulation 
of lysosomes141. This tethering allows hitchhiking of 
the RNA granules on axonal lysosomes towards sites 
of local protein synthesis, particularly in association with 
axonal mitochondria and for synthesis of mitochondrial  
proteins140,141 (Fig. 5).

Lysosome positioning and motility
Another recent development in lysosome biology has been 
the realization that lysosomes are highly dynamic struc-
tures142. Lysosomes are spread throughout the cytoplasm, 
although with a higher concentration in the perinuclear 
region. At any given time, some lysosomes are station-
ary, while others move bidirectionally along microtubule 

tracks. All lysosomes, however, are potentially motile, as 
over time some stationary lysosomes start to move, while 
some moving lysosomes stop moving. Several factors con-
tribute to these dynamics, including immobilization by 
interactions with perinuclear ER131 and Golgi complex134 
(Fig. 5), or peripheral actin filaments underlying the plasma 
membrane143, as well as mobilization by interaction with 
microtubule motors144,145 (Fig. 6). Whereas movement 
from the cell periphery towards the perinuclear region 
(retrograde movement) is mediated by coupling to cyto-
plasmic dynein and its activator dynactin145,146, movement 
from the perinuclear region towards the cell periphery 
(anterograde movement) is mediated by coupling to several 
kinesins, including members of the kinesin 1 (KIF5) and 
kinesin 3 (KIF1) families144,147,148 (Fig. 6).

Regulation of lysosome positioning. Lysosome position-
ing and motility are subject to a variety of regulatory 
inputs. For instance, lysosomes redistribute towards the 
perinuclear region on removal of amino acids and/or  
serum (a source of growth factors) from the culture 
medium149. The mechanisms that govern the perinuclear 
clustering of lysosomes during starvation are complex, 
involving effects on the interactions of lysosomes with 
other organelles and with microtubule motors. As an 
example of an effect on organelle contacts, serum and 
amino acid withdrawal induces the association of follicu-
lin with lysosomes, thus initiating a chain of interactions 
with the dynein–dynactin adaptor RILP and the Golgi 
complex-localized GTPase RAB34 that ultimately tethers 
lysosomes to the perinuclear Golgi complex134 (Fig. 5).

Nutrient deprivation also affects the interaction of 
lysosomes with microtubule motors, both enhancing 
dynein–dynactin-dependent retrograde transport and 
inhibiting kinesin-dependent anterograde transport. 
The enhancement of retrograde transport depends on 
at least two adaptor systems that independently couple  
lysosomes to dynein–dynactin: one involving TRPML1 
and the Ca2+ sensor ALG2 (ref.150), and the other compris-
ing the lysosomal transmembrane protein TMEM55B 
and the adaptor protein JIP4 (ref.65) (Fig. 6). Notably, 
nutrient starvation promotes TFEB/TFE3-regulated 
transcription of the genes encoding TRPML1 and 
TMEM55B (refs61,65,66), ensuring long-term enhancement  
of lysosome retrograde transport. However, because 
TFEB overexpression has an opposite effect of pro-
moting peripheral redistribution of lysosomes36, TFEB 
activity may also increase anterograde transport, the  
overall result being enhanced lysosome dynamics  
(that is, bidirectional transport between the centre and 
the periphery of the cell).

The inhibitory effects of starvation on anterograde 
transport involve other adaptor systems that couple lyso
somes to kinesins. One such system consists of BORC 
and ARL8 (refs148,151–153) (Fig. 6). Ragulator physically 
interacts with BORC, exerting a negative effect on the 
ability of BORC and ARL8 to recruit kinesins to lyso
somes152,153. Starvation strengthens the Ragulator–
BORC interaction153, whereas epidermal growth factor 
stimulation — a potent cue for cell growth — weakens 
it152, resulting in lysosome redistribution towards the 
centre or the periphery of the cell, respectively (Fig. 6).  

RHEB
Member of the RAS family of 
small GTPases that is mainly 
involved in activation of 
mechanistic target of 
rapamycin complex 1.

Retrograde movement
In general, movement from the 
plus end to the minus end of 
microtubules; in the axon, 
movement from the axon 
terminal towards the cell body.

Anterograde movement
In general, movement from the 
minus end to the plus end of 
microtubules; in the axon, 
movement from the cell body 
towards the axon terminal.
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An additional system comprises the ER-anchored protein 
protrudin, which binds to RAB7 and PtdIns3P on the  
lysosomal membrane to promote the interaction of  
kinesin 1 with another PtdIns3P-binding adaptor, FYCO1, 
for movement of lysosomes towards the cell periphery154 
(Fig. 6). Amino acid starvation reduces PtdIns3P levels, 
dissociating protrudin and FYCO1 from lysosomes  
and thus causing perinuclear clustering of lysosomes132.

Functions influenced by lysosome positioning. In addi-
tion to allowing the response to changing nutrient levels, 
lysosome motility is critical for many other functions, 
including autophagy, microbial killing, antigen pres-
entation, cell adhesion and migration, and cancer cell 
invasion155. Several studies showed that lysosome posi-
tioning also influences mTORC1 signalling, albeit with 
variable results. In some studies, peripheral scattering 
of lysosomes induced by overexpression of ARL8, kine-
sins, FYCO1 or protrudin enhanced mTORC1 activity, 
whereas perinuclear clustering of lysosomes caused by 

knockdown of the same proteins or BORC, or knock-
out of the corresponding genes, reduced it132,149,156. Since 
mTORC1 is activated by engagement of growth factor 
receptors at the plasma membrane, these effects were 
proposed to depend on the distance of lysosomes from 
the plasma membrane — the assumption being that the 
proximity of mTORC1 to the plasma membrane facili
tates its activation. Other studies, however, showed 
that peripheral dispersal of lysosomes by inhibition 
of dynein157 or acidification of the culture medium158 
inhibited mTORC1, whereas perinuclear clustering  
of lysosomes by human cytomegalovirus infection  
caused persistent mTORC1 activation159. These effects  
were attributed to the spatial separation of lysosome- 
associated mTORC1 and the non-lysosomal pool of 
RHEB. The discrepancies among these findings may 
result from the different manipulations that were 
used to alter lysosome positioning, underscoring  
the complexity of the mechanisms that link lysosome 
positioning to mTORC1 signalling.

Retrograde

• ↓ Amino acids
• ↓ Growth factors
• Alkalinization
• Protein aggregates
• Reactive oxygen species
• Cholesterol accumulation

Dynein Dynactin

Lysosome

Microtubule

TMEM55BJIP4
TRPML1ALG2

Ca2+

Anterograde

KIF5

Kinesin 1 Kinesin 3
KLC

FYCO1

SKIP
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KIF1

Ragulator
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• ↑ Growth factors
• Acidification
• Oncogenesis

ORP1L
RAB7

RILP

RAB7
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Fig. 6 | Machineries involved in lysosome motility. Several adaptor or scaffold complexes mediate coupling of lysosomes 
to dynein–dynactin or kinesins (predominantly kinesin 1 (composed of two KIF5 heavy chains and two light chains (KLC), 
and kinesin 3 (a homodimer of KIF1 heavy chains)) for retrograde and anterograde transport, respectively. These complexes 
are sensitive to environmental or metabolic conditions, allowing control of lysosome motility and positioning in response 
to different stimuli. The small GTPases RAB7 and ARL8) regulate lysosome motility and positioning in addition to lysosome 
interactions with other organelles (Fig. 4). RAB7 regulates coupling of lysosomes to both dynein–dynactin (via RILP))  
and kinesin 1 (via FYCO1)). ARL8 regulates coupling of lysosomes to kinesin 1 (via SKIP) and kinesin 3 (probably directly).  
For a more detailed description of these mechanisms, see refs142,228. BORC, BLOC1-related complex.
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Lysosome dysfunction in disease
The rapidly expanding knowledge of lysosomal function 
has resulted in a better understanding of how lysosomal 
defects can lead to disease. While initially lysosomal dys-
function was identified in rare inherited conditions such 
as LSDs, more recent studies have uncovered a crucial 
role of defective lysosomal function in common disease 
entities such as neurodegenerative diseases, cancer and 
metabolic disorders. In particular, a decline in lysosomal  
function with age has been proposed to explain the  
prevalence of these diseases in elderly individuals160,161.

Lysosomal storage disorders. The paradigmatic exam-
ple of how dysfunctional lysosomes can cause human 
disease is represented by LSDs, a group of inherited 
monogenic diseases characterized by a progressive, 
multisystemic phenotype often associated with early- 
onset neurodegeneration. In these diseases, mutations 
in genes encoding either lysosomal resident proteins or 
non-lysosomal proteins involved in lysosomal function 
lead to an impairment of lysosome-mediated degrada-
tion and recycling processes, with progressive lysosomal 
accumulation of undegraded substrates162–166.

LSDs may be caused by mutations in genes encoding 
lysosomal hydrolases, with consequent primary accu-
mulation of a specific type of undegraded lysosomal 
substrate. LSDs belonging to this category share exten-
sive similarities in terms of biochemical and cellular 
mechanisms162–166. A more complex category of LSDs is 
represented by those caused by mutations in genes that 
encode lysosomal membrane proteins, which are char-
acterized by broader cellular consequences2. Examples of 
the latter category include mucolipidosis type IV, which 
is caused by mutations in the TRPML1 gene and is asso-
ciated with major intracellular trafficking defects27,28 
and Niemann–Pick disease type C1, which is caused by 
mutations of NPC1 and is characterized by cholesterol 
accumulation in lysosomes165.

LSDs may also be caused by mutations in genes that 
encode non-lysosomal proteins that are involved in the 
sorting, transport and post-translational modification 
of lysosomal enzymes. For example, mucolipidosis 
type II is caused by mutations in the gene that encodes 
N-acetylglucosamine-1-phosphotransferase, which 
participates in the mannose 6-phosphate-mediated 
trafficking of lysosomal enzymes162. In multiple sulfatase 
deficiency, mutations in the sulfatase-modifying factor 1 
gene (SUMF1), which encodes an ER-resident protein 
responsible for the post-translational modification of all 
sulfatases, result in a severe type of neurodegenerative 
LSD caused by the deficiency of several lysosomal as well 
as non-lysosomal sulfatases167,168. Similarly, mutations in 
the gene that encodes the ER-associated protein CLN8, 
which is involved in the transport of lysosomal enzymes 
from the ER to the Golgi complex169, cause a specific 
type of neuronal lipofuscinosis, an LSD associated with 
early-onset neurodegeneration and blindness162. Recent 
studies showed that LSDs may also be caused by mutated 
subunits of the endolysosomal multisubunit tethering 
complexes HOPS and CORVET such as VPS33A170–172.

Initially, the pathogenesis of LSDs appeared sim-
ple and directly correlated to the primary storage of 

accumulating lysosomal substrates. However, more 
recent studies based on genomic, cell biology and 
pathophysiology approaches have identified secondary 
pathways that have crucial roles in the disease pheno-
type. For instance, several studies have shown that in 
most LSDs there is a block of autophagy due to impaired 
fusion between autophagosomes and lysosomes173–175. 
This block is caused by abnormal cholesterol accu-
mulation in the lysosomal membrane and consequent 
reduction of the sorting and recycling of SNARE pro-
teins176. As a consequence of a block in autophagy, cells 
exhibit secondary accumulation of autophagy substrates 
such as aggregation-prone proteins and dysfunctional 
mitochondria, leading to inflammation and neuro-
degeneration, which are late-stage features of LSDs174. 
Consistent with these observations, autopsy specimens 
from patients with LSDs showed neuropathological fea-
tures that are typically detected in patients with common 
neurodegenerative diseases, such as phosphorylated tau 
aggregates, neurofibrillary tangles and accumulation of 
α-synuclein174. These findings demonstrated a mech-
anistic link between the early-onset neurodegenera-
tion found in LSDs and late-onset neurodegenerative 
diseases. In addition to neurodegeneration, defective 
autophagy also appears to be a major factor for LSD 
skeletal and growth abnormalities through impairment 
of collagen secretion and reduced bone growth177.

Another important secondary consequence of lyso
somal dysfunction in LSDs is the deregulation of 
mTORC1 activity. Recent studies using cellular and ani-
mal models showed that mTORC1 activity is perturbed 
in several LSDs. However, the nature of this perturba-
tion appears to be cell type specific and disease specific. 
For example, in Pompe disease myofibers178, as well as 
in a fly model of Gaucher disease179, mTORC1 activity 
was reduced. Conversely, in chondrocytes from mouse 
models of mucopolysaccharidosis types VI and VII and 
of Niemann–Pick disease type C1, mTORC1 activity was 
increased177. A possible explanation for these differences 
may be the nature of the primary and secondary sub-
strates accumulating in different tissues in these LSDs. 
A notable example is represented by cholesterol, which is 
known to activate mTORC1 via an SLC38A9–NPC1 lyso
somal signalling complex18. Consistently, inhibition of  
mTORC1 by either rapamycin or starvation significantly 
ameliorates lysosomal and autophagy defects in cellular 
models of both mucopolysaccharidosis type VII177 and 
Niemann–Pick disease type C1 (ref.180).

Neurodegenerative diseases. In addition to LSDs, lysoso-
mal dysfunction has been identified in several common 
neurodegenerative diseases181, including late-onset forms 
of neurodegeneration (for example, Parkinson disease, 
Alzheimer disease and Huntington disease)182, amyo-
trophic lateral sclerosis183, dementia with Lewy bodies184 
and the most common neuromuscular disorder, 
Charcot–Marie–Tooth disease185,186.

Specific forms of common neurodegenerative dis-
eases may be caused by mutations of genes involved in 
lysosomal function. Patients with Alzheimer disease 
who carry mutations in the presenilin 1 gene (PSEN1) 
show lysosomal and autophagic dysfunction187 owing to 

CORVET
Tethering complex composed 
of six subunits (VPS3, VPS8, 
VPS11, VPS16, VPS18 and 
VPS33) that functions in 
endosomal fusion events.

Neurofibrillary tangles
Intraneuronal aggregates of 
hyperphosphorylated tau 
protein that are most 
commonly associated with 
Alzheimer disease.

α-Synuclein
Presynaptic protein 
pathogenetically linked to 
Parkinson disease.

Pompe disease
Lysosomal storage disorder 
caused by acid α-glucosidase 
deficiency, which results in 
accumulation of glycogen  
in the cells.

Gaucher disease
Lysosomal storage disorder 
caused by deficiency of 
glucocerebrosidase, which 
results in the build-up of 
glucocerebroside in the cells.

Lewy bodies
Abnormal deposits of the 
protein α-synuclein in the brain 
of patients with various 
neurodegenerative disorders, 
including Lewy body dementia, 
Parkinson disease and 
Alzheimer disease.

Presenilin 1
One of the four subunits of  
the γ-secretase complex.  
The encoding gene is mutated 
in an inherited form of 
Alzheimer disease.
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defective lysosomal acidification and abnormalities of 
Ca2+ homeostasis188,189. Likewise, a significant number 
of patients with Parkinson disease carry mutations in 
lysosomal–autophagic genes, which represent predispos-
ing factors for disease pathogenesis190,191. Importantly, 
heterozygosity for mutations in the gene encoding the 
lysosomal enzyme β-glucocerebrosidase (GBA), whose 
homozygous mutations cause the LSD Gaucher disease, 
is a major predisposing factor in Parkinson disease192.

Lysosomal–autophagic dysfunction may also con-
tribute to the pathogenesis of common neurodegen-
erative diseases caused by protein aggregation. Indeed, 
in Parkinson disease and related ‘synucleinopathies’193, 
impairment of the lysosomal–autophagic pathway con-
tributes to α-synuclein accumulation and aggregation 
within Lewy bodies and neurites of neurons194. In addi-
tion, it has been observed that defects in endolysosomal  
transport result in alterations of amyloid-β peptide  
production in Alzheimer disease195.

Mounting evidence also suggests that protein aggre-
gation itself may affect the lysosomal–autophagic path-
way, thus generating a vicious cycle that boosts protein 
aggregation and toxicity. For example, in Huntington dis-
ease, the aggregation-prone protein huntingtin inhibits 
autophagosome biogenesis, transport and recognition of 
expanded huntingtin cargo196–198, whereas in Parkinson 
disease α-synuclein aggregates can lead to lysosomal 
rupture and consequent cathepsin B-dependent increase  
in the level of reactive oxygen species199. In addition, 
α-synuclein toxicity has been associated with a progres-
sive decline of lysosomal function due to cytoplasmic 
retention of TFEB71. Furthermore, in Down syndrome 
(trisomy 21), a neurodevelopmental disorder that pre-
disposes to early-onset Alzheimer disease, the extra 
copy of the gene that encodes amyloid precursor protein 
(APP) on chromosome 21 leads to increased produc-
tion of the β-cleaved carboxy-terminal fragment of APP  
(APP-β-CTF or C99), which impairs lysosomal acidifica-
tion and function through inhibition of the v-ATPase200. 
Finally, massive accumulation of lysosome-like organ
elles was detected at Alzheimer disease amyloid plaques, 
and in particular in regions where swollen axons con-
tact amyloid deposits. This population of lysosomes  
had low luminal protease content, suggesting a block of 
endolysosomal maturation201.

Together, these studies highlight the links between 
defects in lysosomal–autophagic pathways and the 
pathogenesis of neurodegeneration, thereby opening 
up potential therapeutic opportunities for targeting the 
lysosome to counteract these devastating diseases. In 
line with this, several studies have shown that in mouse 
models of neurodegenerative diseases, induction of lyso-
somal biogenesis and autophagy through viral-mediated 
overexpression of TFEB results in intracellular clearance 
of accumulating substrates and significant rescue of the 
disease phenotype202.

Cancer. For a long time, the lysosome has been con-
sidered an attractive therapeutic target for cancer. 
This was mainly linked to evidence that induction of 
lysosome-dependent cell death39,203 is an effective thera-
peutic approach in a variety of cancer types204. However, 

recent studies indicate that the role of the lysosome in 
cancer extends beyond its role in cell death and can be 
linked to its ability to fuel the increased demand of can-
cer cells for energy sources205. This is particularly impor-
tant in conditions in which insufficient vascularization 
of tumours may limit nutrient availability. Several cancer 
types, such as pancreatic, lung, breast and prostate can-
cers, as well as glioblastoma and melanoma, have been  
shown to rely on the induction of lysosomal–autophagic  
degradation and recycling processes, which act as 
nutrient-scavenging pathways205.

Considering the role of the lysosomal–autophagic 
pathway in supporting proliferation and growth of can-
cer cells, it is not surprising that several types of cancer, 
including renal cell carcinoma, melanoma, alveolar soft 
part sarcoma and pancreatic adenocarcinoma, are associ-
ated with overexpression of MiT-TFE genes206,207. In these 
tumours, induction of mTORC1 by MiT-TFE factors 
(see the earlier discussion in the section Regulation of  
TFEB by environmental cues’) allows the concomitant  
hyperactivation of both autophagy-mediated nutrient- 
scavenging processes and the mTORC1-mediated bio-
synthetic pathway. Thus, the aberrant activation of 
both catabolic and biosynthetic pathways supports the 
energy-demanding metabolism of cancer cells96.

Lysosomes also participate in other processes that 
promote cancer cell proliferation, invasion and meta
stasis. An acidic tumour microenvironment, in particu-
lar, has been shown to cause redistribution of lysosomes 
towards the cell periphery208, a process that may enhance 
proliferation through increased mTORC1 and mTORC2 
signalling149,156, as well as invasion and metastasis through 
exocytosis of lysosomal hydrolases209, matrix metallo
proteinases210 and integrins211. A recent study using  
C. elegans as a model system uncovered a novel mecha
nism by which lysosome exocytosis promotes cell 
invasion during normal development119. In this study, 
interaction of netrin with its receptor on anchor cells was 
shown to induce lysosome exocytosis leading to the 
formation of metalloproteinase-enriched protrusions 
that breach the basement membrane and thus allow the 
invasion of vulval tissue by the anchor cells119. The ortho
logue of netrin in humans, netrin 1, is overexpressed in 
various metastatic cancers, and also stimulates cancer 
cell invasion212, suggesting that a similar mechanism 
of lysosomal exocytosis may underlie the spreading of 
cancer cells. This role has prompted studies to iden-
tify pharmacologic agents that interfere with lysosome 
dispersal towards the cell periphery as a potential 
cancer therapy213.

Metabolic disorders. Lysosomes have also been impli-
cated in the pathogenesis of various metabolic dis
orders, as best exemplified by their roles in obesity and 
diabetes214–216. The lipid overload that is characteristic of 
obesity impairs lysosomal function by various mecha
nisms214. For instance, feeding of mice with a high-fat diet  
inhibits lysosomal acidification and acid hydrolase acti
vity, and triggers permeabilization of the lysosomal mem-
brane, with consequent impairment of lysosomal and 
autophagic functions in different tissues217. Despite the  
harmful effects of a high-fat diet, lysosomal adaptation  

Amyloid precursor protein
(APP). Transmembrane protein 
that is proteolytically processed 
to various products, including 
amyloid-β peptide involved in 
Alzheimer disease.

mTORC2
Protein complex comprising 
the mechanistic target of 
rapamycin kinase and five 
additional subunits (MLST8, 
DEPTOR, MSIN1, PROTOR and 
RICTOR) that functions in the 
regulation of cellular 
metabolism and growth.

Netrin
Secreted protein that functions 
in cell migration and cell–cell 
and cell–extracellular matrix 
interactions.

Anchor cells
Cells that participate in the 
development of the 
reproductive system in 
Caenorhabditis elegans.
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via TFEB and TFE3 can exert a protective effect on whole- 
body lipid and glucose homeostasis, thereby lessening  
the tendency towards obesity and diabetes67.

Lysosomes also participate in whole-body glucose  
regulation by maintaining the fitness of insulin- 
producing pancreatic β-cells215. An early response of 
these cells to nutrient starvation is the degradation 
of nascent insulin granules by sequestration into Golgi 
complex-derived double-membraned structures that 
subsequently fuse with lysosomes — a process distinct 
from canonical autophagy218. Lysosomal degradation of 
nascent insulin granules decreases the secretion of insu-
lin and provides the β-cells with an alternative source 
of amino acids during fasting. When subjected to a 
high-fat diet, β-cells induce canonical autophagy, which 
protects them from ER stress and other harmful effects 
of lipid oversupply219. However, prolonged lipid over-
load overwhelms the protective effects of lysosomes 
and autophagy on metabolic homeostasis and eventually 
leads to lysosome damage, resulting in deterioration of 
lysosomal function and β-cell loss.

Conclusions and perspective
The studies reviewed here make it clear that the deg-
radative function of lysosomes is intimately linked 
to multiple pathways that control cell and organismal 
homeostasis. Past are the days when lysosomal function 
could be studied in isolation from the functions of other 
cellular organelles and processes. Instead, current studies 
must address the functions of lysosomes in the context of 
whole cells and organisms, in all of their broad diversity.

Despite the explosion in the understanding of the 
connection between lysosomes and other cellular 
structures and pathways, current knowledge of this 
connection may just represent the tip of the iceberg. 
Indeed, the lysosomal membrane comprises hundreds 
of integral and peripheral proteins, many of which are of 
unknown function. What other nutrient and ion trans-
porters, scaffolds and signalling proteins might connect 
lysosomal function to cellular metabolism? What other 
lysosome signalling pathways exist in specialized cell 
types? In addition to the pathways that were reviewed 
here (transcriptional regulation by MiT-TFE, BRD4, 
STAT3 and ZKSCAN3 factors), are there other path-
ways that mediate global adaptation of lysosomal func-
tion to environmental, developmental or pathological 
cues? Do lysosome-related organelles such as cytotoxic 
T cell granules, melanosomes and platelet dense bodies 
share signalling pathways with lysosomes or do they 

have their own, distinct pathways? Even in cells that 
do not have specialized lysosome-related organelles, 
there is evidence for heterogeneity of lysosomes. For 
example, lysosomes can exhibit different size, shape, 
positioning, motility, luminal pH, acid hydrolase con-
tent and other properties131,150,155,220–224. Do these various 
lysosome subtypes have different functions? Are there 
specific populations of lysosomes involved in different 
cellular functions, for example signalling versus exo-
cytosis? Finally, the ‘life cycle’ of lysosomes remains 
poorly understood. For example, the understanding of 
how they fuse and interact with other organelles is still 
incomplete. Even less well understood is how lysosomes 
fission and how they re-form after fusing with auto
phagosomes, phagosomes or other hybrid organelles121. 
These questions are just examples of all the exciting 
work that lies ahead to fully elucidate the multiple roles 
of lysosomes within the cell.

Also promising are the prospects for applying the 
knowledge gained from fundamental studies of lyso
some biology to the treatment of lysosome-related 
diseases. Considerable advances have already been 
made in the therapy for LSDs by replacement of the 
defective lysosomal hydrolases (enzyme replacement) 
and use of small molecules that inhibit the synthesis of 
the accumulating substrates (substrate reduction) or 
promote the folding and stability of mutant lysosomal 
hydrolases (with the use of chemical chaperones)162–165. 
Some LSDs have also been successfully treated by gene 
therapy to express the normal form of the defective  
lysosomal hydrolase162–165. A current challenge is to 
translate knowledge of lysosome biology to the treat-
ment of more common disorders such as neurodegen-
eration, cancer and metabolic diseases. In this regard, 
the use of mTOR inhibitors is being explored to enhance 
autophagy in neurodegenerative diseases caused by 
accumulation of protein aggregates225. Lysosomotropic 
agents such as chloroquine and hydroxychloroquine are 
being repurposed to inhibit lysosomal degradation and 
induce lysosome-dependent cell death in cancer cells226. 
Autophagy inhibitors and lysosomotropic agents may 
also enhance insulin secretion by pancreatic β-cells 
in certain diabetic conditions227. As knowledge of the 
multiple functions of lysosomes in the maintenance of 
cellular homeostasis expands, we can look forward to 
the development of better therapeutic interventions for 
these and other lysosome-related disorders.
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