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Sazetak:

Bakterije iz roda Vibrio imaju vaznu ulogu u morskim ekosustavima jer uzrokuju oboljenja kod
ljudi i morskih organizama. Matematic¢ki modeli mogu sluziti za predvidanje brojnosti Vibrio
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podrucjima i znanstveni napredak. Prvo istrazivanje standardiziralo je i testirano ukupno 28
objavljenih modela na sedam skupova otvorenih podataka, pri ¢emu je utvrdena ograniena
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THESIS SUMMARY

Vibrio bacteria are one of the most prominent microorganisms in coastal areas
due to their role in biogeochemical cycles, health implications, and adverse impact on
the mariculture sector (Martinez-Urtaza et al., 2010; Shafiee et al., 2024). Vibrio
infections lead to significant economic losses in mariculture and negative
environmental impact through massive die-offs of fish, shellfish, and other organisms
(Manchanayake et al., 2023; Shafiee et al., 2024). Climate change and other
anthropogenic pressures hamper risk management by rapidly altering the dynamics of
microbial communities in marine environments. As these communities shift, they can
threaten the health of natural ecosystems and contribute to the spread of diseases in
mariculture, causing significant economic damage and negative environmental impact.
This makes it imperative to develop management strategies that safeguard both the
aquaculture industry and the marine environments in which production facilities are
located.

Mathematical models are important tool for understanding and forecasting
Vibrio spp. abundance, as they enable the prediction of future trends in various aquatic
systems and marine aquaculture products, support the development of management
strategies, and advance knowledge of changes in microbial communities within aquatic
ecosystems (Baker-Austin et al., 2013; Riedinger et al., 2025). The results of
mathematical models can i) improve decision-making and cost estimation in
aquaculture, as well as ii) guide future research and the food safety legislation (Alver
& Fare, 2023; Huss et al., 2004). However, many existing models are derived from
controlled laboratory experiments and may not translate well to in situ conditions, which
are highly variable and often lack consistent data. Therefore, before using existing
models to assess the dynamics of Vibrio populations, their applicability should be
checked to avoid misleading predictions and the resulting errors in management
strategies, and changes in regulatory frameworks.

In addition to mathematical modeling, monitoring Vibrio spp. as part of water
quality assessments offers another promising approach to support sustainable
mariculture. Current water quality assessment practices include indicators
characterizing heterotrophic bacteria but are mostly focused on fecal bacteria (Some
et al., 2021), specifically E. coli and enterococci (Some et al., 2021; Stewart et al.,
2008). Other bacteria, such as Vibrio spp., have been largely overlooked despite their



potentially negative effect on humans and marine organisms. Despite the large number
of research studies on Vibrio spp. and the suggestion to use their abundance as a
supplementary indicator of water quality as early as 1984 (Robertson, 1984), uniform
guidelines, recommendations, and official regulations for their monitoring still do not
exist. Generally, the literature on the practical applicability of Vibrio spp. as a
supplementary water quality indicator remains limited and inconclusive.

Both the development of mathematical models and the analysis of the
applicability of new environmental indicators heavily rely on the availability and quality
of existing research (Stein et al., 2001; van den Berg et al., 2022). However, "publish
or perish" culture (Udesky, 2025), coupled with insufficient training in study design and
statistical methods, often leads to poorly designed studies, incomplete reporting, and
unpublished studies. These issues reduce the informative value of research, which is
defined as the completeness of the available results of the conducted studies.
Informative value of research is reduced by suboptimal study design, unpublished
studies, and incomplete reporting in publications. Prior to the research presented in
this thesis, informative value of research has only been quantified in medicine, where
it was estimated at just 15% (Chalmers & Glasziou, 2009). The problem could be
relatively large in all fields of science (Begley & Ellis, 2012; Camerer et al., 2018; Open
Science Collaboration, 2015), given that the root causes, such as misaligned research
incentive structures, limited methodological training, and inadequate support for
transparent practices, are systemic in nature.

Therefore, the aim of this doctoral thesis was to: (i) assess the ability of existing
functional models from the literature for predicting the Vibrio spp. abundance in various
marine areas, (ii) explore the potential of Vibrio spp. abundance as an additional
indicator of water quality for science-based coastal management and mariculture, (iii)
quantify the informative value of existing studies in the field of ecology. The thesis is
based on three published articles addressing the following hypotheses:

(H1): Existing models of Vibrio bacteria growth can predict the abundance of Vibrio
spp. in mariculture.

(H2): Indicators of Vibrio spp. abundance have the potential to be included in the
regular set of indicators for assessing water quality in mariculture.

(H3): The informative value of ecological research is comparable to that estimated in

medicine, which is about 15%.



The first publication (Purgar et al., 2022a) assessed the performance of 28
functional Vibrio spp. growth models obtained via literature search and extracted from
16 eligible peer-reviewed studies identified via a literature search using Web of
Science. The available functional models from the literature were standardized using
unified nomenclature and limited to those employing both primary (bacterial growth
over time) and secondary (environmental drivers such as temperature, salinity, pH)
models to enable model simulation. Model performance was evaluated using seven
open datasets of Vibrio abundance, including two newly collected in the Adriatic Sea
and five from existing literature, spanning four habitat types (aquaculture, urban
estuary, estuary, and coastal area). Results of model simulations and model
performance analysis demonstrate that, while the models were able to predict Vibrio
spp. abundance to an extent, their predictive accuracy was generally limited. Models
often underperformed, especially in coastal environments under significant
anthropogenic influence such as marine aquaculture (around fish farms) and urban
estuaries under greater anthropogenic pressure, such as mariculture.

The second publication (Purgar et al., 2023) investigated whether Vibrio spp.
abundance could and/or should be used as a supplementary bacterial indicator for
monitoring water quality near mariculture. The study was conducted on an open
dataset collected in Mali Ston Bay (Adriatic Sea), allowing for a comparison of bacterial
indicators and environmental parameters at a fish farm and a nearby control site across
two seasons. Statistical analysis revealed that Vibrio spp. abundance, along with
heterotrophic bacteria and enterococci, was unexpectedly more abundant during
colder months, while E. coli and total coliforms followed the typical pattern of higher
abundance in warmer months. Here, Vibrio spp. abundance indicated a potential
microbial risk and lower water quality that conventional fecal indicators did not capture,
providing distinct and complementary information compared to traditional indicators,
which is particularly relevant for sustainable mariculture. Given their role as
opportunistic pathogens responsible for disease outbreaks in marine organisms,
incorporating Vibrio monitoring could improve early detection and management of
health risks. However, the study also highlighted the need for additional research to
establish Vibrio-specific water quality thresholds and identify key pathogenic species
before incorporating the indicator into regulatory frameworks.

The third publication (Purgar et al., 2022b) quantified the informative value of

ecological research based on the results of 33 meta-studies. Meta-studies were



defined as studies that synthesized published or unpublished research with the aim to
estimate research waste components occurring at any of the main stages of the
research life cycle (study planning, result reporting, and publication). Research waste
was categorized into core waste, which represents studies that remain unpublished
because of low quality or publication bias, and exploitative waste, which represents
published studies that are poorly designed or insufficiently reported, diminishing their
informative value. The meta-analysis of 43 estimates of research waste components
from 33 meta-studies showed that 44.7% (95% CI: 44.2-46.7%) of studies remained
unpublished. Among published studies, 67.4% (95% CI. 66.3-68.4%) had significant
issues at the study design stage, and 40.7% (95% ClI: 38.7-42.8%) of their results were
underreported, meaning that critical information such as effect sizes, sample sizes, or
uncertainty measures was missing. Overall, these findings suggest that only 11-18%
of ecological research reaches its full informative value, akin to the 15% observed in
medicine.

This doctoral thesis provides new insights into modeling and monitoring Vibrio
spp. abundance in marine environments while also quantifying a broader systemic
issue in ecological research: low informative value, which limits the ability to build upon
existing research. The thesis presents the following original scientific contributions:

1. A comprehensive review and standardization of existing models for predicting

Vibrio spp. abundance.

2. Assessment of the predictive performance of existing Vibrio spp. growth models
near mariculture and other coastal areas.
3. Comparative analysis of the effectiveness of Vibrio spp. abundance versus
conventional bacterial indicators in assessing water quality.
4. Assessment of the potential of Vibrio spp. abundance as a supplementary
indicator for monitoring coastal water quality.
5. The first quantitative estimate of the informative value of ecological research.
6. Release of datasets and analytical code in open-access repositories to promote
transparency and reproducibility of research findings.
Together, the findings of this PhD thesis systematize available growth models and
compare their ability to predict Vibrio spp. abundance in mariculture, provide evidence
of Vibrio spp.'s applicability as a supplemental indicator of water quality in
environmental monitoring near mariculture, and underscore the urgent need to improve

study design, reporting practices, and publication rates in ecology which are crucial for



supporting evidence-based decision-making in marine aquaculture, coastal

management, and scientific progress more broadly.



PROSIRENI SAZETAK

Bakterije iz roda Vibrio jedne su od najistaknutijin mikroorganizama u obalnim
podrucjima zbog svoje uloge u biogeokemijskim ciklusima, utjecaju na ljudsko zdravlje
te negativnom ucinku na sektor marikulture (Martinez-Urtaza i sur., 2010; Shafiee i
sur., 2024). Infekcije uzrokovane Vibrio bakterijama dovode do velikih ekonomskih
gubitaka u marikulturi i negativnog utjecaja na okoli$, posebice kroz masovno ugibanje
riba, Skoljkasa i drugih organizama (Manchanayake i sur., 2023; Shafiee i sur., 2024).
Klimatske promjene i drugi antropogeni pritisci otezavaju upravljanje rizikom jer
ubrzano mijenjaju dinamiku mikrobnih zajednica u morskom okoliSu. Kako se te
zajednice mijenjaju, mogu ugroziti zdravlje prirodnih ekosustava i pridonijeti Sirenju
bolesti u marikulturi, uzrokujuc¢i znatnu Stetu i okoliSu i gospodarstvu. Stoga je kljuéno
razviti strategije upravljanja koje Stite i industriju marikulture i morske ekosustave u
kojima se uzgoj odvija.

Matematicki modeli predstavljaju vazan alat za razumijevanje i predvidanje
brojnosti bakterija roda Vibrio, jer omogucuju projekcije buducih trendova u vodenim
sustavima i proizvodima iz marikulture, potporu razvoju strategija upravljanja te
unaprjedenje znanja o0 promjenama u mikrobnim zajednicama u vodenim
ekosustavima(Baker-Austin i sur.,, 2013; Riedinger i sur., 2025). Rezultati takvih
modela mogu pridonijeti donoSenju odluka u marikulturi, procjeni troSkova,
usmjeravanju bududih istrazivanja te oblikovanju zakonodavnog okvira za kakvocu
vode i sigurnost hrane (Alver i Fare, 2023; Huss i sur., 2004). Medutim, brojni postojeci
modeli temelje se na laboratorijskim eksperimentima i Cesto nisu primjenjivi na stvarne
okoliSne uvjete koji su vrlo promjenijivi i Cesto nedovoljno dokumentirani. Stoga je, prije
njihove primjene u praksi, nuzno procijeniti primjenjivost dostupnih modela kako bi se
izbjegle pogreske u predvidanjima, upravljanju i zakonskoj regulativi.

Osim modeliranja, pracenje brojnosti Vibrio spp. u sklopu procjene kakvoce
morske vode nudi dodatni pristup odrzivoj marikulturi. Trenutne prakse procjene
kakvoée vode uglavnhom se oslanjaju na heterotrofne bakterije, posebno fekalne
pokazatelje (Some et al., 2021) kao $to su Escherichia coli i enterokoki (Some i sur.,
2021; Stewart i sur.,, 2008). Druge bakterije, poput Vibrio spp., uglavhom se
zanemaruju, iako mogu imati Stetan ucinak na zdravlje ljudi i morskih organizama.
UnatoC velikom broju istrazivanja o Vibrio spp. te prijedlogu da se njihova brojnost
koristi kao dopunski pokazatelj kvalitete vode ve¢ 1984. godine (Robertson, 1984.),



jedinstvene smijernice, preporuke i sluzbeni propisi za pracenje Vibrio spp. jo$ uvijek
ne postoje. Opcenito, moze se reci da je literatura o prakti¢noj primjeni i prikladnosti
brojnosti Vibrio spp. kao dodatnog pokazatelja kakvoée vode ogranic¢ena.

Razvoj matematickih modela i analiza prikladnosti novih okoliSnih pokazatelja
uvelike ovise o kvaliteti i dostupnosti postojecih istrazivanja (Stein i sur., 2001; van den
Berg i sur., 2022). No, “objavi ili propadni“ (engl. publish or perish) kultura (Udesky,
2025), u kombinaciji s nedovoljnom edukacijom u podrucju dizajna istrazivanja i
statistiCkih metoda, Cesto dovodi do sub-optimalnog dizajna istrazivanja, nepotpunog
izvijeScCivanja te neobjavljenih rezultata. Sve navedeno umanjuje informativnu
vrijednost znanstvenih istrazivanja, odnosno potpunost i iskoristivost rezultata
provedenih studija. Dosad je informativna vrijednost sustavno kvantificirana samo u
podrucju medicine, gdje je procijenjena na svega 15% (Chalmers i Glasziou, 2009). S
obzirom na to da su temeljni uzroci niske informativne vrijednosti, poput neuskladenih
sustava nagradivanja znanstvenika, ograniCenog metodoloSkog znanja i nedostatne
podrSke transparentnim praksama, sistemski, isti problem vjerojatno postoji i u drugim
znanstvenim podrucjima.

Stoga je cilj ove doktorske disertacije bio: (i) procijeniti u€inkovitost postojecih
funkcionalnih modela iz literature za predvidanje brojnosti Vibrio spp. u razli€itim
morskim podrucjima, (ii) istraZiti potencijal brojnosti Vibrio spp. kao dodatnog
pokazatelja kakvo¢e morske vode za znanstveno utemeljeno upravljanje obalnim
podrucjima i marikulturom, (iii) kvantificirati informativnu vrijednost postojecih ekoloskih
istrazivanja.

Disertacija se temelji na tri objavljena znanstvena rada, koji istrazuju sljedece
hipoteze:

(H1) Postojeci modeli rasta bakterija roda Vibrio mogu se Koristiti za predvidanje
njihove brojnosti u marikulturi.

(H2) Brojnost Vibrio spp. ima znaCajan potencijal da se uklju¢i medu redovne
pokazatelje za procjenu kakvoce morske vode.

(H3) Informativna vrijednost ekolo$kih istraZivanja usporediva je s onom procijenjenom
u medicini, otprilike 15%.

Prvi rad (Purgar i sur., 2022a) analizirao je 28 funkcionalnih modela dobivenih
literaturnim pregledom i ekstrakcijom iz 16 prihvatljivih recenziranih studija. Modeli su
standardizirani prema jedinstvenoj nomenklaturi i ograniCeni na one koji su sadrzavali

primarne (rast bakterija kroz vrijeme) i sekundarne (opisuju utjecaj okolisSnih faktora



poput temperature, saliniteta, pH) komponente. U€inkovitost modela testirana je na
sedam otvorenih skupova podataka, ukljuCujuci dva nova iz Jadranskog mora te pet iz
literature, obuhvacajuci Cetiri tipa staniSta (marikultura, urbani estuariji, estuariji i
obalna podrucja). Rezultati su pokazali ograni¢enu prediktivhu to¢nost, osobito u
obalnim podrucjima pod snaznim antropogenim utjecajem, poput marikulture.

Drugi rad (Purgar i sur., 2023) istrazivao je moze li se brojnost Vibrio spp.
koristiti kao dopunski pokazatelj kakvoce vode u blizini marikulture. Za ovo istraZivanje
koristen je otvoreni skup podataka iz Malostonskog zaljeva, a usporedivani su
bakterioloski pokazatelji i okoliSni parametri izmedu ribogojiliSta i obliznje kontrolne
toCke kroz dvije sezone. Statistickom analizom je utvrdeno da su Vibrio spp., zajedno
s heterotrofnim bakterijama i enterokokima, bili brojniji tijekom hladnijih mjeseci, dok
su E. coli i ukupni koliformi pratili oCekivani sezonski obrazac s viSim vrijednostima ljeti.
Usporedbom grani¢nih vrijednosti kakvoCe vode, brojnost bakterija roda Vibrio
ukazivala je na potencijalni mikrobni rizik i nizu kakvo¢u vode koju konvencionalni
fekalni indikatori nisu zabiljezili, dajuci jasne i komplementarne informacije u usporedbi
s tradicionalnim pokazateljima, Sto je posebno vazno za odrzivu marikulturu. Rezultati
ovog istrazivanja upucuju na to da brojnost Vibrio spp. moze pruziti dodatne i
specificne informacije koje standardni pokazatelji ne biljeze, ¢ime se povecava
ucinkovitost praéenja kakvoce vode.

Treci rad (Purgar i sur., 2022b) kvantificirao je informativnu vrijednost ekoloskih
istrazivanja meta-analizom 33 meta-studije koje su obuhvacale ukupno 10464
pojedinacnih studija. Rezultati su pokazali da 44,7% studija nikada ne bude objavljeno,
67,4% ima nedostatke u dizajnu istrazivanja, a 40,7 % ne prikazuje rezultate u cijelosti.
Ukupno je procijenjeno da tek 11-18% ekoloSkih istrazivanja dosezZe svoju punu
informativnu vrijednost.

Ova doktorska disertacija donosi nove uvide u modeliranje i pracenje brojnosti
Vibrio spp. u morskom okoliSu te istiCe Siri problem u ekoloskim istrazivanjima: nisku
informativnu vrijednost, koja ograniCava mogucénost iskoriStavanja postojecih
znanstvenih spoznaj. Znanstveni doprinosi ukljucuju:

1. Pregled i standardizaciju postoje¢ih modela za predvidanje brojnosti bakterija iz
roda Vibrio.
2. Procjenu ucinkovitosti postojeé¢ih modela za predvidanje brojnosti Vibrio spp. u

marikulturi.



3. Usporedbu ucinkovitosti standardnih indikatora s indikatorom brojnosti Vibrio
spp. za procjenu kakvoce morske vode.
4. Procjenu potrebe koriStenja brojnosti Vibrio spp. kao dodatnog indikatora
kakvoce morske vode.
5. Prvu procjenu informativne vrijednosti postojecih studija za podrucje ekologije.
6. Objavljene setove podataka i analitickog koda u javno dostupnim repozitorijima
s otvorenim pristupom.
Zajedno, rezultati ove doktorske disertacije standardiziraju postojeCe modele rasta
bakterija roda Vibrio i usporeduju njihovu ucinkovitost u predvidanju brojnosti Vibrio
spp. u marikulturi, pruzaju dokaze o primjenjivosti brojnosti Vibrio spp. kao dopunskog
pokazatelja kakvoce morske vode te naglasavaju hitnu potrebu za unapredenjem
dizajna studija, praksi izvjeStavanja i stope objavljivanja u ekologiji, $to je pak klju¢no
za podrsku odrzivoj marikulturi, upravljanje obalnim podrucjima i napredak znanosti u

Sirem smislu.
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1. INTRODUCTION

Marine aquaculture plays an important role in advancing multiple Sustainable
Development Goals (SDGs) including SDG 2 (Zero Hunger), SDG 8 (Decent Work and
Economic Growth), SDG 13 (Climate Action), and SDG 14 (Life Below Water), by
contributing to food security, supporting livelihoods and economic development,
enhancing climate resilience, and promoting the sustainable use of ocean and marine
resources (FAO, 2024; Stead, 2019; Troell et al., 2023). In 2022, global aquaculture
production reached 130.9 million tonnes (valued at USD 312.8 billion) and accounted
for 59% of total global aquatic production (FAO, 2024). Here, aquaculture for the first
time surpassed capture fisheries (i.e., the harvesting of wild fish and shellfish from their
natural environment) in aquatic animal output, contributing 51% of the global total.
Within this expansion, marine and coastal aquaculture, which includes the farming of
aquatic species in ocean and nearshore environments (hereafter referred to as
mariculture), accounted for 37.4% of all farmed aquatic animals. While this growth
highlights the increasing significance of mariculture in global food systems and aids in
alleviating pressure on capture fisheries, it also amplifies the necessity for science-
based strategies to tackle emerging environmental and biological risks in marine
farming systems.

One of the most pressing challenges in marine aquaculture is the increasing
risk posed by microbial communities, particularly in the context of climate change and
intensified human activities (FAO, 2024). Changing environmental conditions, such as
higher sea temperature, acidification, and increased nutrient loads, are reshaping
microbial communities by creating favorable conditions for microbial proliferation, often
favoring opportunistic and potentially pathogenic species, notably Vibrio spp. (Nogales
et al., 2011). Vibrio bacteria are one of the most prominent microorganisms in coastal
areas due to their role in biogeochemical cycles, health implications, and adverse
impact on the mariculture sector (Baker-Austin et al., 2018; Martinez-Urtaza et al.,
2010). Monitoring the abundance and dynamics of Vibrio spp. enables early detection
of pathogenic strains in marine environments and aquaculture systems, particularly
those responsible for vibriosis (Sanches-Fernandes et al., 2022). Vibriosis is among
the most common diseases in marine aquaculture and can result in large-scale

mortality events and economic losses reaching billions of dollars globally each year



(Sanches-Fernandes et al., 2022; Shafiee et al., 2024). These risks highlight the need
for effective, science-based approaches to monitoring and managing Vibrio spp.
abundance in coastal environments and mariculture facilities worldwide.

Mathematical models are important tool for understanding and forecasting
Vibrio spp. abundance, as they enable the prediction of future trends in various aquatic
systems and marine aquaculture products, support the development of management
strategies, and advance knowledge of changes in microbial communities within aquatic
ecosystems (Baker-Austin et al., 2013; Riedinger et al., 2025). The results of
mathematical models can i) improve decision-making and cost estimation in
aquaculture, as well as ii) guide future research and the food safety legislation (Alver
& Fare, 2023; Huss et al., 2004).

Modeling Vibrio abundance typically relies on growth curves that show the
number of living cells as a function of time (Peleg & Corradini, 2011). In constant
(laboratory) conditions, the growth of bacteria is characterized by a sigmoid curve
where the dependent variable is the logarithm of the concentration of live cells (Baranyi
et al., 1993). The sigmoid curve describes isothermal growth, i.e., growth as a function
of time at constant temperature (Peleg & Corradini, 2011). Secondary models describe
the functional dependence of growth with respect to external factors such as
temperature or pH (Esser et al., 2015; Peleg & Corradini, 2011). The most common
secondary models are the Ratkowsky model (Ratkowsky et al., 1983) and the
Arrhenius model (Davey, 1989). Some sources also define tertiary models (Esser et
al., 2015), described as software packages that build upon primary and/or secondary
models and often have a user interface.

In general, the aforementioned models are useful but are not always applicable.
The quality of the model, and thus interpretative value, depends on numerous factors
such as knowledge about the modeled system, availability of data, and existing
structures and mathematical formulations of the models themselves. Existing models
of population dynamics of Vibrio spp. are mainly based on information from
experiments, so their applicability for in situ modeling is questionable. Possible
limitations arise from the model formulations: while the equations provide satisfactory
descriptions of Vibrio growth and its dependence on, e.g., temperature or pH, they
usually are not subject to mechanistic interpretation (Esser et al., 2015). For data
collected in situ, exact conditions of data collection are often unknown, the intervals

between data collection may be long and/or irregular, and environmental conditions
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vary greatly (Ramsey, 2021). Therefore, before using existing models to assess the
dynamics of Vibrio populations, their applicability should be checked to avoid errors in
forecasts, planning, and changes in regulatory frameworks.

Sustainable mariculture and regulatory frameworks strongly rely on indices such
as water quality, which is important for the success of farming itself (Leung et al., 2015;
Liu et al., 2023; Webber et al., 2021). Typical water quality assessment includes
indicators characterizing heterotrophic bacteria but is mostly focused on fecal bacteria
(Some et al., 2021), specifically Escherichia coli (E. coli) and enterococci (Some et al.,
2021; Stewart et al., 2008). Bacterial indicators explain specific anthropogenic
pressures and help with risk assessment. Heterotrophic plate counts (HPC) reflect the
general load of different bacteria that need organic nutrients for growth in water bodies
(Bartram et al., 2013). Historically, coliform bacteria were widely used as indicators of
fecal pollution in water. However, they were eventually replaced by more specific
indicators, such as E. coli and enterococci, due to their higher reliability in detecting
fecal contamination (Price et al., 2017). Other bacteria, such as Vibrio spp., have been
largely overlooked despite their potentially negative effect on humans and marine
organisms (Price et al., 2017). Despite the growing number of studies on Vibrio spp.
(Onohuean et al., 2022; Zakaria et al., 2025), and the suggestion to use Vibrio
abundance as a supplementary indicator of water quality as early as 1984 (Robertson,
1984), uniform guidelines, recommendations, and official regulations for the monitoring
of Vibrio spp. still do not exist. Generally, the literature on the practical applicability of
Vibrio spp. as a supplementary water quality indicator remains limited and
inconclusive.

Predictive modeling and development and implementation of new
environmental indicators, such as Vibrio spp. for water quality, have the potential to
support sustainable mariculture by improving monitoring and informing management
decisions. However, effectiveness, reliability, and integration of models and new
indicators into monitoring frameworks and regulatory policies ultimately depend on the
quality and accessibility of ecological studies. While ecological research routinely
generates datasets, analytical workflows, and derived results, only a small and
potentially biased fraction of this output is made publicly available through publications
(Rothstein et al., 2005) and thus available as information for re-use in e.g. evidence
synthesis (Nakagawa, Koricheva, et al., 2020) and for other researchers to build on.

The prevailing publish or perish culture (Udesky, 2025), combined with limited training
3



in study design and statistical analysis (Touchon & McCoy, 2016), also contributes to
making data collection and analysis suboptimal and biased.

Collectively, issues related to unpublished studies, suboptimal study planning
(including flaws in study design, data collection, and data analysis), and inadequate
result reporting reduce the informative value of the research, defined as the
accessibility, usability, and completeness of the available results in the conducted
studies. To date, the informative value of research has been estimated only for one
field of science, medicine, where it amounts to 15 percent (Chalmers & Glasziou, 2009)
leads to an estimated annual loss exceeding US$170 billion (Glasziou & Chalmers,
2016). Research showed that the problem could be relatively large in all fields of
science (Begley & Ellis, 2012; Camerer et al., 2018; Open Science Collaboration,
2015), including ecology, given that the root causes, such as misaligned research
incentive structures, limited methodological training, and inadequate support for
transparent practices, are systemic in nature.

This doctoral thesis is based on three peer-reviewed scientific publications,
each addressing a specific research gap relevant to sustainable mariculture. The first
publication systematizes 28 functional growth models of Vibrio spp. extracted from the
literature and examines their applicability for predicting Vibrio abundance in various
coastal habitats, including marine aquaculture environments. The second publication
explores the potential of Vibrio spp. abundance to serve as a supplementary bacterial
indicator of water quality by analyzing seasonal patterns, environmental conditions,
and bacterial abundance at a mariculture site and a nearby control site in the Adriatic
Sea. The third publication quantifies the informative value of ecological research by
synthesizing evidence from 33 meta-studies, assessing the extent of unpublished,
poorly designed, or incompletely reported studies that limit the informative value of
research in ecology. The study did not conduct an assessment focused specifically on
mariculture or aquatic ecology but instead examined ecological research as a whole
for two main reasons: (i) possible limited number of available meta-research studies
quantifying components of research waste across research cycle within ecological
subfields, and (ii) scientific disciplines, and their subfields, often share similar structural
characteristics, such as research norms and incentive systems, making it reasonable
to expect comparable informative patterns across subfields.

These three publications integrate mathematical modeling, statistical analysis,

and a meta-research approach to strengthen the scientific foundation for modeling and
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integrating Vibrio spp. abundance as an indicator in mariculture, and provide the first
guantitative estimate of the informative value of research in ecology. Estimates of the
informative value of research enable further advocacy for changes in various
stakeholder incentives to improve research practices, resulting in a greater amount of
knowledge for creating more effective strategies for managing marine ecosystems,
mitigating the effects of climate change, and enhancing marine aquaculture practices,
ultimately leading to cleaner and safer food production. The final section of the thesis
presents a general discussion that synthesizes the findings, reflects on their broader
implications, and outlines recommendations for future research in marine aquaculture

and the broader field of ecology.

1.1. RESEARCH OBJECTIVES AND HYPOTHESES

The doctoral thesis had three main objectives: (i) to assess the ability of existing
functional models from the literature for predicting the Vibrio spp. abundance in various
marine areas, (ii) to explore the potential of Vibrio spp. abundance as an additional
indicator of water quality for science-based coastal management and mariculture, (iii)
to quantify the informative value (research waste) of existing studies in the field of
ecology.

Specifically, the thesis investigated three main hypotheses:

(H1): Existing models of Vibrio bacteria growth can be used to predict the abundance
of Vibrio spp. in mariculture.

(H2): Vibrio spp. abundance has significant potential to be included in the regular set
of indicators for assessing the water quality in mariculture.

(H3): The informative value of ecological research will be similar to that estimated in

medicine (about 15%).
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S

Abstract: Vibrio spp. have an important role in biogeochemical cycles; some species are disease
agents for aquatic animals and /or humans. Predicting population dynamics of Vibrio spp. in
natural environments is crucial to predicting how the future conditions will affect the dynamics of
these bacteria. The majority of existing Vibrio spp. population growth models were developed in
controlled environments, and their applicability to natural environments is unknown. We collected
all available functional models from the literature, and distilled them into 28 variants using unified
nomenclature. Next, we assessed their ability to predict Vibrio spp. abundance using two new and
five already published longitudinal datasets on Vibrio abundance in four different habitat types.
Results demonstrate that, while the models were able to predict Vibrio spp. abundance to an extent,
the predictions were not reliable. Models often underperformed, especially in environments under
significant anthropogenic influence such as aquaculture and urban coastal habitats. We discuss
implications and limitations of our analysis, and suggest research priorities; in particular, we advocate
for measuring and modeling organic matter.

Keywords: mechanistic modeling; primary and secondary growth models overview; comprehensive
datasets; bacterial growth

1. Introduction

Vibrio spp. are naturally occurring aquatic bacteria, highly adaptive and freely associ-
ated with a variety of biotic and abiotic surfaces including water, sediment, fish, shellfish,
algae, and zooplankton. Vibrio spp. comprise a minor portion of the total microbial popula-
tion, and around 1 percent of the total bacterioplankton in coastal waters [1]. Despite their
relatively low abundance, Vibrio species are one of key constituents of aquatic heterotrophic
bacterial groups [2].

Aquatic heterotrophic microorganisms have an important role in the mineralization
of organic matter, and the variations in abundance, community structure, and activities
of heterotrophic microbial communities affect both the biotic and the abiotic components
of aquatic environments. Vibrio spp. participate in biogeochemical processes by utilizing
a variety of substrates and mineralization of organic matter, thus directly contributing to
the recycling of carbon, nitrogen, and organic matter in the aquatic environment [1,3,4].
Alongside their role in the abiotic cycles, some >140 described species from the genus
Vibrio can have a strong biotic impact, and consequently pose severe health risks and
economic losses. A well-known example is Vibrio cholerae, which causes cholera—a global
threat to public health with about four million cases of infection every year, leading to over
100,000 deaths [5]. The rise of noncholera Vibrio species (V. parahaemolyticus, V. alginolyticus,
and V. vulnificus) can cause other potentially lethal infections (vibriosis) in humans [2],
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and some of the well-known Vibrio pathogens (e.g., V. anguillarum, V. harveyi, V. vulnificus,
V. salmonicida) are harmful to aquatic (marine) organisms; these species induce vibriosis in
fish and other marine species, which results in massive economic losses for the aquaculture
industry worldwide.

Outbreaks of vibriosis naturally arise mainly with fluctuations in the physicochemical
properties of water such as temperature, salinity, dissolved oxygen, and nutrient pulses
(e.g., phytoplankton blooms and dust storms). Fluctuations are supported by the fast
response of Vibrio spp. to favorable environmental conditions [6,7]. The ongoing climate
change adds complexity to the environmental patterns, as it induces shifts in the marine
environments by increasing temperature, altering nutrient loads, shifting precipitation
patterns, and acidifying the ocean [8-10]. This, in turn, affects the Vibrio spp. abundance
and alters the distribution of infectious diseases such as vibriosis [11]. Climate change can
also initiate the lengthening of the seasonal period of maximal Vibrio concentrations and
broaden the areas permitting the survival of these pathogens [12]. Therefore, in order to
develop informed strategies to minimize vibriosis outbreaks and prevent potential health
risks and aquaculture economic losses, it is crucial to take both Vibrio spp. dynamics and
the environment into account.

Mathematical modeling, analysis, and simulations provide useful insights into Vibrio
spp. abundance in various natural or anthropogenic systems. They help in developing
management strategies, and advance the knowledge of changes in the microbial communi-
ties in aquatic environments. Accurate predictions can also advance the decision-making
processes of aquaculture and estimation of costs, as well as the enactment of legislation in
food safety and water research, which are two major areas in applied microbiology [13,14].
The main approach to modeling the Vibrio spp. is based on empirical techniques, where
models are analyzed from statistical, numerical, and computational points of view, such
as goodness of fit or standard errors of the estimated parameters. Mathematical models
in food safety research (e.g., [15-18]) are generally categorized into primary, secondary,
and tertiary models [19].

Microbial growth curves show the number of living cells as a function of time [17].
Primary models typically describe isothermal growth, i.e., growth as a function of time
at a constant temperature. Under constant (laboratory) conditions, bacterial growth is
characterized by a sigmoid curve where the dependent variable is the logarithm of the
viable cell concentration [20]. The slope of a sigmoid curve at a given time provides the
instantaneous specific growth rate, which can be considered as the “cells’ per capita rate of
division” [21]. The other two essential parameters of primary models are the maximum
specific growth rate at the inflexion point of the sigmoid curve, and the length of the
lag phase.

Secondary mathematical models describe the functional dependence of microbial
growth on external factors such as temperature or pH [17]. Commonly used secondary mod-
els are the square-root model (Ratkowsky model [22]) and the Arrhenius-based model [23],
which provide satisfactory descriptions of the dependence of growth on temperature, pH,
or other factors [24]. Finally, tertiary mathematical models are software packages that
combine primary and/or secondary models and often add a user interface [24].

Generally, all described models are useful, but they are not always applicable. The de-
scribed mathematical models can be used for description and prediction of Vibrio spp.
abundance only under certain (known and tested) conditions. The limitations stem from
model formulation: while the equations provide satisfactory descriptions of Vibrio growth
and its dependence on, e.g., temperature or pH, they usually are not subject to mechanistic
interpretation [24], and therefore should not be used for explanatory purposes or predic-
tions under untested conditions. The issue of the applicability and usability of a model
becomes important when we wish to apply a model to understand or predict Vibrio spp.
dynamics in situ. For data collected in situ, exact conditions of data collection are unknown,
intervals between data collection are long and/or irregular, and environmental conditions
are rarely constant.
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We aimed to (i) identify and systematize primary and secondary Vibrio spp. growth
models, and (ii) to analyze and validate the models by applying them to different sets of
available data. We reviewed growth models of Vibrio spp. using examples from research
in food safety and water research, and validated them on several sets of field data. Then,
we analyzed whether the model(s) can be used to capture in situ Vibrio spp. abundances,
with an emphasis on differences between the marine habitat types.

2. Materials and Methods

Our methodological approach can be divided into four main steps: (1) a litera-
ture search, (2) data preparation, (3) model simulations, and (4) performance analysis.
The methodology overview is graphically presented in Figure 1.

i @ @

1. LITERATURE SEARCH ‘

'y

2. DATA PREPARATION 4. PERFORMANCE

3. MODEL SIMULATIONS ‘ ‘

\ ) ) ANALYSIS
A 5 ol BN -~ N
/ + WebofScience (Wos) \  { * Sevendatasets classified \ [/ « Modelvalidation onseven Y [ * The best models
advanced search in four different habitat datasets containing Vibrio selected based on the
189 results types (Aquaculture, Urban spp. abundance and value of median and
16 selected papers Estuary, Estuary and environmental the 1st quartile, i.e.
based on clearly Coastal area) parameters. the value at which
defined functional * 28 Vibrio spp. growth *  Finding the optimal run 25% of the calculated
dependencies for models derived for time for each dataset by R? lies above that
Vibrio spp. growth validation from 16 papers simulating models value
using environmental (please see: Table 4) « Calculation of maximum
conditions (e.g. R? for each model
temperature, salinity,
\ pH) ) \ J; \ / \ /
X P R N A

Figure 1. The methodological approach to model analysis. We performed a literature search to
find all Vibrio spp. growth models and all available datasets suitable for comparison. We found
five published datasets, and included two of our own collected through projects AQADAPT and
AQUAHEALTH of the Croatian Science Foundation (HRZZ).

2.1. Literature Search and Model Synthesis

The literature search was conducted using the Web of Science (WoS) advanced search
in April 2022. The search string was defined based on keywords and Boolean and adjacency
operators, and was searched for in Abstracts (Field Tag “AB”). The search string was as
follows: AB = (((vibrio*) AND (growth OR abundance) AND (temperature OR salinity
OR “pH” OR “COD” OR “organic matter” OR nutrient*) AND (model*))). We obtained
189 results based on our search, which was restricted to the English language. For a
detailed description of our literature review, please see Appendix A. We selected 16 papers
with Vibrio spp. growth models based on clearly defined functional dependencies for using
environmental conditions (e.g., temperature, salinity, pH). We did not include models
derived purely by regression or similar statistical means because those are not modular,
and cannot be differentiated into primary and secondary. From the 16 papers containing
growth models, we extracted, systematized, and classified explicit formulations for primary
(Table 1) and secondary growth models (Table 2), using parameters listed in (Table 3) and
thus arriving at 28 unique Vibrio spp. growth models for further analysis (Table 4).
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Table 1. Systematized equations for Vibrio spp. primary growth models. Of the 12 models listed in
this table, one (new logistic model) did not have parameters listed, so only the remaining 11 were
used in further analysis. The reference in the column “Model” is the original paper containing the
equation. The column “Article” lists all published articles that used the given primary models.

Model Equation Article
Modified 1 Y(#) A (1
ifi istic [25 = R 26-29
odified logistic [25] {1—exp[”‘£““(/\—1)+z]} [ ]
_ _ explimaxAll))-1
Baranyi [30] IY(“) Yo + pmaxA(t) = Inf1 + oxp(Ymax Y0) ] 2 [26,28,29,31-37]
At) =t + Himax In[exp(—pmaxt) + exp(—pmaxA) — exp(—pmaxt — pmaxA)]
Gompertz [25] Y() =Yoo+ A(e(ﬁ_m_m)) B)  [37-39]
) . Hmax " €
Modified Gompertz [25] Y(t) =Y+ Aexp{ - eXP[T (A=t)+ 1} } 4)  [28,29,31,40-42]
£\*
Weibull [43] Y(t)=Yo— (3) 5) [2841]
Y(H) =Yo,t <A
Three-phase linear [44] Y(£) = Yo + pmax(t —A), A <t <5 6) [29,45]
Y(f> = Ymax/ t >t
Y(t) = Yo + Ymax — In{exp(Yo) + Y - Y —; B(t
Huang [46] { () =20+ Yonax {gz(g(7°[)+ Eci;p 1(+§;“E‘24“ff\‘?( Olexp-imaBO)} ) g 47
=tT1 T-exp(d1)

No-lag phase [48] Y () = Yo + Yomax — In{exp(Yp) + [exp(Ymax) — exp(Yo)] exp(—pmaxt)} ® 7]
Net exponential Y(t) =Yp-e )  [49]

Modified Richards [25]

Modified Schnute [25]

New logistic [50]

-1
v

Y(t)= A{] +v-exp(l+v) »exp[ﬂ%ﬂ +u)(] + %) -(A —t)] }( ) 10y [29]

1
Y(t) = (}lmax (1 ;b)) [1 —b~exp(aléz-1 —b—nt)] b an 29

dy 24 " Ymin " (3
ar =i () M- (5)) W
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Table 2. Systematized equations for Vibrio spp. secondary growth models. These models modify
specific growth rate and lag time in primary models to capture effects of environmental conditions

such as temperature, salinity, and pH.

Model

Equation

Article

Square root [52]

Polynomial model

Response surface [37]

Arrhenius-based [23]

Modified Ratkovsky [22]

Suboptimal Huang square root 53]

Four-parameter square root
and water activity [38]

Net Vibrio growth rate [49]

Pmax = [a(T = Tonin)|*
Aorpmax = a+a; T+ a1 +... +a,T"

Hmax0or 1/A =exp (Co+Cy T+ Co - aw
+C3 T ay+Cy-T*+Cs-a3)

e} C N
Hmax = exp (Co + 7‘ + 3 + Gt + Caay)
Hmax = b(T = Tmin)?{1 — exp[e(T — Trnax )]}
2
Hmax = [n(T Tmin)njs]

timax = (BT = Tin) {1 — exple(T - 'r,m)n)Z
(@ = @ min) {1 = expld (a5 — dmax) |}

Ho = [tmax * (S, Sopt, Swidn) — ky] 072, with

(S, SoptsSwiam) = S if
S < Sopt — 05 - Syidihs OF
§5: 8ot — 051 Sag,

13 126,33,35,40,41,45]

9 [323436,51]

as) )

(16)  [31,37,40,42]

a7 3y
(18)  47]
(19)  38]
0) a9

Table 3. Parameters used in Vibrio spp. primary and secondary models. Last column lists models

using the particular parameter.

Parameter Description Used in Model
Y(t) Logarithm of real-time
Yo initial and All primary models
Yinax maximum bacterial counts
All primary models except
Weibull and New logistic
Mmax Maximum specific growth rate All secondary models
except Net Vibrio
growth rate
Mo Net Vibrio growth rate Net Vibrio growth rate
All primary models
A Lag time except Gompertz, Weibull
and New logistic
t Time All models
[ Time to reach stationary growth phase Three-phase linear
Modified logistic
Gompertz
A Maximum increase in microbial cell density Modified Gompertz
Modified Richards
Modified Schnute
Maximum relative growth rate and time at which " .
B,D the absolute growth rate is maximum Gompertz
v Shape parameter Modified Richards
a,b,c,m,n Fitted coefficients %g‘i']f:f; S%ch:'“‘:)ts ;"d
Cp, C1, G 3 s Response surface and
G Fitted coefficients Arrhenius-based
T, Tonine Tovax Temperature, minimum and maximum temperature required for growth of the organism All secondary models
d,p Coefficients in the Weibull model Weibull

@w, Ay mins B max

Optimal, the minimum, and maximum water activity

Four-parameter

S, Sopts Swidth

Salinity, optimal salinity value, and salinity range for optimal growth

Net Vibrio growth rate
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Table 4. List of models used in the analysis. For each model, Vibrio spp. is specified along with the
environment where the growth of the organism was observed. The primary model defines growth
function and the secondary model describes functional dependencies accounting for environmental
conditions (temperature, salinity, and pH). “Temp” stands for temperature, “Sal” for salinity repre-
sented in models as the concentration of NaCl (% NaCl), and “Sal (w.a.)” stands for water activity
calculated from salinity. In simulations, salinity from datasets was converted to water activity when
needed.

Derived Vibrio spp. Environment Environmental Primary Secondary
Model Conditions Model Model
Model 1[26] V. cholerae Sea water Temp -’\1404if1i?d Square root
ogistic
Model 2 [26] V. cholerae Sea water Temp Baranyi Square root
Model 3 [32] V. parahaemolyticus Soy sauce Temp Baranyi Polynomial
Model 4 [33] V. parahaemolyticus C. gigas Temp Baranyi Square root
Model 5 [35] V. parahaemolyticus C. virginica Temp Baranyi Square root
Model 6 [36] V. cocktail ! Table Olives pH and Sal Baranyi Polinomial
Model 7 [34] V. cholerae and O. minor Temp Baranyi Polinomial
V. vulnificus ’
Model 8 [37] V. harveyi TSYEB 2 Temp and Sal (w.a.) Baranyi Response surface
Model 9 [37] V. harveyi TSYEB 2 Temp and Sal (w.a.) Baranyi Arrhenius-based
Model 10 [31] V. parahaemolyticus L. vannamei Temp Baranyi R’:&it&:ﬂy
Model 11 [37] V. harveyi TSYEB 2 Temp and Sal (w.a.) Gompertz Response surface
Model 12 [37] V. harveyi TSYEB 2 Temp and Sal (w.a.) Gompertz Arrhenius-based
Model 13 [38] V. parahaemolyticus Model broth Temp and Sal (w.a.) Gompertz The four-parameter
N system . square root
Model 14 [31] V. parahaemolyticus L. vannamei Temp é’t‘:;ilfé“’_g R?S(iﬁsl?y
) & . icus Te Modified Square root
Model 15 [40] V. parahaemolyticu Broth emp Gompertz Arrl?cnius-bascd
Model 16 [40 V. vulnificus Broth Tem| Modified Square root
d [40] vulnificus T p Gompertz Arrhenius-based
Model 17 [40 V. parahaemolyticus Flounder Te Modified Square root
s 10l PRI sashimi o Gompertz Arrhenius-based
Model 18 [40 V. ) liticis Salmon Te Modified Square root
01 PREREmL YR sashimi P Gompertz Arrhenius-based
Model 19 [40 V. vulnificus Oyster meat Tem| Modified Square root
OHe119.40] wititificis ABERER P Gompertz Arrhenius-based
Model 20 [42 g3 C. ¢ieas broth Te Modified Square root
odel 20 [42] V. parahaemolyticus gigas brol emp Gompertz Arrhenius-based
42 5 o . gioas Te Modified Square root
Model 21 [42] V. parahaemolyticus C. gigas broth emp Chmboits Arrl?cnius-bascd
Model 22 [42. V. eriohyticiia C. gigas Tem| Modified Square root
© 142l parahaemalypitis Opyster slurry P Gompertz Arrhenius-based
Model 23 [42 icus 4 C. gigas Te Modified Square root
odel 23 2] Viparahiemalyticils Ogyster slurry S Gompertz Arrhenius-based
Model 24 [41] V. parahaemolyticus Oncorhynchus spp. Temp é‘:‘:;gsi . Square root
Weibull
Model 25 [45] V. parahaemolyticus L. vannamei Temp T'hrfe-phasc Square root
inear
Model 26 [47] V. parahaemolyticus L. vannamei Temp Huang Suboptimal Huang
primary square root
Model 27 [47] V. parahaemolyticus L. vannamei Temp No-lag Suboptimal Hl.tlang
square roof
Model 28 [49] Vibrio spp. NR Estuary Temp and Sal Net exponential Net Vibrio growth rate

L V. vulnificus, V. furnissii and V. fluvialis, 2 Tryptone Soybean Yeast Extract Broth, 3 pathogenic, # nonpathogenic.

2.2. Data Preparation

An additional literature search identified five datasets suitable for model validation;
hence, a total of seven datasets were available for analysis (Table 5) once our two previously
unpublished datasets were added.

The previously unpublished datasets, AQADAPT [54] and AQUAHEALTH [55], con-
tain observed values for Vibrio spp. abundance and environmental parameters from the
Adriatic Sea. Sampling was conducted in three floating-cage fish farms in the northern,
middle, and southern Adriatic Sea (Croatia), where European sea bass (Dicentrarchus labrax)
and sea bream (Sparus aurata) are cultured. The farms in the northern and central Adriatic
are located in the semi-open sea at depths of about 49 m and 22 m, respectively. The fish
farm in the southern Adriatic is located in the outer part of the Mali Ston Bay at a depth of
18 m. The Mali Ston Bay is occasionally strongly influenced by the (freshwater) Neretva
River. Periodic use of antibiotics is possible on all three fish farms, and this would have
affected the Vibrio spp. abundance. However, no specific data on antibiotics use are avail-
able. We classified these datasets into aquaculture habitat type. Dataset AQADAPT [54]
was labeled as AQC1 and dataset AQUAHEALTH [55] was labeled as AQC2.
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Table 5. The seven datasets used for model validation. AQC1 and AQC2 were previously unpub-
lished; the other datasets are publicly available and can be accessed through the provided reference.
Information for each dataset contains reported values (i.e., the number of entries in a dataset), values
used for validation (i.e., the number of observations after the missing values were removed from
the dataset), temperature, salinity, and pH range. Seven datasets used for model validation were
classified into four habitat types based on the characteristics of the collection sites. Methods used for
determining Vibrio spp. abundance are listed in Appendix C.1.

Values f Temperature Salinity R - o
Dataset Reported Values i :li‘:iea:i;’r: R:‘“Pg; a(og e ln(‘l?l’)t) ange pH Habitat TYPE Collection Site
AQC1 [54] 108 99 11.1-275 335-393 8.10-8.61 Aquaculture AdrialicSea;
AQC2 [55] 88 81 7.86-25.23 24.9-382 7.56-8.49 Aquaculture Adé‘rj)‘ifif“'
URBI [56] 213 149 224-31 7.98-34.74 7.51-8.27 Urban Estuary l’l‘gf\;’;’l:fuC;F:‘L::l
URB2 [57] 243 240 192-318 1.0-36.0 / Urban Estuary falei Cenal
Neuse River
EST1[58] 249 23 31-317 0.09-18.56 6.57-9.17 Estuary Estuary, North
Carolina (USA)
Great Bay Estuary,
EST2 [59] 133 127 2.16-25.89 9.32-31.86 6.82-8.41 Estuary New Hampshire
(USA)
Eastern North
COAST [60] 117 72 8.9-29.4 12.0-40.0 / Coastal Area Carolina coast

Bullington et al. [56] and Steward et al. [57] published Vibrio spp. abundance and
environmental parameters from the Ala Wai Canal in urban Honolulu, Hawaii, on the
island of O’ahu. The 3.1 km-long engineered waterway operates as a tidally influenced
estuary with freshwater input from a watershed that covers 42.4 km? via the Manoa
and Palolo streams, which merge to form the Manoa-Palolo Stream prior to entering
the canal, and the Makiki Stream, all of which run through urban areas before reaching
the canal. Consequently, the streams are contaminated with a variety of anthropogenic
substances, and their convergence in the Ala Wai Canal has contributed to its pollution and
eutrophication [57]. We classified datasets from this area as the urban estuary habitat type
due to the strong anthropogenic influence. The dataset by Bullington et al. [56] was labeled
as URBI and the dataset by Steward et al. [57] was labeled as URB2.

Froelich et al. [58] gathered data from the Neuse River Estuary in Eastern North
Carolina (USA). The Neuse River Estuary, located in Eastern NC (USA), is a well-described,
lagoonal estuary, with wind-driven mixing characteristics and minimal tidal influence
due to the protection offered by the proximal Pamlico Sound. Being broad and shallow
(generally less than 3 m in depth), the estuary flow and mixing are dominated by wind and
river input. This dataset was classified as an estuary habitat and labeled as EST1.

Urquhart et al. [59] collected data from the Great Bay Estuary, New Hampshire (USA).
The Great Bay Estuary (GBE) extends inland from the mouth of the Piscataqua River near
Kittery, ME, through Little Bay and eventually into the Great Bay (25 km). The GBE has
deep, narrow channels with strong tidal currents, and wide, shallow mudflats. The physical
transport regime of the GBE follows the classical estuarine circulation model for drowned
river valley estuaries [59]. This dataset was also classified as an estuary habitat and labeled
EST2.

Williams et al. [60] presented data from five sites along the Eastern North Carolina
coast (USA). Locations were as follows: Harlowe Creek, South River, North River, Hoop
Pole Creek, and Jumping Run Creek. These sites were chosen to represent the range of
high- and low-salinity environments, some of which experience large salinity fluctuations,
while others have very small salinity fluctuations (for more information, please refer to the
original manuscript [60]). We classified this dataset as a coastal area, and labeled it COAST.

From the given datasets, we selected variable Vibrio abundance and the following envi-
ronmental parameters: temperature, salinity, and pH. We excluded all of the missing values
from datasets and logarithmically transformed Vibrio abundance greater than 0 (log10 + 1
in datasets AQC1, AQC2, and COAST, log10 in datasets URB1 and URB2). Datasets EST1
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and EST2 already contained logarithmically transformed values. The analytical code can
be found in the R script named data_preparation. Results of the dataset preparation are
summarized in Table 5.

2.3. Model Simulations

Herein, we showcase a model simulation approach aiming to calculate Vibrio spp.
abundance based on primary and secondary models accounting for environmental parame-
ters (temperature, salinity, and pH). All collected models were developed for controlled
environments (i.e., laboratories), where Vibrio spp. growth was monitored at regular, short
time intervals. Such data lend themselves to time series modeling, where abundance is
plotted against time. In contrast, in situ data are typically irregularly collected from variable
abiotic microenvironments, at longer time intervals, and with the noise typically inherent
to field measurements. Such data could not be modeled as a time series, but had to be
modeled as independent abundances—each data point was considered to be a result of
bacterial growth that started some time ago.

The model had to be simulated for the time of growth, but determining how long ago
the growth started was a challenge which we needed to overcome in order to select the
(optimal) model run time for a dataset. Note that having an independent run time for each
data point would create an option to fit each data point exactly by choosing the perfect
time, thus defeating the whole point of modeling the bacterial dynamics. To minimize
the bias introduced by our choice of the model run time, we determined a (run) time that
gives the best result for each model-and-dataset combination. Optimal run time is then the
simulation duration that produces the best match between the model predictions and the
observations.

We used default parameter values (Appendix B, Table A1) listed in their respective
references for each of the 28 models (Table 4). First, the values of the specific growth rate
and lag time were calculated, which were then used in the primary models: modified
logistic, Barayni, Gompertz, modified Gompertz, three-phase linear, Huang, no-lag phase
and met exponential models. These primary models adjust the specific growth rate and
lag time using one or more of the secondary models, as described in the original literature
and summarized in Table 4. The environmental parameters considered in the literature for
modeling Vibrio spp. growth in dynamic conditions were: temperature, salinity, and pH
(Table 4). Secondary models sometimes use water activity or NaCl concentration instead of
salinity. As all datasets contained information on salinity, water activity or NaCl concentra-
tion were calculated from salinity (Table 5) (for more details, please refer to Appendix B).
To determine the optimal run time, we simulated Vibrio spp. growth in a selected time
range from 1 to 600 hours, and selected the run time that produced the best fit to the data.

2.4. Model Performance

We used the coefficient of determination (R?) to evaluate the ability of models to
describe the observed experimental data:

L 9)?

Liaa(y—9%
where y; is the actual value in the dataset, §j; is the corresponding predicted value, 7 is the
mean value of the dataset, and 7 is the sample size.

To determine applicability (i.e., model generality) of a specific model to a specific
dataset, we compared R? values calculated for all models for that specific dataset, and then
selected those models for which the dataset-specific R? value was higher than the overall
median of all R? values for all models and all datasets. For example, if the median overall
goodness of fit of all models to all datasets was R> = 0.30, all models with R? > 0.30 for
dataset 1 would be marked as capturing dataset 1. We then tested the robustness of the
results by looking at a more stringent requirement, where we marked a certain model as

RZ=1 (21)
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capturing a dataset only if its R? for that dataset was in the top 25% (1st quartile) of the
values for all models and all datasets.

Robust ANOVA based on trimmed means [61,62] was used to test the difference in
model performance (obtained R?) between different habitat types (aquaculture, urban
estuary, estuary, and coastal area). Robust ANOVA was used to overcome the problems
associated with deviations from homoscedasticity /normality and to reduce the influence
of outliers observed in the data. Post hoc tests were also performed in the robust WRS2
environment [61], where p-values were adjusted for multiple testing using the Benjamini—
Hochberg (BH) method.

The model analysis and simulations were performed in RStudio Integrated Devel-
opment Environment, Version 4.1.2 [63] using the packages: tidyverse [64], caret [65],
Metrics [66], SciViews [67], data.table [68], readxl [69] and xlsx [70]. The exact analytic code
can be found at Zenodo [71]. We visualized results using the package ggplot2 [72].

3. Results
3.1. Vibrio spp. Growth Models

Vibrio spp. growth models identified by the literature review could be partitioned
into 12 primary (Table 1) and 8 secondary (Table 2) models, using the parameters listed in
Table 3. In total, we identified 29 models for Vibrio spp. growth in a dynamic environment,
but we could not find parameter values for Fujikawa et al. [50]. Therefore, we further
analyzed only the remaining 28 models (Table 4), using the parameters listed in Table A1.

The model summaries (Table 4) provide an overview of the models used when study-
ing Vibrio spp. growth in a dynamic environment. The main findings were as follows:

*  Baranyi and modified Gompertz are the most commonly used primary models for
describing Vibrio spp. growth over time.

e  Square root and Arrhenius-based models are the most frequently applied secondary
models for Vibrio spp. growth in dynamic conditions.

e V. cholerae, V. parahaemolyticus, V. harveyi, and V. vulnificus are the species used most
often as modeling organisms.

. Vibrio growth was monitored in/on various substrates (free water column, within or-
ganisms, in broth substrates, etc.), under different temperature, salinity, and pH
conditions. This implies that the aquatic environments and organisms (marine and
freshwater), as well as food and water health and safety, are the key areas of research
and concern.

¢ Temperature was the prevailing environmental parameter used in secondary models,
implying a strong effect of temperature on Vibrio spp. abundance. The effect of
temperature on the primary model parameters (growth rate and lag time) was most
often modeled by the square root or the Arrhenius-based model.

3.2. Vibrio In Situ Datasets

We summarize the dataset classification and characteristics of the seven datasets in
Table 5, including the number of Vibrio spp. abundance data, and range and type of
environmental variables used in model validation (temperature, salinity, pH). Datasets
URB2 and COAST do not contain information on pH, so simulations of Model 6 (Table 4)
were not possible for those datasets.

3.3. Model Performance

The ability of models to describe the data greatly varied between models and datasets
(Figure 2). The calculated R? values ranged from <0.001 (Model 10 for dataset AQC1) to
0.40 (Model 28, dataset URB2), with the overall median value of all models for all datasets
R? = 0.13. R? values also significantly differed between habitat types (Figure 3, Table A2)
in all pairwise comparisons (post hoc tests p < 0.017; see details in Table A3). Therefore,
R? values suggest the models performed best for coastal areas, followed by estuaries,
urban estuaries, and aquaculture habitats. Comparing R? values provides performance
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Figure 2. R? calculated for all models and for each dataset. Horizontal line depicts the median
R? = 0.13 used to evaluate model performance. Primary models are labeled as follows: ML—
modified logistic, Baranyi, Gompertz, modified Gompertz, TPL—three-phase linear, HPM—Huang
primary, NL—no-lag and NE—net exponential. Star (*) signifies models that had an evaluation issue
with some of the data points in some of the datasets (details in Appendix D).
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Figure 3. Boxplot of model performance measured as R? in different habitat types (as classified
in Table 5). Model performance significantly differed between habitat types (robust ANOVA,
F(3,75.561) = 49.9, p < 0.001, effect size ¢ = 0.77, confidence interval CI(¢) = [0.68, 0.84]; Table A2).
Significance codes are as follows: p < 0 “***’, p < 0.01 **, and p < 0.5*".

Model generality analysis (Figure 4A) shows rankings above the median (R? > 0.13)
where:
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Figure 4. Model generality. Stacked bar chart used for graphical representation of model’s applicabil-
ity on the dataset from a specific habitat: colors represent habitats (see the legend), and stars (*) denote
models that exhibit the evaluation issue with some of the data points in some of the datasets (details
in Appendix D). Values on y axis denote the frequency of occurrence of a particular model whose R
value is above the median (R? > 0.13; Panel A), and in the first quartile (R> > 0.22; Panel B). Primary
models are labeled as follows: ML—modified logistic, Baranyi, Gompertz, modified Gompertz,
TPL—three-phase linear, HPM—Huang primary, NL—no-lag and NE—net exponential. Star (*)
signifies models that had an evaluation issue with some of the data points in some of the datasets
(details in Appendix D). Note that there is only one coastal area dataset, while other habitats have
two datasets each. Hence, scoring a single occurrence of the coastal area habitat represents a 100%
success rate, while scoring the same in any other habitat represents a success rate of 50%.

17



Microorganisms 2022, 10, 1765

12 of 22

e All models except Model 6 (Baranyi with polinomial pH and salinity secondary
models) were able to score above average at least in some habitats, i.e., capture those
habitats. Incidentally, Model 6 was the only one not applying a temperature correction

e Atotal of 93% of models captured the coastal area habitat.

e A total of 93% of all models captured estuary habitat, but only 85% of those (i.e., 79%
of all models) captured both estuary datasets; 26 models captured EST1, with 22 of
them capturing EST2 as well.

e A total of 75% of models captured an urban habitat, but only two (Models 9 and 28)
captured both urban habitat datasets; URB1 was captured by all 20 of them; only
3 models managed to capture URB2.

®  Only the Baranyi-type model (Model 8, with temperature and salinity secondary
models) captured the AQC1 aquaculture habitat.

e The model with the highest R? values (Model 28—net exponential, for urban estuary
URB2) had low generality, as it captured datasets from only two out of four habitats.

e Of the models that performed well for at least one habitat type, Model 17 had lowest
generality as it captured only one EST1 dataset.

Selecting for better capability by scoring only performances within the first quartile

(R? > 0.22, Figure 4B) shows that:

e =~A total of 72% of the analyzed models had an exceptional ability to capture datasets
from the coastal area habitat.

e The ability of models to capture/perform well for estuarine habitats was severely
diminished, with only 16/28 (57% of the models) capturing one of the two estuary
datasets, and only 10 models (36%) capturing both.

*  None of the models were able to capture for the aquaculture habitat datasets, and only
three (Models 8, 9, and 28) captured the urban estuary habitat.

*  Model 28 seemed even more specialized, as it captured a single urban estuary (URB2)

*  Most prolific Baranyi models (Models 8 and 9) remained so by capturing datasets from
three habitat types, albeit only a single dataset from each.

4. Discussion

Our work adds to the growing body of knowledge from the past few decades that
helped refine a general understanding of the ecology of Vibrio spp. We (i) summarized
dynamics and unified nomenclature for all published functional models we could find
(12 primary and 8 secondary), (ii) added two datasets to the existing five longitudinal
datasets on Vibrio spp. and their environments, and (iii) used the datasets to asses the
ability of existing models to capture Vibrio spp. abundances in four different habitat types.

There are no clear winners between the 28 investigated models. Generally, the R?
values were not particularly large (<0.40), but the values can be considered acceptable
given the difficulty of the task, in particular the multitude of potential factors affecting both
the environment and the Vibrio populations.

Baranyi-based models (Models 2 to 10 in Table 4) seemed to capture the widest variety
of habitats well, with Models 8 and 9 leading the way in diversity. Although both models
had a similar R? for the AQC1 dataset (0.14 and 0.12, respectively), Model 8 was the only
one that crossed the median threshold and therefore captured an aquaculture dataset as an
above-average performer. Notably, Models 8 and 9 are the only Baranyi-based models that
included both temperature and salinity secondary models. Model 28 (net exponential) also
included both factors and performed quite well, giving the highest overall R? (0.40 for the
URB2 dataset).

Inclusion of temperature and salinity, however, does not guarantee success. All three
Gompertz-based models included both factors, but all three underperformed. This would
signal Gompertz-based models should be used with caution. Modified Gompertz-based
models (Models 14-24), however, seem to lag only slightly behind the best.

While it may be tempting to proclaim Baranyi-based models as the most versatile,
they do have significant drawbacks. First, both Models 8 and 9 had issues with simulations:
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their fast growth rate sometimes caused very large predictions (see Appendix D). While
this has not been a problem for the optimal run time of Model 8, Model 9 did lose up to 3%
of data in the evaluation. These issues may not be consequential in the current assessment,
but may become so in new datasets.

Second, the secondary models accounting for salinity in Models 8 and 9 yielded
unexpected growth rate patterns. For example, at moderate and high salinities, growth
rates could be extremely high at the ends of the environmental temperature range (e.g.,
3.18 In(CFU/g)/h for salinity of 20 and temperature of 27 °C, Figure 5, Panel B). Likewise,
at 10 °C, the growth rate of Model 8 was moderate and slightly increased with salinity;
at 30 °C, however, the rate was extremely high for low salinity, and rapidly decreased
with salinity. This may be plausible as abundance of Vibrio spp. increased with water
temperatures during periods of reduced salinity [73], but we recommend caution when
utilizing Baranyi-based models in highly variable environments.

Overall, predictions for the coastal area and estuary datasets seemed to be more robust
than those for urban estuaries and aquaculture (Figure 4, Panel B). We hypothesize this may
be due to higher levels of anthropogenic disturbance in aquaculture and urban estuaries,
in particular potentially high inputs of organic matter. Vibrio spp., as a prototypical
copiotroph, dominates in nutrient-rich environments [74]. They exhibit a feast-and-famine
lifestyle and swim to colonize sporadic, nutrient-rich patches and particles [75]. Therefore,
we think that organic matter has an important role in determining Vibrio spp. abundance,
especially in these types of habitats.

Our study has some limitations. First, we treated all Vibrio spp. the same. While
justified in the context of a wide assessment such as ours, Vibrio species clearly differ and
could potentially exhibit significantly different dynamics, especially since different species
favor different environmental conditions. These differences could become important as
environmental conditions change, and the Vibrio community could shift towards disease-
causing species. Unfortunately, current datasets and available models do not allow for a
deeper investigation of the issue.

Second, we chose the simulation time that minimized R?, but relied on a single
simulation time for each dataset. In principle, a different simulation time could be chosen for
each data point. Such an approach would, however, in effect result in fitting each value by
choosing simulation time that gives a desired result, thus defeating the purpose of modeling.
There could, nonetheless, be some value in exploring functional dependencies of the
simulation time on various environmental factors (temperature in particular), but additional
research would be required to suggest a particular form of such a function.

Third, we set out to investigate published parameters and models with well-defined
functional forms. Perhaps a different set of parameters and/or combinations of models
could have described the datasets better. We have made a first step towards such research
by systematizing primary and secondary models, parameters, and available—including
two previously unpublished—datasets. Alternatively, statistical models could possibly be
re-fitted to better capture the datasets. Such statistical approaches may be appropriate in
some cases, e.g., when aiming to inter- or extrapolate data from a single area.

Clearly, additional research is needed for developing a growth model capable of
predicting in situ Vibrio spp. abundances in natural environments. We suggest further
development of secondary models should be one priority; dynamics of secondary models
should be well-defined for the whole range of expected environmental factors, especially
temperature and salinity. Modeling could also benefit from research on additional environ-
mental factors such as organic matter, which has been shown to affect Vibrio growth [56].
Given the role of Vibrio spp. in aquatic environments, it is surprising that less than half
datasets include organic matter measurements. We suggest that future modeling develop-
ment should include organic matter, especially when sampling to ensure measurement of
organic matter.

Perhaps a development of a third generation of models based on big data and deep
learning could also work in synergy with mechanistic modeling to improve our ability to
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predict Vibrio spp. dynamics in a changing environment. Improved models could then
enhance predictive frameworks, e.g., by replacing the basic ecological niche approach to
estimating Vibrio presence used in exploration of future risk scenarios by Trinanes and
Martinez-Urtaza [76].

In conclusion, none of the investigated models provide a complete solution: Baranyi-
based models might be the most versatile, but other models (e.g., net exponential) may
provide a better fit for a particular cause. Therefore, the choice of the model should be at
least in part guided by the type of the environment and expected ranges of environmental
factors; if many data lie outside of the well-described range of a particular secondary
model (see Figure 5), perhaps a different model should be tried instead. Our summary and
systematization (Tables 1-5) provide currently available primary and secondary models,
and data, which can be used as a toolbox for model creation and testing.
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Figure 5. Relationships between growth rate and environmental variables as predicted by secondary
models. The models in panel (A) include only a temperature correction. Panel (B) shows dependence
of growth rate on temperature for three salinity levels. Panel (C) shows dependence of growth rate
on salinity for three temperatures. A pH value of 8.1 was assumed for Model 6. Model 28 had a flat
temperature response because it used the default parameter value [49] that minimized temperature
correction, f = 1; increasing 6 would increase the temperature dependence.
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Identification

Screening

Included

Appendix A. Literature Search

The literature search was conducted using the Web of Science (WoS) advanced search
in April 2022. We accessed all databases in the Web of Science: Web of Science core
collection (Arts & Humanities Citation Index, Book Citation Index—Science, Book Citation
Index—Social Sciences & Humanities, Conference Proceedings Citation Index—Science,
Conference Proceedings Citation Index—Social Science & Humanities, Current Chemical
Reactions, Emerging Sources Citation Index, ESCI Backfiles, Chemicus Index, Science
Citation Index Expanded, Social Sciences Citation Index), BIOSIS citation index, Medline,
Zoological record, Current contents connect, Derwent innovations index, Data citation
index, SciELO citation index, BIOSIS previews, CABI-CAB abstracts and global health,
Inspec, KCI-Korean journal database, journal citation reports, essential science indicators,
EndNote online. The search string was defined based on keywords and Boolean and
adjacency operators, and was searched for in Abstracts (Field Tag “AB”). The search string
was: AB = (((vibrio*) AND (growth OR abundance) AND (temperature OR salinity OR
“pH” OR “COD” OR “organic matter” OR nutrient*) AND (model*))). We obtained 189
results based on our search, which was restricted to the English language. We detected 9
potentially duplicate articles before the screening, which were resolved, and 180 remained.
A primary search resulted in 27 articles for the screening. Furthermore, we performed a
backward and a forward search based on identified relevant articles. A backward search
was performed by searching a list of references at the end of the articles, and a forward
search was conducted using Google Scholar. We performed this procedure two times until
no new relevant article was identified. Finally, we included six more articles. The screening
was conducted in Rayyan collaborative review application [77]. The first screening was
performed by a reviewer, MP, and the final screening was carried out by reviewers TK
and MP. We selected 16 papers with the Vibrio spp. growth models for analysis after the
full screening of the papers from the primary search and additional search. Please see the
PRISMA diagram for a breakdown of the overall procedure (Figure A1). In the analysis, we
included articles with Vibrio spp. growth model equations depending on environmental
parameters. Data extraction led to 28 Vibrio growth models for validation.

Identfication of new studies via databases and registers. Identification of new studies via other methods
Records identfied from Records removed before screening Records identified from:
Databases (n - 189) Duplicate records (n = 9) Citation searching (n = 6)

Records screened Records excluded
(n=180) (n=153)
Reports sought for retrieval Reports not retrieved Reports sought for retrieval Reports not retrieved
(n=27) (n=0) (n=6) > (n=0)
Reports excluded:
Reports excluded:
Reports. ass(.;‘sf;:m eligibility Funciional dependency missing (n = 10) Reports Ill:t::’b' eligibility p.m:’:v(l:go’l:::::lm”ﬂ.nrl 9
=) Functonal dependoncy missing (n = 2)

New studies included in review
(n=13)

n-
Reports of new included studies
(n=3)

Figure A1l. PRISMA flow chart for the literature retrieval and screening.
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Appendix B. Data Analysis

Data analysis was based on 28 Vibrio spp. growth models extracted from 16 papers that
clearly defined functional dependencies for growth rate and lag time using environmental
conditions (e.g., temperature, salinity, pH). For example, in Model 1, we used a modified
logistic function and square root model describing the temperature; in Model 2, we used
the Baranyi function and square root model describing the temperature, etc. For more
details, please see Table 2 in the main text. Model 6 used the concentration of sodium
chloride calculated from salinity. Model 8, Model 9, Model 11, and Model 12 used water
activity determined by the concentration of sodium chloride. The water activity term, used
in Model 13, was calculated from the concentration of NaCl (%), i.e., salinity. Values for
water activity and the corresponding NaCl concentration (%) can be found in [78]. The
function for calculating water activity from the concentration of NaCl (%) is available in R
script “water_activity.R”. Analytical code for model simulations can be found in the follow-
ing scripts: “AqQADAPT.R”, “AQUAHEALTH.R”, “Bullington2022.R”, “Froelich2019.R”,
“Steward2022.R”, “Urquhart2016.R”, and “Williams2017.R".

Table A1. List of parameters used in primary model analysis. Parameter A is the maximum increase in
microbial cell density, and Yj and Y};;ax represent logarithm of initial and maximum bacterial counts,
respectively. Parameter T, is the minimum temperature required for growth of the organism.
We used the minimum value from dataset divided by 2 (Est Yp) to estimate initial bacterial count
whenever it was not provided by the authors. In cases where the maximum bacterial count was
not provided, we used the estimate of the maximal bacterial count from each dataset (Est Yx).
Parameters used in secondary models are available in the provided code.

odel A Yo Yinax Tnin (°C)

Model 1 [26] 4 / / 6.4°C
Model 2 [26] / Est Yy Est Y, 0x 6.4
Model 3 [32] / Est Yy Est Yax 15
Model 4 [33] / Est Yy Est Yiax 8.3
Model 5 [35] / Est Yo Est Yorax 10.0
Model 6 [36] / Est Yy Est Youax /
Model 7 [34] / Est Yy Est Yoax 8.0
Model 8 [37] / Est Yy Est Yiax 129
Model 9 [37] 7 Est Yo Est Yiax 129
Model 10 [31 / Est Yo Est Yax 15.0
Model 11 [37 7 Est Yy Est Yyax 129
Model 12 [37 / Est Yy Est Yonax 129
Model 13 [38' / Est Yy Est Youx 8.0
Model 14 [31 7 Est Yy / 15.0
Model 15 [40 4 EstYp / 13.0
Model 16 [40 4 Est Yy / 13.0
Model 17 [40 4 Est Yy / 13.0
Model 18 [40 4 Est Yy 7 13.0
Model 19 [40 4 Est Yo 7% 13.0
Model 20 [42 6 Est Yy 'k 10.0
Model 21 [42 6 Est Yo / 10.0
Model 22 [42 6 Est Yy / 10.0
Model 23 [42 6 Est Yy / 10.0
Model 24 [41 4 Est Yy / 121
Model 25 [45 1 Est Yy 9.28 12:1
Model 26 [47' / Est Yy 7.64 108
Model 27 [47 / Est Yo 7.70 10.5
Model 28 [49 d Est Yo / /

Appendix C. Additional Results
Appendix C.1. Methods Used for Determining Vibrio spp. Abundance

In this subsection, we present more details on the techniques used to determine the
abundance of Vibrio spp. in the studied environments. The results of different techniques
(e.g., culture techniques or qPCR) are not always consistent and do not have the same
meaning (e.g., possible presence of noncultivable viable bacteria). In datasets AQC1 [54]
and AQC2 [55], Vibrio spp. abundance from water samples was determined by counting
the total number of visible colonies that exhibited relief from the plate surface from the
Thiosulphate Citrate Bile Salt Sucrose (TCBS) (Difco™, BD) agar plates. In the dataset
URBI [56], the polymerase chain reaction (qQPCR) of the hemolysin A gene (vvhA) was
used for determening V. vulnificus concentration in water samples. In dataset URB2 [57],
the abundance of V. vulnificus was also determined by quantitative PCR (qPCR) of the
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hemolysin gene (vvhA). In dataset EST1 [58], Vibrio spp. concentrations were determined
by counting the total number of visible yellow and green colonies that exhibited relief from
the plate surface from TCBS, adjusting for dilution, and expressing the results as colony-
forming units (CFUs) per 100 mL. In the dataset EST2 [59], oyster tissue was processed for
enumeration of V. parahaemolyticus via a three-tube MPN enrichment method following the
FDA Bacteriological Analytical Manual coupled with culture-based and polymerase chain
reaction (PCR) methods used to confirm the presence of V. parahaemolyticus. In the dataset
COAST [60], the authors quantified V. parahaemolyticus from water samples by counting
the total number of visible colonies using the CHROMagar Vibrio medium (CHROMagar,
Paris, France).
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Figure A2. Optimal run time for the simulation duration that produces the best match between the
model prediction and the observation (data point of a dataset) based on R? median value. Models
based on Table 4 are specified on the x axis. Primary models are labeled as follows: ML—modified
logistic, Baranyi, Gompertz, modified Gompertz, TPL—three-phase linear, HPM—Huang primary,
NL—no-lag, and NE—net exponential. Star (*) signifies models that had an evaluation issue with
some of the data points in some of the datasets (details in Appendix D).

Model performance and its applicability to specific datasets based on a comparison
of R? median values (R? > 0.13) resulted in a total of 27 applicable models on datasets
from four habitat types (aquaculture, urban estuary, estuary, and coastal area) (Figure 2).
Model 6, based on the Baranyi equation and polinomial model for the effect of pH and
NaCl, exhibited poor performance. Model performance and its applicability to specific
datasets based on a comparison of Q1 (upper 25%) R? values (R?> > 0.22) resulted in a
total of 21 applicable models on datasets from three areas (urban estuary, estuary, and
coastal area) (Figure 2). Here, Model 3, Model 6, Model 10, Model 12, Model 17, Model 22,
and Model 23 displayed poor performance. Models 2, 6, and 10 are Baranyi’s type with
square root, polynomial, and modified Ratkowsky models for the effect of temperature or
pH and NaCl, respectively. Model 12 is Gompertz’s type with modified Ratkovsky and
Arrhenius-based models, respectively. Model 22 and Model 23 were based on the modified
Gompertz model and used square root and Arrhenius-based models for describing the
effect of temperature.
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Table A2. Results of robust ANOVA one-way test from the package WRS2 [61].
Function: tlway (formula = max_r2~Habitat, data = as)
Test statistic: F=75.561
Degrees of freedom 1: 3
Degrees of freedom 2: 49.90
p-value: 0
Explanatory measure of effect size: ~ 0.77
Bootstrap CI: [0.68; 0.84]

Table A3. Results of post hoc lincon test from the package WRS2 [61].
Formula: lincon (max_r2~Habitat, data = as)
Habitat type psihat cilower ci. upper  p-value
Aquaculture vs. Urban Estuary —0.03910 —0.08237  0.00417 0.01688
Aquaculture vs. Estuary —0.14203 —0.17331 —0.11075 0.00000
Aquaculture vs. Coastal Area —0.21525  —-0.27062  —0.15989  0.00000
Urban Estuary vs. Estuary —0.10293 —0.14925 —0.05662 0.00000
Urban Estuary vs. Coastal Area -0.17616 ~ —0.23977  —0.11254 0.00000
Estuary vs. Coastal Area —0.07322 —0.13069 —0.01575  0.00263

Appendix D. Model Evaluation Issues

Some models had evaluation issues, where a proportion of the data had to be dis-
regarded. The issues for each model are described below, and Table A4 summarizes the
issues and proportion of data disregarded at the optimum simulation time.

Model 3 had negative specific growth rates generated by the secondary model (the
parameters used for a four-parameter polynomial model by [32]). This phenomenon was
observed for temperatures below 15 °C. Model 3 also generated Inf values for higher simu-
lation times and higher specific growth rates. Model 7 generated negative specific growth
rates for temperatures between 11.1 and 11.7 °C. A secondary model was polynomial, as
described in [34]. Additionally, in this secondary model, lag time had lower values at
17.6 °C and the highest at 27.5 °C. Model 8 resulted in Inf values in cases where maximum
specific growth rate was between 1.630371 (12.3 °C) and 2.476982 (27.5 °C) and time range
was between 289 and 600 h. This large value of the specific growth rate was generated by
the response surface secondary model from [37]. Some of the predicted values were equal
to the parameter maximum bacterial count (Y,.x) (We obtained NA R2). Model 9 resulted
in Inf values in cases where mumax was between 1.491716 (15.9 °C) and 2.459676 (27.5 °C)
and the time range was between 291 and 600. This large value of the specific growth rate
was generated by Arrhenius-Davey secondary model from [37]. Some of the predicted
values were equal to the parameter maximum bacterial count (Y;u4x) (we obtained NA R?).
Model 13 resulted in NAN predictions for values that had salinity, i.e., water activity higher
than 0.998, and Model 27 had NAN predictions for temperatures below 10.5 °C.
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Table A4. Models and their issues.
Model Issue Impacts % of Dataset Dataset
26/99 =26.26% AQC1 [54]
. . 16/81 =19.75% AQC2 [55]
Model 3 Wegativespeniic 52/223 = 23.32% EST1 [58]
growith rate 30/127 = 23.62% EST2 [59]
4/72 =5.56% COAST [60]
High values of specific
Model 8 growth rate which generate o /
Inf values
High values of specific 1/81=1.23% AQC2 [55]
Model 9 growth rate which generate 6/223 =2.69% EST1 [58]
Inf values 4/127 = 3.15% EST2 [59]
Model 13 Salinity, i.e., water activity 80/223 = 35.87% EST1 [58]
>0.998 18/240 = 7.50% URB2 [57]
2/81=2.47% AQC2[55]
29/223 = 13.00% EST1 [58
Model 27 Temperature 10.5 °C 16/127 = 12.60% EST2 {59}
1/72=1.39% COAST [60]
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ARTICLE INFO ABSTRACT
Keywords: Due to high anthropogenic pressures, science-based coastal management required to ensure the sustainable use
Aquaculture of coastal areas highly depends on environmental indicators used for decision-making. In this paper, we argue for
P‘_"'h“g‘;“s the inclusion of Vibrio spp. abundance as a supplemental indicator of water quality for science-based coastal
Limit v:flues by ining the envir al and bacterial indicators at a fish farm and a control site in Mali
Regulations . 2 s e e . . . ER
Legislature Ston Bay in the Adriatic Sca. Unexpectedly, heterotrophic bacteria, enterococci and Vibrio spp. were more
abundant in the cold season, while E. coli and total coliforms, following a more traditional pattern, were more
abundant in the warm season. Each of the currently used indicators has a specific purpose: heterotrophic bacteria
indicate the presence of both nonpathogenic and pathogenic bacteria, while enterococei are pathogenic bacteria
indicating fecal pollution. Vibrio spp. abundance additionally represents a non-fecal bacteria that can cause
vibriosis in I and aquatic organi Since vibriosis is the leading cause of disease-related fish mortality in
aquaculture, pathogenic Vibrio spp. have large health and economic implications. These implications, as well as
the added interpretative value when compared to other bacterial indicators, make Vibrio spp. abundance a good
candidate as a water quality indicator. Significant dependence of the abundance on depth further differentiates
Vibrio spp. from other indicators, thus bolstering the candidacy - especially in aquaculture areas. Before inclusion
of any Vibrio spp. indicators into legislature, further research is needed particularly into (i) abundance thresholds
characterizing water quality, and (ii) identification of species whose abund should be itored for best
estimate of the discase risks.
1. Introduction endanger the continuous provision of the necessary ecosystem services
(Maul and Duedall, 2019; Nobre, 2011; Martinez et al., 2007).
Coastal areas are home to more than 40% of human population and Science-based integrated coastal management practices aim to ensure
60% of national economies; the related anthropogenic pressures preservation of ecosystems and the related services, but the quality of
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management highly depends on indicators used for decision-making to
determine the state of the environment and capture environmental
trends (Elliot et al., 2017; Mazé et al., 2017; Atkins et al., 2015). Since
water affects all coastal ecosystems, water quality indicators are of
particular importance.

Typical water quality assessment includes indicators characterizing
heterotrophic bacteria but is mostly focused on fecal bacteria (Cabral,
2010). Heterotrophic bacteria are a crucial element of the marine
ecosystem nutrient cycling (Zhang et al., 2018; Moran et al., 2016;
Benner, 2011; Fuhrman, 1992), however they can be pathogenic,
causing severe diseases and economic losses (Feliatra et al., 2020;
Bentzon-Tilia et al., 2016; Saxena et al., 2015). The most frequently used
bacterial indicators for assessing water quality are heterotrophic plate
counts (HPC), total coliforms (TC), and fecal bacterial indices (E. coli and
enterococci) (Some et al., 2021; World Health Organization, 2017;
Stewart et al., 2008).

The bacterial indicators account for specific anthropogenic pres-
sures, and help estimate specific risks. HPC reflect the general load of
different bacteria that need organic nutrients for growth in water bodies
(Bartram et al., 2003). TC have been historically used as an indicator of
human fecal influx, however TC are also commonly found in the envi-
ronment and therefore are ineffective as a measure of fecal pathogens,
and should primarily be used to gauge the efficacy of treatment and
evaluate cleanliness and integrity of water distribution (World Health
Organization, 2017). Specific fecal indicators, primarily E. coli and
enterococci, are better indicators of fecal pollution than the TC (Some
et al., 2021; Price and Wildeboer, 2017; Boehm and Sassoubre, 2014),
and serve as contemporary indicators of water quality for recreational,
industrial, agricultural, and water supply purposes. Other bacteria, such
as Vibrio spp., have been largely ignored despite their potentially
negative effect on human and marine organisms.

Vibrio spp., in particular, are ubiquitous heterotrophic bacteria pre-
sent in marine environments (Ryder et al., 2014). Pathogenic Vibrio spp.
(e.g. V. parah lyticus, Li lla/V. alginolyticus, V. wvulnificus,
V. anguillarum, V. harveyi, etc.) cause vibriosis, a potentially fatal disease
in both humans and aquatic animals (Baker-Austin et al., 2018). Humans
get infected through contact with seawater or eating raw or under-
cooked contaminated seafood, a problem especially prominent during
heightened seafood consumption (Ryder et al., 2014). Additionally,
V. vulnificus as an opportunistic pathogen, in humans causes wound
infections that can develop into septicaemia. Marine organisms usually
get vibriosis if their immune defenses are lowered due to stress (e.g. high
temperature) or an immune deficiency (Manchanayake et al., 2023).
The vibriosis mostly affects fish and shellfish (Sanches-Fernandes et al.,
2022) and is caused by pathogens V. parahaemolyticus, V. alginolyticus,
V. harveyi, V. owensii and V. campbelli that exploit the skin, gills, and
gastrointestinal tract as portals for infection (Ina-Salwany et al., 2019).
Despite the substantial body of research on Vibrio spp. (Froelich et al.,
2013, 2019; Zadorozhnaya et al., 2015; Roux et al., 2015; Davis et al.,
2019; Purgar et al., 2022) and the suggestion to use their abundance asa
supplementary indicator of water quality as early as 1984 (Robertson,
1984) uniform guidelines, recommendations, and official regulations for
monitoring Vibrio spp. are still lacking.

Vibrio spp. thrive in aquaculture environments due to favourable
conditions (e.g. organic enrichment) (Toranzo and Barja, 1990; Chan-
drakala and Priya, 2017). There, vibriosis regularly causes significant
mortality of fish and shellfish, resulting in environmental damage and
significant economic losses (Sampaio et al., 2022). Furthermore, Vibrio
spp. are persistent, with sediments serving as an important reservoir that
can facilitate re-infection of the water column (Kapetanovic et al.,
2022). Presently, specific Vibrio spp. are only regulated for food products
(e.g. in the U.S. (Center for Food Safety and Applied Nutrition, 2011),
Australia (Food Standards Australia New Zealand, 2022)). Compared to
the U.S. and Australia, the European Regulation (EC) No. 2073/2005
provides the microbiological standards for food products manufactured
and exchanged within Europe; however, it does not include particular
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microbiological standards for Vibrio spp. (Hartnell et al., 2019). Given
the risks to human health and the potential for environmental and
economic damage, especially in aquaculture, suitability for water
quality assessment of indicators characterizing Vibrio spp. should be
investigated further.

Here we explore the suitability of Vibrio spp. abundance as a po-
tential supplemental indicator of water quality for science-based coastal
management. We investigated a broad set of indicators collected over
three years in Mali Ston Bay - an intensive nearshore aquaculture site to
ascertain whether Vibrio spp. abundance provides valuable information
not captured by the other, more broadly used, indices. To understand
general environmental and bacterial dynamics in the area, we investi-
gated the seasonal, spatial and vertical (by depth) variability of envi-
ronmental and bacterial indicators. In particular, we estimated: (i) reach
of emissions from the fish farm, (ii) environmental factors affecting
Vibrio spp. abundance, and (iii) variability of Vibrio spp. abundance with
respect to other potential pathogens (E. coli and enterococci), and het-
erotrophic bacteria in general. Then, we show that Vibrio spp. abun-
dance has patterns that differ from those of other bacteria in the same
environment, and therefore provides additional information on the
status of the environment. The information is especially relevant to
aquaculture not only because of the potential environmental and eco-
nomic damage due to vibriosis outbreaks, but also due to its relevance
for vibrio-related foodborne diseases (Ryder et al., 2014).

2. Materials and methods

In this study, we conducted an analysis of the open dataset 'AQUA-
HEALTH’ (PANGAEA repository, Jug-Dujakovic¢ et al., 2022) that in-
cludes measurements of two groups of indicators (environmental and
bacterial) near a fish farm and a control site in the Mali Ston Bay
(Adriatic Sea). The environmental indicators used in the analysis
encompass temperature (Temp), salinity, total dissolved solids (TDS),
PH, oxygen saturation (02 (%)), total nitrogen (N), total phosphorus (P),
particulate organic matter (POM), and particulate inorganic matter
(PIM). The bacterial indicators include measurements of heterotrophic
bacteria (HPC) and the potential indicator Vibrio spp. abundance. In
addition to '"AQUAHEALTH’ dataset, we analyzed measurements of total
coliforms, E. coli, and enterococci, and all of the bacterial abundance in
the sediment, that are available in the Zenodo repository as a part of this
study’s open analytical code (Purgar et al., 2023). The data was sub-
jected to descriptive and inferential statistical analysis to reveal seasonal
and spatial patterns within the dataset, as well as to explore potential
interdependencies among the various indicators.

2.1. Sampling and in situ measurements

Sampling sites (Fig. 1) were the floating cage fish farm located near
the island Maslinovac (Fish Farm) and a control site located near the
island Pucenjak (Control). The observed area is under the freshwater
influence of the Neretva river, submarine springs, coastal residential
areas, and tourist and intensive fish and bivalve farming activities. The
sampling period covers seasonal (warm and cold) measurements be-
tween 2016 and 2019.

Water sampling was conducted using a Niskin water sampler at four
different depths (0.5 m below the surface, 5 m deep, 10 m deep, and 0.5
m above the bottom which is approximately 18 m). Samples were
poured into sterile 0.5 L bottles. Sediment samples were collected using
an Ekman grab (10 g of top sediment layer). In situ measurements of
water temperature and oxygen saturation were taken with SevenGo pro/
SG9 OptiOX (Mettler Toledo). Salinity and total dissolved solids (TDS)
were determined with SevenGo pro/Conductivity (Mettler Toledo) and
pH was measured with SevenGo pro/Ion (Mettler-Toledo).
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Fig. 1. Sampling sites: Fish Farm near island Maslinovac (42°55.0719 N, 17°29.5401 E) and Control near island Pucenjak (42°55.7394 N, 17°29.7244 E) in the

Southern part of the Adriatic Sea.
2.2. Seawater sample analyses

Total nitrogen was determined by the Oxidative digestion method
(ISO 11905-1:1997) with peroxodisulfate using the Hach Lange, UV/VIS
spectrophotometer DR/6000. The same spectrophotometer and the
Hach method LCK348 for Water Analysis were used to measure the
concentration of total phosphorus (P) (Hach, 2022).

Particulate matter analyses were performed in triplicates, where 1-L
aliquot samples were filtered onto pre-ashed (3 h at 450 °C) 47-mm GF/
C filters (Whatman). Total particulate matter (TPM), particulate organic
matter (POM) and particulate inorganic matter (PIM) were determined
according to the method described in Paterson et al. (2003).

2.3. Microbiological analysis

Vibrio spp. abundance from water samples was determined by
counting the total number of visible colonies that exhibited relief from
the plate surface from the Thiosulphate Citrate Bile Salt Sucrose (TCBS)
(Difco™, BD) agar plates. TCBS agar plates were incubated at 22 °C for
3-5 days. Results were expressed as the mean number of colony forming
units (CFU) in 1 mL of seawater or sediment. Similarly, heterotrophic
marine bacteria (HPC) were enumerated by using the plate method on
DificoTM Marine Agar 2216 BD (BD, Sparks, MD, USA), and the plates
were incubated at 22 °C for 3-5 days. TC and fecal indicators (E. coli and
enterococci) were determined by defined substrate technology using
Colilert-18 (IDEXX, Westbrook, ME, USA) for the total coliform bacteria
and E. coli, and Enterolert-E (IDEXX) for enterococci. TC and fecal in-
dicators (E. coli and enterococci) were enumerated using Quanti-
tray2000 (IDEXX) which results in the most probable numbers (MPN/
100 mL).

2.4. Data preparation

Data (N = 88 for water column, and N = 22 for sediment) prepara-
tion was conducted using RStudio Integrated Development Environment
(RStudio Team, 2022), Version 4.2.2. Initially, 'pastecs’ and ’psych’
packages (Grosjean et al., 2018; Revelle, 2017) were used for descriptive
statistics (SI Table 1 and SI Table 2). "Base’ packages (RStudio Team,
2022) were additionally used to assess normality (Shapiro-Wilks,
QQplot), while the ‘ggplot2 * package was used for graphical display
(Wickham, 2016). For a detailed summary please refer to SI Table 1B.
Bacterial indicators Vibrio, HPC, and total coliforms were
log-transformed using the *decostand’ function from the vegan package
(Oksanen et al., 2013). Furthermore, extreme outliers were analyzed
using the ‘identify outliers’ function from the ’rstatix’ package

(Kassambara, 2023). For a detailed summary of extreme outliers please
refer to SI Table 1C. Ultimately, we replaced the detected extreme
outliers for TDS, N, P and PIM and other missing values (Salinity, TDS,
POM and PIM) with variable median values. Graphical display of vari-
ables used for further data analysis is displayed in Fig. 2.

2.5. Data analysis

Data analysis and graphical representation of results were performed
in RStudio Integrated Development Environment (RStudio Team, 2022),
Version 4.2.2. Results were visualised using the following packages:
*ggplot2’ (Wickham, 2016) and ’corrplot’ (Wei et al., 2017).

2.5.1. Environmental and bacterial water column indicators

To investigate the differences between (i) seasons (warm and cold),
(ii) sites (fish farm and control), and (iii) depths (surface, 5m, 10m and
bottom), in both groups of indicators (environmental and bacterial), we
conducted a permutational multivariate analysis of variance (PERMA-
NOVA) (Anderson, 2001). The original three-way multivariate PER-
MANOVA analysis (factors: season, site, depth) was replaced with a
two-way multivariate PERMANOVA (factors: season, depth) after con-
firming that site and its interactions did not yield statistically significant
change of indicator values in either the environmental indicator group
or the bacterial indicator group. The multivariate two-way PERMA-
NOVA analysis was followed by separate univariate two-way PERMA-
NOVAs for each indicator variable to additionally assess the individual
response of the indicator to changes in season and water layer depth.
The R implementation of PERMANOVA analysis in the 'vegan’ package
(function 'adonis2’) was applied to the Euclidean distance similarity
matrices of environmental and bacterial indicators, respectively (Olksa-
nen et al., 2013). The post-hoc test, i.e., pairwise multilevel comparison,
was performed using the pariwise.adonis2' function from the ’pairwi-
seAdonis’ package (Arbizu, 2020).

In addition, to determine the underlying relationships between
environmental/bacterial indicators and changes in season, site, and
water layer depth, a redundancy analysis (RDA) was performed (Leg
endre and Legendre, 2012). The RDA analysis was performed using the
'rda’ function from the 'vegan’ package (Oksanen et al., 2013). Both
PERMANOVA and RDA were applied to data standardized using the
*decostand’ function from the 'vegan® package.

Variables E. coli and enterococci were excluded from this analysis as
their low abundance was expressed as categorical and not continuous
variable. For categorical analysis please refer to: subchapter 2.5.4.

32



M. Purgar et dl.

Estuarine, Coastal and Shelf Science 295 (2023) 108558

5 25 40 28
g = ° g
© 20 83 E,ZG
-]
5 = 24
o215 E30 2
gw 8.5 = 82
= 5 20
20
Warm Cold Warm Cold Cold
—_ 25
$120 9.0
= 2.0 ”
S 110 & 8.5 115 °
e S
2100 Z 80 £
1z
z
a;,) 90 75 05
>
X 80 0.0
o 7.0
Cold Warm Cold
0.20 i 15
_ 0.15 < g 3 =10
2010 ° E, g
o @ % = s 5
o 0.05 8 1 o
0.00 0 0
Warm Cold Warm Cold
20 =15 1
g g 2 o
215 * g1 y, G0
<) R : g
ey
£ E’ 0 So
= f=2)
o
Warm Cold Warm Cold Warm Cold
Season Season Season

Fig. 2. Graphical display of AQUAHEALTH environmental and bacterial indicators used for analysis. The violin plots represent the relationship between each
observed variable and the season. The box plot elements show the median value, the interquartile ranges, and potential outliers for each variable. On cach side of the
boxplot is a kernel density estimation to show the distribution shape of the data. HPC, TC, and Vibrio spp. were log transformed prior to analysis. Detailed descriptive

statistics is reported in ST Table 2,

-

2.5.2. Interdependencies between ij s

Relationships between environmental indicators and the abundance
of bacterial indicators were determined using Pearson’s correlation co-
efficient (Benesty et al., 2009) and RDA analysis. Pearson’s correlations
were calculated using the 'cor’ function from the ‘stats’ package
(RStudio Team, 2022). Additionally, significance test and confidence
intervals were quantified using the 'cor.mtest’ function from the 'corr-
plot’ package (Wei et al., 2017).

To assess the variation in the abundance of bacterial indicators
affected by environmental indicators we used redundancy analysis
(RDA) (Legendre and Legendre, 2012). RDA analysis was performed
using the before mentioned 'rda’ function from the 'vegan’ package. The
best exploratory variables were selected based on the results acquired by
the function *forward.sel’ from the package "adespatial’ (Dray et al.,
2022). This function performs a forward selection of variables by per-
mutation of residuals under a reduced model.

2.5.3. Seasonal and spatial variation of environmental and bacterial
indicators in sediment
In the sediment, differences in bacterial abundance between sites

(fish farm and control) and seasons (warm and cold) were also examined
by two-way PERMANOVA using the Euclidean distance similarity ma-
trix (implementation: function "adonis2’ from the 'vegan’ package in R,
(Oksanen et al., 2013). RDA analysis was performed using the function
‘rda’, also from the "vegan’ package in R, to: (i) estimate the variation in
bacterial abundance by site and season, and (ii) establish the relation-
ship between bacteria in the sediment and in the lower layer of the water
column.

2.5.4. Distribution of pathogenic bacteria in the water column

To assess the distribution of pathogenic bacteria (E. coli, enterococci
and Vibrio spp.) in the water column we performed a comparison of the
abundance categories (Table 1) based on the thresholds after each
sampling campaign in Official Gazette of the Republic of Croatia 73/08
for monitoring and classification of bathing water quality (OGRC 73/08,
2008). We used the Croatian national regulation from 2008 which has
more rigid limit values for microbiological indicators than those defined
in the Bathing Water Directive 2006/07/EC (European Commission,
2006). Official standards for Vibrio spp. in assessing bathing water
quality or near aquaculture sites do not yet exists, so we used standards
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Table 1

Thresholds used for the assessment of coastal bathing water quality for E. coli
and intestinal enterococci. Official standards for Vibrio spp. do not yet exist, so
we used standards for enterococci (please see text for argumentation).

Indicator Coastal bathing water quality
Ixcellent  Good Sufficient  Poor
E. coli (MPN/100 ml) <100 101-200 201-300 =300
intestinal enterococci (MPN/100 <60 61-100 101-200 >200
ml)

Same as eneterococci as official standards for
Vibrio spp. do not exist

Vibrio spp. (CFU/ml)

for enterococci. Abundance categories of individual pathogenic bacteria
(E. coli, enterococci and Vibrio spp.) in the water column by depth, site
and season were analyzed using Fisher's test (Field et al., 2012).

3. Results

Results presented here focus on variability of environmental and
bacterial indicators in water column between seasons and depths, where
the multivariate analysis identified a number of associations. The
analysis on differences between sites, however, did not indicate signif-
icant associations. Hence, we assumed a horizontally uniform system,
and relegated the analysis on differences between sites to the SI (SI
Tables 3A and 4A).

Analysis of bacterial indicators in sediment neither found differences
in the abundance of bacteria between sites or seasons, nor could link
variability of bacterial indicators to season, depth, or site. Therefore, we
considered the sediment as independent of site, depth and season, and
relegated details into the SI (SI Tables 5-7, SI Figs. 1 and 2).

Therefore, here we only present results on (i) environmental in-
dicators as functions of season and depth, (ii) bacterial indicators as
functions of season and depth, and (iii) analysis of interdependencies
between indicators. Finally, we present the results of categorical anal-
ysis describing distribution of pathogenic bacteria in the water column.

3.1. Environmental water column indicators

Season had a significant influence on the group of environmental
indicators (Table 2A), as did the depth of the water layer in which the
measurements were made (Table 2A). In particular, the surface layer

Table 2

Two-way PERMANOVA analysis (factors: Season, Water layer depth) of envi-
ronmental and bacterial indicators in the water column: (A/C) multivariate, (B/
D) univariate. Statistically significant values are in bold. l'or a detailed statistical
analysis, see SI Table 3B, SI Table 4B, and SI Table 8A-K.

Season Depth Season:Depth
F(1,87) p F(3,87) p F(3,87) p
A Envi 1 indi 1 iate
16.186 0.001 3.054 0.001 0.738 0.823
B Envi P TR ot
Temp 1416396  0.001  1.337 0.296  2.841 0.060
Salinity 0.799 0376 11.618 0.001  0.667 0.601
TDS 5.024 0.024  9.222 0.001 0.086 0.957
pit 10.279 0.003  0.036 0.986 0.022 0.998
0, (%) 28173 0.001 0.582 0.611 1.330 0.257
N 18.179 0.001 2918 0.045 0.560 0.641
P 11.600 0.002  0.200 0.910 1.007 0.390
POM 1.467 0.217 1.441 0.218 0.935 0.431
PM 2.096 0.151 1.660 0.168 0.459 0.707
c s ve ol lysi
9.00 0.001 117 0.333 0.88 0.565
D s o e S
HPC 10.593 0.006  0.517 0.679  1.081 0.384
Total coliforms ~ 2.711 0.099  0.251 0851 0.756 0.525
Vibrio spp. 15.032 0.001 3.036 0.042  0.7935 0.511
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showed different tendencies in environmental indicator values
compared to other layers (SI Table 2C). However, the interaction be-
tween season and water layers did not significantly affect the environ-
mental indicators (Table 2A).

Additional univariate inferential assessment of each environmental
indicator revealed a significant response of temperature, oxygen satu-
ration, TDS, pH, N, and P to seasonal changes (Table 2B, SI Table 8).
Higher TDS values were measured in the cold season (Fig. 2, SI Table 2,
SI Table 8C), while higher values for temperature, oxygen saturation,
PH, N, and P were measured in the warm season (Fig. 2, SI Table 2, SI
Table BADEFG). These trends were also confirmed by the results of the
RDA analysis (Fig. 3A), which indicated that the variables: temperature,
oxygen saturation, pH, N, and P have similar directions of change,
mainly related to the dominant RDA1 axis and seasonal warm-cold dy-
namics (SI Table 9FG).

Temperature distribution in the water column was consistent with
summer stratification and winter mixing, with the largest atmospheric
influence expressed on surface values (SI Table 5A). However, the sig-
nificance of the interaction of depth and season for temperature values
was only marginally confirmed (p = 0.06, SI Table 5A). Expectedly, in
line with temperature, levels of inorganic nutrient salts (N, P) increased
during the warm season.

Salinity and TDS differed between depths, with the surface layer
statistically different from the deeper water layers (SI Table 8BC). These
vertical trends are in agreement with the results of the RDA analysis
(Fig. 3A), which indicated that salinity and TDS have similar directions
of change mainly related to the RDA2 axis and the depth of the water
layer (SI Table 9FG).

3.2. Bacterial water column indicators

Multivariate analysis of bacterial indicators revealed a significant
influence of seasonal change on bacterial abundance (Table 2C).
Increased abundance was more pronounced in the cold season for both
HPC and Vibrio spp. (Sl Table 8JL and Table 2D), consistent with the
observed seasonal dynamics of oxygen saturation. RDA analysis indi-
cated that Vibrio spp. and HPC have similar directions of seasonal change
(mainly related to the RDA1 axis; Fig. 3B, SI Table 10), i.e. HPC and
Vibrio spp. exhibit higher abundances in cold season, while Coliforms
exhibit higher abundances in the warm season.

Depth was not a significant factor determining the vertical distri-
bution of bacterial abundances, except in the case of Vibrio spp. where a
marginally significant difference was observed between surface and
other depths (SI Tables 8L and 2D). However, RDA clearly separated the
surface layer from the others along the RDA2-axis suggesting that Vibrio
spp. and Coliforms prefer deeper layers in respect to HPC (Fig. 3B, SI
Table 10).

s

3.3. Interd ies between i

P

Consistently with previous analysis, oxygen saturation, pH, N, and P
show a significant positive correlation with temperature (Fig. 4A, SI
Table 11A). An additional (positive) correlation is found for (i) inorganic
nutrient salts (N and P), indicating coherent dynamics of their sources
and ecosystem pathways, and (ii) salinity and TDS (Fig. 4A, SI
Table 11A).

All bacterial abundances correlate with temperature (Fig. 4A, SI
Table 11C). Vibrio spp. and HPC correlate negatively with temperature,
consistent with our previous analyses that indicated a significant in-
crease in their abundance during the cold season. Conversely, coliforms
correlate positively with temperature. Significant negative correlation is
obtained for: (i) Vibrio spp. and pH, N, P; and (ii) HPC and oxygen
saturation, pH (Fig. 4A, SI Table 11C). Among bacterial indicators, only
HPC and Vibrio spp. show a significant (positive) correlation (Fig. 4A, SI
Table 11B). Innate positive correlations of oxygen saturation, pH, N, and
P with temperature complicates interpretations of the observed
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correlations. RDA analysis uses joint regression and ordination to ac-
count for common covariance on temperature, and explore explanatory
power of environmental variables (Fig. 4B, SI Table 12). The environ-
mental variables explain 26.12% (Ruqj = 17.6%) of the variance in
bacterial abundances (Fig. 4B; SI Table 12). When considering the cor-
relation between the explanatory variables, temperature is the best
predictor of bacterial abundances, followed by P (SI Table 13).

3.4. Distribution of pathogenic bacteria in the water column

Water quality, as defined by thresholds in Table 1, was generally
excellent. E. coli (Fig. 5) had the best score: more than 95% of the
samples collected at each station had excellent quality. Enterococci had
excellent quality for more than 91% of the samples, while less than 64%
of the samples tested for Vibrio spp. fell into this category. The signifi-
cantly lower result for Vibrio spp. suggests that either (i) prevalence of
potentially pathogenic Vibrio spp. is of real concern, or (ii) the thresholds

originally adopted from the enterococci regulations do not correctly

reflect the risk of disease.

Significant difference in water quality between seasons was detected
for enterococci and Vibrio spp. (Fisher's tests, p < 0.05, SI Table 14,
Fig. 5). Water samples analyzed for the presence of enterococci and
Vibrio spp. were of lower quality during the cold season, which in the
case of Vibrio spp. is consistent with PERMANOVA and RDA analyses
(Subsection 3.2), which indicated greater abundance of Vibrio spp.
during the cold season (Fig. 3, B; SI Table 8. L, SI Table 10 F, G). Fisher’s
test (p > 0.05, SI Table 14) did not confirm significantly worse water
quality with respect to E. coli during the warm season, although
consistently with the previous RDA analysis result (Subsection 3.2) there
was a slight decrease in water quality during the warm season (Fig. 5).
The decrease suggests an association between higher abundance of total
coliform bacteria, and the warm season (Fig. 3, SI Table 10. F, G).

Water quality expressed by the presence of enterococci and E. coli did
not vary significantly throughout the water column (Fisher’s tests p >
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Fig. 5. Distribution patterns of water quality indicators for E. coli, enterococei, and Vibrio spp. by site, season and water layer. The water quality categories for Vibrio
spp. are based on the thresholds originally adopted from the enterococei as the ones for potentially pathogenic Vibrio spp. do not yet exist.

0.05, SI Table 14, Fig. 5). Conversely, the quality expressed by the
presence of Vibrio spp. had significantly better quality at the surface than
at other depths (Fisher’s test, p < 0.05, SI Table 14, Fig. 5). This result is
consistent with the results of previous RDA analyses (Subsection 3.2),
which indicated a greater preference of Vibrio spp. for deeper layers
(Fig. 3, SI Table 8. L; SI Table 10. F, G).

4. Discussion

An intensive analysis of a broad set of indicators in Mali Ston Bay, as
an example of a nearshore aquaculture site, generated four key findings.
First, the environmental conditions, organic enrichment and bacterial
abundances did not differ between the fish farm and the remote (con-
trol) site, thus indicating a uniform environment. Hence, either (i) the
fish farm has no effect on the measured parameters even at the farming
site, or (ii) the influence of the farm affects the whole area, or (iii) there
is a strong alternative anthropogenic influence overriding effects of fish
farming.

Second, bacterial abundances across seasons followed an unexpected
pattern: HPC, enterococci, and Vibrio spp. thrived during the cold season
despite optimal temperatures for Vibrio spp. growth reached during the
warm season. Surprisingly, greater Vibrio spp. abundances were not
related to temperature increase as expected (Sheikh et al., 2022; Froe-
lich et al., 2019; Takemura et al., 2014; Pruzzo et al., 2005), and actually
observed for the coliforms. The suppression of Vibrio spp. growth on
both sites due to antibiotic use on the farm is unlikely to have caused the
anomalous pattern as the use of antibiotics at the farm site is fairly
limited. POM did not vary across seasons, and can therefore not be
responsible for the anomalous patterns. TDS, however, was higher
during the cold season, suggesting the organic component of TDS could
be at least partly responsible for the anomalous patterns if used as a
potential food source for the bacteria (Thickman and Gobler, 2017;
Johnson et al., 2012).

Third, bacterial abundances observed in sediment support the thesis
suggested by previous research that sediment is a reservoir for various
bacterial species, especially Vibrio spp. (Kapetanovic et al., 2022; Chase
etal., 2015; Perkins et al., 2014; Vezzulli et al., 2009). A recent paper by
Yang et al. (2022) on V. parahaemolyticus disease dynamics demon-
strated how persistent reservoirs, such as sediment, potentially generate
most of the outbreaks. Reinfection from sediment could be responsible
for the observed uniformity of Vibrio spp. presence in our results.

Fourth, measurements of Vibrio spp. abundances provide additional
information on water quality across seasons and depths:

o Traditionally used indicators cannot be used to estimate risks of
vibriosis because Vibrio spp. abundance follows a different seasonal
abundance pattern (Fig. 3, and Fig. 5),

e Vibrio spp. abundance frequently indicate poor water quality even
when typically used microbial indicators indicate excellent and/or
good water quality (Fig. 5).

Therefore, incorporating Vibrio species in water quality monitoring
could broaden the perspective of the state of the environment and or-
ganisms in - and dependent on - coastal waters. Inclusion of Vibrio spp.
into legislation has already been suggested in the 1980s (Robertson,
1984), but effective monitoring requires additional research e.g. on the
appropriate thresholds for water quality categories.

Threshold values for Vibrio spp. abundance used in this paper are
conservative. We set the threshold for sufficient’ water quality to 100
CFU/ml, the value reported to result in bacterial transmission into or-
ganisms following prolonged exposure to Vibrio spp. (Kim and Lee,
2017). Therefore, even the 'sufficient” water quality category has known
adverse effects on organisms which should arguably only appear in
*poor’ category. Other categories were based on thresholds for entero-
cocci (Table 1), who share the conservative threshold for ’sufficient’
water quality. Hence, a scale tailored to Vibrio spp. would probably be
even more stringent, with 100 CFU/ml probably already belonging to
the *poor’ category further bolstering the case for Vibrio spp. monitoring.

4.1. Shortcomings in current Vibrio spp. monitoring practices

Monitoring Vibrio spp. abundance prior to potential hazards could
help prevent vibriosis outbreaks, both in aquaculture and humans. This
was recognized by the European Centre for Disease Prevention and
Control (Levy, 2018). They have developed a Vibrio suitability tool, for
informing ECDC and the public, which uses daily updated remote
sensing data such as sea surface temperature and salinity to show the
environmental suitability for Vibrio growth in the Baltic Sea during
summer (https://geoportal.ecdc.europa.eu/vibriomapviewer/). While
tracking limited to summer months may be suitable for the Baltic Sea,
vibriosis outbreaks in the Adriatic (and, presumably other Mediterra-
nean seas) have been observed during the spring (Veic, 2016; Zupici¢
et al., 2022). These, and potentially other areas, would then require
broader monitoring than already exists in the Baltic region especially
since existing fecal bacteria (fecal coliforms and/or E. coli), as seen in
our results, cannot be used as indicators of risks from Vibrio spp. (Ryder
et al., 2014).

As established disease agents (Baker-Austin et al., 2018; Brumfield
et al.,, 2021), Vibrio spp. are primarily monitored in some countries e.g.
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the U.S. (Center for Food Safety and Applied Nutrition, 2011) and
Australia (Food Standards Australia New Zealand, 2022) to ensure food
safety; and also identified after diagnosis of infections (Baker-Austin
et al., 2018; Brumfield et al., 2021). The U.S. Center for Disease Control
and Prevention runs a Cholera and Other Vibrio Illness Surveillance
(COVIS) system that collects data on pathogenic Vibrio species: infection
type and incidence, and geographic location of cases over time (Levy,
2018). In Europe, however, there’s a significant lack of data concerning
Vibrio spp. presence in the environment and its impact on human health.
The European Union doesn’t mandate Vibrio infection reporting, and
laboratories test only for Vibrio infections in patients with post-travel
diarrhea, primarily to exclude Vibrio cholerae (Semenza et al., 2017).
Adequate Vibrio spp. data collecting and reporting would help enhance
public health strategies, ensuring both food safety and timely medical
interventions in affected regions.

4.2. Potential benefits of monitoring Vibrio spp. in marine aquaculture

Monitoring of Vibrio spp. would, even if not legislated, help inves-
tigate important issues in aquaculture. For example, the unusual Vibrio
spp. abundance patterns could be caused by re-suspension from the
sediment, or could be caused by an unobserved factor such as the in-
fluence of organic matter or nutrient influx. Regular long-term moni-
toring would help disentangle the two factors, and inform aquaculture
facilities on risks of potential outbreaks in time to (i) prevent economic
losses and environmental damage resulting from vibriosis outbreaks,
and (ii) ensure seafood safety by preventing foodborne diseases. These
issues are especially relevant for the Mediterranean region due to high
levels of aquaculture production, sea-related tourism, and high levels of
local seafood consumption.

4.3. Limitations to our approach

Limitations in our current approach are primarily related to data
scarcity (Gorgoglione et al., 2020). Our analysis relied on the available
dataset (Jug Dujakovi¢ et al., 2022; Purgar et al., 2023) collected at two
stations in Mali Ston Bay, a coastal area of significant economic and
recreational value. Hence, our results may be applicable to a limited
region or types of environments only even though some studies suggest a
wider applicability (Robertson, 1984; Levy, 2018).

While establishing appropriate water quality category thresholds is
crucial for addressing Vibrio spp. abundance as a water quality indicator,
several notable knowledge gaps exist. We cannot definitely assert that
abundance is the ideal measure for monitoring Vibrio spp. To better
address economic and health concerns, it might be more appropriate to
focus on monitoring the pathogenic species only. Whether this is a viable
(or even necessary) strategy depends on relative relationships between
genus and (pathogenic) species-level trends (e.g. V. parahaemolyticus,
V. vulnificus) an argument already made by Brumfield et al. (2021).

5. Conclusion

In conclusion, indices related to Vibrio spp. are a good candidate for
inclusion in water quality monitoring strategies, especially in aquacul-
ture, because they provide additional information on water quality and
health risks for both humans and marine organisms. More research,
however, is needed before the appropriate indices can be defined and
included in legislature. The focus should be on identifying (i) thresholds
for water quality categories, and (ii) appropriate species that capture
disease risks for both humans and animals. Furthermore, the observed
anomalous pattern of higher bacterial abundance during the cold season
emphasizes the necessity for a holistic approach to Vibrio spp. research,
and ecosystem studies in general.
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Quantifying research waste in ecology

Marija Purgar©'2, Tin Klanjscek' and Antica Culina®3

Research inefficiencies can generate huge waste: evidence from biomedical research has shown that most research is avoidably
wasted and steps have been taken to tackle this costly problem. Although other scientific fields could also benefit from iden-
tifying and quantifying waste and acting to reduce it, no other estimates of research waste are available. Given that ecological
issues interweave most of the United Nations Sustainable Development Goals, we argue that tackling research waste in ecology
should be prioritized. Our study leads the way. We estimate components of waste in ecological research based on a literature
review and a meta-analysis. Shockingly, our results suggest only 11-18% of conducted ecological research reaches its full infor-
mative value. All actors within the research system—including academic institutions, policymakers, funders and publishers—
have a duty towards science, the environment, study organisms and the public, to urgently act and reduce this considerable yet
preventable loss. We discuss potential ways forward and call for two major actions: (1) further research into waste in ecology
(and beyond); (2) focused development and implementation of solutions to reduce unused potential of ecological research.

analytical codes and—ultimately—derived results"”. Only a

small and likely biased subset of the output is published™! and
is thus available as information, which is often used in evidence syn-
thesis™. Hence, much of potential knowledge stays hidden. More
worryingly, when the ‘publish or perish’ research culture’ couples
with human cognitive biases® and lack of training’, even data col-
lection and analysis can be suboptimal and biased. These issues
are becoming hard to ignore. Emerging evidence indicates that the
problem could be relatively large across the sciences'*", including
ecology” ", and is exacerbated by the failure to replicate results of
previous studies across disciplines'”-"”. Some think we are facing a
crisis”’. Yet, to understand how much information we lose in the
current research and publishing system, and how to best act to rec-
tify the problem, we need a quantitative estimate of information loss
(that is, research waste) over the research life cycle. Yet, research
waste has been quantified only in medicine”.

A highly influential seminal editorial by Altman®, and follow-up
work on research waste in medicine’ (estimated 85% waste, glob-
ally equal to over US$170 billion annually*) triggered a series of
seminars, meetings and the introduction of new policies that tar-
get reduction of the waste in medicine**”, thereby increasing the
value of medicinal research. We want to start a comparable global
and focused movement in ecology but also across the sciences to
quantify the problem of research waste and facilitate a more serious
and coordinated move towards changing standards for research and
publishing. Identifying research waste is clearly the first step.

‘Ignorance is expensive™. This statement also applies to igno-
rance of research inefficiencies that can generate huge waste. The
health of our environment, and thus of humans, and our ability to
solve global challenges depends on robust and well-informed eco-
logical research. As ecologists, as well as those who fund ecological
research, we must aim to reduce the waste produced in our work.
But how large is this waste and how big a problem is it?

Research generates a wealth of output: datasets, workflows,

10-1

Components of research waste

Research waste accumulates over the classical research life cycle
(Fig. 1). The main stages of the research cycle for which we estimate
research waste are: study planning (includes core study design, data

collection and data analysis); results reporting; and publication. For
our classification of waste components, we consider that research
waste generated during data collection and data analysis is a prob-
lem of study planning. Well-planned studies should foresee, before
data collection and analysis, the core study design (for example,
experimental treatment allocation for the data collection set-up),
exact data collection procedures (for example, blinding while col-
lecting data) and statistical approaches that are appropriate given
the core study design and the type of data collected (for example,
controlling for covariates).

We distinguish two types of waste: core waste and exploitative
waste. Core waste is all the conducted (and funded) work that
never gets published. The causes of core waste are dual: low-quality
studies and publication bias. Low-quality studies are unpublished
because they are poorly planned or poorly conducted. Their pub-
lication would likely be detrimental. Publication bias, on the other
hand, prevents publication of the research of adequate conceptual
and methodological quality. This research is unpublished solely
because its results are not considered ‘interesting’ (for example, null
results). Exploitative waste represents a reduced potential of pub-
lished work to inform the users (that is, to be exploited by the users).
Exploitative waste is generated by all published studies with issues
at the study planning stage’” or result reporting stage'’. Core and
exploitative waste combine and lead to the overall waste that accu-
mulates over the research life cycle.

How much research in ecology is avoidably wasted?

In this study, we provide a breakdown of the components of
research waste based on a review of published literature (Methods
and Supplementary Methods). We identified 34 meta-studies that
estimated the components of research waste in ecology. We define
a meta-study as a study that used published (and less often unpub-
lished) studies to estimate different components of waste in ecol-
ogy (at the study planning, at result reporting and at the publication
stage). Only one of these meta-studies used an indirect estima-
tion method (below and Supplementary Methods) and was thus
excluded from the meta-analysis. Thus, our overall sample size was
33 meta-studies that, based on 10,464 studies, provided 43 esti-
mates of research waste components. We summarized estimates of
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Fig. 1| Stages of the classical research life cycle. We consider that any suboptimal study planning leads to waste in data collection and data analysis.

This is because data collection and analysis should conceptually happen at the study planning stage even though physically conducted later. Further, the
study planning stage influences the publication stage because badly planned studies are less likely to be published. The components of the research life
cycle translate into components of research waste (right) where core waste represents all unpublished work (due to either low-quality study planning

or publication bias) and exploitative waste represents the component of published research with a limited ability to inform future work (that is, to be
exploited by the users) either because the study conducted (and later published) was of low quality (for example, issues with study design) or because the
results of the study were reported in a way that prevents their use (for example, effect size or sample size not reported).

research waste that belong to the same waste component using a
meta-analytical model (Methods). In this study, we weighted each
effect size by the sample size of a meta-study. When combined,
these meta-analytical estimates of the components of research waste
led to the first estimate of the overall research waste in ecology.

We investigated two scenarios; both give worryingly high esti-
mates of the overall research waste (Fig. 2). The best-case scenario
assumes that waste components overlap, that is, that all under
reporting appears in poorly planned studies, leading to 82% waste.
In the worst-case scenario, poor planning and under reporting do
not happen in the same studies, increasing the waste to 89%. Hence,
between 82 and 89% of research appears to be avoidably wasted, or,
in other words, unused. Interestingly, these numbers are very close
to the only other existing estimate of 85% waste for medicine”’. We
provide the breakdown of the waste components below.

Core waste. Core waste is all the work that is unpublished due to
either its low quality or publication bias. Meta-analysis of 10 direct
estimates from 9 meta-studies (based on an overall sample size of
2,252 studies) estimated that core waste equals 44.7% (95% confi-
dence interval (CI) 44.2-46.7%; Fig. 3a) of research. Estimates from
the meta-studies included the percentage of unpublished projects
(for example, projects collecting telemetry data that never pub-
lished a single result”), unpublished theses chapters (for example,
Koricheva”) or unpublished literature (for example, Bennett and
Adams™). Only one of the meta-studies'® provided an indirect esti-
mate of unpublished research (using the trim and fill method™). We
excluded this indirectly estimated value from the main meta-analysis
(see the Supplementary Methods for the reasons) but we show
the recalculated meta-analytical mean with this indirect estimate
included (Supplementary Results and Supplementary Fig. 4). The
meta-analytical estimates of core waste were similar for meta-studies
that concern broader areas of ecology (for example, ecology, conser-
vation ecology) and those with a narrower topic coverage (for exam-
ple, facultative sex ratio adjustment in birds), as shown in Fig. 3a.
We lacked data to calculate the proportion of core waste caused
by publication bias versus that caused by studies that are unpub-
lished because of their low quality. Only one meta-study compared

Published?

41%under- |
reported
*No sample size
* No effect size

* No measure of

45%
unpublished
* Low-quality work
* Lack of time

67% poorly
planned
* No control group
« Pseudoreplication
+No blinding

« Incorrect analysis

A

82% wasted

* Publication bias
uncertainty
(for example, Cl)

89%
> wasted

Fig. 2 | Overall estimate of research waste of ecological research based on
a meta-analysis of waste at each stage (with examples of causes). In the
best-case scenario, 82% of research is wasted and thus is unused because
all under reporting is assumed to happen in poorly planned studies. In

the worst-case scenario, 89% of the research is unused because all of

the under reporting is assumed to happen in the otherwise well-planned
research. Consequently, only 11-18% of conducted ecological research can
inform users (other researchers, public, policymakers) fully.

the quality of study design between published and unpublished
studies”, finding that 13% of unpublished studies, and 25% of
published studies, lacked a control group. Further, the study by
Koricheva™ broke down the reasons why some of the 187 doctoral
theses chapters were never published. She found that 10.1% of these
were never submitted for publication, largely due to lack of time
(68%). Of 156 submitted chapters, 16.7% were rejected. Of these,
42.5% were rejected because of issues at the study planning stage
(study design issues, data analysis issues, poor theoretical back-
ground), while around 14% were rejected because of the lack of
novelty in the findings.

Exploitative waste. Exploitative waste represents the component
of published research with a limited ability to inform future work
either because the study conducted (and later published) was of
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Fig. 3 | Estimates of the main components of research waste. a, Estimates of the main components of research waste, from each meta-study, and a
boxplot of their distribution. b, Breakdown of research waste generated during the study planning stage, partitioned between different temporal stages

of the research life cycle. Left panels: estimates of research waste (circles) as reported by each meta-study (whisker plot denotes their distribution). The
circle size is proportional to the sample size used in each meta-study. The circles are coloured by the degree of generality, with 1 representing meta-studies
covering narrow ecological subfields and 3 representing meta-studies not limited to a certain ecological subfield (that is, are broad). The boxplot central
line represents the median of the estimates, the lower and upper edge of the boxplot represent the 25th and 75th percentiles of the distribution and

the whiskers are the smallest and largest value within the 1.5 times interquartile range below and above the 25th and 75th percentiles. Right panels:
meta-analytical mean of all effect sizes, i.e., proportion of research wasted (black circles), effect sizes coming from meta-studies with a narrow scope

(generality 1, blue circles) and broad scope (generality of 2 and 3, grey circles),

low quality (for example, issues with study design) or because the
results of the study were reported in a way that prevented their
use (for example, effect size or sample size not reported). A shock-
ingly high percentage of published research has issues at the level of
study planning: the meta-analytical mean of 22 estimates from 21
meta-studies with an overall sample size of 7,505 studies, showed
that 67.4% (95% CI 66.3-68.4%) of published studies in ecology
have issues at the planning stage (Fig. 3a).

Conceptually, the core study design (for example, randomization
of treatment units), data collection protocol (for example, blinded
data collection) and analysis plan should be created at the study
planning stage. Yet, timewise these happen sequentially and refer to
different time steps of the classical research life cycle (Fig. 1). Thus,
we broke down the study planning stage into estimates that corre-
spond to these three different time steps of the research life cycle. The
meta-analytical mean of 16 estimates from 15 meta-studies with an
overall sample size of 6,606 studies, showed that 65.2% of studies (95%
CI 64.0-66.4%) have core design issues (Fig. 3b). Most core design
issues are caused by pseudo-replication (for example, Hurlbert™). At
the data collection stage, the only available estimates were those for
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with a 95% ClI.

blinded versus non-blinded data collection: based on 5 estimates with
a sample size of 981, it appears that most of the studies in ecology
do not blind the observer to the data (81.5%, 95% CI 79.0-83.9%;
Fig. 3b). Finally, at the statistical analysis stage, 4 estimates with a
sample size of 288 showed that overall 47.1% (95% CI 41.3-52.8%)
of analytical choices are suboptimal or incorrect. The severity of the
problem is slightly worse when considering only the estimates from
the meta-studies that capture the general field of ecology (Fig. 3b).
The results of the research will be used by different users (other
researchers, policymakers, industry), commonly in the form of
evidence synthesis’®. The results can be well reported, reported
incorrectly (misreported) or under-reported. Under-reporting is
common, with 40.7% (95% CI 38.7-42.8%; Fig. 3a) of results being
under-reported (based on 9 estimates with a sample size of 2,246). For
example, a large proportion of results were reported without effect
size, sample size or measure of uncertainty around the estimate. Our
review did not identify any estimate of misreported results in ecology.
Core waste undoubtedly constitutes loss of knowledge.
However, to determine how much exploitative waste contributes
to information loss is difficult. Even non-rigorously conducted
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and under-reported research can still have an informative value,
albeit reduced compared to rigorous or well-reported research.
For example, a study reporting a direction of an effect, without an
effect size, will have a higher informative value than if the result
was not reported at all. For a similar reason, we opted to exclude
estimates of underpowered studies from our calculations of waste.
Underpowered research can still lead to valid conclusions and can
contribute to the overall evidence for a certain effect. Power is not
only a statistical issue, but is limited by finances, time available and
sometimes by the study system or organism (for example, rare spe-
cies). However, we call for more consideration of sample size cal-
culation in ecology and for study designs that are better adjusted
to small sample sizes because our data suggest that almost all of the
studies in ecology are underpowered (for example, Jennions and
Moller’; also see the Dataset_starting data, available in the data
package™, for extracted estimates of underpowered research in ecol-
ogy). Further, low-powered studies would benefit from being more
straightforward about the implications that small sample sizes can
have for the conclusions reached; they would benefit from coordi-
nation between groups that study the same phenomenon with the
same methods.

Other factors that contribute to research waste

‘We estimate that a very high proportion of ecological research (82—
89%) has limited information value because of the research waste
accumulating over the research life cycle. Yet, other factors also
contribute to the potential of research to inform future research,
policy or interventions. These factors include (but are not limited
to) access options (whether research has been published open access
or with a paywall), the transparency and openness of the underlying
research process and usability of codes and datasets. In this article,
we develop on some if these factors.

Accessibility of publications. Published results are unfortunately
not equally available to everyone. We estimated, based on the lit-
erature listed at the Europe PMC™ (see Supplementary Methods
for details) that 57.7% of 19,165 articles published in 94 ecologi-
cal journals between 1957 and 2021 are open access. The situation
changed for the better: among articles published after 2014 (11,980
articles), 73.0% are open access. This likely reflects overall trends in
mandates by research funders to make funded research open access
(ref. ¥, also see ROARMAP https://roarmap.eprints.org/). Open
access to published articles also exposes information to a higher
number of users and thus has a higher potential to lead to discover-
ies, generate new ideas or spot errors. However, while open access to
publications enables equality in access to information, it still creates
inequality in who can publish open access™" because open access
fees are beyond reach for many researchers. Second, time between
submission and publication (and thus its accessibility) can often be
long, which can delay and even reduce the efficiency and impact of
research”. Preprints might be a solution to both problems because
they allow work to be visible before its official publication, while
also making the preprint version available to anyone to read*'.

Unpublished data, methods and codes. Published results are only
the tip of the iceberg, whose bulk consists of datasets, methods
and data processing and analysis codes. These can be often more
informative than the published results themselves, especially if the
results are, as we have demonstrated in this work, under-reported.
Additionally, having access to all research components helps
the intended audience understand how published results were
derived*. More importantly, reuse of data, methods and code can
further accelerate scientific discovery and progress'**+**. While the
amount of open data is increasing in ecology”, we lack a large-scale
estimate of its quality and thus usability (for example, as done on
a smaller sample by Roche et al.*"), which seems rather low* (for
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example, lack of meta-data). A recent study'* on code availability
estimated that even among journals with a code policy, only around
27% of papers published also submitted their analytical codes, while
only 21% papers were potentially computationally reproducible
(that is, had data and code).

Reference to previous studies. Research waste is reduced when
any new research is informed by past research”'" by, for example,
conducting a systematic review of existing literature before start-
ing new research. Such a practice has been encouraged (albeit still
not widely adopted’®) in medicine, especially since the 2014 Lancet
series on ‘Research: Increasing Value, Reducing Waste’ Ecology is
lagging despite recent call for systematic review as a first stage of the
research cycle'’—probably because a lack of estimates (and there-
fore awareness) of the extent of the problem. When time or finances
are limited, other types of review (for example, rapid evidence syn-
thesis'”) could be a solution. In this case, the costs and benefits of
such an approach must be carefully considered™.

Limitations of our approach

Our approach to calculating research waste components has a few
limitations. First, like most literature reviews it is restricted to the
literature published in English*”. Thus, strictly speaking, we have
estimated the research waste of research published in the English
language. The evidence on whether research waste components
differ between languages is limited and is non-conclusive in medi-
cal research™*. Only one meta-study in our sample addressed the
difference between English and non-English language literature:
Vorobeichik and Kozlov* found that studies published in English
tend to have a better quality of result reporting compared to studies
published in Russian (68 versus 28% of results are well reported,
respectively).

Second, we were not able to look into the trends because most of
the meta-studies considered extended periods (for example, all the
work published before a certain year). Based on several studies that
reported separate values for different periods, it appears that there
was no major shift in reducing waste components over time (see
Dataset_MA_final data from the data package™).

Finally, our literature review did not retrieve any estimates of
the prevalence of some of the questionable research practices™.
Examples of these practices include optional stopping in data col-
lection until a ‘wanted’ result is obtained'*" or taking advantage of
the flexibility in the choice of analytical procedures (for example,
including and excluding variables)™ to obtain the desired result.
One meta-study estimated the prevalence of questionable research
practices in ecology but only based on surveys of researchers’”. This
study detected that among 807 ecologists and evolutionary biolo-
gists, 42% had collected more data after inspecting whether results
were statistically significant, and 4.5% fabricated their data.

For the above reasons, we want to call for a community-wide
discussion on the implications of different components of the
research waste for knowledge generation and knowledge loss and
for community-driven solutions to waste reduction. Further, we
need to continue working on estimating the waste components on a
larger set of ecological literature, including time trends.

Priority actions

Our results are plain—we have a huge knowledge loss from the
onset of studies to the publication of results. In the twenty-first
century and in line with meeting sustainable development goals”,
our priorities should be clear: reduce research waste and increase
the knowledge gain from the rich ongoing ecological (and other)
research. Responsibility to do this lies with funders, publishers,
research institutions and researchers since all of them contribute to
the research culture and research practices. The aim of our study
was not to dissect all the possible ways for reducing research waste,
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but start and facilitate a serious discussion and concrete actions on
changing this alarming situation (as has happened in medicine).
Thus, we provide only a brief outline of some potential solutions.
These include changes in incentives and mandates, promotion of
rigorous research practices and transparent research and better
training of and support for scientists. Clearly, some solutions will
differ among fields and subfields. Therefore, we strongly advocate
further research into methods for quantifying the problem and
finding optimal field-specific but also general solutions.

Some of the components of research waste, as detected by our
study, should be easy to correct. For example, blinding leads to more
robust results compared to unblinded research' and should not
incur any additional study costs. Therefore, researchers should ide-
ally blind themselves to data collection. However, in ecology, which
is often based on field studies, blind data collection is often impos-
sible. If so, researchers can blind themselves to data analysis. A nice
overview on why blinding is important and how to do blind data
analysis can be found in MacCoun and Perlmutter™.

Quality of reporting can also be rapidly increased as high-quality
result reporting should not be time-consuming or costly; many
guidelines on result (and method) reporting are available™*’.
Some changes, however, might require more effort and time. For
example, preregistration of studies is still not widely adopted in
ecology but it has been shown to reduce bias in research (in medi-
cine®’). Preregistration also enables detection of errors in study
design before the study is conducted, thus reducing (or prevent-
ing) the main component of waste as detected in our study (study
planning stage).

Funders and academic institutions have a primary responsibility
for the reduction of waste. They shape the behaviour of researchers
by deciding what research to fund and by setting the reward, pro-
motion and mandate systems in science and academia. A long-set
focus on journal publication (especially in high-impact factor jour-
nals) and an interconnected focus on securing competitive funding,
were set up to select the best science and best scientists. However,
it appears that this system is also good at selecting for question-
able research practices and non-rigorous science and scientists,
including low diversity of those selected®’. For example, a recent
large-scale study showed that over 50% of Dutch scientists engage
in questionable research paractices®.

The good news is that funders, institutions and publishers
are becoming aware that incentives and mandates must change.
Utrecht University has completely abandoned impact factor in hir-
ing and promotion®', while the European Commission is starting
a reform of the research assessment™. In parallel, the European
Commission has achieved a high level of open access publications
(83%) under the Horizon 2020 programme®, while the University
of California leveraged its size and purchasing power to force open
access concessions from Elsevier”. These are just some examples
of changing incentives and mandates. Publishers can then build
on the system by further regulating the type of research that gets
published, and can set additional requirements. For example, an
increase in the quantity of open data has been reported after many
journals adopted open data policies®. Similarly, it has been recently
shown that the introduction of Nature’s reproducibility checklist
has improved the reporting standards of papers published by the
Nature Publishing Group®.

The bad news is that the incentives are shifting very slowly and
in a non-synchronized way between countries and disciplines.
Science is a global, cross-disciplinary endeavour. Thus, it is impera-
tive to establish a global set of new incentives and rules. Further,
new incentives should promote rigorous research even though such
research takes longer, and might also be more likely to produce
less ‘exciting’ but more robust findings. Consequences of notable
international efforts to change the evaluation of researchers should
be examined and, if successful, widely adopted (for example, the
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San Francisco Declaration on Research Assessment). Finally,
funders need to become more transparent in their funding deci-
sions, being mindful that the funded research is not only of high
priority but also of high methodological quality*“'.

Related to the above, funders and academic institutions should
provide an adequate system to support scientists in conducting
a more robust science. This support should include training of
researchers and support from skilled personnel and infrastruc-
tures. Thus we join and substantiate calls for: (1) more courses
on methodologically robust and transparent scientific research
in student curricula and training of established researchers™®'"’;
(2) increase in the involvement of experienced methodologists,
statisticians and data stewards on projects®”’ by, for example,
securing funding for such personnel or establishing advisory bod-
ies that would provide advice and guidance for funded projects;
(3) better technical/infrastructural support™ for enabling open
science practices, rigorous reporting, archival of all elements of
research and creating linkages among them. We especially call for
support for preregistration of studies since many of the issues with
study design and later appearing questionable research practices
can be avoided this way.

The outlook

Apart from the immediate actions listed in the previous section, we
also call for coordinated meta-scientific research and more fund-
ing for meta-science in ecology (as already done seven years ago in
medicine”). Open science”' and meta-science'’”, two movements
that span scientific disciplines, have emerged largely because of the
need to reduce the impact of research biases on scientific knowl-
edge. Open science aims to make all the components of the research
cycle available to everyone. This generates higher knowledge gains
based on the research conducted and increases trust in science™.
Further, open science calls for changes in scientific incentives since
these are likely at the root of research biases.

Meta-science goes in hand with open science as it investigates
efficiency, quality and bias in the scientific ecosystem, and offers
solutions to the challenges this system is facing'’>. Meta-science
emerged as a discipline very recently, in parallel with a failure of
several large-scale replication projects to replicate results of the pre-
vious studies'’"*. However, meta-science is poorly integrated into
most disciplines. In ecology, meta-science has not even emerged as
a strong research line™, although the number of meta-studies has
been increasing (including this one).

With this work, we also introduce a new term—unused potential
of research. Unused potential is likely much larger than waste but at
the same time impossible to calculate (at present). For example, we
cannot foresee what impact particular research would have had if
its design had been better or if its results were fully rather than par-
tially reported. Further, we believe that focusing on unused poten-
tial instead of waste better facilitates actionable recommendations
for improvement and reduces resistance to adoption.

Our framework can be used (and potentially broadened) to iden-
tify and quantify waste components in other research fields or eco-
logical subfields. Further, we should develop and apply methods to
investigate additional unused potential that transcends pure waste.
Given commonalities across research disciplines, we should then
be able to arrive at a common set of policies that would decrease
unused research potential in science. At the same time, and given
specificity of each research field, we might need to be develop-
ing field-specific solutions. Further work should thus estimate (1)
the exact costs of practices that contribute to research waste (for
example, how much does non-blinding shift the estimates of an
effect) and (2) the costs of different solutions to reducing waste
(for example, the financial or time cost to apply blinding). In this
way we could identify the best (that is, feasible and cost-effective)
set of actions to reduce waste.
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Conclusions

In this study, we arrived to a shockingly high estimate of research
waste in ecological research. Thus, a large part of ecological research
is unused. However, the overall unused potential of any research is
impossible to calculate. This is because we cannot foresee the poten-
tial impact of any single result, dataset or method on knowledge
development or applied solutions, especially since these are some-
times visible only in the far future. This is exactly why we need to
urgently reduce the waste that accumulates over the research life
cycle and open up all of the components of research. Only in this
way we can enable the highest knowledge gain from past and ongo-
ing research.

‘We hope our call will awaken funders, publishers, research insti-
tutions and researchers to the tremendous cost of ignoring unused
potential in ecological research and research in general. ‘Ignorance
is expensive’” and we cannot allow this loss of knowledge to stream-
line and continue. Thus, in our conclusions we repeat the plain
finding—due to suboptimal practices, only 11-18% of conducted
ecological research reaches its full informative value.

Methods

Literature review and data extraction. Tn May 2021, we used the Web of

Science Core Collection datab (please see Supplk y Methods for the
exact content covered) to conduct a literature review Lo locate studies that have
estimated one of the research waste components for ecological literature. We
termed these meta-studies. We used the following search string: ((((unpublished
OR bmitted OR ‘non-published’ OR ‘not-published’) NEAR/5 (thesis

OR theses OR chapter* OR project* OR research OR studies OR study)) OR
((unpublished OR ‘un-reported’ OR ‘under-reported’ OR unsubmitted OR ‘not
published’ OR ‘non published’ OR ‘non reported’” OR ‘not submitted’ OR ‘non
submitted’) NEAR/5 (results OR effects OR effect OR result)) OR ‘publication

bias’ OR ‘confirmation bias’ OR ‘di ion bias’ OR ‘small-study’ OR ‘selective
reporting’ OR ‘incomplete reporting’ OR ‘biased reporting’) OR (‘research waste’
OR ‘wasted research effort” OR ‘wasted research’ OR ‘unutilized research’ OR ‘non
utilized research’ OR ‘wasted funds’ OR ‘funding waste’ OR ‘under-publication’ OR
‘file-drawer” OR ‘low statistical power’ OR underpowered OR ‘cherry-picking’ OR
‘biased results’ OR ‘researcher degrees of freedom’ OR ‘research degrees of freedom’
OR ‘research bias’ OR ‘researcher bias’ OR ‘confirmation bias’ OR ‘p-hacking’

OR ‘observer bias’ OR ‘QRP’ OR ‘suboptimal research practices’ OR ‘sub-optimal
research practices’ OR ‘questionable research practices’ OR ‘suboptimal research
design’ OR ‘sub-optimal research design’ OR ‘questionable research design’ OR
‘suboptimal experimental design’ OR ‘sub-optimal experimental design’ OR
‘questionable experimental design’)) AND (ecolog* OR evolution* OR biology* OR
‘life sciences’).

In this way, we obtained 474 studies that were screened independently by three
reviewers (M.P, T.K. and A.C.) for eligibility. All the meta-studies deemed relevant
after the full screening procedure (12 studies) were subjected to a backward and
forward reference check to locate any additional relevant meta-studies. We repeated
this until no new relevant meta-study was added to our list (four iterations). In
this way, we obtained additional 23 studies. Five meta-studies were included from
other sources based on the prior familiarity with the published literature. We
excluded six meta-studies that only provided estimates of underpowered research
(reasons for this decision can be found in the Supplementary Methods; see the
data package for the references of the excluded studies™). Further, we excluded
one meta-study that provided an indirect estimate of publication bias'". More
details on the methods can be found in the Supplementary Methods. In this way,
we obtained 33 meta-studies " “ with 43 estimates of research waste
components and an overall sample size of 10,464. To each meta-study, we assigned
a degree of generality from 1 to 3, depending on its literature coverage. The degree
of generality describes whether a meta-study is concerned with a narrow research
field within ecology (for example, facultative sex ratio adjustment in birds"’,
coded with 1) or a broad area of ecological research (for example, literature from 9
prominent ecological journals™, coded with 3). The final scores were derived based
on scores given by all three reviewers (M.P,, TX., A.C.). Please see the details in the
Supplementary Methods.

Met: lyses. Nine meta-studies estimated the percentage of unpublished
literature (either as unpublished project, thesis chapters or percentage of grey
literature), based on an overall sample size of 2,252. There were 22 estimates on
the study planning stage of research and 9 estimates of result reporting, based on
an overall sample size of 7,505 and 2,246, respectively. To obtain the mean estimate
of each waste component, we ran a weighted meta-analysis on the published
estimates of the corresponding components (publication, study planning, result
reporting). We also preformed meta-regressions to obtain mean estimates from the
meta-studies (1) with a narrow coverage (degree of generality 1) and those with

more general coverage (2 and 3 combined) and (2) for different subcomponents of
the study planning stage (that is, core study design, data collection, data analysis).
We performed the analysis in the RStudio integrated development environment
v.1.4.1106 (ref. ) using the package Matafor v.2.4-0 (ref. '™). Please see the details
in the Supplementary Methods.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The data needed to reproduce the analyses and create the main text and
supplementary figures have been deposited at Zenodo™ https://doi.org/10.5281/
zenodo.6566100. These include the original effect sizes as extracted from studies
and the final set of the effect sizes used in the meta-analysis. Source data are
provided with this paper.

Code availability

The codes/scripts needed to reproduce the analyses and create the main text and
supplementary figures are deposited at Zenodo™ https://doi.org/10.5281/
zen0do.6566100.
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3. DISCUSSION

This discussion chapter synthesizes key findings from the three peer-reviewed
publications that comprise this doctoral dissertation. The research was centered
around Vibrio spp. abundance, specifically, predictive modeling and statistical analysis,
to enhance the understanding of applicability of existing models from the literature to
predict Vibrio spp. abundance near mariculture and to assess its possible use as an
additional indicator of marine water quality near mariculture. The dissertation also
explored the informative value of ecological research, i.e., the extent of available
information generated by ecological studies which can be reused. High informative
value of research enables researchers, policymakers, and practitioners to reuse
existing data and conclusions in designing more effective strategies for managing
marine ecosystems, mitigating the impacts of climate change, and optimizing
mariculture practices. Conversely, when studies remain unpublished or suffer from
poor design and incomplete reporting, they contribute to research waste, a pervasive
issue previously quantified primarily in medical sciences (Chalmers et al., 2014,
Chalmers & Glasziou, 2009; Glasziou & Chalmers, 2016).

The rest of this chapter examines each hypothesis in turn, placing the findings

in the context of previous research and discussing their implications for future studies.

3.1. (H1) Existing models of Vibrio bacteria growth can be used to predict the

abundance of Vibrio spp. in mariculture.

Hypothesis H1 posited that existing Vibrio growth models from literature, many
of which were originally developed under controlled laboratory conditions, can be
applied to predict Vibrio spp. abundance in natural mariculture environments. The
findings from Publication | (Purgar et al., 2022a) provide partial support for this
hypothesis. While several models, particularly those based on the Baranyi framework,
showed moderate predictive performance in specific datasets, none demonstrated
consistently reliable predictions across all habitat types tested.

The study tested 28 standardized growth models on seven open datasets from
diverse marine environments, including marine aquaculture, urban estuary, estuary,
and coastal area. Predictive accuracy varied considerably depending on habitat
conditions and the inclusion of key environmental drivers. For example, Baranyi

models that incorporated both temperature and salinity performed better than those
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with temperature alone. However, their overall performance was limited in ecosystems
affected by strong anthropogenic pressures, such as around mariculture facilities and
urban estuaries, where organic matter concentrations are elevated.

Elevated inputs of organic matter stem from anthropogenic activities such as
fish feeding and feces, and terrestrial runoff. Vibrio spp., as prototypical copiotrophs,
are adapted to thrive in nutrient-rich environments (Takemura et al., 2014; Thompson
& Polz, 2006) and exhibit a feast-and-famine lifestyle and actively swim toward
nutrient-enriched microzones, including organic particles and detritus (Azam & Malfatti,
2007; Stocker, 2012). Several studies have shown that Vibrio populations increase with
rising concentrations of dissolved organic matter, particularly in coastal environments
(Bullington et al., 2022; Eiler et al., 2007). Thus, the exclusion of organic matter from
existing models likely undermines their predictive capacity, especially in habitats with
fluctuating and elevated nutrient loads. This limitation aligns with previous discussions
on factors that affect Vibrio spp. abundance beyond temperature and salinity
(Brumfield et al., 2023; Oberbeckmann et al., 2012).

Future research should prioritize the development of more integrative and real-
world data driven growth models. In particular, secondary models should be expanded
to incorporate a broader and ecologically realistic range of environmental variables,
especially temperature, salinity, and organic matter. Given the well-documented
influence of organic matter on Vibrio proliferation, future field observations and
datasets should include measurements of dissolved organic matter and related
proxies. Mechanistic models may also benefit from synergy with machine learning
techniques, which could offer improved adaptability and predictive accuracy in real-
world conditions such as marine environments.

The study has several limitations. First, all Vibrio spp. were treated as a single
group, despite known interspecies differences in environmental preferences and
dynamics. While this simplification was appropriate for the study’s broad objective, it
limits the ability to detect species-specific patterns, especially under changing
environmental conditions. Second, a single simulation time was applied to each
dataset. Although varying simulation time per data point might improve fit, it would
undermine the modeling objective by introducing overfitting. Exploring how simulation
time could functionally depend on environmental variables (e.g., temperature) may
offer value but requires further investigation. Third, the study focused exclusively on

published models with well-defined functional forms. While this allowed for systematic
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evaluation and application to both new and existing datasets, alternative
parameterizations or combinations of models may offer improved predictive power.
This study represents an initial step toward such efforts by organizing and
standardizing available primary and secondary models. Alternatively, re-fitting
statistical models may offer a better fit to the datasets and could be particularly useful
in cases where the goal is to interpolate or extrapolate data within a specific geographic
area.

Despite these limitations, the study offers a valuable foundation for adapting
Vibrio growth models to mariculture settings. It highlights the importance of
incorporating key environmental variables, especially organic matter, and
demonstrates the challenges of applying laboratory-calibrated models to complex,
real-world ecosystems. All datasets and code used in Publication | are openly available
on Zenodo repository (Purgar et al., 2022c), ensuring the reproducibility of the
analyses and allowing other researchers to further adapt, refine, or extend the

evaluated models.

3.2. (H2) Vibrio spp. abundance has significant potential to be included in the

regular set of indicators for assessing the water quality in mariculture

Hypothesis H2 proposed that indicators of Vibrio spp. abundance can serve as
a meaningful supplementary indicator for water quality assessment in mariculture
settings. Findings from Publication Il (Purgar et al., 2023) lend support to this
hypothesis by showing that Vibrio spp. abundance provides distinct and potentially
earlier signals of microbial risk compared to traditional fecal indicators.

In colder months, Vibrio spp. abundance indicated microbial risk (i.e., poor water
quality) when conventional fecal indicators signaled excellent or good water quality.
Notably, Vibrio spp. more often exceeded 100 CFU/mL during winter months and
across depths, a conservative threshold associated with risk of bacterial transmission
to marine organisms following prolonged exposure (Kim & Lee, 2017). Although
classified as ‘sufficient’ water quality, this level can still cause harm and may more
appropriately fall under a ‘poor’ category. Since thresholds were based on enterococci,
a scale tailored specifically to Vibrio spp. would likely be stricter. Furthermore, existing
fecal indicators such as E. coli and coliforms, routinely used to assess water quality,

do not correlate with non-fecal Vibrio spp. and thus fail to signal microbial risk
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accurately (Ryder et al., 2014). These findings underscore Vibrio spp.'s potential as an
early warning signal of microbial threat.

Previous studies have consistently shown that Vibrio spp. abundance typically
increases with temperature (Sheikh et al., 2022; Froelich et al., 2019; Takemura et al.,
2014; Pruzzo et al., 2005). The atypical Vibrio spp. abundance seasonal pattern
observed in Publication Il, where Vibrio spp. abundance was greater in colder months,
is unlikely to be explained by antibiotic use at the farm, nor by variations in particulate
organic matter (POM), which remained stable across seasons. However, total
dissolved solids (TDS) were elevated during the cold season, suggesting that the
organic component of TDS may have supported Vibrio proliferation by serving as a
potential nutrient source (Johnson et al., 2012; Thickman & Gobler, 2017). This finding
supports conclusions from Publication I, where organic matter emerged as a likely
explanatory variable for poor model performance in aquaculture sites. Together, these
results indicate that organic nutrient availability may exert a greater influence on Vibrio
dynamics than temperature alone and should be incorporated into both monitoring
programs and predictive models.

In the context of mariculture, monitoring Vibrio spp. remains crucial, even in the
absence of formal regulatory requirements. Long-term surveillance can help identify
drivers of anomalous abundance patterns, such as sediment resuspension or nutrient
influx, enabling aquaculture operators to mitigate microbial risks proactively. Early
detection reduces the likelihood of vibriosis-related losses, protecting both industry and
consumers. Model-based predictions, if properly validated with monitoring data, could
help regulatory agencies set evidence-based limits for Vibrio presence in coastal
waters. These considerations are especially urgent in the Mediterranean, where
intensive aquaculture, coastal tourism, and high local seafood consumption increase
the importance of managing microbial water quality. In regions such as the Adriatic
Sea, where vibriosis cases have been reported as early as spring (Vei¢, 2016; Zupicic¢
et al., 2022), targeted microbial surveillance could strengthen early warning systems.
Adapting these systems to reflect regional environmental dynamics would benefit from
integration with model-based forecasting approaches, such as those explored in
Publication 1, particularly as models are refined to more accurately capture in situ
variability.

Beyond their role in aquaculture, Vibrio spp. also present a public health

concern. Despite the recognition as established human pathogens Vibrio spp.,
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especially strains such as V. parahaemolyticus, V. alginolyticus, and V. harveyi, (Baker-
Austin et al., 2018; Froelich et al., 2019; Ina-Salwany et al., 2019), Vibrio spp. are not
monitored in most European countries. Countries such as the United States and
Australia have implemented food safety regulations requiring Vibrio surveillance in
seafood (Center for Food Safety and Applied Nutrition, 2011; Food Standards Australia
New Zealand, 2022). The U.S. Centers for Disease Control and Prevention (CDC)
operates the Cholera and Other Vibrio lliness Surveillance (COVIS) system, which
tracks pathogenic Vibrio species, infection types, and geographic trends (Levy, 2018).
Meanwhile, in the EU, Vibrio infections are underreported due to the absence of
mandatory surveillance and reporting systems, with testing limited to travel-associated
diarrhea to exclude Vibrio cholerae (Semenza et al., 2017). Closing this data gap would
strengthen food safety, enable timely public health responses, and support the
development of region-specific early warning systems.

The main limitation of the given study is primarily related to data scarcity
(Gorgoglione et al., 2020). The analysis relied on the available dataset (Jug Dujakovi¢
et al., 2022) collected at two stations (fish farm and control site) in Mali Ston Bay, a
coastal area of significant economic and recreational value. Hence, the results may be
limited to a specific region even though some studies suggest a broader applicability
(Levy, 2018; Robertson, 1984). The dataset covers a limited spatial range, which may
affect generalizability. As such, broader sampling and cross-regional comparisons are
needed to validate Vibrio spp. as a water quality indicator under diverse environmental
conditions. The study used genus-level identification of Vibrio spp., which does not
distinguish between pathogenic and non-pathogenic strains. Since only certain species
pose health and ecological risks, species-level resolution is essential for regulatory use
(Brumfield et al., 2021). Additionally, the absence of established threshold values for
Vibrio spp. limits direct interpretation of results within current legislative frameworks,
although the study conservatively applied thresholds designed for enterococci.

Generally, traditional indicators, which are primarily designed to assess fecal
contamination, are inadequate for estimating vibriosis risk or detecting Vibrio-related
microbial threats. Therefore, the findings support the hypothesis (H2) that Vibrio spp.
abundance holds promise as a supplementary water quality indicator. However, further
research is necessary to establish species-specific thresholds and to differentiate

pathogenic from non-pathogenic strains for regulatory applications.
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3.3. (H3) The informative value of ecological research is similar to that estimated

in medicine (about 15%)

Publication Il provided the first quantitative estimate of the informative value in
ecology by synthesizing findings from 33 meta-research studies comprising 43
individual waste estimates. The results of meta-analysis showed that 44.7% of
ecological studies remain unpublished (95% CI: 44.2-46.7%), 67.4% (95% CI: 66.3-
68.4%) have methodological design flaws, and 40.7% (95% CI: 38.7-42.8%)
incompletely report key results such as sample sizes, uncertainty measures, or effect
sizes. Overall, only 11-18% of ecological research reaches its informative value, which
is consistent with the estimate of 15% from medicine (Chalmers & Glasziou, 2009) and
confirms H3. Low estimates of the informative value of ecological research, reduce
potential for informing new studies, and practices such as evidence-based coastal
management.

The informative value of research was estimated for broader field of ecology,
rather than subfields such as, mariculture or aquatic ecology, for two main reasons.
First, there is a limited number of available meta-research studies that quantify
components of research waste across the research cycle within ecological subfields,
which would constrain the robustness of subfield-level estimates. Second, scientific
disciplines, and their subfields, often operate within similar structural frameworks,
including shared research norms, evaluation criteria, and incentive systems.
Therefore, it is reasonable to expect similar patterns of informative value across related
ecological sub-fields. For example, comparable challenges were observed in the field
of medicine (Chalmers & Glasziou, 2009). Nevertheless, future research should aim to
disaggregate analyses by subfields to determine whether important differences exist
and whether tailored, subfield-specific solutions are needed to effectively address
inefficiencies in research cycle and improve scientific practice.

Several additional factors, though not quantified in Publication IlI, further
undermine the informative value of ecological research. These include limited
accessibility of publications, lack of open data, methods, and code, and insufficient
engagement with prior research. As shown in Publication Ill, based on Europe PMC
data from 94 ecological journals, 73.0% of articles published between 2014 and 2021
were open access, likely reflecting the growing influence of funder mandates and open

science policies (Huang et al., 2020). Although, open access increases Vvisibility,
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promotes broader engagement, and enhances the potential for discovery and error
detection, it also introduces inequities: high open access publication fees remain a
barrier for many researchers, particularly those in low-income countries (Ross-
Hellauer, 2022). These elements are essential for understanding how results were
derived and for ensuring reproducibility and reuse of the existing data and code, for
e.g. meta-analyses. Yet, many ecological studies fail to provide these components. For
example, even in journals with code-sharing policies, only 27% of articles include code,
and just 21% are computationally reproducible, often due to poor documentation or
missing metadata (Culina et al., 2020). Finally, many ecological studies fail to build
effectively on previous work by, for example, conducting systematic literature reviews
before starting new research (Grainger et al., 2020). Any new research that is informed
by past studies have the potential to reduce research waste (Chalmers et al., 2014,
Grainger et al., 2020).

Publication Il had several limitations. First, like most literature reviews, it
focused only on English-language publications, which may not capture informative
value in non-English research. Limited evidence suggests differences may exist; for
example, one meta-study (Vorobeichik & Kozlov, 2012) found better result reporting in
English than in Russian studies (68% versus 28% of results well reported,
respectively). Second, it could not capture and analyze time trends, as most meta-
studies spanned broad periods and did not report changes in research waste
components over time. Finally, we found no empirical estimates quantifying the
prevalence of certain questionable research practices, such as optional stopping or
selective reporting, in the reviewed literature. While one survey-based study (Fraser et
al., 2018) revealed that 42% of ecologists had collected more data after checking for
statistical significance, and 4.5% admitted to fabricating data, systematic, evidence-
based assessments of these practices in ecology are still lacking. These limitations
highlight the need for broader community engagement to refine estimates of research
waste and work on practices to improve informative value of research across
ecological sub-fields.

Collectively, the findings from Publication /Il confirm H3 by demonstrating that
the informative value of ecological research (11-18%) is indeed similar to that estimates
from medicine (15%). Addressing this challenge calls for systemic reforms that
promote methodological rigor, transparency, and inclusive publication practices. To

truly harness the potential of ecological research, the field must shift toward open and
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reproducible science that values the integrity and accessibility of all well-conducted
studies, regardless of outcome (e.g., promote publication of non-significant research
findings).

The findings from Publication Il also provide broader context for understanding
the challenges identified in Publications | and Il related to Vibrio spp. abundance
modeling and inclusion in water quality monitoring. For example, the limited predictive
accuracy of existing Vibrio growth models (H1) and the atypical seasonal patterns
observed in Vibrio abundance compared to conventional indicators (H2) may partly
stem from the low informative value of ecological research. Methodological flaws,
incomplete reporting, and limited access to underlying data of existing studies hinder
model calibration, validation, and development, while also limiting the ability to explore
datasets that could inform early warning signs of microbial threats in coastal
environments and development of new indicators and setting threshold values. Thus,
H3 highlights that advancing mariculture and evidence-based coastal management
could benefit from greater availability, transparency, and methodological rigor in

ecological research to effectively build on existing findings.

3.3.1. Pathways to increase the informative value and reusability of ecological

research

Reducing avoidable research waste and maximizing the informative value of
ecological research requires systemic changes, not only in incentives and mandates,
but also in everyday research practices, training, and evaluation standards. Achieving
this transformation requires collective responsibility and coordinated action from all key
stakeholders, including funders, institutions, publishers, journals, and individual
researchers.

Funders and institutions must move beyond quantity-based metrics (e.g.,
publication counts or journal impact factors) and should set up a reward system that
focuses on methodological quality and reusability of research findings (Calster et al.,
2021; Moher et al., 2018). This shift is particularly important in applied ecology, where
studies often inform development of new models, conservation practices,
environmental policies. Notably, Utrecht University has eliminated the use of journal
impact factor in hiring and promotion decisions, serving as a model for progressive

reform (Nakagawa et al., 2020). Funders should also balance research funding in all
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types of research, including replication research (Bierer et al., 2018) and meta-
research (Hardwicke et al., 2020). Replication research is essential for verifying novel
claims and strengthening the evidence base, while meta-research, often described as
research on research, examines the efficiency, quality, and potential biases within the
scientific enterprise, and proposes evidence-based solutions to improve it (Hardwicke
et al., 2020; loannidis et al., 2015).

To translate these systemic shifts into everyday research practice, funders and
academic institutions must go beyond reforming evaluation criteria and actively invest
in the infrastructure, training, and personnel needed to support robust and transparent
science as described in Publication Il (Purgar et al., 2022b). This includes integrating
transparent research methods into academic training and student curricula (Glasziou
et al., 2014; Moher et al., 2016; Touchon & McCoy, 2016), involving statisticians and
data stewards in research projects through targeted funding or advisory boards
(Glasziou et al., 2014; Moher et al., 2016), and building infrastructure for open science
workflows such as preregistration, transparent reporting, and long-term archiving
(Glasziou et al., 2014).

Improving the peer review process is another opportunity to enhance
informative value of ecological research. Findings from Publication Ill suggest that peer
review, in its current form, may not be effectively fulfilling its intended role in ensuring
methodological rigor. Despite undergoing peer review, almost 70% of published studies
exhibited poor study design that the review process is expected to detect. This
indicates that current peer review practices may be insufficient for filtering out flawed
research. At the same time, peer review process is often under-resourced, lacks
transparency, and rarely incorporates specialist assessments of statistics, data
availability, or study design (Bendiscioli, 2019; Tennant et al., 2017). Journals and
publishers should try to assemble a cross-disciplinary review teams, including
statisticians, data curators, and methodologists, to ensure more rigorous and
comprehensive evaluations (Calster et al., 2021). In some journals, such as The Royal
Society (Data Sharing and Mining | Royal Society, 2025), and Behavioural Ecology
and Sociobiology (Bakker & Traniello, 2020) data and code are requested for review
at the article submission stage. Another promising example is Publons, a platform
designed to recognize and reward peer reviewers (Teixeira da Silva & Nazarovets,
2022). Integrated with systems such as Web of Science and ORCID, Publons
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facilitates transparent and traceable review contributions, connecting researchers and
publishers through a more accountable review process.

Implementing open science practices offers a tangible strategy for reducing
knowledge loss in ecological research. Open science refers to a set of principles and
practices that promote transparency, accessibility and reproducibility of scientific
research, by making publications, data, code, and other resources freely available to
the public (Bertram et al., 2023; Maedche et al., 2024). It emphasizes collaborative
approaches, early sharing, and community engagement to accelerate knowledge
transfer and reduce inefficiencies across the research lifecycle (Bertram et al., 2023;
Besancon et al., 2021). Platforms such as the Open Science Framework (OSF)
facilitate this process by allowing researchers to preregister study protocols, share
code and data, and publicly archive entire research workflows, practices that have
been shown to improve research credibility and reuse (Nosek et al., 2018; Kidwell et
al., 2016; Nuzzo, 2015).

Open science also plays a transformative role in democratizing access to
ecological knowledge. Publishing preprints (Berg et al., 2016; N. Fraser et al., 2021;
Noble et al., 2024) and sharing open datasets can help reduce global inequities in
access to research outputs, especially for researchers in underfunded or resource-
constrained settings (Baker, 2023; Chan et al., 2009; Petersen, 2021). Making data
openly available under the FAIR principles (Findable, Accessible, Interoperable, and
Reusable) (Wilkinson et al., 2016), can foster collaborative projects, facilitate data
synthesis, and enable secondary analyses that extend the value of the original work
(Culina et al., 2018). Although legal, ethical, or national constraints may restrict full
data openness in some cases, most ecological data can be shared responsibly when
appropriate licenses, data anonymization, and proper crediting are in place (Culina et
al., 2018).

As climate change accelerates and global demand for aquatic food continues
to grow, the production of robust, transparent, and fully informative research becomes
not only a scientific priority but a societal necessity. High-quality, reusable evidence is
critical for guiding policy, reducing uncertainty in environmental decision-making, and
ensuring that mariculture practices are both sustainable and resilient. Advancing
sustainable and healthy mariculture is a key step toward achieving Sustainable
Development Goal 14 (Life Below Water), which promotes the conservation and

responsible use of oceans, seas, and marine resources (Stead, 2019; Troell et al.,
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2023). With its considerable growth potential, marine aquaculture is well positioned to
positively influence livelihoods, employment, and local economic development in
coastal communities around the world. However, this can only happen if supported by
a reliable and informative scientific foundation, which can be achieved through joint

efforts between different stakeholders.
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4. CONCLUSIONS

Through three peer-reviewed scientific publications, this dissertation integrated
predictive modeling, statistical analysis, and meta-analysis to address critical
knowledge gaps concerning the predictive performance of existing Vibrio growth
models, the suitability of Vibrio spp. abundance as a supplementary indicator of water
quality, and the overall informative value of ecological research. The key findings and
contributions are summarized as follows:

1. A total of 28 functional growth models for Vibrio spp. were extracted and
standardized using a unified nomenclature, providing a structured overview of
existing Vibrio modeling efforts to date.

2. Baranyi models demonstrated the greatest applicability in mariculture, however,
no model offered reliable predictions across all coastal habitats, underscoring
the importance of tailoring models to site-specific conditions, particularly in areas
under strong anthropogenic pressures.

3. Vibrio spp. abundance has potential to be included as a supplementary microbial
indicator of water quality near mariculture as it provides unique, seasonally
relevant information that traditional fecal indicators may overlook. Further
research is required to (i) establish appropriate threshold values for water quality
classification and (ii) identify key pathogenic species relevant to both human and
marine organism health.

4. Only 11-18% of ecological research reaches full informative value, which is the
first quantitative estimate of informative value of research in ecology and second
in any field of science. Specifically, 45% of ecological studies are never
published, and out of those that are published 67% suffer from suboptimal study
planning and 41% are under-reported.

5. The low informative value of research underscores the need for systemic reform
in science and provides compelling evidence for funders, institutions, publishers,
and researchers to improve how studies are planned, reported, and published.

6. All three studies included in this thesis are grounded in open science principles,
with datasets and analytical code publicly available via Zenodo, promoting
transparency, reproducibility, and reuse.
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