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Chapter 1
The Archaeology of the Genome

1.1 The Nature of Molecular Evolution

1.2 What This Book Will Cover

1.3 Further Reading

1.1
The Nature of Molecular Evolution

Although a sometimes unpleasant occupant of our respiratory tracts, Haemophilus influenzae, a small Gram-
negative bacterium, was an unlikely candidate to symbolise a revolution in molecular biology.  But this is
exactly what happened in July 1995 when the entire 1830137 DNA base pairs of its genome was publishedthe
first of a free-living organism. A new era in biological science had begun. Soon after Haemophilus influenzae
came the first complete genome from a eukaryotethat of the yeast Saccharomyces cerevisiae, followed by
Methanococcus jannaschii, the first representative of the third domain of cellular life, the Archaea. In the next
few years molecular biology will claim its biggest prizethe 3.3 billion bases that make up the genome of Homo
sapiens.

DNA sequences are valuable because they provide the most detailed anatomy possible for any organismthe
instructions for how each working part should be assembled and operate. Much of modern biology now relies
on unravelling the information stored within gene sequences and this is true of evolutionary studies, where gene
sequences are now recognised as an invaluable document of the history of life on earth. It is the aim of this
book to show what evolutionary information is written into gene sequences and how this information might be
recovered. This is the science of molecular evolution.

Take, for example, Haemophilus influenzae, Saccharomyces cerevisiae and Methanococcus jannaschii. Until
recently, most textbooks divided cellular organisms into the eukaryotes, which possess a cell nucleus, and the
prokaryotes, which do not. This tidy world was upturned in the 1970s when Carl Woese and colleagues, using
the highly conserved 16S ribosomal RNA (rRNA) gene, showed that there were in fact two very different
groups of prokaryotesthe Eubacteria like Haemophilus influenzae, now simply referred to as the Bacteria, and
the Archaebacteria whose members include Methanococcus jannaschii, now known as the Archaea (Fig. 1.1).
Until the rise of molecular biology in the 1970s, this third great branch of life was lost from us but with
molecular phylogenies we have learned that the Archaea are in fact probably more
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Fig. 1.1
Phylogenetic relationships between members of the three domains of cellular life
the Archaea, Bacteria and Eukarya, based on rRNA. The Archaea can be further

divided into the Crenarchaeota (also known as the eocytes) and the Euryarchaeota
(methanogens and halophiles). Although popular, this tree is by no means universally
accepted. For example, there is still some debate as to whether the Crenarcheota are

in fact more closely related to the eukaryotes than they are to the other Archaea.
From Morell (1996) and originally Olsen and Woese (1993), with permission.

closely related to the eukaryotes than they are to the Bacteria, even though they lack a cell nucleus and
represent some of the most extreme forms of life on earth. Methanococcus jannaschii, for example, lives on
deep-sea hydrothermal chimneys ('white smokers'), at pressures of 200 atmospheres and temperatures of 85ºC!
Gene sequences clearly contain a unique and important archaeological record of life's tentative steps.

The importance of 16S rRNA for those interested in the early evolution of life lies in its slow evolution, which
allows the historical record preserved in its gene sequences to be kept relatively intact. Other genes evolve a
good deal more rapidly and so allow us to reconstruct historical pathways that have been trodden only recently.
One such example of evolution in the fast lane are the genes which make up the human immunodeficiency
virus (HIV), the cause of the disease AIDS. HIV evolves about a million times faster than human genes, which
is why developing effective drugs and vaccines is such a problem.  This super-fast rate of evolutionary change
also means that sequences from this virus can be used to retrace its spread through populations. Studies of this
sort have had some dramatic results. For example, in 1990 the Centers for Disease Control (CDC) in Atlanta
received reports of AIDS in a young woman in Florida whose only risk of HIV infection was seemingly that
she had previously been treated by a dentist suffering from AIDS. A subsequent investigation then uncovered a
number of the dentist's other former patients
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who were also HIV infected. Could it be that these people were somehow infected by their dentist? A
phylogenetic tree reconstructed on part of the envelope (env) gene of the virus revealed that those patients with
no other risk factors for HIV infection had sequences closely related to those of the dentist, strongly suggesting
that he had infected them, whilst the sequences from two patients who could have been infected in other ways
were separated from the dentist on the tree (Fig. 1.2). The HIV genome had therefore stored evolutionary
information, in the form of the mutations which had accumulated between transmission events, which could
recount the very recent history of its spread.

Despite the attention given to it today, the ability to sequence entire genomes is just the latest in a series of
milestones which mark the development of molecular evolution. The roots of this science were laid early in this
century by George Nuttall, a Cambridge biologist, who (along with a contemporary, Uhlenhuth, working in
Germany) mixed sera and antisera from different species in an attempt to discover the 'blood relationship'
between them. The

Fig. 1.2
The case of the Florida dentist. Each branch represents
the sequence from part of the envelope (env) gene of

HIV-1. Viral sequences were obtained from the dentist
and seven of his former patients (labelled A to G), also
infected with the virus. Five of these patients (A, B, C,
E and G), have sequences very closely related to those
of the dentist (boxed), suggesting that he infected them.

Two of his other former patients (D and F) had other risk
factors for HIV infection and their viruses are separated
from the dentist by sequences taken from local controls
(LC)HIV-infected individuals living within a 90-mile
radius of the dentist's surgery. Because HIV-1 is so

variable, two different sequences are included for the
dentist and patient A. Data taken from Ou et al. (1992).
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idea was that the more closely related the species, the stronger the cross-reaction between sera and
antisera.  Today we know that this depends on the extent of genetic similarity between them. While Nuttall's
techniques appear crude by today's standards, his work establishes the most important principle in molecular
evolutionthat the degree of similarity between genes reflects the strength of the evolutionary relationship
between them.

In the 50 years that followed Nuttall's work, studies of evolution at the molecular level made little progress,
largely because there was a paucity of data to work with. This sits in stark contrast to the revolution which took
place in the theoretical wing of evolutionary biology resulting in the 'neo-Darwinian synthesis' of the 1930s.
This synthesis, the basis of modern evolutionary thought, also forms a backdrop to many of the later debates
that enveloped molecular data when it first became available. In this book we hope to describe an even more
modern synthesisthat of molecular biology with phylogeneticswhich enables us to explain the amazing diversity
of genomes.

The 1950s witnessed a blossoming of molecular evolution. Two events were primarily responsible for this
renaissance. The first was the discovery, by James Watson and Francis Crick in 1953, of the molecular structure
of DNAthe double helix. This proved to be the key piece in the jigsaw that revealed DNA as the molecule
responsible for carrying between generations the instructions for how organisms should be assembled and work
correctly. At its most fundamental level, evolution can be thought of as changes in the structure of DNA. The
second event took place in 1955 when Fred Sanger and colleagues, also working in Cambridge, published the
first comparison of amino acid sequences (the product of DNA) from different species, in this case of the
protein insulin from cattle, pigs and sheep. Although less famous than the breakthrough of Crick and Watson,
this was the first study to reveal how species differed at the molecular level: cattle, pigs and sheep had three
amino acid differences, indicating that their insulins had evolved along with their more obvious anatomical
features.

By the early 1960s, the amino acid sequences of a variety of proteins had been determined. The next task was
to accurately recover evolutionary information from these sequences. This required a simple mathematical
description of the process of gene sequence change over time. In other words, it was necessary to build a model
of molecular evolution. Models make it easier to reconstruct past events and make predictions about future
changes, and are an important part of molecular evolution. Although the first models were developed almost 40
years ago, many of their basic elements are still relevant today and will be encountered many times in this
book. The most basic was the assumption that evolution at the molecular level was a largely stochastic process,
dominated by chance events. It was also realised that the number of sequence changes we observe between
genes might not be the same as the number that has actually taken place: because there are only four DNA
bases
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and 20 amino acids there is a chance that past mutations will be masked by those which have occurred more
recently.  As we shall see, recovering the true number of gene sequence changes which have accumulated over
time is one of the central tasks of molecular evolution.

A final and highly controversial idea that came out of early models of molecular evolution was that genes might
pick up mutations at fairly regular intervals, so that there is a 'molecular clock' of evolution. Although this is
still hotly debated, it is one of the most important properties of gene sequence data as it enables us to place
evolutionary history within a timeframe. If genes make good timekeepers, our view of the past will be much
more complete.

Although the prospect of using protein sequences as evolutionary tools was generating considerable excitement
among biochemists during the 1950s and 1960s, convincing evolutionary biologists of their worth was proving
to be more difficult. This can be illustrated by the intense debate that surrounded attempts to resolve one of the
biggest questions in evolutionary biology and one which we will encounter often in this bookthe location of the
human branch of the tree of life. The commonly held view was that humans were phylogenetically distinct from
the great apes (chimpanzees, gorillas and orang-utans), being placed in different taxonomic families, and that
this split occurred at least 15 million years ago (Fig. 1.3a). This date was based on fossils belonging to an
extinct animal called Ramapithecus which was thought to be the first member of the human lineage, largely
because of its human-like thick molar tooth enamel. As fossil remains of this species were placed at around 15
million years old, the split between humans and great apes must have occurred before this time. Or so it was
thought.

This view of human origins was shattered in 1967 when Vince Sarich and Allan Wilson, using an update of the
methods of Nuttall and Uhlenhuth, measured the extent of immunological cross-reaction in the protein serum
albumin between various primates. The results were striking: humans, chimpanzees and gorillas were
genetically equidistant and clearly distinct from the orang-utan. Furthermore, assuming that serum albumin was
a good molecular clock which could be calibrated by the split between apes and Old World monkeys some 30
million years ago, Sarich and Wilson estimated that human, chimpanzee and gorilla separated at only 5 million
years ago.

The work of Sarich and Wilson is important on a number of levels. It was one of the first examples of
molecular systematicsthe use of gene sequences to reconstruct phylogenetic relationships. More than that, it
changed our perspective on human origins and opened the 'molecules versus morphology' debate about which
data set are the best markers of evolutionary relationship. Although less contentious today, this debate has
influenced many studies in molecular evolution. In the case of human origins, many palaeontologists assumed
their interpretation of the fossil record was correct and that the molecular evidence was somehow flawed. In
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Fig. 1.3
How molecular data changed the picture of human origins. Tree (a) depicts the
commonly held view of primate relationships during the 1960s, while tree (b)

was that produced by Sarich and Wilson using immunological (serum albumin)
distances. This tree, along with a divergence time of approximately 5 million
years,  has subsequently been confirmed using other molecular data, although

human and chimpanzee now appear to be more closely related to
each other than either is to the gorilla.

particular, it was claimed that the tick of the human molecular clock might have slowed in comparison with
those of other primates so that divergence times would be underestimated. The argument was not resolved until
the discovery, in 1980, of remains from another fossil apeSivapithecus. This find greatly changed the debate by
showing that Ramapithecus and Sivapithecus were in fact very similar, representing two species from the same
genus, and, more dramatically, that both were more closely related to the orang-utan than to
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humans (Fig.1.3b).  This meant that Ramapithecus could be shifted to the orangutan side of the evolutionary
tree, clearing the way for the more recent divergence between apes and humans that was suggested by the
molecular evidence. Molecules had proven their worth in an evolutionary arena. More recent molecular studies
have gone even further by showing that human and chimpanzee are more closely related to each other than
either is to the gorilla.

The pace at which the science of molecular evolution has developed has greatly accelerated since this time.
Nucleotide (DNA) sequences have now replaced proteins as the main source of data, particularly since the
invention of the polymerase chain reaction (PCR) in the mid-1980s which allowed segments of DNA to be
gathered quickly from very small amounts of starting material. Such is the sensitivity of PCR that it has even
been used to obtain DNA from single human hairs and from tissue samples hundreds, or even thousands, of
years old. And it is not just at the technical level that gene sequences are transforming biological sciencethere
have also been major advances in theory, with a greater understanding of why genes evolve as they do, and the
development of more sophisticated methods for recovering evolutionary information from sequence data. For
instance, it is now apparent that DNA sequences not only contain a record of their phylogenetic relationships
and times of divergence, but also the signatures of what evolutionary processes have shaped their history and
even the size of past populations.

Finally, the success of molecular evolution is reflected by the dramatic rise in the number of scientific papers
that include the evolutionary analysis of gene sequences. In the same way, molecular phylogenies are now
appearing in journals covering a wide range of biological disciplines which use gene sequences as a primary
data source. Molecular evolution has come of age.

1.2
What This Book Will Cover

Modern molecular evolution is a diverse subject, influencing areas as different as ecology and organismal
development. We hope to cover as many of these as possible in this book. Despite this diversity, a common
theme runs through molecular evolution: that reconstructing the phylogenetic relationships between gene
sequences is a crucial first step towards understanding their evolution. The phylogenetic tree can therefore be
thought of as the central metaphor of evolution, providing a natural and meaningful way to order data, and with
an enormous amount of evolutionary information contained within its branches. In this book we hope to show
that molecular phylogenies can be thought of as a sort of navigational aid, guiding us through the sea of gene
sequences. As a consequence, we will give most attention to those areas of molecular evolution where
phylogenies have proven themselves most successful, although it is important to remember that the power of
phylogenies
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is not solely reserved for molecular data: trees are becoming indispensable analytical tools in many other areas
of evolutionary biology. The language of trees is taught in Chapter 2.

Although the first part of this chapter illustrated how molecular phylogenies have transformed systematics, this
is by no means the only component of molecular evolution. Perhaps an even more fundamental question is why
genomes look as they do? There are a multitude of smaller puzzles contained within this. One which has
attracted much attention is why so much DNA, in eukaryotes at least, appears to be molecular 'junk', repeated
many times. It is difficult to comprehend why evolution, a generator of such wonderful morphological
adaptations, would be so wasteful at the molecular level.  Related questions concern other aspects of genome
organisation. Why are so many genes organised into families? How does recombination influence genome
structure? Where do introns come from? In Chapter 3 we describe how genomes are organised and discuss the
various evolutionary processes which have given genomes their distinctive architecture.

While the answers to some of these big questions may be lacking, there has been considerable progress in
assembling the nuts and bolts of molecular evolutionanalysing how genes evolve. Such has been the success of
this research that it is now possible to describe, in quite detailed mathematical terms, exactly how one DNA
sequence evolves into another, and the rates at which these changes take place. These advances have been at
two separate but clearly connected levels: what shapes genetic diversity within a single population and how this
is translated into evolution over longer timescales. The first level has traditionally been the realm of population
genetics, the science which tells us how evolution changes the frequencies of genes in populations. Like many
other areas of biological science, population genetics has been transformed by the availability of gene sequence
data. In particular, there is a new found role for molecular phylogenies. The basics of population genetics, and
the internal revolution initiated by the arrival of gene sequence data, is described in Chapter 4.

Because it requires some more specialist analytical tools, the molecular evolution of genes over longer
timescales is suspended until Chapter 7. This area has been dominated by a debate between those who believe
that most DNA changes are the outcome of evolution by natural selectionthat is, they spread because of their
benefit to the organism which houses them, and an opposing view, in which the majority of mutations have no
functional relevance, do not affect the evolutionary well-being of the organism in question, and spread simply
by good luck. This latter world view, referred to as the neutral theory of molecular evolution, was championed
by the great Japanese geneticist Motoo Kimura. Although this neutralist-selectionist debate is waning in
importance today, it has played a central role historically, initiating new ways to analyse sequence data and
focusing our attention on the very essence of the evolutionary process. We therefore discuss many aspects
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of molecular evolution in the light of this axial dispute over evolutionary mechanism.

Our increased understanding of how genes and genomes evolve has itself led to the development of even better
techniques to recover evolutionary information from gene sequences. Anyone sequencing DNA today has at
their side a potentially huge array of tools of genetic archaeology, with the phylogenetic tree a multifunctional
device. In Chapters 5 and 6 we discuss the pragmatics of how evolutionary information is recovered from gene
sequence data. This has a number of elements, starting with sequence alignment (one of the trickiest tasks in
sequence analysis), to accurately estimating the evolutionary distance between gene sequences (the true number
of substitutions which have accumulated between them) to the multitude of methods for reconstructing
phylogenetic trees. Given the key role played by trees in our book, the details of how these trees should be
made (Chapter 6) is presented in great detail.

Finally, in Chapter 8, we apply some of the skills learned earlier. In particular, we show how molecular
phylogenies may provide answers to a wide range of evolutionary questions. Greatest attention is given to
detecting, within trees, the signatures of different evolutionary processes, from speciation to mass extinctions.
The uses of phylogenetic trees outlined in this chapter in many ways reflect our own research interests. We are
certain that readers will have their own, equally important uses.

The age of complete genomes promises much to many areas in biology.  Gene sequence data have already
given evolutionary biology a new momentum, providing a fresh perspective to deep-seated problems and
opening up new avenues to explore. The uses to which gene sequences can be put will continue to develop in
the future. We aim to show you the evolutionary relevance of molecular data, and the relevance evolutionary
theory has for the study of genomes.

1.3
Further Reading

The genome of Haemophilus influenzae is presented by Fleischmann et al. (1995), although see the issues of
Science magazine from 25 October 1996 (Volume 274, pp. 465688) and 24 October 1997 (Volume 278, pp.
541768) for discussions of the progress and implications of the genome sequencing projects, and that of 23
August 1996 (Volume 273, pp. 10171140) for an introduction into the strange world of Methanococcus
jannaschii.

A discussion of the 'tree of life' as depicted by rRNA is provided by Olsen and Woese (1993) and Olsen et al.
(1994), although see Rivera and Lake (1992) for an alternative view. At the other extreme, the story of HIV
transmission in the Florida dental cohort is told in detail by Ou et al. (1992), with an update by Hillis et al.
(1994).

The debate surrounding human origins has been told in many places although
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the paper by Sarich and Wilson (1967) is of immense historical importance, and that of Andrews and Cronin
(1982) shows the impact of Ramapithecus and Sivapithecus. A recent review of the molecular evidence
surrounding the phylogeny of hominoid primates is provided by Ruvolo (1997).

Finally, for demonstrations of the multitude of uses to which molecular phylogenies can be put, see the
volumes of Avise (1994), Harvey and Pagel (1991) and Harvey et al. (1996).
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Chapter 2
Trees

2.1 Introduction to Trees

2.1.1 Tree Terminology

2.1.2 A Shorthand for Trees

2.1.3 Cladograms, Additive Trees and Ultrametric Trees

2.1.4 Rooted and Unrooted Trees

2.1.5 Tree Shape

2.1.6 Splits

2.2 Reconstructing the History of Character Change

2.2.1 Ancestors

2.3 Trees and Distances

2.3.1 Metric Distances

2.3.2 Ultrametric Distances

2.3.3 Additive Distances

2.3.4 Tree Distances

2.4 Organismal Phylogeny

2.4.1 Clades and Classification

2.4.2 Gene Trees and Species Trees

2.4.3 Lineage Sorting and Coalescence

2.5 Consensus Trees

2.6 Networks

2.7 Summary

2.8 Further Reading

2.1
Introduction to Trees

All of life is related by common ancestry. Recovering this pattern, the 'Tree of Life', is one of the prime goals
of evolutionary biology. This chapter introduces the fundamentals of trees. You may find it useful to read the
chapter through once, then refer back to it as you read the rest of the book. All the concepts introduced in this
chapter will be discussed in more detail in subsequent chapters; our goal here is to give you some familiarity
with trees so that interpreting them eventually becomes second nature.

2.1.1
Tree Terminology



Figure 2.1 illustrates the terminology used in this book to describe trees. Unfortunately tree terminology varies
greatly among authors, and among different disciplines, such as mathematics and biology. Where possible we
will list the commonly used synonyms that you may encounter in the literature.

A tree is a mathematical structure which is used to model the actual evolutionary history of a group of
sequences or organisms. This actual pattern of historical relationships is the phylogeny or evolutionary tree
which we try and estimate.  A tree consists of nodes connected by branches (also called edges). Terminal nodes
(also called leaves, OTUs [Operational Taxonomic Units], or terminal taxa) represent sequences or organisms
for which we have data; they may be either extant or extinct. Internal nodes represent hypothetical ancestors;
the ancestor of all the sequences that comprise the tree is the root of the tree (see below).
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Fig. 2.1
A simple tree and associated terms.

The nodes and branches of a tree may have various kinds of information associated with them. For example
some methods of phylogeny reconstruction (e.g. parsimony) endeavour to reconstruct the characters of each
hypothetical ancestor; most methods also estimate the amount of evolution that takes place between each node
on the tree, which can be represented as branch lengths (or edge lengths). Trees with branch lengths are
sometimes called weighted trees.

Box 2.1 Trees are like mobiles

There are many different ways of drawing trees, so it is important to know
whether these different ways actually reflect differences in the kind of tree, or
whether they are simply stylistic conventions. For instance, the order in which
the labels on a tree are drawn on a piece of paper (or computer screen) can differ
without changing the meaning of the tree. This is because the edges of a tree can
be freely rotated without changing the relationships among the terminal nodes.
The diagram below shows the same tree drawn three different ways:

In this sense a tree is just like a mobile; no matter how many times you rotate the
'hanging' objects you do not change how they are connected to one another.
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Fig. 2.2
Three trees showing various degrees of resolution, ranging from a complete
lack of resolution (star tree) to a fully resolved tree. Any internal node with

more than two immediate descendants is a polytomy.

The number of adjacent branches possessed by an internal node is that node's degree. If a node has a degree
greater than three (i.e. it has one ancestor and more than two immediate descendants) then that node is a
polytomy. A tree that has no polytomies is fully resolved (Fig. 2.2).

Polytomies can represent two rather different situations (Fig. 2.3); firstly they may represent simultaneous
divergenceall the descendants evolved at the same time (a 'hard' polytomy); alternatively, polytomies may
indicate uncertainty about phylogenetic relationshipsthe lineages did not necessarily all diverge at once, but we
are unsure as to the actual order of divergence (a 'soft' polytomy). These two interpretationssimultaneous
divergence or uncertaintyare obviously quite different.  Typically polytomies are treated as 'soft'. It may be
thought unlikely that multiple lineages would diverge at exactly the same time; however, if lineages diverge
rapidly in time relative to the rate of character evolution then there may be insufficient evidence available to us
to ever be able to reconstruct the exact order of splitting, in which case the polytomy is effectively 'hard'.

Fig. 2.3
Polytomies can represent either simultaneous

divergence of multiple sequences ('hard'), or lack
of resolution due to insufficient data

or conflicting trees ('soft').
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Fig. 2.4
A tree and its shorthand representation

using nested parentheses.

2.1.2
A Shorthand for Trees

Trees can be represented by a shorthand notation that uses nested parentheses. Each internal node is represented
by a pair of parentheses that enclose all descendants of that node. This format makes it easy to describe a tree in
the body of some text without having to draw it. The format is also used by many computer programs to store
representations of trees in data files. Figure 2.4 gives an example of this shorthand.

2.1.3
Cladograms, Additive Trees and Ultrametric Trees

Different kinds of tree can be used to depict different aspects of evolutionary

Fig. 2.5
A phylogeny and the three basic kinds of tree used
to depict that phylogeny. The cladogram represents
relative recency of common ancestry; the additive

tree depicts the amount of evolutionary change that
has occurred along the different branches, and

the ultrametric tree depicts times of divergence.
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history. The most basic tree is the cladogram which simply shows relative recency of common ancestry, that is,
given the three sequences, A, B and C, the cladogram in Fig. 2.5 tells us that sequences A and B share a
common ancestor more recently than either does with C. In the biomathematical literature cladograms are often
called 'n-trees'.

Additive trees contain additional information, namely branch lengths. These are numbers associated with each
branch that correspond to some attribute of the sequences, such as amount of evolutionary change. In the
example shown in Fig. 2.5, sequence A has acquired four substitutions since it shared a common ancestor with
sequence B.  Other commonly used terms for additive trees include 'metric trees' and 'phylograms'.

Ultrametric trees (sometimes also called 'dendrograms') are a special kind of additive tree in which the tips of
the trees are all equidistant from the root of the tree. This kind of tree can be used to depict evolutionary time,
expressed either directly as years or indirectly as amount of sequence divergence using a molecular clock.

Additive and ultrametric trees both contain all the information found in a cladogramthe cladogram is the
simplest statement about evolutionary relationships that we can make. For some questions knowledge of
relative recency of common ancestry is sufficient. However, there are other evolutionary questions (such as
determining relative rates of evolution) which require the additional information contained in additive and
ultrametric trees.

Box 2.2 What do the horizontal and vertical axes of a tree represent?

It is tempting to think of a tree as being a graphical plot like a scatter plot, in
which case the question arises 'what do the horizontal and vertical axes
represent?' For cladograms, which have no branch length information, neither
axis has any special meaning; you can squash the tree flatter, or stretch it out
without changing the relationship among the terminal nodes. Hence, the two
cladograms shown below are the same.

continued on p. 16
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continued

Box 2.2

For additive trees one of the axes does have meaning; it represents the amount of
evolutionary change. In the diagram above we stretch the tree along the
horizontal axis (i.e. left to right) we do not change interpretation of the tree;
however, changes in the vertical axis (up and down) change the amount of
evolutionary change along the branches, hence the trees are not the same additive
trees. Similarly, for an ultrametric tree one axis typically represents time whereas
the other has no meaning. The two ultrametric trees shown above are different
because the two trees specify different divergence times.

A last consideration is that trees can be drawn in a number of orientations, such
as 'planted' with the root at the bottom as in the diagram above, 'left-to-right as
in Fig. 2.17, or even 'top-down' with the root at the top. The choice among these
representations is entirely arbitrary; in some circumstances it may be more
convenient to draw the tree one way rather than another. Just remember that if
the tree diagram is rotated then the x- and y-axes in the above diagram need to
be rotated as well. Hence, if an additive tree is drawn left to right then the
horizontal axis represents evolutionary change and the vertical axis has no
meaning.

2.1.4
Rooted and Unrooted Trees

Cladograms and additive trees can either be rooted or unrooted. A rooted tree has a node identified as the root
from which ultimately all other nodes descend, hence a rooted tree has direction.  This direction corresponds to
evolutionary time; the closer a node is to the root of the tree, the older it is in time. Rooted trees allow us to
define ancestor-descendant relationships between nodes: given a pair of nodes connected by a branch, the node
closest to the root is the ancestor of the node further away from the root (the descendant). Unrooted trees lack a
root, and hence do not specify evolutionary relationships in quite the same way, and they do not allow us to talk
of ancestors and descendants. Furthermore, sequences that may be adjacent on an unrooted tree need not be
evolutionarily closely related. For example, given the unrooted tree in Fig. 2.6, the gibbon (B) and orang-utan
(O) sequences are neighbours on the tree, yet the orang-utan is more closely related to the other apes (including
humans). This is because the root of the tree lies on the branch leading to the gibbon. Had we placed the root
elsewhere, say on the branch leading to the gorilla (G), then the gibbon and orang-utan sequences would indeed
be closely related.

In the unrooted tree for the apes shown in Fig. 2.6, we could have placed the root on any of the seven branches
of the tree. Hence, this unrooted tree corresponds to a set of seven rooted trees (Fig. 2.7).
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Fig. 2.6
Rooted and unrooted trees for human (H), chimp (C),

gorilla (G), orang-utan (O), and gibbon (B). The rooted
tree (top) corresponds to the unrooted tree below.

Fig. 2.7
The seven rooted trees that can be derived from an unrooted tree for five

sequences. Each rooted tree 17 corresponds to placing the root on the
corresponding numbered branch of the unrooted tree.

(Sequence labels as for Fig. 2.6.)
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The distinction between rooted and unrooted trees is important because many methods for reconstructing
phylogenies generate unrooted trees, and hence cannot distinguish among the seven trees shown in Fig. 2.7 on
the basis of the data alone. In order to root an unrooted tree (i.e. decide which of the seven trees is the actual
evolutionary tree) we need some other source of information. Methods of rooting trees are discussed in Chapter
6 (note that this does not apply to ultrametric trees which are rooted by definition).

The number of possible unrooted trees Un for n sequences is given by

for n ³ 2. The number of rooted trees Rn for n ³ 3 is given by

Table 2.1 lists the numbers of rooted and unrooted fully resolved trees for 210 sequences.  Note that the number
of unrooted trees for n sequences is equal to the number of rooted trees for (n 1) sequences. Note also that the
number of trees rapidly reaches very large numbers: for 10 sequences there are over 34 million possible rooted
trees. For a relatively modest 20 sequences there are 8 200 794 532 637 891 559 000 possible trees, whereas the
number of different trees for 135 human mitochondrial DNA sequences used in the study of the evolution of
modern humans (see Chapter 4), 2.113 × 10267, exceeds the number of particles in the known universe! This
explosion in number of trees is a fundamental problem for phylogeny reconstruction, where the goal is to
identify which tree of all the possible trees is the best estimate of the actual phylogeny.

2.1.5
Tree Shape

Typically, the information in a tree in which we are most interested is the relationship among the sequences,
and perhaps the lengths of the branches.

Table 2.1 Numbers of unrooted and rooted trees for
210 sequences.
Number of
sequences

Number of
unrooted trees

Number of
rooted trees

2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10395
8 10395 135135
9 135135 2027025
10 2027025 34459425
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Fig. 2.8
The three possible shapes for a
rooted tree for five sequences.

However, other aspects of the tree may also reflect evolutionary phenomena and hence be of interest. Figure 2.8
shows the three possible shapes (or topologies) for a rooted tree for five sequences. All 105 possible trees
(Table 2.1) for five sequences will have one of these three shapes.

2.1.6
Splits

Trees can be represented in a variety of ways other than as graphs. One useful representation is as sets of sets,
called splits or partitions. Each split takes the set of sequences (e.g. {H, C, G, O, B}) and partitions them into
two mutually exclusive sets: you can think of a split as the two sets of sequences obtained by chopping
('splitting') the tree at a given branch. For example, the tree shown in Fig. 2.9 has seven branches and hence
seven splits.  However, all splits comprising a single terminal node on one hand and the rest of the tree on the
other are not 'phylogenetically informative' in the sense that all possible trees will contain those splits. Hence,
the only informative splits are those

Fig. 2.9
An unrooted tree and its two splits.
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resulting from chopping internal branches. The tree shown in Fig. 2.9 has two informative splits: {{C, H}, {G,
O, B}} and {{G, C, H}, {O, B}}.

Given these two splits we can combine them to reconstruct the original tree. Notice that there are other possible
partitions of the set {H, C, G, O, B}, such as {{H, G}, {C, O, B}}. This split groups humans and gorillas
together to the exclusion of the other apes, which is incompatible with the split {{C, H}, {G, O, B}}, which
groups humans and chimps. Incompatible splits cannot be combined to form a tree.

Another way of representing the splits in Fig. 2.9 is to assign arbitrary letters to each half of a split, such as the
letter 'A' to each sequence on the left and the letter 'T' to each sequence on the right. This gives the following
table:

Sequence Split 1 Split 2
H A A
C A A
G T A
O T T
B T T

Each split now resembles a single nucleotide site with only the bases A and T. In Chapter 6 you will encounter
some methods for reconstructing phylogenies that make use of this relationship between nucleotide sites and
splits.

2.2
Reconstructing the History of Character Change

The tree relating a set of sequences tells us only part of what we want to know.  The tree alone does not tell us
when a particular evolutionary change, such as a nucleotide substitution, took place, or whether the occurrence
of the same amino acid in two sequences is the result of inheritance from a common ancestor or independent
evolution. To address these questions we need to be able to reconstruct the history of character change. This
problem is addressed

Fig. 2.10
Three equivalent ways of representing the same
evolutionary change on the same tree. (a) Each

node is labelled by the corresponding nucleotide;
(b) each branch is coloured corresponding to

the nucleotide at the end of each branch; and (c)
indicating on which branch the change took place.
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in more detail in Chapter 5, so here we will merely introduce some of the different ways of representing
evolutionary change on a tree (Fig. 2.10) and describe some basic terminology.

Given a tree, we can distinguish between ancestral ('primitive') and derived character states.  If a sequence has
the same base as the common ancestor of all the sequences being studied then it is the primitive or
plesiomorphic state; otherwise it is a derived or apomorphic state. Unique derived character states are
autapomorphies (aut = alone), shared derived states are synapomorphies (syn = shared) (Fig. 2.11). Given any
two character states that are identical (e.g. the same nucleotide base) the similarity between them may be
because they have both inherited it directly from their ancestor which also had that state. This is an instance of
homology. Alternatively, the similarity may have occurred independently in which case it is homoplasy. Only
homologous similarity directly reflects common ancestry. Homoplasy is

Fig. 2.11
Trees showing the terminology used to
describe different patterns of ancestral
( ) and derived ( ) character states.

Fig. 2.12
Three different kinds of homoplasy.
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a poor indicator of evolutionary relationships because the similarity does not reflect shared ancestry. It is
sometimes useful to distinguish between different kinds of homoplasy (Fig. 2.12). Convergence and parallel
evolution both result in the independent evolution of the same feature in two unrelated sequences; the
difference between the two lies in whether the similarity was acquired from the same (parallelism) or a
different (convergence) ancestral condition. Homoplasy may also be due to the secondary loss of a derived
feature, which results in the apparent reversion to the ancestral condition, such as the loss of legs in snakes and
some amphibia.

2.2.1
Ancestors

Phylogenies presuppose ancestorspreviously living organisms that are now extinct but which left descendants
which comprise modern species. These ancestors (or their sequences) are represented by the internal nodes of a
tree. These ancestors are hypothetical, but some methods of phylogenetic reconstruction allow us to infer what
they (or their sequences) may have looked like.

All molecular phylogenies include ancestors, but for the most part these remain hypothetical entities
represented by the internal nodes of the tree, and inferred solely on the basis of sequences from extant
organisms. It used to be thought that the possibility that a sequence being studied was actually an ancestor
could be safely ignored, hence all sequences were placed at the tips of evolutionary trees. However, two recent
developments have meant that molecular biologists must deal with a problem previously restricted to
palaeontologynamely the recognition of ancestors.  The first of these developments is the recovery of DNA
from extinct taxa; the second is the increasing number of sequences being obtained from viruses such as human
immunodeficiency virus (HIV) which evolve sufficiently fast to be tracked in 'real time'.

If all sequences are from extant organisms, then they can be placed at the tips of the tree. However, if some of
the sequences are extinct it is possible, if unlikely, that they may have been ancestral to one or more of the
extant sequences: is a sequence extracted from an extinct taxon an ancestor to modern taxa or is it on an
evolutionary side branch? Cladists have adopted the convention that extinct taxa that lack autapomorphies are
candidates for being ancestral, as it is equally parsimonious to treat them as sister taxa (i.e. each other's closest
relative) or as ancestors (Fig. 2.13). Treating a taxon with autapomorphies as an ancestor would require us to
postulate additional evolutionary changes (this invokes the parsimony principle discussed in Chapter 6). Note
that under this rule a taxon with no autapomorphies need not be an ancestor, rather there is nothing to refute
that possibility.

We can apply the cladistic convention to viral sequences where the virus is evolving sufficiently rapidly for
successive samples to show evolutionary change. For example, Fig. 2.14 shows a cladogram for eight HIV
sequences
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Fig. 2.13
A cladogram for two sequences (Seq 1 and Seq 2)
showing the nucleotide at a single site, and two of
several possible evolutionary trees derived from
that cladogram. We could postulate that either
sequence is ancestral to the other. However,
postulating Seq 2 to be an ancestor of Seq 1
requires the gain and subsequent loss of T,

whereas if Seq 1 is an ancestor no additional
substitutions need be postulated. Note that

a third phylogeny would be identical to
the cladogram (see Box 2.3).

Fig. 2.14
Cladogram and corresponding evolutionary tree for eight V3 loop amino acid
sequences for HIV samples taken from a single patient over 3 years. In the
cladogram on the left all eight sequences are depicted as terminal nodes;
however, four sequences (D1, D2, D4 and D7) have no autapomorphies

(i.e. there are no replacements along the branch leading to each sequence)
and hence are possible ancestors. The evolutionary tree on the right
depicts the same relationships as the cladogram, but the sequences

lacking autapomorphies (except D7) are treated as ancestors
which is consistent with the order of appearance of the

sequences. Modified from Holmes et al. (1992).
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obtained from a single patient over 3 years. Because the sample were obtained over a period of time it is
possible that some of the sequences sampled earlier in time gave rise to later sequences. Indeed, some
sequences lack autapomorphies and hence by the cladistic criterion are potential ancestors, a conclusion which
is supported by the order of the sequences in time.

Box 2.3 Cladograms and evolutionary trees

In this book we use the term 'cladogram' to refer to an evolutionary tree that has
no information on branch lengths (e.g. Fig. 2.5). Within cladistics a distinction is
made between a cladogram and an evolutionary tree. In a cladogram the terminal
taxa are always at the tips of the tree, no matter if the taxa are extant or extinct,
or whether one or more of the taxa are ancestral to any of the others. However,
in an evolutionary tree some of the taxa may be ancestral to the others. Given the
cladogram ((A, B), C) shown below, there are six different evolutionary trees that
are consistent with the cladogram. One of these trees is the cladogram itself; the
other five trees have one or more of the taxa A, B and C being ancestral to the
others.  Note that in all six trees A and B are more closely related to each other
than to C.

In the vast majority of cases none of the taxa (or sequences) being studied will
be ancestral and hence the cladogram is also an evolutionary tree. Exceptions
may occur when fossils are being studied (although the probability that a given
fossil is actually part of an ancestral lineage is rather remote) or in the case
where samples have been taken over time from a rapidly evolving lineage, such
as a virus (Fig. 2.14).

2.3
Trees and Distances

Measures of sequence dissimilarity may be used to estimate the number of evolutionary changes that occurred
in two sequences since they last shared a
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common ancestor (see Chapter 5). These measures quantify the evolutionary distance between the two
sequences. Trees themselves can also be represented by distances, and this link has motivated a range of tree-
building methods that seek to convert pairwise distances between sequences into evolutionary trees. We shall
describe these measures in Chapter 5. However, in order for a distance measure to be used to build phylogenies
it must satisfy some basic requirements: it must be a metric, and it must be additive.

2.3.1
Metric Distances

Let d (a, b) be the distance between two sequences, a and b. A distance d is a metric if it satisfies these
properties:

1 d(a, b) ³ 0 (non-negativity)

2 d(a, b) = d(b, a) (symmetry)

3 d(a, c) £ d(a, b) + d(b, c) (triangle inequality)

4 d(a, b) = 0 if and only if a = b (distinctness)

The first property is non-negativity; two sequences must have a non-negative distance.  The second property is
symmetry; two sequences have the same dissimilarity regardless of the direction in which the dissimilarity is
measured. These two properties may seem trivial, but not all measures of similarity meet these seemingly
obvious requirements.

The third property is the triangle inequality, which states that the dissimilarity between any two sequences
cannot exceed the sum of the dissimilarities between each sequence and a third. This condition is equivalent to
ensuring that it is possible to represent the distances between the three sequences as a triangle (Fig. 2.15), hence
the name. The last condition (distinctness) requires that sequences that are different must have a non-zero
dissimilarity.

Of these conditions, 1, 2 and 4 are generally true for all measures of sequences dissimilarity calculated directly
from sequences. However, indirect measures of sequence dissimilarity such as those obtained from DNADNA
hybridisation or from immunological measurements need not always obey these conditions, particularly
condition 2.

Fig. 2.15
The triangle inequality. The distance between any

pair of sequences must be no greater than that
between those sequences and a third sequence.
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2.3.2
Ultrametric Distances

A metric is an ultrametric if it satisfies the additional criterion that:

5 d(a, b) £ maximum [d(a, c), d(b, c)]

This criterion implies that the two largest distances are equal, so that they define an isosceles triangle (Fig.
2.16).

Ultrametric distances have the very useful evolutionary property of implying a constant rate of evolution.
Indeed the 'relative rate' test for a molecular clock (see Box 7.2, Chapter 7) is a test of how far the pairwise
distances between three sequences depart from ultrametricity. Furthermore, if distances between sequences are
ultrametric then the most similar sequences are also the most closely related.

2.3.3
Additive Distances

Being a metric (or ultrametric) is a necessary, but not sufficient condition for being a valid measure of
evolutionary change. A measure must also satisfy the four-point condition:

6 d(a, b) + d(c, d) £ maximum [d(a, c) + d(b, d), d(a, d) + d(b, c)]

This is equivalent to requiring that of the three sums d(a, b) + d(c, d), d(a, c) + d(b, d), and d(a, d) + d(b, c), the
two largest are equal.

2.3.4
Tree Distances

An additive distance measure defines a tree. Perhaps the easiest way to see this is to consider the distances
shown in Fig. 2.17. Sequence d is equidistant from all other sequences; sequence c is equidistant from a and b.
If we take any three sequences the distances between them define an isosceles triangle (the two largest distances
are equal), hence the distances shown in Fig. 2.17

Fig. 2.16
The ultrametric inequality. The two largest pairwise

distances, in this case d(a, c) and d(b, c), are equal and
hence the ultrametric defines an isosceles triangle.
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Fig. 2.17
An ultrametric distance matrix between four sequences ad and the
corresponding ultrametric tree. For any two sequences, the value in

the distance matrix corresponds to the sum of the branch lengths
along the path between the two sequences on the tree.

are ultrametric. These same distances can be represented by the ultrametric tree shown in Fig. 2.17. If we trace
the shortest path between any pair of sequences in the tree, and add up the corresponding branch lengths, we
obtain the same values as those in the distance matrix. For example, travelling from

Fig. 2.18
An additive distance matrix between four sequences and the corresponding

additive tree. For any two sequences, the value in the distance matrix
corresponds to the sum of the branch lengths along the

path between the two sequences on the tree.
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sequence a to sequence d and adding branch lengths we obtain the value of 1 + 2 + 2 + 5 = 10, hence d(a, d) =
10.

When distances are not ultrametric but only metric they can still be represented by a tree, in this case an
additive tree (Fig. 2.18). This additive tree again represents the additive distances exactly. Notice that sequences
b and c are the most similar (d(b, c) = 3) but are not the most closely related. Similarity and evolutionary
relationship will only coincide exactly if the distances are ultrametric.  This has important implications for
using distances to reconstruct trees (Chapter 6).

The distances obtained from the tree are tree distances (also called 'patristic distances'), to distinguish them
from observed distances which are obtained directly from the sequences themselves. In the examples shown in
Fig. 2.17 and Fig. 2.18, the observed and tree distances match exactly. For real data this is rarely the case,
indicating that the observed distances cannot be completely accurately represented by a tree. The discrepancy
between observed and tree distances can be used to measure how good the fit is between the observed distances
and the best tree representation of those distances (see Chapter 6).

2.4
Organismal Phylogeny

Although the main subject of this book is molecular evolution, a major use of DNA sequences is the
reconstruction of the evolutionary history of the organisms from which those sequences are obtained.

2.4.1
Clades and Classification

Phylogenies form the basis of classification, which is the formal naming of groups of organisms. Cladistic
classifications recognise only monophyletic groups or clades. A monophyletic group includes all the
descendants of an ancestral taxon, whereas a non-monophyletic group omits some of those descendants (Fig.
2.19). A good example of a non-monophyletic group is the 'apes', which is not monophyletic as it excludes
humans.

Fig. 2.19
The difference between monophyly and non-monophyly.
A monophyletic group includes all descendants of their

common ancestor, whereas in a non-monophyletic
group one or more descendant is not included.
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Many authors distinguish between two kinds of non-monophyly: paraphyly and polyphyly (Fig. 2.20).
Paraphyletic groupings are based on shared primitive characters (plesiomorphies), and hence typically exclude
one or more taxa that have autapomorphies. The paradigm example is the 'reptiles' as classically defined, which
excludes birds because of their novel anatomy and behaviour, even though crocodiles are more closely related
to birds than they are to other reptiles. Polyphyletic groups are typically assemblages of taxa that have been
erroneously grouped on the basis of convergent characters, such as 'vultures'.  The New and Old World vultures
look strikingly similar but have evolved independently from different ancestors (storks and birds of prey,
respectively).

Cladistic classifications have often been criticised as being limited in that they tell us little about the organisms
themselves beyond who their nearest relatives are. For example, advocates of more traditional approaches to
classification like to be able to reflect the evolutionary innovation shown by birds compared to their closest
living relatives (the crocodiles) by elevating birds to their own class and consigning their dowdy relatives to the
non-descript group the 'reptiles'. However, rigorous and objective alternatives to cladistic classifications have
been hard to construct. Cladistic classifications also have the great advantage of being immune to variation in
rates of evolution. For

Fig. 2.20
Two kinds of non-monophyletic groups. 'Reptiles'

are a paraphyletic grouping that is based on the
absence of the apomorphic ('derived') characters
possessed by birds. 'Vultures' are a polyphyletic

grouping comprising two groups of birds that have
independently evolved similar morphology

and habits from different ancestors.
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Fig. 2.21
Examples of variation in rate of evolution

among genes from the same organisms. For all
four trees the cladistic group AB is preserved.

Dashed line is an arbitrary threshold for placing
species in different higher taxonomic groups.

example, in Fig. 2.21 (a) we have additive trees for two different genes from the same organisms AC. In the
first case the gene from species A has evolved much more rapidly than its homologous gene in B and C.
Classifying the three species based on similarity would lead us to group B and C together.  However, a second
gene indicates that A and B are more conservative than C, in which case we might prefer to group A and B to
the exclusion of C. If similarity is our criterion for delimiting taxonomic groups then we would have to choose
between these two genes, essentially an arbitrary choice. Note however that the cladistic relationship remains
the same in both trees. Figure 2.21 (b) shows a different case where the rate of evolution for a given gene is
constant. This might lead us to base taxonomic groups on amount of genetic divergence. However, using this
method another gene evolving at a slower rate might lead to a different classification. Again, the cladistic
groupings have not changed.

2.4.2
Gene Trees and Species Trees

The naïve expectation of molecular systematics is that phylogenies for genes match those of the organisms,
hence obtaining the first necessarily gives us the second. However, there are a number of reasons why this need
not be so. The first is that gene duplications may result in a species containing a number of distinct but related
sequences. In the example shown in Fig. 2.22 three species AC each have two copies of the same gene, a and b.
A phylogeny for all six genes allows us to correctly recover the organismal phylogeny ((A, B), C) from either
the a or b genes. However, if we were unfortunate enough to sequence only genes 1, 3 and 5, and were unaware
that they were part of a larger gene tree, we would infer that the organismal tree was ((A, C), B) because gene 3
from species C is more closely related to gene 1 from species A than is gene 5 from species B, even though
species B is actually closer to species A than is species C.

This example illustrates that organismal phylogeny can be correctly inferred only if we have the complete set of
genes, or if we restrict ourselves to
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Fig. 2.22
Phylogeny for three species AC and six genes that stem from a gene duplication

resulting in two paralogous clades of genes, a and b. The a genes 13 are
orthologous with each other, as are the b genes 46; however each a

gene is paralogous with each b gene as they are separated by
a gene duplication event, not a speciation event.

a set of genes that have not themselves undergone a duplication. That is, we require orthologous genes. Two
homologous genes are orthologous if their most recent common ancestor did not undergo a gene duplication,
otherwise they are termed paralogous. In Fig. 2.22 genes 13 are orthologous, as are genes 46, but any pair of a
and b genes are paralogous.

2.4.3
Lineage Sorting and Coalescence

Another process that complicates the relationship between organismal and gene phylogeny is lineage sorting.
Even if we restrict our attention to orthologous genes for the reason given above, the presence of ancestral
polymorphism coupled with the differential survival of those alleles can result in allele phylogeny not matching
organismal phylogeny. If we start with a pair of orthologous alleles and travel down the tree (i.e. backwards in
time) we will eventually encounter their most recent common ancestor.  This is the point at which the two gene
lineages coalesce (Fig. 2.23) and the time at which this occurs is the coalescence time.

In the example shown in Fig. 2.23, alleles 3 and 4 have a recent coalescence point which lies within their
organismal lineage B. However, alleles 1 and 2 have a more ancient coalescence time which pre-dates the age
of their lineage A, that is, they are older than species A. Furthermore, even though alleles 1 and 2 are both
found in the same species, they are not each other's closest relative. The presence of a paraphyletic pair of
alleles in lineage A may have consequences later on in evolutionary time. Imagine that shortly after species A
and B diverged, and while alleles 1 and 2 were still both extant, species A itself speciated into species A1 and
A2 (Fig. 2.24). In this case, species A1 inherited
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Fig. 2.23
A gene tree for four alleles (14) in two organismal

lineages, A and B. The points at which pairs of allele
lineages join (coalesce) are marked by open circles.
Alleles 3 and 4 coalesce within lineage B, but alleles
1 and 2 are older than lineage A. Note especially that

alleles 1 and 2 do not form a monophyletic group
2 is more closely related to 3 and 4 than it is to the

other allele (1) found in the same species.

Fig. 2.24
One possible extrapolation into the future of

the gene and species trees shown in Fig. 2.23.
In this instance species A diverged into species
A1 and A2. The two alleles (1 and 2) present in
A whenit speciated were inherited by A1 and

A2 respectively. Allele 3 has gone extinct.

allele 1 and species A2 inherited allele 2. Put another way, the two allele lineages 1 and 2 were sorted among
the descendants of A. Note that even though all three species have monophyletic suites of alleles, the alleles
found in A2 are actually more closely related to species B than to its sister species A1. Were we to use the
phylogeny of these alleles to infer the phylogeny of the three species A1, A2 and B we would incorrectly
conclude that the species tree was (A1, (A2, B)). This hypothetical example illustrates the problem of lineage
sorting.  If the alleles present in a lineage prior to that lineage speciating are not monophyletic then the
distribution and relationships of these alleles need not accurately reflect the phylogeny of the organisms
themselves.

Lineage sorting is likely to be a problem for organismal phylogenetics if the time it takes for alleles within a



lineage to coalesce is greater than the interval between successive speciation events.
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Fig. 2.25
The same situation as in Fig. 2.24 but lineage A
speciating later in time, by which time allele 2

has gone extinct. Consequently species A1
and A2 inherit a monophyletic set of alleles.

Figure 2.25 shows an alternative extrapolation of Fig. 2.23 in which species A splits into two daughter species
later than in Fig. 2.24, after allele 2 has gone extinct. Consequently, when A speciates its descendants receive a
monophyletic set of alleles. In this case, allele phylogeny faithfully reflects species phylogeny.

The key difference between Fig. 2.24 and Fig. 2.25 is the length of time between successive speciations of the
same lineage. Due to a combination of chance and selection, allele lineages will either persist, radiate or go
extinct. The longer the interval between speciation events the greater the chance that these processes will result
in lineages with a monophyletic set of alleles.  The importance of gene trees and coalescence times for modern
population genetics is discussed in more detail in Chapter 4.

2.5
Consensus Trees

Often we want to compare trees derived from different sequences, or from the same sequences using different
methods. Given two or more different trees we can ask 'what do these trees agree on?' Consensus trees are trees
that represent the commonality (if any) among a set of trees. For example, consider the two trees for hominoids
shown in Fig. 2.26. The two trees are very similar, but tree 1 groups humans and chimps together, whereas tree
2 groups the chimp and gorilla. Both trees agree that humans and African apes are more closely related to each
other than each is to the orang-utan, and that the great apes and humans form a clade that excludes the gibbon.
We can summarise the agreement between these trees in a consensus tree, which contains a polytomy
indicating that there is conflict concerning our relationships with the African apes. This is an example of a soft
polytomy (see section 2.1.1); the consensus tree is not indicating that the African apes
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Fig. 2.26
Two different trees for humans (H), chimps (C),
gorillas (G), orang-utans (O) and gibbons (B),

and their consensus tree.

and humans speciated simultaneously, rather we have insufficient evidence to determine the exact order of
speciation. There is a range of different consensus methods, three of which are discussed in Box 2.4.

Box 2.4 Types of consensus tree

A consensus tree summarises information common to two or more trees. There is
a range of different methods which differ in what aspect of tree information they
use, and how frequently that information must be shared among the trees to be
included in the consensus. We discuss three commonly used methods here. The
strict consensus tree includes only those groups (or splits, see section 2.1.6) that
occur in all the trees being considered. Among the three trees below, only the
split {{A, B, C}, {D, E}} is common to all three trees, and so the strict
consensus of these trees contains just that split.

Notice, however, that there are some splits such as {{A, B}, {C, D, E}} that are
found in two of the three trees. We can relax the requirement that a split be in

continued
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continued

Box 2.4

all trees; for example, we could retain those splits found in a majority of trees,
and this is exactly what the majority-rule consensus does. Any split in more than
half the trees is included in the consensus tree, so the two splits shared by two of
the three trees are also included. Note that any split in the strict consensus tree
will also be in the majority-rule tree. The splits in the majority-rule tree are
usually labelled by what percentage of trees that split occurs in.

Strict and majority-rule consensus methods are two examples of methods that
use splits. However, trees that have no splits in common and hence will give
completely unresolved strict and majority-rule consensus trees) may still have
points of similarity.  For instance, the two trees below share no splits, yet both
agree that if we consider just sequences B, C and D, B is more closely related to
C than either is to D.

The strict consensus tree for these trees is a star tree, but this somewhat
overstates the differences between the two trees. The Adams consensus tree
captures the information that both tree 1 and tree 2 have the subtree ((B, C), D).
Although Adams consensus trees can sometimes be a little difficult to interpret,
they are very useful in situations where one or more sequences have very
different positions on different trees, but there is a subset of sequences upon
whose relationships the different trees agree.

2.6
Networks

So far in this chapter we have assumed that the evolutionary relationships among sequences and organisms are
best represented by a tree. In other words, we are using the tree to model reality. However, the actual
evolutionary history may not be particularly tree-like, in which case analyses that assume a tree may be
seriously misleading.

For example, the metaphor of a 'family tree' is itself rather misleading, as anyone will know who has drawn
one. A tree has single root and branches outwards such that the branches never meet, whereas in a family tree
or pedigree every time a male and female organism mate their branches fuse. Generally the history of each
individual gene can be adequately represented by a tree; however, in cases where a gene has undergone
recombination a
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Fig. 2.27
A tree and a network.

Networks contain cycles, whereas trees do not.

network may be more appropriate. A network (Fig. 2.27) contains one or more cycles (a set of nodes where it is
possible to trace a path starting and ending at the same node without visiting any other node more than once).

2.7
Summary

1 Evolutionary relationships can be represented by a variety of trees. Cladograms depict relative recency of
common ancestry, additive trees incorporate branch lengths, ultrametric trees can be used to represent
evolutionary time.

2 Trees may be either rooted or unrooted, but only rooted trees have an evolutionary direction.

3 The number of possible trees increases rapidly with increasing number of sequences.

4 Evolutionary trees can depict ancestordescendant relationships.

5 Distances satisfying the 'four-point condition' define a corresponding tree.

6 Gene trees may differ from species trees.

2.8
Further Reading

Maddison and Maddison (1992) give an excellent introduction to trees and phylogenies. Barthélemy and
Guénoche (1991) provide a detailed and elegant discussion of the kinds of trees, and the relationship between
distances and trees.  See Poinar and Poinar (1995) for the recovery of DNA from amber, Austin et al. (1997)
for a sceptical review of the authenticity of geologically ancient DNA, and Smith (1994) on the problem of
ancestors. The HIV example is taken from Holmes et al. (1992). For the distinction between hard and soft
polytomies, see Maddison (1989). Swofford (1991) provides an excellent review of consensus methods. For a
discussion of classification see chapter 14 in Ridley (1996).
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Chapter 3
Genes:
Organisation, Function and Evolution

3.1 Levels of Genetic Organisation

3.1.1 DNA, Proteins and Chromosomes

3.1.2 The Genetic Code

3.1.3 Mitochondria and Chloroplasts

3.1.4 The Structure of Genes

3.1.5 Multigene Families

3.2 How Genes Function

3.2.1 DNA Replication

3.2.2 Protein Synthesis

3.2.3 Mutation

3.2.4 Recombination

3.3 Genome Organisation and Evolution

3.3.1 Species Differ in Genome Size and Gene Number

3.3.2 The Evolution of Multigene Families

3.3.3 Non-Coding Repetitive DNA Sequences

3.4 Summary

3.5 Further Reading

3.1
Levels of Genetic Organisation

Perhaps no science has made such rapid progress in recent years and has more potential to change the way we
live as the science of genetics. Determining the laws of heredity was one of the greatest achievements of
biological endeavour and today this knowledge is allowing us to make great advances in medicine, through the
identification of genes which make us susceptible to illness, in agriculture, with the development of highly
productive plants and animals, and in evolution where the genetic similarities between species are being used
to reconstruct their evolutionary history.

The first to realise that differences in the physical characteristics of organisms could be caused by underlying
differences in 'heritable factors' was an Augustinian monk called Gregor Mendel who published his findings in
1866, just 7 years after the appearance of Darwin's On The Origin of Species. These heritable factors which
determine much of the physical make up of organisms, including the size, shape and colour of the pea plants
Mendel studied, are called genes. Genes themselves are composed of a more fundamental molecule called
deoxyribonucleic acid or DNA. DNA has two extremely important properties: first, it contains the instructions
for how organisms should be put together in the enormous variety of ways that characterises life on earth, and
second it can be copied or replicated so that these instructions are passed on to successive generations. As
evolutionists we are interested in another property of DNA: that the process of replication is not perfect so that



errors, or mutations, continually arise which provide the raw material upon which evolution
works.  Furthermore, because mutations gradually accumulate through time, so that species which have
diverged recently usually differ by fewer
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mutations than those which went their separate ways in the distant past, we can use the sequence of mutations
to retrace the pathways of evolutionary change. Genes are therefore valuable archives of evolutionary
information.

In this chapter we will outline how genetic information is organised and how this organisation evolved, as well
as discussing some of the ways in which genes manage to perform their extraordinarily diverse range of
functions.

3.1.1
DNA, Proteins and Chromosomes

At a biochemical level, DNA is known as a nucleic acid composed of a continuous string of four basic
molecules called nucleotides. Each nucleotide contains a phosphate group, a sugar (deoxyribose) and one of
four basesadenine (A), cytosine (C), guanine (G) and thymine (T), which are linked together in a long
sequence. The four bases can be placed into two groups depending on their chemical structure: adenine and
guanine form one group called purines, while cytosine and thymine are members of another called pyrimidines.
There are about 3.3 × 109bp (base pairs) in the human genome and it is their precise linear order which
determines the function of any particular gene. Mutations in genes are simply changes in the running order of
bases.

An example of a DNA sequence is shown in Fig.  3.1. The sequence in (a) is part of the pol (polymerase) gene
of HIV-1 that produces the enzyme reverse transcriptase, which the virus uses to replicate itself. The sequence
in (b) is a mutant form, or an allele, of this gene where an A base has changed to G base. This mutation is of
enormous importance because it enables HIV-1 to develop resistance to the drug AZT (zidovudine) which is
often used to treat people with this virus infection.

Genetic information can also be carried by another nucleic acid called ribonucleic acid (RNA) which has
similar properties to DNA, although ribose replaces deoxyribose as the sugar used, and the base thymine is
replaced by another called uracil (U). RNA has a critical role in the processing of genetic

Fig. 3.1
A DNA sequence. Part (a) shows the DNA sequence from part of
the pol gene of HIV-1 and the amino acids this sequence encodes.
Part (b) shows an A to G mutation atamino acid 70 (lysine changes

to arginine) which confersresistance to the drug AZT.
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information (see section 3.2.2) and some organisms, such as many of the viruses which cause serious disease in
humans, have genomes composed solely of RNA. Unlike DNA, some RNA molecules (called ribozymes) are
able to undertake certain biochemical (catalytic) reactions without the aid of proteins. This has led to the idea
that the first living systems on earth may have been composed of RNA rather than DNAan environment called
the 'RNA world'.

Returning to DNA, we find that a molecule of this nucleic acid is actually composed of two sequences (or
strands) of nucleotides which are wound against each other in opposite directions (anti-parallel) so that they
resemble two springs coiled against each other: the bases of each strand are located on the inside of the
molecule, and connected to each other by hydrogen bonds, while the outside of the molecule is composed of a
backbone of sugars and phosphates (Fig. 3.2). This structure is called a double-helix. The bases on the two
strands are joined following certain rules: the C nucleotides on one

Fig. 3.2
The DNA double-helix. A DNA sequence, which

specifies the properties of each gene, is read
(transcribed) in a particular directionreferred

to as 5' to 3'along the molecule. Bases on each
strand of the helix are linked by a sugarphosphate
backbone and the bases are joined between strands
by hydrogen bonds which bind A to T (or U) bases

and C to G bases. From Dickerson (1983) with
permission (illustration by Irving Geis).
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strand pair with G nucleotides on the other, while the A nucleotides pair with T nucleotides (or U nucleotides in
the case of RNA). This is known as WatsonCrick base pairing (although other forms of base pairing exist),
because it was James Watson and Francis Crick who in 1953 first proposed that DNA takes on the shape of a
double helix, a discovery for which they were later awarded the Nobel prize along with Maurice Wilkins.

As we shall see a little later in this chapter, although genes are composed of DNA, not all DNA forms genes.
This is especially true of eukaryotes where most DNA appears to be non-coding DNA and may have no
function. In contrast, coding DNA produces proteinsmore complex molecules that perform many of the
essential tasks of life, regulatory sequences that control how proteins are made, or special RNA molecules, the
most important of which are the rRNAs and tRNAs which are used in protein synthesis. These will be
discussed in more detail in section 3.2.2.

Proteins can be classified according to their function. Some, like actin and collagen, make up the physical
structure of cells and tissues. Others, called enzymes, catalyse chemical reactions, as in the case of the
polymerases which are important in DNA replication (see section 3.2.1).  Another set of proteins are used in the
transportation and storage of chemicals in the body, such as haemoglobin and myoglobin, which transport and
store oxygen, respectively, whilst others, like the hormones, act to regulate biological processes. Finally, some
proteins are designed to recognise foreign organisms and operate as part of the immune system, a good
example being the immunoglobulins.

Each protein is itself composed of smaller units called amino acids, and each amino acid is determined by a
specific sequence of DNA (how this is done will be described in a moment). For example, in the case of the pol
gene of HIV-1, viruses which are susceptible to AZT have a lysine (Lys) amino acid at position 70 in the gene,
while resistant strains have an arginine (Arg) (Fig. 3.1). There are 20 naturally occurring amino acids, signified
by different letters, which have varying physical and chemical properties (Table 3.1).

Proteins are produced by a sequence of these amino acids linked together by peptide bonds, where the a-
carboxyl carbon of one amino acid joins with the a-nitrogen of another, to form a molecule called a
polypeptide. Polypeptide sequences vary greatly in length, from just tens of amino acids (the mature insulin
protein in humans has only 51 amino acids) to many hundreds. Although it is possible to think of proteins as
comprising a simple linear polypeptide sequence (known as the primary sequence), they usually take on far
more complex three-dimensional structuresthat is, they can be folded in different wayswhich play a vital role in
determining their function. The smallest of these structures are called motifs and represent runs of highly
conserved amino acids. One large group of motifs are those specifying C2H2 zinc fingers, 21 to 26 amino acids
in length, which are important components of DNA-binding proteins. If a motif, or more usually a group of
motifs, can be folded independently then it is called a module (C2H2 zinc fingers also
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Table 3.1 The 20 amino acids and their letter codes. Information about
polarity taken from Li (1997).
Amino acid One-letter code Three-letter code Polarity
Alanine A Ala Non-polar
Arginine R Arg Positive charge
Asparagine N Asn Polar
Aspartic acid D Asp Negative charge
Cysteine C Cys Polar
Glutamine Q Gln Polar
Glutamic acid E Glu Negative charge
Glycine G Gly Polar?
Histidine H His Positive charge?
Isoleucine I Ile Non-polar
Leucine L Leu Non-polar
Lysine K Lys Positive charge
Methionine M Met Non-polar
Phenylalanine F Phe Non-polar
Proline P Pro Non-polar
Serine S Ser Polar
Threonine T Thr Polar
Tryptophan W Trp Non-polar
Tyrosine Y Tyr Polar
Valine V Val Non-polar

correspond to modules). Modules can be thought of as the structural and functional core of proteins. For
example, the proteins encoded by HOM/Hox genes, which are important factors in the development of animal
body plans (see section 3.3.2), contain a module (comprising a single motif approximately 60 amino acids in
length) called the homeodomain, which is also found in other genes involved in the control of developmental
processes.

Even if amino acid sequences differ they can produce similar folded structures. The most common of these
secondary structures, caused by regularly occurring patterns of chemical bonding, are the a-helix and b-sheet,
which are important in determining the overall structure of most proteins. These small structural regions can be
joined to produce a more complex folded architecture, the tertiary structure, in which amino acids far apart in
the primary sequence can be placed close together. Related proteins tend to have similar tertiary structures.
Finally, two or more tertiary structures can come together to produce a quaternary structure, composed of
several different polypeptide chains, each with a slightly different function. A good example of such a complex
multicomponent protein is haemoglobin. A molecule of human haemoglobin has four haem groups which bind
oxygen, each associated with a particular polypeptide chain.  In normal human adult haemoglobin two of the
four polypeptide chains, labelled a, have 141 amino acid residues, while
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Fig. 3.3
Schematic view of the structure of human haemoglobin.

The protein is made up of two a chains (141 amino acids)
and two b chains (146 amino acids) which are shaded
differently. Each of the four chains contains a haem
group, shown by a disc, which binds oxygen. From

Griffiths et al. (1993), with permission from WH Freeman.

the other two, labelled b, have 146 residues (Fig. 3.3). The related protein myoglobin, which stores oxygen in
the muscles, has a single polypeptide chain of 153 amino acid residues.

So far we have discovered that genes are composed of DNA and usually produce proteins. There is, however,
one more level of genetic organisation which needs to be consideredhow DNA actually resides in the cell. This
involves much larger genetic structures called chromosomes.  The complete set of chromosomes, and hence all
of an organism's genetic material, is also referred to as its genome and the position a gene occupies on the
chromosome is its locus. A major part of modern genetic analysis involves finding the positions of gene loci on
chromosomes. Most eukaryotes have more than two chromosomes, and sometimes several hundred. For
example, the 12068kb genome of the yeast Saccharomyces cerevisiae is organised into 16 chromosomes.
Bacteria and archaea usually have small genomes, with genes generally located on a single circular
chromosome. Furthermore, in eukaryotes chromosomes are located within a membrane-bound nucleus whereas
bacterial cells are simpler, and because there is no nucleus, the chromosome-bound DNA lies within the main
body of the cell.

Chromosomes consist of DNA and proteins that bind tightly to this DNA. This complex of DNA and protein is
called chromatin, and in eukaryotes it takes on two different forms: euchromatin, the most common
configuration and where most genes are found, and heterochromatin, which is permanently in a condensed and
inactive state in specific chromosomal locations, such as near the centromeres and telomeres, and which
contains much fewer numbers of genes. Packaging is actually so tight that some 12 m of DNA can fit into a
cell nucleus of only 1 mm in diameter!
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In sexually reproducing organisms chromosomes can be subdivided into autosomes, which carry the genes used
by both sexes, and a smaller set of chromosomes that are specific to each sexthe sex chromosomes. In humans,
for example (Fig. 3.4), there are 22 autosomes and two sex chromosomes, designated X and Y (in birds these
are called the W and Z chromosomes).

Chromosomes also take on distinctive shapes, typically with a long (q) and a short (p) arm separated by a
restriction called a centromere (the region which enables chromosomes to segregate in mitosis and meiosissee
section 3.2.1). The ends of the chromosome are called the telomeres. Although they can be easily seen with
microscopes, chromosomes are often treated with special fluorescent chemicals which show up bands on their
surface.  The most common of these chromosome banding techniques is Giemsa, which produces the so-called
G bands, and this is often used in chromosome classification (sometimes even to reconstruct phylogenetic trees)
and gene mapping. Other banding techniques make use of quinacrine hydrochloride (Q bands) and reversed
Giemsa (R bands). As we shall discover in Chapter 7, G and R bands also correlate with major elements of
genome organisation.

3.1.2
The Genetic Code

At this stage we can see that genetic information is organised at a number of levels: from the nucleic acids
DNA and RNA, to the more complex proteins, and finally to the large cellular structures that are the
chromosomes. The next question we need to address is how information flows from one level to another, and
particularly how the base sequence of DNA can produce such a wide variety of proteins? The crucial concept
here, and one of the most important in molecular biology, is that there is a genetic code which specifies how a
combination of any of the four bases produces each of the 20 amino acids. The critical part of the code, which
was deciphered in the 1960s, is that each amino acid is specified by a consecutive and non-overlapping
sequence of three of the four bases. These triplets of bases are called codons and, with four bases, there are 64
possible codons. The genetic code is shown in Table 3.2.

Because there are only 20 amino acids, but 64 possible codons, the same amino acid is often encoded by a
number of different codons, which usually differ in the third base of the triplet. Because of this repetition the
genetic code is said to be degenerate and codons which produce the same amino acid are called synonymous
codons. Three amino acidsarginine, leucine and serineare encoded by six different codons, while another five
can be produced by four codons which differ only in the third position ('fourfold degenerate' sites). A further
nine amino acids are specified by a pair of codons which differ by a transition substitution at the third position
('twofold degenerate' sites), while isoleucine is produced by three different codons and methionine and
tryptophan by only a single codon. Three of the 64 codons do not specify amino acids at all. These are the stop
codons and they determine
 

< previous page page_43 next page >



< previous page page_44 next page >

Page 44
Page 45



Fig. 3.4
The chromosome complement of humans22 autosomes and the X and Y sex chromosomesand banded using Giemsa staining

(G bands). p and q refer to the short and long arms of the chromosome, respectively. These arms can then be divided into regions,
marked by horizontal lines and assigned numbers, and then to individual bands, which are also numbered. For example, band 8p22

refers to band 2, region 2 on the p (short) arm of chromosome 8. Adapted from Watson et al. (1987).
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Table 3.2 The genetic code.
CodonAmino

acid
CodonAmino

acid
CodonAmino

acid
CodonAmino

acid
UUU Phe UCU Ser UAU Tyr UGU Cys
UUC Phe UCC Ser UAC Tyr UGC Cys
UUA Leu UCA Ser UAA Stop UGA Stop
UUG Leu UCG Ser UAG Stop UGG Trp

CUU Leu CCU Pro CAU His CGU Arg
CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA Gln CGA Arg
CUG Leu CCG Pro CAG Gln CGG Arg

AUU Ile ACU Thr AAU Asn AGU Ser
AUC Ile ACC Thr AAC Asn AGC Ser
AUA Ile ACA Thr AAA Lys AGA Arg
AUG Met ACG Thr AAG Lys AGG Arg

GUU Val GCU Ala GAU Asp GGU Gly
GUC Val GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glu GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly

where the polypeptide sequence ends. UAG, also known as the amber codon, was the first stop codon to be
discovered. The other stop codons are UGA (the opal codon) and UAA (the ochre codon). The beginning of a
polypeptide sequence is also usually marked by a specific codon, although there is no codon which only has
this function. In most genes, this initiation codon is AUG (methionine) although GUG and UUG are sometimes
used in bacteria.

For a long time it was believed that the genetic code was universal and there has been much speculation about
how this code evolved.  However, it is now clear that some genetic systems use slightly different codes, most
notably the mitochondrial genomes of various species (mitochondrial DNA is discussed in more detail in the
next section). Perhaps the most common deviation from the universal code, which is found in the nuclear
genome of mycoplasma and all mitochondrial genomes except those of plants, is that the stop codon UGA
instead encodes the amino acid tryptophan (Table 3.3).

3.1.3
Mitochondria and Chloroplasts

Not all DNA in eukaryotes is stored within the cell nucleus. In the cytoplasm that surrounds the nucleus there
are structures, called organelles, which contain their own DNA and which are present in about 102 to 104
copies per cell. One type of organelle, found in most eukaryotes, are the mitochondria
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Table 3.3 Changes from the 'universal' genetic code. Adapted from Jukes and
Osawa (1991).

Genome
Universal code Change Nuclear Mitochondrial
UGA (Stop) Trp Mycoplasma All except plants
AUA (Ile) Met Yeast

Metazoans (except echinoderms)
Met to Ile Echinoderms, platyhelminths

AGR (Arg) Ser Metazoans (except vertebrates)
Stop Vertebrates

AAA (Lys) Asn Flatworms, echinoderms
UAR (Stop) Gln Acetabularia

Ciliated protozoans
(except Euplotes)

CUN (Leu) Thr Yeasts
CUG (Leu) Ser Candida cylindracea
UAA (Stop) Glu Diplomonads
UAG (Stop) (except Giardia)
UGA (Stop) SeCys* Vertebrates, bacteria

(in special enzymes)
N = any nucleotide, R = any purine. *Selenocysteine.

which help degrade fats and sugars, including those important in respiration. The other type of organelle, found
in plants and algae, are the chloroplasts. These contain chlorophyll and are where photosynthesis takes place.

Organelle genomes usually consist of a single DNA molecule and each gene is normally present only once.
Unlike nuclear genes, both mitochondria and chloroplasts only encode proteins which are required for their
essential functionsrespiration and photosynthesis, respectivelyand for the machinery needed to express these
genes. Non-coding DNA is rare in mitochondria and chloroplasts.

Mitochondria originated more than a billion years ago when a free-living bacterium, the closest living relatives
of which are the a-proteobacteria, entered a eukaryotic cell. This endosymbiosis event was beneficial to both
organisms and mitochondria are now an essential feature of many eukaryotic cells. Bacterial endosymbiosis is
also thought to be the origin of chloroplasts, with the cyanobacteria (bluegreen algae) as the most likely
ancestors and it may even be that eukaryotes themselves are the result of a fusion between a bacterium and an
archaeon.

Gene content, genome size and genome organisation can vary widely among mitochondria, with only four
genes common to all those studied so far.  Mitochondrial genome (mtDNA) sizes range from only 6 kb
(kilobases) up to more than 2000 kb, with the human version being some 16 kb in length (Fig.
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Fig. 3.5
The human mitochondrial genome (mtDNA). Different genes (proteins or tRNAs)

are located on the two strands of DNAthe outer H (heavy) strand and the inner
L (light) strand. The H strand is transcribed in a clockwise direction, the L strand

anticlockwise. The three-letter amino acid codes specify each tRNA type.
Adapted from Darnell et al. (1990).

3.5). In animals and plants, mitochondria are maternally inherited through the egg cytoplasm, the sperm cell
usually having insufficient room for organelles. This maternal form of inheritance, along with the fact that
mtDNA does not appear to undergo recombination (at least in higher animals) and in mammals evolves about
tenfold faster than nuclear DNA, make it an extremely important study tool in molecular population genetics
and systematics. However, these are not the only features which make mtDNA genomes different from their
nuclear counterparts. Other deviations include a slightly different genetic code, modified tRNA and rRNA
genes and, in many plant and fungal mtDNAs, self-splicing intronssequences which are removed from the gene
before the final protein product is synthesised (see sections 3.1.4 and 3.2.2).
 

< previous page page_48 next page >



< previous page page_49 next page >

Page 49

Fig. 3.6
The chloroplast genome (cpDNA) of rice (Oryza sativa). Like mtDNA, genes are located
on two strands, with those on the outside (A) strand transcribed anticlockwise and those
on the inside (B) strand transcribed in the clockwise direction. Split genes are denoted by
asterisks and tRNAs by 'trn'. From Kendrew (1994) and originally Hiratsuka et al. (1989).

The chloroplast genome (cpDNA) is usually much larger than that of mitochondria, ranging in size from 120 to
220 kb. Much of the size variation is due to two inverted repeat (IR) regions which separate a large single copy
(LSC) region and a small single copy (SSC) region. Although most chloroplasts carry the same genes there are
some species-specific differences, sometimes because genes have migrated to the nuclear genome and been lost
from the chloroplast genome. Figure 3.6 depicts the chloroplast genome of rice (Oryza sativa) This,
 

< previous page page_49 next page >



< previous page page_50 next page >

Page 50

like other chloroplast DNAs, consists of about 100 protein-coding genes, most of which are involved in protein
synthesis or photosynthesis, about 30 tRNA genes and four rRNA genes. As with mitochondrial genomes,
introns have also been found in some chloroplast genes.

Plant chloroplast genes evolve some four-to fivefold more slowly than those in the nucleus (which in turn
evolve about the same rate as mammalian nuclear genessee Chapter 4), but about threefold faster than plant
mtDNA genes. They have also been frequently used in molecular systematic studies, particularly sequences
from the large subunit of ribulose-1,5-biphosphate carboxylaserbcL (see Chapter 7). However, the phylogenetic
analysis of cpDNA is made more complicated by intragenome recombination, strong codon bias (particularly
for A- and T-ending codons) and, in non-coding regions, patterns of nucleotide substitution that are strongly
influenced by the base composition at adjacent sites.

3.1.4
The Structure of Genes

Now that we have seen how genetic information is organised at the DNA, protein and chromosome levels, and
how these levels interact with each other, it is necessary to examine the structure of genes in a little more detail.
Because producing a fully functional organism is a complex task, genes come in many forms. Those which
produce a protein, a tRNA, or an rRNA are often referred to as structural genes, while those which control
when and how genes are expressed are often referred to as regulatory genes (or 'regulatory sequences', although
some of these may also encode proteins).  Some, housekeeping genes, need to be expressed in all cell types,
such as those involved in protein synthesis (see section 3.2.2). Other, tissue-specific genes are only expressed
in a particular cell or tissue type. Insulin, for example, which performs a number of functions including
regulating the uptake and metabolism of glucose, is only expressed in pancreatic b-cells.

Whatever their function, all genes comprise a coding region which specifies a polypeptide chain or an RNA
molecule (Fig. 3.7) and which can vary dramatically in length. In the case of protein-coding genes, a single
coding region usually produces a single protein. But this is not always the case. In some circumstances,
particularly in bacteria and viruses, a coding sequence can be translated starting from the first, second or third
bases in the codon (that is, using different reading frames)and so produce multiple proteins. An extreme
example of this is hepatitis B virus (HBV), one of the commonest and most serious viral infections of humans,
and which has 63% of its 3.2 kb genome translated in more than one reading frame.

The coding regions of genes are normally flanked by regulatory sequences which control when the gene is
turned on and off and how much of the gene product is made. Such control of gene expression governs two
processes, transcription and translation. These processes are key aspects of protein
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Fig. 3.7
The structure of a typical protein coding genealcohol dehydrogenase (Adh)from

a eukaryote (Drosophila melanogaster) and a bacterium (Bacillus stearothermophilus).
Although both genes contain a coding region (shaded grey), the Drosophila Adh

gene also contains spliceosomal introns (thick lines) which separate those parts of
the gene which encode amino acidsexons. Spliceosomal introns are not present in
Bacteria or Archaea. Some of the conserved motifs typically found in the promoter

regions of eukaryote and bacterial genes are also shown, as are the positions of
the initiation and stop codons and the polyadenylation signal. The coding

regions (and introns) have been drawn to scale, while the 5' and 3'
flanking regionshave not for ease of presentation.

synthesis and are therefore described in more detail in section 3.2.2 (although you may want to glance at that
section now to make the most of the next two paragraphs). One of the most important groups of these
regulatory sequences are the promoters which rest on the 5' side ('upstream') of coding regionsoften called the
promoter region (Fig. 3.7). These contain sites where RNA polymerases, enzymes crucial to the transcription
process, can bind. Another important set of regulatory sequences found in eukaryotes are enhancers which
increase the rate of transcription. These are normally located further upstream than promoters.

Because of their functional importance, promoters have sequences that are often highly conserved between
species. For example, most promoters in eukaryote and bacterial genes contain the sequence motif TATAthe
TATA box. In bacteria this sequence is located about 10bp before the site where transcription starts (1530 bp in
the case of eukaryotes) and forms part of a
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slightly larger motif with the consensus sequence TATAAT. This is known as the '10 site' (or the 'Pribnow
box') and allows the RNA polymerase to be correctly positioned for transcription. A second conserved motif in
bacteria, with the consensus sequence TTGACA, is located about 35 bp before the transcription start site (the
'35 site') and also functions in the control of transcription.  Finally, the ShineDalgarno box, a ribosome binding
site with the consensus sequence AGGAGG, is found about 7bp before the initiation codon (i.e. the ATG) in
bacteria. In some bacterial genes, a set of structural genes with similar functions can be under the control of a
single promoter. This is called an operon and means that the expression of all the genes can be coordinated to
exactly when they are required. Operons are also found in the Archaea, the genes of which generally resemble
those of bacteria in structure.

As well as containing the TATA box, the promoter regions of some eukaryotic genes also contain a 'CAAT
box' located ~40 bp before the transcription initiation site and a 'GC box', which has the consensus motif
GGGCGG, located ~ 110bp before the transcription start site. Both these motifs are binding sites for
transcription factors (proteins which regulate transcription). Conserved motifs are also found at the 3' ends of
genes, where they signify the end of transcription and increase the stability of the RNA transcripts produced.
For example, the polyadenylation signal is marked by a conserved sequence motif, usually AATAA.

As well as their promoters, another, and highly important, difference between the genes of eukaryotes and those
of Bacteria and Archaea is that the former often contain intronssequences which are discarded ('spliced') from
the coding regions of genes during protein synthesis (again see section 3.2.2). The remaining pieces of DNA,
which together will encode the finished protein, are called exons (Fig. 3.7).

Introns occur frequently within eukaryotic genes and make up most of the length of very large genes. The
number, size and organisation of introns also varies greatly from gene to gene: histones (important DNA-
binding proteins) have no introns while the chicken pro-a2-collagen gene has over fifty. The virus SV40
contains an intron of only 31 bp, whilst one of more than 210 000 bp is found in the human dystrophin gene
(mutations in which cause Duchenne muscular dystrophya genetic disease characterised by the enlargement of
the muscles), which is one reason why this gene has a total length of more than two million bases! Some
introns are so large that they even contain genes within them, an example being the alcohol dehydrogenase
(Adh) gene of Drosophila which is located within an intron of the much larger outspread gene, and introns
have been found within other introns'twintrons'! Although introns are removed from genes, and so are usually
considered to be non-functional, there is a strong conservation of sequence around the intronexon boundaries in
eukaryotes: introns nearly always begin and end with the nucleotides GT and AG, respectively, probably
because this allows them to be
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accurately spliced. Intron splicing is itself an extremely important process because a single gene can make
different proteins if it is spliced at different places.

Introns can be placed into different classes depending on how they are spliced and their structure. Most introns
in eukaryotes are spliceosomal introns (or 'nuclear introns') because they are spliced by a spliceosome
consisting of proteins and RNA. Spliceosomal introns are found in animals, plants, fungi and the protist
eukaryotes (that is, those that are not plants, animals or fungi) most closely related to these 'higher eukaryotes'.
Their absence from Bacteria, Archaea, the more divergent protists, as well as mitochondria and chloroplasts,
suggests that they have only recently entered eukaryotes (the evolution of spliceosomal introns is discussed
more fully in Box 3.1 ). Other, protein-spliced introns, are found in some tRNA and rRNA genes.

Box 3.1 The evolution of introns

The discovery that eukaryotic genes are not always intact continuous sequences,
but are usually split into segments by introns which do not code for proteins, was
one of the biggest surprises of modern genetics. Not surprisingly, there has also
been great speculation about how introns evolved.

There are two competing hypotheses for the origin of spliceosomal introns
(Fig.  B3.1). The first, proposed by Walter Gilbert, is that introns mark the
boundaries between ancient genes, which encoded distinct proteins, that now
exist only as exons. Throughout evolution these once independent proteins have
gradually been put together in different combinations to produce the more
complex proteins we see today by exon shuffling, a process which introns may
have aided by acting as hotspots for recombination. Because of the antiquity of
proteins, introns are also thought to be an ancient invention, arising before the
divergence of Archaea, Bacteria and eukaryotes. This is the introns-early theory
(or the 'exon theory of genes'). An alternative hypothesis proposes that introns
invaded eukaryotic genes only recently, hence their absence from the genes of
Archaea, Bacteria and ancient eukaryotes, and have been increasing in number
since this time. This is the introns-late theory.

A crucial prediction of the introns-early hypothesis is that spliceosomal introns
mark out structural or functional units within proteins, because these correspond
to the ancient independent proteins. For example, introns occur at the same
places in all known globin genes, including myoglobin and the plant
leghaemoglobins (even though the latter have an extra intron), and their points of
insertion have been claimed to mark out natural domains of this protein
(although this is debated). However, although introns are found to lie between
intact codons (rather than splitting single codons in two) more frequently than if
they inserted randomly, in most cases they do not separate functionally distinct
parts of proteins.

continued on p. 54
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continued

Box 3.1

Fig. B3.1
Competing hypotheses for the origin of introns. The shaded bars on the right
of the tree indicate the presence of spliceosomal introns, and the width of the
bar their frequency. The progenote is usually taken to refer to the ancestor of

all living cells. Adapted from Palmer and Logsdon Jr. (1991), with permission.

A far more serious problem for the introns-early hypothesis is that spliceosomal
introns are absent from Archaea and Bacteria. Supporters of this

continued
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continued

Box 3.1

theory attempt to explain this by massive intron loss, perhaps because there was
selection to produce a streamlined genome with minimum replication time.
However, intron loss cannot explain why spliceosomal introns are found in
genes which have migrated from mitochondria and chloroplasts to the nuclear
genome, but not in the mitochondria and chloroplasts themselves, nor in the
bacterial groups thought to have given rise to them: the proteobacteria (a-purple
bacteria), thought to be the ancestors of mitochondria, and the cyanobacteria
(bluegreen algae) which gave rise to the chloroplasts. This suggests that
spliceosomal introns first appeared in eukaryotic genes, including those derived
from organelle genomes, after they acquired mitochondria and chloroplasts. It is
even possible that spliceosomal introns are descendants of group II self-splicing
introns which may have invaded eukaryotes along with the bacteria that
eventually became mitochondria and chloroplasts.

Whilst exon shuffling probably has led to the formation of new proteins, this
seems to have only happened during the evolution of the eukaryotes.

A variety of introns are able to splice without the aid of proeins, instead relying on the autocatalytic properties
of RNA.  One such class of self-splicing intorns are the group I introns many of which are also mobile bacause
they encode proteins, such as DNA endonucleases, that allow them to move ('transpose') around the genome.
Group I introns are found in the genomes of some mitochondria and chloroplasts, the rRNA genes of some
eukaryotes, such as in the protist Tetrahymena thermophila, and in T4 bacteriophage. Group II introns, which
can also self-splice although by different mechanisms, are less common than the group I introns, being only
found in scattered mitochondria and chloroplasts as well as in the bacterial ancestors of these organelles (a-
proteobacteria and cyanobacteria, respectively) and contain sequences similar to those of reverse transcriptase.
Finally, and least well studied, are the group III introns. These are found in a small number of protist
eukaryotes, most notably Euglena gracilis, and appear to the group II introns with the central portion removed.

3.1.5
Multigene Families

If we look at the distribution of genes within genomes we find that many genes, rather than existing as
individual copies producing a single protein, are in fact part of a larger family of related genes. Some of these
multigene families are located in a specific region of a single chromosome and can be repeated many times,
whilst others are dispersed throughout the genome. Arranging genes into families was an important
evolutionary innovation because it often also proteins with similar functions to be encoded by clustered genes
that
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Fig. 3.8
Evolution of the human b-globin gene family. The family has six genes and is
located on chromosome 11. Starting with an ancestral gene some 200 million
years ago, the family has grown by a series of gene duplications. The newly

formed genes then evolve new functions so that different amounts of
oxygen can be carried to the embryo, the fetus and the adult.

A single pseudogene, yh, has also been produced.

can be regulated in an efficient manner. For example, invertebrate haemoglobins usually consist of a single
globin gene which produces a single polypeptide chain, whereas vertebrates have a variety of multipolypeptide
globin genes, produced by a process of gene duplication (in which a direct copy of a gene is made through
various mechanisms), which are adapted to the varying oxygen requirements of different development stages
(Fig. 3.8). More information about the structure and evolution of multigene f0amilies, especially by gene
duplication, is provided in section 3.3.2.

Although the importance of genes is that they encode proteins or RNAs, not all genes are functional: some have
acquired mutations, such as those that block the initiation of transcription, prevent correct RNA splicing or
introduce premature stop codons, which inactivate them. These dead genes are called pseudogenes.  Most
pseudogenes also arise through gene duplication but as only one of these copies is usually needed, the other
may acquire inactivating mutations and gradually diverge from its functional ancestor. Pseudogenes of this type
are found in many multigene families. For example, the human a-globin gene family contains three
pseudogenes; ya1 and ya2, which are derived from the adult a-globin gene, and yz which arose from the
embryonic z gene (the Greek character y is used to signify a pseudogene). As we can see from Fig. 3.8, a single
pseudogene, yh, is present in the human b-globin gene family.
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Other pseudogenes, like the ya3 pseudogene from the mouse a-globin cluster, look less like their functional
precursors because they lack introns and the sequences involved in gene regulation, such as promoters. These
processed pseudogenes have probably been produced by the reverse transcription (from RNA to DNA) of the
mature mRNA transcript of a gene (which will itself lack introns and promoter sequencessee section 3.2.2).
Furthermore, because processed pseudogenes are sometimes found on a different chromosome from their
functional ancestor, it is clear that they can be transmitted throughout the genome.

Finally, it is worth noting that genes in eukaryotes are often located in regions of the genome which have high
concentrations of pairs (dinucleotides) of G and C bases. These are called CpG islands (where the p denotes the
phosphate which links the two bases). In most cases, the CpG dinucleotide is highly susceptible to mutation
through methylation, where C mutates to T, so that CpG pairs are usually rare. However CpG islands, which
account for about 2% of the mammalian genome, have approximately tenfold more CpG than the rest of the
genome because they are protected from methylation by a special DNA repair system. Most importantly, CpG
islands are found at the 5' ends of most mammalian genes so that they are useful in mapping the position of
gene loci.

3.2
How Genes Function

3.2.1
DNA Replication

In order for the genetic information stored in DNA to be inherited between generations it must first be
replicated, so that new copies of the two strands are made. Accurate replication is therefore the critical step in
the reproduction of living organisms. In eukaryotes, DNA replication is a complex process because it must be
coordinated across different chromosomes. To achieve this, replication starts at a number of different places,
which are recognised by sequence-specific binding proteins.  Starting replication from a number of locations
simultaneously also makes the process a lot quicker, and it only takes a few hours in humans. In contrast, the
smaller genomes of bacteria are replicated from a single point of origin.

The first step in DNA replication is the unwinding of the double helix. This is undertaken by proteins called
helicases. After the two DNA strands have been separated, new copies of each are made by proteins called
DNA polymerases, creating a replication fork (Fig. 3.9). Four types of DNA polymerase are used to replicate
nuclear DNA in eukaryotesa, b, d and ewhereas three types of DNA polymerases are used in bacteriaI, II and
III. Mitochondrial DNA is replicated by a single g polymerase. The DNA polymerases synthesise the new DNA
strands from pools of deoxyribonucleoside triphosphates (dNTPs), which contain the bases to be inserted into
the growing
 

< previous page page_57 next page >



< previous page page_58 next page >

Page 58

Fig. 3.9
Schematic representation of DNA replication.

A replication fork is shown, which diverges from
the origin of replication. One of the new strands
the 'leading strand'is synthesised continuously,

whereas the other, 'lagging strand', is synthesised in
smaller sections called Okazaki fragments. Three of

the most important proteins in DNA replication
DNA polymerase, helicase and ligaseare shown

as shaded circles although in reality a variety of other
proteins are utilised, including multiple polymerases.

See Kendrew (1994) for more details.

molecule. Each original strand acts as a template for the production of a new strand so that replicated DNA
molecules will consist of one parental strand, from the original DNA molecule, and one newly synthesised
strand. Finally, the template and the newly copied strand are joined together, by enzymes called ligases, to
produce two copies of the mature double-stranded DNA molecule.

DNA replication is closely tied to processes at the chromosomal and cellular levels (Fig. 3.10). In most
eukaryotes, chromosomes reside in cells either as single sets (N; haploid) or pairs (2N; diploid) (chromosomes
that form a pair are homologous, while those from different pairs are non-homologous). The cells with a
haploid number of chromosomes are the sex cells, otherwise known as the gametes, which in animals make up
the eggs and sperm. These fuse during sexual reproduction to form a diploid zygote. To produce a new
organism the zygote then goes through a number of cellular divisions to produce both the diploid body cells
(the soma) in a process known as mitosis, or more haploid gamete cells through meiosis. The key difference
between mitosis and meiosis is therefore that the latter requires two cellular divisions, as opposed to the single
division in mitosis, so that the gametes only have a haploid number of chromosomes.  A second important
difference between meiosis and mitosis is that homologous chromosomes pair up during meiosis thereby
allowing recombination to take place. The details of this extremely
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Fig. 3.10
Mitosis and meiosis. The outcome of mitosis is daughter cells with the same

diploid (2N) chromosome complement as the parental cells whereas in meiosis
two nuclear divisions take place so that four haploid daughter cells are
produced. However, before either mitosis or meiosis takes place, the

DNA in the cell must be replicated, producing sister chromatids.
Both processes are illustrated for a pair of homologous chromosomes.

From Griffiths et al. (1993), with permission from WH Freeman.

important evolutionary process are described in section 3.2.4. Despite these differences, mitosis and meiosis are
similar in that before either occurs the DNA in every chromosome must be replicated. The outcome of
replication is two copies of each chromosome, and thus of each double helix, known as sister chromatids. This
double chromosome structure then divides into two daughter chromosomes, with each going to a different
daughter cell, although a second division, resulting in four haploid daughter cells, takes place in meiosis.

3.2.2
Protein Synthesis

Not only must DNA be able to copy itself, but it must also possess an efficient system for the production of
proteins. Controlling which genes are expressed to produce proteins, and when, is one of the most complex of
all molecular processes. The essence of this problem is that, with only a few exceptions, each cell of the body
has a highly specialised role but an identical set of genes.
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How does the body know which gene to turn on or off in each cell? This problem has been solved in many
different ways. For example, the signal to activate a gene, so that its protein product can be produced, may
come from a hormone lying outside the cell, or from special regulatory genes.  Changes in when and how
genes are expressed is an important aspect of evolutionary innovation.

Protein synthesis involves two major steps; the transcription of the DNA from the gene required into RNA and
the translation of this RNA into protein (Fig. 3.11). In most eukaryote genes, transcription is undertaken by an
enzyme called RNA polymerase II, although two other types of RNA polymerases are sometimes used: RNA
polymerase I synthesises rRNA, while RNA polymerase III synthesises tRNAs as well as the small nuclear and
cellular RNA molecules. Bacteria, on the other hand, use a single RNA polymerase for transcription.
Transcription results in the production of a special RNA, called messenger RNA (mRNA), which contains the
protein-coding sequence of

Fig. 3.11
A cartoon of protein synthesis in eukaryotes.

Based on Griffiths et al. (1993).
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the gene required along with 5' and 3' flanking sequences which control the process (see below). The terms 5'
and 3' refer to the direction transcription takes5' to 3'and DNA sequences are usually shown in this orientation.

Transcription is initiated by special proteins, known as transcription factors, which bind to particular sites in the
gene to start the process. There are many different types of these binding sites, an important example that we
have already encountered being promoters. Sometimes a transcription factor is itself only produced in a single
cell type. For example, the immunoglobulins contain a binding site for a transcription factor which is only
produced in B cells, so that immunoglobulins are only synthesised in B cells.

Because DNA is a double-stranded molecule, only one of the two strands acts as the template for
transcription.  This is the sense (or coding) strand, although which strand takes on this role differs among genes.
The other or complementary DNA strand is then referred to as the antisense (or the nonsense) strand. Although
transcription uses the sense strand as a template it actually produces an mRNA molecule which has the same
nucleotide sequence as the complementary strand so that A, C, G and T bases in the sense strand become U (T),
G, C and A, respectively, in the mRNA molecule.

Although the mRNA molecule contains the complete sequence of the protein to be produced, not all the mRNA
is used to make the protein: two flanking regions, one of less than 100 bp (in eukaryotes) before the initiation
codonthe 5' untranslated region (5'-UTR), and another of between 50 and 200 bp after the stop codonthe 3'
untranslated region (3'-UTR), are not translated because they contain control signals and do not specify amino
acids. Furthermore, a number of modifications are made to the ('primary') mRNA molecule before it is ready to
produce proteins. This is known as mRNA processing (Fig. 3.12), and takes a slightly form in eukaryotes and
bacteria. We will deal with the former.

First, the 5' end of the molecule is modified through the addition of a special chemical 'cap' (composed of 7-
methylguanosine residues) and a stretch of A bases, known as a poly(A) tail, is added to the 3' UTR (a process
called 'polyadenylation'). Next, the introns are cut ('spliced') away from the mRNA molecule by spliceosomes,
and what is left of the mRNA moleculethe exonsare pasted back together. Furthermore, in some genes, and
most notably those of angiosperm (plant) mitochondria and chloroplasts, individual nucleotides in the mRNA
molecule can be changed by RNA editing. This means that mRNA sequences can be different from the
genomic DNA sequences which produced them, so that care must be taken if mRNA and DNA sequences are
combined in a phylogenetic analysis. Once all these processing steps have finished, the ('mature') mRNA
molecule is ready to start producing proteins.

Once synthesised and processed, the mRNA molecules pass through pores in the cell nucleus into the cytoplasm
where they are translated into protein. The synthesis of proteins takes place at special cellular organelles called
ribosomes which are located on the surface of the endoplasmic reticulum.
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Fig. 3.12
Summary of the steps involved in

mRNA processing.

The ribosome is composed of a set of proteins and ribosomal RNAs (rRNA). Each amino acid to be inserted
into the new protein is brought to the ribosome by a transfer RNA (tRNA) molecule that links up with a specific
codon in the mRNA molecule, so that a polypeptide is gradually constructed. The part of the tRNA molecule
that recognises an mRNA codon is called the anticodon, although some tRNAs can recognise more than one
codon. tRNAs, like rRNAs, are never translated into proteins themselves and so are synthesised from special
sets of genes (we will come across these genes again later).

Once the process of translation is finished, the completed polypeptide chains are passed into the lumen of the
endoplasmic reticulum where they fold into their characteristic shapes. Many proteins undergo further post-
translational modification before they become fully functional, such as glycosylation in which carbohydrates
are attached to their surface. Finally, the finished proteins can be released to other parts of the body if they are
required outside of their cell of manufacture.

Not all genes are synthesised in the way described above. For example, mitochondrial and chloroplast genes are
synthesised on their own internal ribosomes and protein synthesis is simpler in bacteria where there is no
nucleus or other membrane-bound structures within their cells.

Finally, the process of protein synthesis shows how genetic information flows from DNA to RNA to protein.
This was originally thought to be such an important discovery that it was called the central dogma of molecular
biology.  However, in the 1970s the enzyme reverse transcriptase was discovered which changes the
relationship by synthesising DNA from an RNA template. We will hear more about reverse transcriptase on pp.
8082.
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3.2.3
Mutation

Although DNA replication is a very efficient and accurate system, it does not function correctly on every
occasion. Sometimes errors, or mutations, can creep into the process. While many of the mutations we see in
DNA sequences arise through this faulty replication, others occur spontaneously, and environmental factors
such as ultraviolet and chemical radiation can also damage DNA. For example, higher mutation rates than
normal were found in families living near the Chernobyl nuclear reactor in Belarus which suffered a serious
accident in 1986 and contaminated a large area with caesium-137. If mutations are inherited between
generations they will provide the raw material of evolutionary change. Only mutations which occur in the sex
cells (otherwise known as the germ-line) have the possibility of being inherited. Errors which take place in
other (somatic) cells of the body are not passed on.

Copies of the same gene sequence which differ by mutation are called alleles. If these alleles also differ in
amino acid sequence they may generate slightly different forms of protein.  Understanding the forces which
generate and maintain allelic variation in populations is the realm of population genetics and is dealt with in
Chapter 4.

There are many different types of mutation (Fig. 3.13). Most involve the replacement, or substitution, of one
base for another in the DNA sequence. These point mutations can be placed into two categories. Transitions
occur when a purine nucleotide (A and G) is substituted for another purine, or a pyrimidine (C and T) is
replaced by another pyrimidine. Transversions occur when a pyrimidine is substituted for a purine, or vice
versa. If point mutations do not change the overlying amino acid, as is often the case if they occur in the third
position of codons, they are referred to as synonymous (or silent) mutations, while those that change the amino
acid are called non-synonymous (or replacement) mutations (see Chapter 5). If a second mutation occurs in a
gene that restores the original phenotype (although not necessarily the original DNA sequence) this is referred
to as a back mutation.

Another class of mutations are those that lead to insertions and deletions of nucleotides (collectively called
indels). Although indels are most likely to occur in non-coding DNA, they sometimes occur in coding regions,
often with serious deleterious effects. For example, the most common mutation responsible for the genetic
disease cystic fibrosis (which affects between 1 in 20004000 Caucasians) is a three basepair deletion which
removes the amino acid phenylalanine at position 508 (DF-508) in the cystic fibrosis transmembrane
conductance regulator (CFTR). Indels are particularly likely to be deleterious if they change the nucleotide
sequence so that it no longer fits the triplet codon structure, because bases have been inserted or deleted which
are not a multiple of three. Such frameshifts will often cause major changes in amino acid sequence and are the
cause of a number of genetic diseases, including
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Fig. 3.13
Different types of DNA and chromosome mutations. Two DNA sequences

(a and b) are shown with point mutations and insertions and deletions (indels)
between them. At the chromosomal level, mutations such as polyploidy and

aneuploidy alter chromosome number whilst inversions, translocations,
duplications and deletions change chromosome structure.

b-thalassaemia (anaemia caused by the unbalanced synthesis of globin genes), haemophilia and Duchenne
muscular dystrophy.

Mutations can also occur at the chromosomal level, which are often visible as disease syndromes. The largest
group of chromosomal mutations are those where the number of chromosomes in the cell is altered, frequently
because of errors during meiosis. The most common examples are polyploidy, where
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the cell nucleus contains multiple sets of chromosomes because the first meiotic division has not occurred, or
cases where the chromosome number changes by smaller stepsaneuploidy. Specific cases of aneuploidy are
trisomy, where there is one more chromosome than the diploid number (and the cause of Down's syndrome), or
monosomy where there is one fewer chromosome.

Other mutations affect chromosome structure rather than number. Some involve a break in the chromosome,
which may occur spontaneously (for unknown reasons), or be induced by mutagens. Some chromosomal
regions appear to be more susceptible to breakage than others. An example is the 'fragile sites', one of which
leads to an important genetic disease called fragile X syndrome (see p. 80).  In most cases the broken ends of
chromosomes rejoin and the break is successfully repaired, although genetic material can be deleted in the
process (giving rise to a chromosomal 'deficiency') or perhaps lead to more complex structural rearrangements.
For example, if the broken part flips end-for-end before rejoining the rest of the chromosome in the reverse
direction, the result is a chromosome inversion. Inversions may be harmless if no genetic material is lost and no
important genes disrupted at the breakpoints of the inversion. They also appear to have been relatively frequent
events: an analysis of primate chromosomes, for instance, has shown that two inversions occurred on the branch
leading to humans after its divergence from the great apes. On other occasions part of the broken chromosome
may join another chromosomea process known as translocation. Finally, if breaks occur in the chromosome
during replication then it is possible that there will be a duplication of part of the chromosome.

Because mutations can have such disastrous affects on phenotype, it is not surprising that systems have evolved
to repair damage to DNA. DNA repair can take place in a variety of ways. Occasionally, errors can be repaired
directly as they occur, through the action of specialised enzymes. However, such direct repair is relatively rare.
A more common mechanism is excision repair where the damaged DNA sequence, which may be single bases
or many nucleotides, is excised (or cut) from the molecule during replication. The missing bases are then
resynthesised by a DNA polymerase which uses the undamaged complementary strand as a template. Another
important mechanism of repair that operates during DNA replication is proofreading, where mistakes are
recognised by DNA polymerases and removed by proteins called exonucleases. Some repair pathways are able
to recognise errors after DNA replication has been completed. One such mechanism is mismatch repair which
detects mismatchescases where A does not bind with T and C does not bind with Gthat have arisen during
DNA replication. In the bacterium Escherichia coli (the O157:H7 strain of which causes about 20000 cases of
food poisoning in the USA each year) the mismatch repair system reduces the mutation rate from ~1 bp per 108
bp replicated to ~1 bp per 1010 bp. Finally, homologous recombination (see below) can replace damaged DNA
with the undamaged sequence present on the homologous chromosome.
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3.2.4
Recombination

Although mutations arise on individual chromosomes, they can move between homologous pairs, and even to
other chromosomes, by a process of recombination. This is one of the most important aspects of sexual
reproduction because, by shuffling mutations, it means that progeny resemble neither of their parents.

Perhaps the most important type of recombination in eukaryotes takes place during meiosis. In meiosis, unlike
mitosis, newly replicated (duplicated) homologous chromosomes form pairs. As they lie side-by-side they form
a complex consisting of four chromatids. At this four-strand stage the chromatids can break and genetic
material is exchanged between non-sister pairs (i.e. chromatids from the other chromosome), before reuniting
again. These crossing-over events result in the formation of chiasmata, in which the chromatids form a cross-
like structure (Fig.  3.14). Each chromosome pair generally has one or more chiasmata and these are important
because they appear to allow chromosomes to segregrate properly to the daughter cells. The further apart two
genes are on the chromosome, the greater the chance of crossing-over between them. Because homologous
chromosomes do not pair during mitosis, crossing-over is rare at this stage, so that the daughter cells produced
by mitosis are genetically identical to those of their parents.

Fig. 3.14
Crossing-over between non-sister chromatids on duplicated homologous
chromosomes (one shaded black, the other grey) during meiosis. Two loci

(A and B) with two alleles at each are shown. In the top example, no
crossing-over takes place but in the bottom one crossing-over
leads to a new combination of alleles in the meiotic products.

Adapted from Griffiths et al. (1993).
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Most recombination in eukaryotes occurs between genomic regions which have a great deal of sequence
similarityhomologous recombination. However, this does not always have to mean the same gene, as
recombination between similar, but non-homologous, genes can also take place. One example of such a process
is unequal crossing-over, which is one of the most important mechanisms determining the structure and
evolution of multigene families and a way in which gene duplication can take place. Unequal crossing-over
occurs when there is a misalignment between genes during meiosis so that recombination produces gametes
with different copy numbers of genes. Misalignment is particularly likely in multigene families because each
member usually has a high degree of sequence similarity, so that matching truly homologous genes can be
difficult. For example, the Lepore mutation of b-haemoglobin is caused by an unequal crossing-over, and hence
a fusion, between the first 5080 amino acids of the d-globin gene and the last 6090 residues from the adjacent
b-globin gene, so that the full d and b genes are absent from descendant gametes (Fig. 3.15).  Because unequal
crossing-over leads to a variation in copy number between gametes, an 'anti-Lepore' mutant is also produced
which carries a mirror image of the Lepore variant along with the d and b genes.

Unequal crossing-over is also responsible for redgreen colour blindness in humans. In this case, individuals
with normal colour vision have one red-light and three green-light receptor long-wavelength opsin genes
(which are found on the X chromosome). However, those with redgreen colour blindness have a fused red and
green-light gene, the outcome of an ancient unequal crossing-over event.

Fig. 3.15
How unequal crossing-over (diagonal arrows)
between the b- and d-globin genes produces

the Lepore mutation of human b-haemoglobin,
and its counterpart anti-Lepore. Adapted
from Weatherall (1991), with permission

of Oxford University Press.
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Another special form of recombination which takes place in multigene families and contributes greatly to their
evolution is gene conversion. This occurs when the DNA sequence of one gene is replaced (or 'converted') by
the DNA sequence from another. This can occur over DNA sequences stretching from a few basepairs to many
kilobases, and between different genes located on the same or different chromosomes (or between alleles of the
same gene). Although gene conversion does not alter copy number, it can be biased, so that certain genes or
alleles are far more likely to act as donor sequences (the origin of the converting sequences) than others.

Although the precise mechanisms of gene conversion are uncertain, it is clearly dependent on the extent of
similarity among sequences: the more similar the sequences, the greater the chance of conversion between
them. For example, gene conversion is more frequent in coding regions compared with non-coding regions
because sequence similarity is greater in the former, and newly duplicated genes, which will be very similar in
sequence, are more likely to experience gene conversion than those that diverged longer ago. This also means
that anything which interrupts sequence similarity, like the insertion of a transposable element (see pp. 8085),
may prevent gene conversion from taking place.

A good example of gene conversion is the fetally expressed g-globin genes of primates (g1 and g2part of the b-
globin gene familysee Fig. 3.8), which arose by gene duplication within the last 50 million years. Since this
time more than 20 conversion events of varying lengths have been documented to have occurred between the
two genes, with g1 the more frequent donor sequence. These conversion events often begin or end in a stretch
of repeated TG sequence located in the second intron: this may act as a 'hot-spot' for gene conversion because
the DNA here forms a structure that increases the rate of recombination.  For example, in some human g2
globins, sequences on the 5' side of the TG repeat are more similar to those in the adjacent (paralogous) g1 gene
than they are to the orthologous g2 globins of other species, strongly suggesting that the g1 gene has converted
this part of the g2 gene. The expected pattern of sequence relationships is restored on the 3' side of the TG
sequence, with more similarity among orthologous g2 genes than to the g1 gene (Fig. 3.16).

Although it is usually thought of as a way of homogenising sequences, gene conversion can sometimes enhance
genetic diversity. The most spectacular example of this involves the immunoglobulin (Ig) genes of the chicken
where gene conversion from a large pool of 80100 pseudogenes to a single functional gene generates the vast
array of different peptides needed by the immune system.

In bacteria recombination can also occur between genes from different species. This interspecific
recombination (or horizontal gene transfer), which appears to have been a frequent occurrence in many
bacterial species, can have a number of important consequences. For example, strains of the
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Fig. 3.16
Gene conversion in the duplicated g-globin genes of
primates. Part (a) depicts the expected relationships

between the duplicated g1 and g2 genes from different
species: each gene evolves independently so that g1

sequences are more closely related to other g1
sequences than they are to g2 sequences. However,
in part (b) a gene conversion event occurs such that
the 5' part of g1 is superimposed on the 5' part of g2.
This means that the 5' region of g2 is more closely
related to g1 than it is to the g2 sequence found in

other species. The boundary for this conversion event
is marked by the repeated TG 'hotspot' sequence.

bacterium Neisseria meningitidis (a major cause of meningitis and septicaemia) that are resistant to penicillin
acquired this property by the horizontal transfer of parts of the penA gene (which encodes a penicillin-binding
protein) from two other species, N. flavescens and N. cinerea, which have more natural resistance. The large-
scale exchange of genes between bacterial species also means that the evolutionary relationships between them
cannot always be represented as simple bifurcating trees, and are better described by an interconnecting
network (see Chapter 2).

Overall it is clear that recombination events are frequent in many organismswith, for example, perhaps one
crossing-over for every 5 kb in some yeast chromosomesand therefore a major source of genetic diversity.
Furthermore, some DNA sequences appear to have inherently higher rates of recombination than others. One
example of such a hot spot is the Chi site which is found every 510 kb in the genome of E. coli. However, rates
of recombination are much lower in other genomic regions, and especially in areas of heterochromatin such as
at the centromeres, the telomeres or on the small fourth chromosome of Drosophila (see Chapter 7), and some
viruses with single-stranded RNA genomes do not recombine at all.
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Finally, despite its fundamental importance, the molecular mechanisms of recombination are still only partially
understood, although in bacteria such as E. coli, it is known that certain proteins, specifically RecA, are involved
in recombination and that this process is associated with DNA repair.

3.3
Genome Organisation and Evolution

One of the most startling revelations of the DNA sequence revolution is the extraordinary variety of ways in
which genomes are organised. For example, the vast majority of DNA in the genomes of Bacteria and Archaea
produces proteins (88% in the case of E. coli), yet 97% of the vertebrate genome is composed of non-coding
DNA and may therefore have no function (although this is hotly debated). Furthermore, most of the eukaryote
genome is made up of DNA sequences that are repeated very many times and, as we saw above, many genes
are arranged into multigene families. A roadmap of eukaryotic genome organisation is shown in Fig. 3.17. In
this section we will describe this organisation in more detail, especially that of the repetitive part, and discuss
some of the evolutionary mechanisms that have given rise to it. The evolutionary processes responsible for
another important aspect of genome organisationdifferences in base compositionare discussed in Chapter 7.

Fig. 3.17
A roadmap of the eukaryote genome. Non-coding regions within genes,

such as introns, are not considered separately here.
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3.3.1
Species Differ in Genome Size and Gene Number

One of the first indications that genomes are highly flexible entities was the finding that their sizes can vary
greatly between species. This can be quantified as the amount of DNA per haploid genome, called the C-value
(Fig.  3.18). Variation here can be dramatic: for instance, there is approximately 200 times more DNA in the
protist Amoeba dubia (670 000 000 kb) than in humans (3 300 000 kb). C-values also vary within taxonomic
groups: while there is only a twofold variation in genome size among mammalian species (the largest known
genome is found in the aardvark, the smallest in a Muntjak deer), there is a tenfold variation within anuran
amphibians (frogs and toads), at least a hundredfold variation between insects, and an enormous 350-fold
variation among bony fish. The puzzle for evolutionary biologists is that the

Fig. 3.18
DNA contents (C-values) for various organisms. Note the log
scale! Data from Kendrew (1994) and updated with Li (1997).
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amount of DNA is not associated with genetic or morphological complexitysome 'simple' organisms, such as
amoebae, can have enormous genomes. And why are genomes so large if most DNA is redundant? This has
become known as the C-value paradox. As we shall see in the next few sections, most of this variation in
genome size is due to the presence of non-coding repetitive DNA.

The number of genes found in different species also varies considerably (Table 3.4). Although eukaryotes
usually have many more genes than Bacteria and Archaea, and vertebrates have more genes than invertebrates,
even the simplest unicellular bacteria require thousands of different genes, while complex multicellular
organisms may require as many as 100 000. Furthermore, these differences in gene number cannot explain the
huge variation in C-values.

Table 3.4 Estimates of the number of protein coding genes
in various free-living organisms. Modified from Bird
(1995), with permission.
Species Gene number
Archaea
Methanococcus jannaschii* 1738
Archaeoglobus fulgidus* 2436

Bacteria
Mycoplasma genitalium* 470
Helicobacter pylori* 1590
Haemophilus influenzae* 1743
Bascillus subtilis* 4100
Escherichia coli* 4288

Eukarya
Oxytricha similis
(ciliated protozoan)

12000

Saccharomyces cerevisiae*
(yeast)

5885

Dictyostelium discoidium
(slime mould)

12500

Drosophila melanogaster
(fruit fly)

1200016000

Caenorhabditis elegans
(nematode)

17800

Fugu rubripes
(fish)

50000100000

Mus musculus
(mouse)

80000

Homo sapiens
(human)

6000080000

* Complete genome sequences available.
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3.3.2
The Evolution of Multigene Families

The most obvious way in which gene number can change between species is through gene duplication, where
direct copies of genes (or parts of genes) are made. As we have already seen, this is an important process in the
evolution of multigene families because it is the first step in creating genes with new functions, and in doing so
increases the family copy number (and genome size). Because of its fundamental importance as a source of
genetic diversity, we will discuss it in some detail.

Gene duplication can occur in a number of different ways.  One mechanism, which we have encountered
already, is unequal crossing-over. This is particularly important in increasing the copy number of multigene
families. Gene duplication can also occur if complete genomes are duplicated, as appears to have been the case
in S. cerevisiae. One way this can take place is through polyploidy (see section 3.2.3). Although polyploidy is
much more common in plants than in animals (approximately 50% of angiosperms are polyploid), because
plants can also propagate vegetatively without the need to make gametes, it has occurred fairly regularly in
amphibians like the toad Xenopus laevis, where there are four copies of each chromosome, so that the species is
tetraploid. Because four is an even number it is possible for tetraploids to have normal meiosis. Other species in
the genus Xenopus have chromosome numbers varying from 20 to 108, suggesting that polyploidy has been
relatively frequent in this group. Polyploidy may also be important in speciation. An example is the salmonid
family of fishes which have twice as much DNA as related species and which are thought to have originated
through polyploidy.

Another way in which gene duplication can occur is through transposition. This takes place when a DNA
sequence at one position in the genome is copied and inserted into a new position elsewhere, sometimes on a
different chromosome. Transposition can occur by a number of different mechanisms and these will be outlined
in section 3.3.3 when we meet the main beneficiariesthe transposable elements, which are a major component
of eukaryotic genomes.

Once a gene has been created by duplication, a number of things could happen to it. It could be that only a
single copy of the gene is required so that the new copy is automatically redundant. In this case the newly
duplicated gene is free of selective constraints and so will accumulate mutations, eventually becoming a
pseudogene, or even being deleted from the genome. Another possibility is that natural selection favours a gene
with a slightly altered function which could be fulfilled by the new copy, as we have already seen in the case
of the haemoglobin genes and their different oxygen carrying capacities.

Although duplication is the most important way in which genes with new functions can arise, in a few rare
cases genes have acquired new functions without duplication. In other words, different proteins can be
produced by the
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same amino acid sequence. Perhaps the best examples of this are the crystallins, proteins that play a structural
role in the eye lenses of animals, and which in some cases can also operate as enzymes: for example, e-
crystallin, found in the eye lenses of some birds and crocodiles, is also the enzyme lactate dehydrogenase
(LDH). It seems that the protein's original function was as an enzyme but it was then recruited into a new
structural role through changes in gene expression.

The importance of gene duplication in the evolution of multigene families can be illustrated by the family of
genes which control the development of body plans in animals. The most important genes of this type in
vertebrates are those in the Hox family. For invertebrates, like Drosophila, the homologous set of genes are
called the homeotic gene complex (HOM). Like many other developmental genes in eukaryotes, both Hox and
HOM contain a highly conserved protein module known as a homeodomain (or a homeobox if we refer to its
underlying DNA sequence) (see section 3.1.1).

Mutations in the HOM/Hox genes can drastically affect the organisation of body parts, sometimes making them
grow in the wrong places: for example, the antennapedia mutant in Drosophila causes leg-like structures to
grow in place of antennae. Placing these genes in a multigene family helps control their expression: in some of
the HOM clusters, genes at the 3' end control development of the anterior body parts of the embryo, while those
positioned at the 5' end control the posterior sections. The HOM/Hox genes probably arose early in the
evolution of metazoans and were perhaps one of the most important innovations in the development of
multicellular organisms. Indeed, there is also a remarkable conservation of other important developmental genes
in vertebrates and invertebrates.  For example, mutations in the eyeless gene of Drosophila and the homologous
Pax6 gene of humans both affect the pattern of eye development.

Although the HOM/Hox genes are related, they differ in how they are organised. In all vertebrates examined so
far there are multiple clusters of Hox genes. In the mouse, a well-studied example, each of its four clusters
(denoted Hoxa to Hoxd) is located on a different chromosome and extends for over 100 kb. In contrast, there
are two clusters of HOM genes in D. melanogaster, Bithorax and Antennapedia, which are found on the same
chromosome. One of the most interesting of all Hox gene clusters is found in amphioxusthe common name of a
number of marine animals belonging to the genus Branchiostoma. The importance of amphioxus is that it is the
closest relative of the vertebrates'the most vertebrate-like invertebrate'and so represents a key organism in
trying to understand the morphological innovations that have accompanied the evolution of the vertebrates
(which possess such novel characteristics as cranial ganglia and teeth). Work by Peter Holland and colleagues
has shown that amphioxus has a single cluster of at least 10 Hox genes (spanning 270 kb), each of which is
homologous to a different Hox gene in vertebrates, so that the origin of the vertebrates coincided with a series
of gene duplications (Fig. 3.19).
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Fig. 3.19
Evolution of Hox and HOM gene clusters by gene duplication. The hypothetical

HOM/gene cluster in the ancestor of chordates andarthropods (white boxes)
expands to produce the eight Drosophila HOM genes (separated into the

Bithorax and Antennapedia complexesas shown by the / / symbol), and the
Hox gene cluster of amphioxus. Further gene duplications in higher vertebrates

then produce four Hox gene clusters, illustrated here by the mouse.
Adapted from Garcia-Fernàndez and Holland (1994), with permission.
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It may be that other important evolutionary transitions were also accompanied by large and perhaps rapid
increases in gene number brought about by extensive gene duplications.

The HOM/Hox genes, along with the globins we encountered previously, represent one type of multigene
familyin which there is only a single copy, or just a few copies, of the family in the genome and where each
member gene usually has a separate function. In the case of the vertebrate Hox genes, the family members are
also dispersed over a number of chromosomes. Other multigene families however are repeated side by side
many times, so that they contain multiple copies of genes with the same function. These are known as tandem
arrays. Tandem arrays probably evolved because the host cell required large amounts of the protein they
produce. A good example is the rDNA array which codes for ribosomal RNA (rRNA), part of the ribosome.
Because of the crucial role played by ribosomes in protein synthesis, rRNAs are found in every species and are
often present in huge quantities in each cell (and in mitochondria and chloroplasts), making up the majority of
cellular RNA.

The rDNA arrays found in the nuclear genomes of eukaryotes produce three types of rRNA: 18S, also known as
the small subunit (»1800 bp), 28S, the large subunit (>4000 bp), and 5.8S rRNA (»160 bp) (where S stands for
Svedberg unit, a measure of sedimentation rate) (Fig. 3.20). In bacteria, the equivalent rRNA types are 16S,
23S and 5S, although numerous variations are found.  As well as these coding sequences, the rDNA array also
contains a number of 'spacer' sequences which contain the signals needed to process the rRNA transcript: an
external transcribed spacer (ETS) and two internal transcribed spacers (ITS-1 and ITS-2) (other spacer DNA
sequences which separate genes lack any kind of functionsee Fig. 3.17). A group of genes and spacer sequences
together makes up an rRNA transcription unit (because a single RNA transcript is produced) and these units are
tandemly repeated in many species, with each rDNA array separated by a non-transcribed spacer (NTS). The
size of the rDNA array varies greatly between taxa, from a single copy in the protist Tetrahymena to 19 300
copies in the lizard Amphiuma means.

Fig. 3.20
A typical eukaryote rDNA array. The coding

regions (18S, 5.8S and 28S) are shaded in black
and are separated by three spacer regions, ETS
(external transcribed spacer), ITS-1 and ITS-2
(internal transcribed spacers). The tandemly

repeated arrays are separated from each other
on the chromosome by a non-transcribed
spacer (NTS). Adapted from Hillis and

Dixon (1991), with permission.
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About 200 tandemly repeated copies are found on the X and Y chromosomes of D. melanogaster, while in
humans there are approximately 300 copies on five chromosomes.

rDNA sequences have been used frequently in molecular systematics because they include both highly
conserved (18S) and highly variable sequences (NTS), and so can reconstruct the phylogenetic relationships
between both very distant and very closely related species. Most striking of all is that because homologous
rDNA genes are found in Archaea, Bacteria and eukaryotes they can be used to construct a tree of all cellular
life (see Chapter 1).

Despite their popularity as phylogenetic tools, rDNA arrays do not always evolve in a simple manner. In
particular, when rDNA sequences are compared within and between species an interesting pattern emerges:
there is often a high degree of sequence similarity within species yet a great deal of divergence between them.
This is unusual because, as we will see in Chapter 7, a low level of within species variation is normally
associated with a low level of between species divergence. This unusual evolutionary pattern arises because
there are genetic mechanisms, particularly those of unequal crossing-over and gene conversion, which transfer
DNA sequences between genes so that they evolve together. This process is known as concerted evolution and
is one of the most important acting on multigene families because it means that mutations can spread to all
members, even if they reside on different chromosomes. While concerted evolution allows genes to evolve
together, it also greatly complicates the phylogenetic analysis of multigene families because it becomes difficult
to discern which genes are really homologous, so that orthologous and paralogous genes can be mixed (see
Chapter 2).  Furthermore, the point of sequence divergence no longer corresponds to the time of the last gene
duplication or speciation event, but rather to the time of the last gene conversion or unequal crossing-over.

In sum, multigene families are a simple and highly effective way of creating genetic and functional flexibility.
However, the complex processes which shape their evolution also mean that they are often composed of
'mosaics' of sequences, each with a different phylogenetic history, rather than strictly homologous genes
gradually diverging through time.

3.3.3
Non-Coding Repetitive DNA Sequences

Not all the repetitive DNA sequences in the genomes of eukaryotes produce proteins or RNAs. Other types of
repetitive DNA, usually present in much higher copy numbers, do not encode products used by the cell (Table
3.5). However, the fact that these sequences are repeated many times and are non-coding does not mean they
are without interest: by learning more about their evolution we will come to know more about the processes that
have shaped the eukaryote genome as a whole. For example, it has been argued that some of these sequences
spread solely for their own benefit, a tendency which has
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Table 3.5 The different classes of non-coding repetitive DNA found in
eukaryotes.
Class of repetitive DNA Copy number Organisation
Satellite DNA Highly repetitive (>104) Tandemly

repeated
Minisatellites and
microsatellites

Moderately repetitive Tandemly
repeated

Transposable elements Moderately and highly
repetitive

Dispersed

earned them the nickname of selfish DNA. It has even been suggested that some are 'ultra-selfish' because they
can interfere with the function of other genes to increase their own copy number. An example of genes in this
class are those involved in meiotic drivethe excess recovery of one allele in a pair in the gametes of a
heterozygous parent. Furthermore, species-specific differences in the type and amount of non-coding repetitive
DNA is a major reason why genome sizes differ between species. Finally, and perhaps rather unexpectedly,
will see that some of these sequences are of great practical importance for those working in other areas of
biology.

Tandemly Repeated DNA

A great deal of the non-coding repetitive DNA in eukaryotes consists of short sequence motifs (i.e. strings of
sequences) tandemly repeated many hundreds or thousands of times.  One type of DNA in this class, termed
satellite DNA, is located mainly in regions of heterochromatin and consists of motifs from 2 bp up to 40 Kb in
length. For example, the a-satellite of primates is based on a 171 bp sequence. These motifs are tandemly
repeated very many times such that the whole repeat unit can go on for hundreds of kilobases, and is often
referred to as 'highly repetitive DNA'. DNA of this type can even form the bulk of genomes: for example, 60%
of the genome of Drosophila nasutoides is made up of satellite DNA. Although it is usually assumed to be
'junk DNA', it is possible that satellite DNA is involved in the structure and function of centromeres.

Two similar types of repetitive DNA sequence are minisatellites and microsatellites. These are also composed
of short sequence motifs (see below) that are tandemly repeated many times, although less frequently than
satellite DNA (making them 'moderately repetitive DNA'). These short repetitive motifs are thought to be
produced by mutation, unequal crossing-over and DNA slippage. This last process occurs when DNA strands
mispair during replication and recombination so that short stretches of sequence slip against each other creating
loops of DNA which, when repaired, result in the loss or gain of motifs.

Minisatellites, or VNTR loci ('variable number of tandem repeats'), are found in the euchromatic regions of
vertebrates, fungi and plants. Each repeat unit contains a short G-rich 'core' sequence, ranging in size from 11
to 60 bp, although the complete repeat unit may be up to 200 bases long (Table 3.6).
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Table 3.6 Comparison of selected minisatellite probe sequences. These
probes are based on the core sequence and are used to detect variability in
allele length at each minisatellite locus. Modified from Kendrew (1994).
Minisatellite
probe

Sequence*

Core
Jeffreys

GGAGGTGGGCAGGARG

Myoglobin CTAAAGCTGGAGGTGGGCAGGAACGACCGARRT
33.15 AGAGGTGGGCAGGTGG
33.6 AGGGCTGGAGG
plg3 AGAAAGGCGGGYGGTGTGGGCAGGGAGRGGCAGGAAT
lMS1 GTGGATAGG
YNH24 CAGCAGCAGTGGGAAGTACAGTGGGGTTGGTT
Insulin ACAGGGGTGTGGGG
Harvey ras
c1

GGGGGAGTGTGGCGTCCCCTGGAGAGAA

a-globin
3'HVR

AACAGCGACACGGGGGG

D 14S1 GGYGGYGGYGGYGGYGGYGGY . . .
Core
Nakamura

GGGNNGTGGGG

* R = A or G; Y = C or T; N = any base.

These units are then tandemly repeated along the chromosome, reaching sizes of 50 kb.

The most striking feature of minisatellites is their extraordinary variability: new variants arise on average at a
frequency of 12% per gamete, per generation (although this can be as high as 15%) whereas most gene loci
have a mutation rate of 105 to 106 per generation. This means that repeat copy number (i.e. allele size) can vary
between individuals and that a large number of alleles are present even within a single population. It is this
high mutation rate, along with a simple pattern of Mendelian inheritance (see Chapter 4), that gives
minisatellites their practical worth: they are extremely powerful molecular markers. More precisely, because of
variation in allele size, each minisatellite locus produces large numbers of DNA fragments following
electrophoresis and these can be used to distinguish different individuals within a population. This is known as
DNA profiling (or DNA fingerprinting).

Because it offers great accuracy of identificationthe chance of an incorrect match in a DNA profile is extremely
small (although there is some debate as to actually how small, depending on the structure of the population the
samples are drawn from)DNA profiling has been used with great success in both population biology and
forensic science.  In behavioural ecology, for example, minisatellites can be used to determine which male in a
population is the father of a set of offspring, a task which is often difficult through observation alone.

Microsatellites, or STRs ('short tandem repeat polymorphisms'), are sequences composed of runs of repeat units
25 bp in length (repeats of the dinucleotide CA are especially common) which are found in the genomes of
many eukaryotes, again mostly in regions of euchromatin and in the plant chloroplast genome.
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Because of their simple structure, these repetitive motifs are also called simple sequences. In the human genome
there are perhaps 35 000 microsatellite loci, occurring on average every 100 000 bp, and with allele lengths of
usually between 2 and 50 repeats per locus. However, the differences in allele sizes between species are often
much less than those expected given what is observed within species, suggesting that there is an upper limit on
allele size, although the reasons for this are unknown. Such constraints also mean that micro-satellites are
generally poor indicators of interspecific relationships. It is also unclear exactly how allele sizes change
between individuals and whether mutational events always involve the loss or gain of single repeats.  The
population genetic models describing microsatellite evolution are discussed in more detail in Box 4.2 in
Chapter 4 (see p. 108).

Like minisatellites, the importance of microsatellites lies in their high mutation rates, between 102 and 105 per
gamete, per generation, so that they also vary greatly in copy number between individuals. Such high levels of
genetic diversity coupled with neutral evolution, codominance (so that heterozygotes can be distinguished from
homozygotes) and simple Mendelian inheritance mean that they are also an ideal, and currently extremely
popular, set of molecular markers. For example, an analysis of nine microsatellite loci from the worlds' most
endangered species of canid, the Ethiopian wolf, showed that wild populations had very little genetic diversity
and that females had hybridised with male domestic dogs. Information of this type is important for those
involved in conserving such threatened species. Microsatellites have also been used in forensic cases: six
different microsatellite loci taken from the femur of an unidentified female murder victim were compared with
those from the victim's probable mother and father. The similarity of the banding patterns indicated, with great
confidence, that the victim was indeed their daughter. How both minisatellites and microsatellites have helped
shape our view of human origins is discussed in Chapter 4.

Finally, microsatellites may also be of medical importance as a number of human genetic diseases, such as
fragile X syndrome, Huntingdon's disease, myotonic dystrophy and spino-bulbo-muscular dystrophy are
associated with a dramatic increase in the copy number of trinucleotide microsatellite repeats. For example,
fragile X syndrome, the most common form of inherited (X-linked) mental retardation, and recognised by a
fragile (breakable) site in the X chromosome, appears to be caused by expansion of a CGG repeat in exon 1 of
the FMR1 gene. Normal alleles contain between 6 and 50 repeat units whereas clinically affected individuals
have more than 200 repeats, and frequently more than 1000.

Transposable Elements

Instead of relying on unequal crossing-over and DNA slippage, the second main class of non-coding repetitive
DNA sequencesthe transposable elements (TEs)increase their copy number by jumping around the genome,
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making additional copies of themselves as they do so. If one group of DNA sequences deserve the title of
'selfish', it is these. Transposable elements make up a substantial portion of the genomes of many eukaryotes:
more than 50% of the maize genome is made up of transposable elements and a similar figure may yet be
uncovered in humans (1020% of the genome of Drosophila melanogaster is already known to be composed of
DNA of this type). Transposable elements are also found in bacteria where they are referred to as insertion
sequences or transposons.

Transposable elements can be divided into three groups based on their mechanism of transposition (Fig. 3.21).
Class I transposable elements, or retroelements, transpose through an intermediate RNA stage (i.e.  DNA 
RNA  DNA) using the enzyme reverse transcriptase. This process is called retrotransposition. Reverse
transcriptase is also used by retroviruses such as HIV-1, which means that they can also be classed as similar to
the group I elements. In contrast, Class II or DNA elements, transpose directly from DNA to DNA. Mutation
rates are higher in retroelements than in DNA elements because reverse transcriptase lacks a proofreading
ability and so is extremely prone to errors. Much less is known about the third group of transposable elements,
the miniature inverted-repeat transposable elements or MITEs. These sequences, such as the Stowaway element
from sorghum and the Tourist element in maize, are only 100400bp in length and transpose by as yet unknown
means.

Retroelements can be split into two smaller groups. Retrotransposons possess long terminal repeat (LTR)
sequences at both ends of their genome

Fig. 3.21
Schematic representation of the different types of
transposable elements. Boxes indicate repeated
sequences and shaded ellipses represent genes
involved in transposition. LTR = long terminal
repeat; AAAAA = poly(A) tail. Not drawn to

scale. Adapted from Flavell et al. (1994),
with permission.
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(and are also known as LTR retrotransposons). The copia element, for example, is 500 bp long with LTRs of
276 bp and is found 2060 times in the genome of D. melanogaster, although copia-like elements make up
nearly 1% of all DNA (and some 4.6% of the human genome is composed of retrotransposons). Other examples
of retrotransposons are the gypsy elements of Drosophila, the Ty elements of yeast and the stonor elements of
maize.

The second group of retroelements are the retroposons, such as the I elements of Drosophila, which have no
LTR sequences and instead contain a poly(A) tail at their 3' ends. These elements are also known as non-LTR
retrotransposons or poly(A) retrotransposons. Furthermore, while retroposons use reverse transcriptase they do
so in a different way from retrotransposons and retroviruses. One major type of retroposons are the Long
Interspersed Nuclear Elements (LINEs) which are a major component of the G-banded regions of mammalian
chromosomes (see Table 7.2). These elements are 68 kb in length and are present in many thousands of copies:
for example, elements from the L1 (Line 1) family have a consensus length of 6 kb (although most are
truncated) and are present in a staggering 590 000 copies in the human genome, so that they make up almost
17% of all our genomic DNA-thereby occupying an order of magnitude more DNA than all the coding regions
combined! LINEs can also have important mutagenic effects: insertion of a L1 element into the gene which
encodes the blood clotting protein factor VIII has led to cases of haemophilia.

Superficially similar to retroelements are the Short Interspersed Nuclear Elements (SINEs), or Alu-like
sequences, which are frequently found in the R-banded regions of mammalian chromosomes. Although these
elements transpose through an RNA intermediate, they do not produce reverse transcriptase and so are not
considered true retroelements.  SINEs vary in size from 130 to 300 bp and have copy numbers ranging from 50
000 to over 1 000 000 per genome. The most studied SINEs are the Alu sequences, christened as such because
they were first recognised by the restriction enzyme Alu1. Alu sequences are approximately 300 bp in length
and are present in about 1 100 000 copies in the human genome (almost 12% of our total DNA content). Some
SINEs have acquired important functionsan Alu sequence is used as a promoter sequence in the q1 gene from
the human a-globin gene familyalthough others cause deleterious effects, as in the case of the human genetic
disorder neurofibromatosis which can be induced by the insertion of an Alu element into the NF1 gene. Both
LINEs and SINEs appear to be originally derived from RNA transcripts: LINEs from RNA polymerase II
transcripts and SINEs from RNA polymerase III (tRNA) transcripts, although they now obviously lack their
original cellular function.

Also related to retroelements are the endogenous retroviruses which make up about 1% of the mammalian
genome. These are copies of retro-viruses which have integrated as their DNA form (known as the provirus)
into the germ-line of eukaryotes and which are now inherited along with the
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host genomic DNA. Although these elements were originally derived from infectious viruses, they have since
acquired so many mutations that they are transcriptionally silent and so are non-infectious. The only
endogenous retrovirus known to cause disease is MMTV which leads to mammary carcinoma in mice.

Class II (DNA) elements also possess terminal repeat sequences but unlike those of retrotransposons these are
shortless than 100 bp in lengthand frequently inverted. Class II elements also encode a special transposase
protein which enables them to move around the genome, although the precise mechanisms by which this occurs
are often unclear. Although some 1.6% of the human genome is composed of elements of this kind, the most
studied Class II elements are the P and hobo elements of Drosophila, the mariner elements of animals, the Tc1
elements of nematodes and the Ac/Ds ('Activator/Dissociation') elements of maize, which where the first
transposable elements to be discovered by Barbara McClintock in the 1940s.  Of these, most attention has been
given to the P elements which are found in some species of Drosophila: for example, between 0 and 60 copies
of this 2907 bp element are found in the genome of D. melanogaster. P elements illustrate two of the most
important aspects of the biology of transposable elements: that, as well as jumping around genomes, they are
sometimes able to move between species and that they can affect the phenotype of their host organism.

The most notable phenotypic outcome of P elements in D. melanogaster is hybrid dysgenesisan increased
infertility due to chromosome breakage. However, P elements are only a recent introduction into wild
populations of D. melanogaster and flies maintained in laboratory stocks established in the early part of this
century do not carry them. This means that hybrid dysgenesis only occurs in the offspring of crosses between
laboratory females which are free of P elements, and wild-caught males which carry them. Furthermore, P
elements are not found in the fly species most closely related to D. melanogasterD. simulans, D. sechellia and
D. mauritianabut are present in more distantly related species, such as those from the D. willistoni species
group. This means that P elements in D. melanogaster must have been transferred from the D. willistoni group
(perhaps by viruses or parasitic mites) after D. melanogaster split from its sibling species about two million
years ago (Fig. 3.22).

Transposable elements can influence host biology in other ways. For example, elements inserted into host genes
often inactivate them, or lead to other major mutations. In hybrid dysgenesis, P elements also create mutations,
such as those seen in the white gene (in which flies lack the red eye pigment) and Hobo, another transposable
element from Drosophila, leads to a number of chromosomal rearrangements. Recombination between elements
of the same family that occupy different (non-homologous) sites on chromosomesa process known as ectopic
exchangewill also cause mutations. This has been widely demonstrated in the P elements of Drosophila, and
causes both deletions and duplications of sections of chromosome. Mutations in host genomes can
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Fig. 3.22
The distribution of P elements in the D. melanogaster
and D. willistoni species groups. Only selected species

are shown to illustrate the general pattern. Tree not drawn
to scale. Adapted from Engels (1992), with permission.

also occur when transposable elements are cut ('excised') from the genome, as this process can be quite
inaccurate at the sequence level, with sections of indigenous DNA also being removed.

Although it has been claimed that transposable elements might have some beneficial effects, the great majority
of the insertion events, chromosomal rearrangements and mutations induced by transposable elements will
reduce the fitness of their host species and so be subject to selection pressure to remove them (see Chapter 4).
Indeed, studies in Drosophila have shown that transposable elements are very rare in coding regions, where
they are likely to be highly deleterious and so strongly selected against, yet occur at high frequency in regions
of heterochromatin where fewer genes are found and where the rate of meiotic recombination, a mechanism by
which they are removed from the population, is reduced. Because of their largely detrimental effects, both the
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host genome and transposable element are likely to evolve mechanisms that control their copy number and
prevent runaway transposition. Indeed, insertion sequences in bacteria can regulate their own rate of
transposition so that it decreases as their copy number increases. However, despite their deleterious effects,
transposable elements may be used to beneficial effect in genetic engineering, where they can act as vectors for
carrying genes to new locations.

Box 3.2 Techniques of molecular biology

Our knowledge of the structure and evolution of genes has been made possible
by the dramatic advances in molecular biology. In this box we briefly describe
some of the more important techniques in this ever-developing field.

One of the techniques central to the development of molecular biology was gene
cloning. The DNA to be cloned, which will carry the gene of interest, may be
derived directly from genomic DNA, or may be a complementary DNA (cDNA)
copy of an mRNA produced in a particular tissue.  A set of cloned DNA
fragments from a single source, such as a particular cell type, is called a DNA
library. During cloning fragments of DNA are isolated and purified. To do this
they are first inserted into a special carrier DNA sequence, known as a cloning
vector. The most common cloning vectors are: plasmidsnon-chromosomal DNA
elements found in bacteria which can replicate on their own accord (which can
also transfer horizontally between bacteria species, sometimes bringing genes for
antibiotic resistance with them); bacteriophagesviruses which infect bacteria;
cosmidsplasmids which contain bacteriophage packaging sequences and
YACsyeast artificial chromosomes. The hybrid of cloning vector and inserted
gene (also called a recombinant DNA) is then inserted into a bacteria where it is
amplified to produce a large number of identical molecules.

As well as cloning, it is also possible to amplify genomic DNA directly using the
polymerase chain reaction (PCR). Starting with tiny amounts of a particular
sequence (up to a length of about 5 kb), PCR generates millions of identical
copies. PCR requires short sequence primers, usually about 20 bp long, which are
specifically designed to bind to the ends of the sequence of interest. These
primers are then mixed with the target DNA, a DNA polymerase, and free
deoxyribonucleotides (A, C, G and T) and run through a thermal cycler (PCR)
machine. This runs a cycle where the target DNA is first denaturated (the DNA
strands are separated) at high temperatures (>91°C), the primers anneal (bind) to
these strands at much cooler temperatures (~50ºC), and then target DNA is
synthesised by DNA polymerase at ~72°C (Fig. B3.2). This cycle is run 2540
times, greatly icreasing copy number each time. Most PCR reactions use a DNA
polymerase called Taq polymerase, derived from a bacterium Thermophilus
aquaticus, which lives in hot springs and so is able to resist the high
temperatures required to separate DNA strands. Each newly amplified

continued on p.86
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continued

Box 3.2

Fig. B3.2
Stages of the polymerase chain reaction (PCR). Adapted from Logan (1994).

single-stranded copy of the target DNA sequence can itself act as a template, so
copy number doubles in each cycle (hence the term 'chain reaction').

Once large amounts of DNA have been isolated and purified it is possible to
analyse it in more detail. One of the most important tools in this analysis are
restriction enzymesspecial bacterial enzymes that cut DNA at certain recognition
sequences (or restriction sites). Restriction enzymes consist of a specific
sequence, usually of 48 bp, and are often composed of small inverted repeat
sequences called palindromes. The fragments of DNA produced by restriction
analysis are then separated by size using electrophoresis (the separation of
substances by charge, molecular weight and configuration by running an electric
field through samples on gels made of agarose or polyacrylamide). Mutations
produce fragments of different size, so that this technique is a useful way of
surveying population variation (polymorphisms result from the loss or creation of
a restriction site). This technique is called Restriction Fragment Length
Polymorphism (RFLP) analysis. Another set of molecular markers used in
population biology are Randomly Amplified Polymorphic DNAs or RAPDs. In
this case, random primers of 810 bp in length amplify random

continued
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continued

Box 3.2

DNA fragments during a PCR reaction, which can then be separated out by
electrophoresis. Although simple to use, RAPDs markers can be dominant to
each other so that it is difficult to identify heterozygotes.

Finally, it is possible to determine the precise running order of bases in a gene.
There are two main methods for DNA sequencing, both of which were developed
in the mid-1970s: the chemical sequencing method of Maxam and Gilbert and
the more widely used Sanger dideoxy chain termination method.  Both methods
work on the same principle: four reactions, one specific for each base, generate a
set of fragments which appear in electrophoresis as bands in one of four lanes.
Much of gene sequencing technology is now automated through the use of DNA
sequencing machines. In this case, instead of occupying different lines on a gel,
the four bases are recognised by four different coloured dyes ('dye-terminators')
and appear in a single lane. These can be read directly by a computer and
displayed as peaks of different colours (see the back cover of this book).

3.4
Summary

1 Genetic information is stored in genomes at the chromosomal, protein and DNA sequence levels and various
mechanisms exist by which this information is able to move between levels.

2 Genes themselves consist of a coding region flanked by various regulatory sequences which determine when
and how the gene is expressed. Although genes from eukaryotes, Bacteria and Archaea are similar in this
respect, coding regions in most eukaryotic genes also contain spliceosomal introns which are absent from
Bacteria and Archaea.

3 Another difference between eukaryotes, Bacteria and Archaea is that most DNA in eukaryotes is non-coding
and frequently composed of sequences that are repeated many times. In contrast, most DNA in Bacteria and
Archaea encodes proteins.

4 The non-coding repetitive DNA of eukaryotes can be classified into: those composed of short motifs and
which are tandemly-repeatedsatellite DNA, minisatellites and microsatellites; and those where the repeat unit is
longer and which occupy dispersed genomic locations because they are mobiletransposable elements.

5 Many coding DNA sequences are also repetitive, although in lower copy numbers, forming multigene
families. Multigene families were an important evolutionary innovation, created by a variety of complex
processes including gene duplication, unequal crossing-over and gene conversion. These processes also mean
that multigene families often have mosaic phylogenetic histories.
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3.5
Further Reading

There are many books which describe the fundamental aspects of molecular genetics in more detail than
presented here but Griffiths et al. (1993) and Kendrew (1994) are particularly good, whilst excellent overviews
of the structure and evolution of eukaryote genomes and of genetic systems in general are provided by John
and Miklos (1988), Li (1997) and Maynard Smith and Szathmáry (1995).

The extraordinary diversity of eukaryote genomes and the processes that have given rise to it are described by
Henikoff et al. (1997), while Charlesworth et al. (1994) describe the processes responsible for the evolution of
the repetitive part. With respect to the evolution of multigene families, that of the globins is described by
Hardison (1991) and Dickerson and Geis (1983), whilst the HOM/Hox developmental genes are tackled by
Bailey et al. (1997), Garcia-Fernàndez and Holland (1994) (who show the significance of amphioxus), Holland
et al. (1994) and Krappen and Ruddle (1993), whilst Bird (1995) discusses the evolution of gene number in
more general terms. The structure, evolution and application of another multigene family, the rDNA cluster, is
well reviewed by Hillis and Dixon (1991). How unequal crossing-over produces the Lepore variant of human
haemoglobin is explained by Weatherall (1991) (who also outlines the molecular basis to a number of human
genetic disorders), whilst gene conversion in the g-globins is tackled by Slightom et al.  (1988).

Turning to some other components of the eukaryote genome, more detail on the structure and use of
minisatellites can be found in Armour et al. (1996), Gill et al. (1985), Jeffreys et al. (1985), and of
microsatellites in Gottelli et al. (1994) (who look at genetic diversity in the Ethiopian wolf), Hagelberg et al.
(1991) (who discuss the murder case), Jarne and Lagoda (1996) and Tautz and Schlötterer (1994). Excellent
reviews on the types and structure of transposable elements are provided by Flavell et al. (1994), Kidwell and
Lisch (1997) and McDonald (1993), whilst the evolution of the P elements of Drosophila is examined in detail
by Engels (1992).

With respect to some of the specific examples used, the story of AZT resistance in HIV-1 is initially told by
Larder and Kemp (1989), mutation rates after Chernobyl by Dubrova et al. (1996) and penicillin resistance in
Neisseria bacteria by Spratt et al. (1989 and 1992). Finally, the debate over the evolution of introns is given in
Gilbert et al. (1997), Hurst (1994), Logsdon and Palmer (1994) and Palmer and Logsdon (1991).
 

< previous page page_88 next page >



< previous page page_89 next page >

Page 89

Chapter 4
Genes in Populations

4.1 The Fundamentals of Population Genetics

4.1.1 Describing Genetic Variation

4.1.2 The HardyWeinberg Theorem

4.2 Forces Which Change Allele Frequencies

4.2.1 Mutation and Recombination

4.2.2 Natural Selection

4.2.3 Genetic Drift

4.2.4 Changes in Population Size

4.2.5 Population Subdivision, Non-Random Mating and Gene Flow

4.3 Genetic Change in Quantitative Characters

4.4 Genetics and Speciation

4.5 Gene Genealogies and the Coalescent Process

4.6 Case Study: The Population Genetics of Human Origins

4.7 Summary

4.8 Further Reading

4.1
The Fundamentals of Population Genetics

The peoples of Asia have high frequencies of a variant form of the enzyme aldehyde dehydrogenase (ALDH2)
which helps in the breakdown of alcohol. Those with this mutant enzyme feel unwell and experience flushing
when they drink alcohol and, discouraged by these ill-effects, are less likely to become alcoholics.

The genetic variation in aldehyde dehydrogenase is just one example of the many that exist within every
species. The science of population genetics attempts to describe the structure of this variation and determine the
evolutionary forces which have shaped it. This is an extremely important task because in one way evolution can
be thought of as changes in the genetic composition of populations. Although this is not a textbook of
population genetics, it is important that we understand the basics of this subject because, as we shall see more
clearly in Chapter 7, molecular evolution is a process which occurs both within and between populations.
Furthermore, although the molecular bases to many evolutionary processes are only just beginning to be
uncovered, this is likely to change rapidly in the near future as gene sequence data accumulates with ever
increasing speed.

4.1.1
Describing Genetic Variation

Traditionally, the most important pieces of data used by population geneticists have been the relative
frequencies of different forms of genes within a population.  These different forms, created by mutation, are
called alleles and the coexistence of two or more alleles of a gene means that the population
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Fig. 4.1
Frequencies of the wild-type ALDH2*1 and

mutant ALDH2*2 alleles in different populations.
The data are presented in full in Table 4.1.

exhibits a polymorphism. The allele most frequently found is called the wild-type. In the case of ALDH2, for
example, the wild-type allele worldwide, which produces a fully functional enzyme, is called ALDH2*1. A
single base change creates the variant form, ALDH2*2, which can reach frequencies approaching 25% in some
Asian populations, although it is only rarely found in Caucasians (Fig. 4.1).

To understand why allele frequencies look like they do, it is necessary to input the allele frequencies observed
into theoretical (mathematical) models. Unfortunately, these models can become very complex and we will only
present the most basic forms in this chapter, so that the fundamentals of the subject can be grasped.  The
simplest model has a single gene locus with two alleles, symbolised by A and a. In this case the frequencies of
A and a in the population are given by the mathematical terms p and q, respectively. Although considering only
a single gene with two alleles is highly simplistic, especially since studies at the DNA level have revealed
enormous amounts of genetic variation, it is an informative first step.

If our study organism is diploid, so that it has two alleles for each gene (one on each homologous
chromosome), then an individual may have one of three different combinations, or genotypes, of these alleles:
AA, Aa or aa. Because AA and aa individuals carry two copies of the same allele they (or their genotypes) are
said to be homozygous, while an individual with the Aa genotype is heterozygous at this locus because it
possesses two different alleles. In some cases, one allele may be expressed preferentially over the other, in
which case it is said to be the dominant allele. The other allele is then
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recessive. Whether an allele is dominant or recessive becomes important when the genotype is heterozygous: if,
in the Aa heterozygote, the A allele is dominant to the a allele, then the phenotype will be of the AA type. For
example, the mutant ALDH2*2 allele is dominant to the wild-type ALDH2*1 allele, so that both homozygous
and heterozygous individuals with this allele will lack the action of this enzyme in their liver. If both alleles are
simultaneously expressed in the heterozygote, producing a third phenotype, they are said to be codominant.
Most of the protein and DNA markers used in population genetics are codominant which is useful because it
means that heterozygotes can be easily identified.

If we denote the frequencies of these three genotypes in a population by fAA' fAa and faa' it becomes a simple
matter to calculate the overall allele frequencies, p and q: homozygous individuals will carry only A or a alleles,
whilst heterozygotes will have one-half A alleles and one-half a alleles, so that:

where p + q = 1.0.  For example, the ALDH2 gene was studied in 218 Koreans (Table 4.1 ); 156 were found to
be homozygous for the wild-type allele ALDH2*1 (fAA = 0.716), 4 were homozygous for the mutant allele
ALDH2*2 (faa = 0.018), whilst 58 were heterozygous (fAa = 0.266). Using equation (4.1) we find that p =
0.716 + 0.133 = 0.849 and q = 0.018 + 0.133 = 0.151. This procedure can be easily extended to cases where
there are more than two alleles at a locus: the frequency of each allele is always calculated as the frequency of
its homozygote form, plus half the frequency for all the heterozygotes in which it is present.

The allele frequencies p and q provide a very simple description of the amount of genetic variation in a
population. However, because there are often

Table 4.1 Genotype and allele frequencies of alleles of ALDH2 from selected
human populations. Adapted from Goedde et al. (1992).

Genotype Allele frequency
Population n 2*1/2*1 2*1/2*2 2*2/2*2 ALDH2*1 ALDH2*2
Germans 193193 0 0 1.000 0.000
Finns 100100 0 0 1.000 0.000
Swedish Lapps 100100 0 0 1.000 0.000
Papua New Guineans 242240 2 0 0.996 0.004
Hungarians 117114 3 0 0.987 0.013
Indians 179173 5 1 0.980 0.020
Thais 111100 11 0 0.950 0.050
Koreans 218156 58 4 0.849 0.151
Chinese 13292 38 2 0.841 0.159
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more than two alleles at a locus, dealing with their frequencies alone becomes cumbersome. Therefore, a more
useful measure of genetic diversity is the total frequency of heterozygotes in the population otherwise known as
the heterozygosity (h):

where m is the number of alleles and xi the frequency of the ith allele at the locus. Heterozygosity will be
greatest when there are many alleles, all at equal frequency. It is also possible to calculate the average
heterozygosity (H) across all loci, which can also be thought of as the average fraction of heterozygotes per
locus.

Until recently, heterozygosity was usually measured by analysing the frequencies of alleles in enzymes,
detected using protein electrophoresis. This method involves running an electrical charge through proteins laid
on a gel bed, usually made of starch. The proteins move down the gel at different speeds depending on their
weight and charge, themselves governed by the underlying amino acid sequence. Enzymes with alleles that
differ in electrophoretic mobility are called allozymes.  Although studies of allozyme variation were the
backbone of population genetics, today much more attention is given to DNA sequence variation where the
level of resolution is much greater. Although heterozygosity can also be calculated from DNA sequences,
where it is often called the gene diversity, measures of genetic variation which take into account the actual
number of base changes between sequences, rather than just whether sequences are the same or different, are
more informative. One of the most common of these measures is the nucleotide diversity (or p) which
represents the average number of nucleotide differences per site between two sequences. Nucleotide diversity,
as well as some other measures of DNA polymorphism, are described in Box 4.1.

Box 4.1 Measuring genetic variation within populations

One of the main tasks of population genetics is to measure the amount of genetic
variation in populations. Although this can be done at a number of levels, from
groups of allozymes to single bases, we will only consider variation at the
nucleotide level, as this has the greatest degree of resolution and will doubtless
be used with increasing frequency in years to come.

Perhaps the simplest measure which can be used is the number of variable
nucleotide sites in a sample of sequences, which we can denote as S. This is also
known as the number of segregating sites. However, S does not incorporate the
length of the sequence analysed and so is not comparable across data sets. If we
divide this number by the sequence length (L) we get the number

continued
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continued

Box 4.1

of segregating sites per nucleotide site, which is a
better measure of genetic diversity.

Another frequently used measure of molecular
genetic variation in populations is the average
number of pairwise nucleotide differences
between sequences, P This can be estimated by;

where n is the number of sequences in the sample
(so that n(n 1)/2 is the number of pairwise
comparisons), and Pij is the difference between
the ith and jth sequences. Once again, this number
can be standardised by dividing it by the sequence
length. This new measure, P/L, is also known as
the nucleotide diversity or p.

One of the most important measures of genetic
diversity within populations is given by a
parameter called q, which is equal to 4Nem. q is
important because it describes the amount of
variation expected at each nucleotide site if
evolution is entirely neutral (and can actually be
used to test the neutral theorysee Box 7.1, p. 242).
There are various ways to estimate q, including
some which take into account the genealogical
relationships between alleles, although the details
of these methods are beyond the scope of this
book. It is worth noting, however, that once q has
been estimated, and if m, the mutation rate is
known, then it is also possible to estimate the
effective population size, Ne, directly from
sequence data.

We can compare these measures using the
sequence data obtained from a study of the
evolution of HIV-1 in a single infected patient
(p82), which we came across in Chapter
2.  Sequences from the V3 region of the envelope
glycoprotein gp l20 were sampled over a number
of years and it is possible to compute the amount
of genetic variation in each sample, as has been
done in Table B4.1.

Table B4.1 Various measures of molecular genetic variation in HIV-1 over five
years of infection in a single patient. Adapted from Leigh Brown (1997), with
permission. Copyright (1997) National Academy of Sciences, U.S.A.
Year n S S/L P P/L(p)q
3 15250.10827.37 0.03190.0964
4 11210.09097.89 0.03420.0576
5 23250.10826.27 0.02710.0505
6 15330.142912.310.05330.1052



7 13390.168810.120.04380.0915

The length of the sequence (L) is 231 bp and n is the number of sequences
sampled in each year of the infection. q is estimated using the maximum
likelihood (and genealogy-based) method of Kuhner et al. (1995).
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4.1.2
The HardyWeinberg Theorem

Once allele frequencies and heterozygosities have been calculated, the next task facing population geneticists is
to determine whether these frequencies are changing through generations and between populations. Such
changes in allele frequency in time and space are the footprints of evolution. However, before we can examine
whether allele frequencies are changing, it is necessary to decide why they might remain the same. Explaining
how the variation observed in populations was maintained between generations was one of the most serious
problems faced by early evolutionists. Charles Darwin, for example, who despite being a contemporary of
Mendel was unaware of his work, had no mechanism for the inheritance of phenotypic characters between
individuals. By the later editions of On The Origin of Species Darwin was advocating the 'blending' of
characteristics, in which offspring are an intermediate mix of features inherited from both
parents.  Unfortunately, under blending variation will be halved in each generation and the population will
become phenotypically homogeneous in a short time. Even after Mendel's work was rediscovered at the turn of
the century, explaining the maintenance of genetic variation was a serious problem: if one allele was typically
dominant over another, why was the recessive allele not lost completely? The first achievement of population
genetics was to resolve this dilemma and show that genetic variation could be maintained intact through
successive generations. This was done through what become known as the HardyWeinberg theorem, named
after its co-discoverers, G.H. Hardy and W. Weinberg (in 1908). In many ways the HardyWeinberg theorem is
the cornerstone of population genetics as it is a model of genetic inheritance without any evolutionary change,
and only requires Mendel's simple laws of inheritance.

The HardyWeinberg theorem works as follows. Take a diploid population of males and females which are able
to mate randomly with each other. We need to make a number of other assumptions about this population but
they will be discussed later. As before, the frequency of allele A is p and the frequency of allele a is q. We can
depict the outcomes of a set of random matings between these males and females, in terms of what genotype
will be found in the offspring, using a Punnett square (Fig. 4.2), where each cell represents a particular
genotype.

Crucially, the Punnett square shows how each offspring genotype relates to the parental allele frequencies, p
and q. In other words, it is possible to calculate the frequency of each offspring genotype from the allele
frequencies observed in the parents. This is one of the most important features of the HardyWeinberg theorem.
For example, we can see from the Punnett square that the frequency of AA homozygotes in the offspring
generation is simply the frequency of one A allele (p) multiplied by the frequency of another A allele: p × p, or
p2 (the frequency of aa homozygotes is therefore q × q = q2).
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Fig. 4.2
A Punnett square showing the HardyWeinberg
genotype frequencies. These frequencies are
produced by a random mating between males

and females each carrying two alleles, A
(frequency p) and a (frequency q).

Likewise, the frequency of Aa heterozygotes is (p × q) × (q × p) or 2pq. The frequencies of the three genotypes
after one generation of random mating are therefore given by:

We can illustrate this with a simple numerical example. As we have already seen, the frequencies of the
ALDH2*1 (p) and ALDH2*2 (q) alleles in Koreans are 0.849 and 0.151, respectively. Now assume that males
and females in this population mate randomly with each other. The genotype frequencies in the next generation
will then be p2 = 0.721, 2pq = 0.256 and q2 = 0.023. Multiplying these frequencies by the number in the
population (218), we obtain AA = 157, Aa = 56, aa = 5, which are very similar to those observed in the
previous generation (AA = 156, Aa = 58, aa = 4; Table 4.1). That the genotype frequencies are very similar to
those in the previous generation suggests that the population has reached a stable condition, known as the
HardyWeinberg equilibrium. Even more striking is that these equilibrium frequencies were arrived at after just
one generation of random mating, regardless of what they were in the parental generation, and will remain the
same in the generations that follow, providing all the assumptions still hold (see below). For example, if, in the
first generation, p and q are also 0.849 and 0.151, respectively, but the genotype frequencies are very biased
against heterozygotes, so that AA = 185, Aa = 0, aa = 33, our equilibrium genotype frequencies (AA = 0.721,
Aa = 0.256, aa = 0.023) are still produced after a single generation of random mating (apply equation (4.3) to
see for yourself).  This is the most important part of the HardyWeinberg theorem because it means
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that a single generation of random mating establishes genotype (and allele) frequencies which will remain
unchanged in the generations that follow. No genetic variation is lost. As we shall see later, equilibrium allele
frequencies like those defined in the HardyWeinberg theorem are very important in population genetics.

The HardyWeinberg theorem can also be applied when there are more than two alleles at a locus, to the sex
chromosomes, or to multiple loci. However, although the theorem is very simple, it only works if certain
assumptions are met. These assumptions are that the organism: (i) is diploid; (ii) reproduces sexually; (iii)
mates randomly with other individuals in the population; (iv) that this population is infinitely large; (v) suffers
no mutation; (vi) no natural selection; and (vii) no migration with other populations. If these assumptions break
down, as is often the case in real populations, then allele and/or genotype frequencies will change. Looking for
deviations from what is predicted by HardyWeinberg is therefore a good starting point for studying the
evolution of genes in populations. In the next section we discuss some of the forces which change allele
frequencies through timethe mechanisms of evolutionary change.

4.2
Forces Which Change Allele Frequencies

4.2.1
Mutation and Recombination

The only way in which new types of DNA sequence can arise is through mutation. Mutation therefore provides
the fuel for evolution to run. Other forces which change allele frequencies work on what is ultimately provided
by mutation.  The different types of mutation are discussed in Chapter 3.

Despite its obvious importance in evolution, mutation is generally an infrequent occurrence at the molecular
level (Table 4.2). Mutation rates are notoriously difficult to measure directly and so are shown here as average
rates of synonymous substitution per site (which are good measures of the underlying mutation rate if changes
are selectively neutralsee Chapter 7). For many eukaryotes, these substitution rates are only in the region of 109
per base, per year (or about 106 to 105 per gene, per year), and so low that mutation alone is a weak force in
changing allele frequencies. Rates are higher in other organisms (such as Drosophila) and other genomes (such
as mammalian mtDNA) and reach a peak in lytic RNA viruses, such as those that cause poliomyelitis and
influenza, which lack any kind of repair mechanism. In these viruses, substitution rates may be in the order of
103 to 102 per base, per year, implying that a mutation occurs somewhere in the genome during every round of
replication.

We can also show that mutation alone will change allele frequencies only very slowly with some simple
mathematics. If we have no back mutation, so
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Table 4.2 Average rates of synonymous substitution in various
organisms and genomes.
Organism and genome Rate of synonymous substitution (per

site, per year)
Plant chloroplast DNA ~1 × 109
Mammalian nuclear DNA 3.5 × 109
Plant nuclear DNAa ~5 × 109
E. coli and Salmonella
enterica bacteriab

~5 × 109

Drosophila nuclear DNA 1.5 × 108
Mammalian mitochondrial
DNA

5.7 × 108

HIV-1c 6.6 × 103
Influenza A virus 1.3 × 102
If synonymous substitutions are selectively neutral, then these rates
are a good measure of the background mutation rate, although they
can be highly variable within each of the organisms and genomes
shown (see Chapter 7) and so should only be taken as a rough guide.
All data from Li (1997) except aGaut et al. (1996) who studied the
Adh gene of grasses and palms, bLawrence and Ochman (1997) on
bacteria and cKasper et al. (1995) who examined the gag gene of
HIV-1.

that A alleles can only change to a alleles but not vice versa, the change in allele frequencies due to mutation
pressure can be calculated by:

where pt is the frequency of allele A after t generations, p0 the starting frequency of A in the population and m
the mutation rate. Because mutation rates are so low it is actually possible to approximate (1 m)t by emt (where
e is the base of the natural logarithm, 2.718 . . .) so that equation (4.4) can be rewritten as:

Using these equations we can see that if the starting frequency of allele A (p0) is 1 and the mutation rate from A
to a is 105 per generation, then after 100 generations of mutation from allele A to allele a, the frequency of A in
the population (pt) will have hardly decreased at all, to only 0.999. It will take almost 70 000 generations for
mutation to reduce the frequency of A in the population to 0.5.

The situation is a little more complicated if we have back mutation because it obviously means that we have
two mutation terms in the equation: m (A to a) and v (a to A).  In this case, the frequency of allele A after a
period of mutation is given by:

Back mutation will also mean that neither the A nor a allele will end up as the only one in population, because
mutants in both directions will continually
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arise. To use a slightly different language, neither allele will achieve a state of fixation in which p = 1 or q = 1.
Rather, an equilibrium value (denoted  for allele A) will be reached, given by:

Although these equations are very often shown in textbooks of population genetics, and represent a useful
starting point, they are unrealistic for most genes in which there will be more than two alleles.

Other than in cases like RNA viruses, the only way in which mutation can greatly affect allele frequencies is
when it occurs persistently at a single locusa process known as recurrent mutation. Because the probability of
the same mutation occurring at a single nucleotide in a sequence is very low, recurrent mutations usually
involve large genetic changes, including whole genes or large segments of chromosome. A good example of
recurrent mutations is the thalassaemia blood disorders, the commonest genetic diseases of humans, where a
heterogeneous set of mutations often involving deletions of stretches of DNA, reduce the rate of synthesis of
the a or b chains of adult haemoglobin.  Mutations that cause these deleterious effects, so that they are removed
from the population by natural selection (see section 4.2.2) but continually re-appear through mutation, are said
to be in a state of mutationselection balancean equilibrium value set by the counteracting forces of mutation
and selection.

Although mutation produces the genetic variation needed for adaptive evolution, it also entails a large cost
because many mutations will be deleterious. In bacteria, for example, some strains have extremely high
mutation rates ('mutators'), often due to a deficient mismatch repair system. Sometimes these mutator strains are
able to out-compete those with normal mutation rates but do not take over in wild populations because they
also produce more deleterious changes, which may in turn reduce their growth rates. It has also been suggested
that some bacteria are able to make specific and adaptively useful mutations in response to external signals.
Although there is little evidence for these highly controversial directed mutations, it is likely that some genes in
bacteria are hypermutable, allowing greater genetic flexibility particularly in times of environmental stress.

The cost of an increased number of deleterious mutations is even more severe for multicellular eukaryotes
because of their greater genome complexity and because the larger number of DNA replications required to
make an organism with a long lifespan mean that there are more opportunities for mutation to act. Because of
these costs, eukaryotes have generally reduced their mutation rates through the evolution of more efficient DNA
repair systems, and instead generate much of their genetic variation through the process of recombination (see
Chapter 3). Recombination leads to mutations being shuffled among chromosomes, often during meiosis, so that
the progeny have different combinations of alleles from those of their parents. Although recom-
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bination does not change allele frequencies in itself, it greatly enhances the genetic variation produced by
mutation.

The genetic diversity produced by recombination is one of the major plus points of sexual reproduction and
gives sexual populations a number of evolutionary advantages over asexual communities, in particular a faster
response to changing environments. In this case environments can be either physical or biological. For
example, the extra genetic variation produced by sexual reproduction will lead to a better defence against
parasites, because greater genetic diversity means that a wider spectrum of parasites can be recognised. Another
advantage that recombination gives sexual populations is the easier removal of deleterious mutations. The
steady build up of deleterious mutations in an asexual population may lead to a phenomenon known as Muller's
Ratchet in which the fitness (a measure of evolutionary healthsee section 4.2.2) declines through time as
individuals without deleterious mutations become rarer and rarer. The loss of mutation-free individuals is
irreversible and at each loss the ratchet clicks on one notch.  The ratchet does not apply to sexual populations
which are able to generate individuals without deleterious mutations through recombination and so maintain
fitness.

A simple measure of the amount of recombination is the degree of linkage disequilibrium. Assume we have two
gene loci each with a pair of alleles at equal frequency, Aa at the first locus and Bb at the second (take a look
back at Fig. 3.14). There are four different combinations of these alleles: AB, Ab, aB and ab. If recombination
occurs freely then, on average, there will be an equal proportion of each combination in the population. In this
case we can say that our loci are in a state of linkage equilibrium. If, on the other hand, these alleles are not
randomly assorted so that particular alleles are inherited together as a single unit, then there is a certain amount
of linkage disequilibrium. This can occur either because there is a strong physical linkage between loci, perhaps
because they work well in combination and so are favoured by natural selection, or because of population
substructure (see section 4.2.5).

The degree of linkage disequilibrium (D) can simply be measured by:

where P denotes the frequency of the particular allelic combination. A population is in complete linkage
equilibrium when D = 0. Although this and other measures of linkage equilibrium are less than perfect when
allele frequencies differ, values of D for allozymes in natural populations are usually very close to zero,
indicating that recombination occurs frequently unless genes are very closely linked. However, it is also the case
that some chromosomal regions are less liable to recombination than others, especially in areas of
heterochromatin located at the centromeres and telomeres (see Chapter 3). In Drosophila, for example, genes
located at the distal tip of the X chromosome and on the small fourth chromosome have very low
recombination
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rates (see Chapter 7), while 95% of the mammalian Y chromosome does not recombine.

An important example of linkage disequilibrium at the molecular level occurs in the genes which make the
major histocompatibility complex (MHC), a vital part of the vertebrate immune system (the evolution of this
gene complex is discussed in detail in Chapter 7). Alleles at different MHC genes, called haplotypes, are often
inherited in combination, with different haplotypes found in different populations. For example, the alleles A1,
B8 and DR3 show significant linkage disequilibrium in Caucasian populations. Unfortunately, this haplotype
has also been associated with a faster progression to AIDS in HIV-infected individuals.

4.2.2
Natural Selection

Natural selection is at the heart of the evolutionary process. Because of the 'struggle for existence' that faces
organisms as they compete for resources, those with genes that better adapt them to their environment have a
greater probability of surviving this struggle, so that their favourable genes are preferentially passed on and will
increase in frequency in the population. Although natural selection is synonymous with the name of Charles
Darwin, it was R.A. Fisher who did much to show the power of this process at the genetic level.

Natural selection can act in a variety of ways and at different points during an organism's life-cycle.  For
example, genotypes may differ in their viability of producing adult organisms from zygotes. Later in the life-
cycle, individuals may differ in their fecunditythe numbers of offspring they producewhich will also lead to
natural selection. However, before this takes place there may also be sexual selection in which organisms differ
in their mating success. Finally, gametes may have different probabilities of achieving fertilisation leading to a
form of gametic selection.

The simplest way of thinking about whether one organism is better adapted than another is to describe its
fitness. In population genetic terms, fitness can be defined as the capability that any particular genotype has to
survive and reproduce. This is usually expressed in relative terms, such as whether the heterozygote Aa has a
higher fitness than the homozygotes AA and aa. Fitness is also specific to each environment, because a
genotype which is beneficial in one location might be deleterious in another (and vice versa).

In molecular evolution, fitnesses are most often expressed in terms of the selection coefficient, denoted s,
which is a measure of the reduction in fitness compared with the best genotype in the population: for instance,
an s of 0.01 means that a genotype has a 1% less chance of survival than the best genotypeit is 99% as fit.
Despite this very simple notation, fitness is a complex entity which may change through time, and is difficult to
measure in nature. Indeed, there are very few cases in which the differences between
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alleles at a single locus make enough difference to phenotype to have a measurable effect on fitness.

In most cases mutations will be deleterious and so lower fitness. These mutations will be removed fairly
quickly from the population by purifying or negative selection. At other times a new mutation might have a
higher fitness than all others in the population and so is able to multiply. This is usually called positive
selection in molecular evolution, and will lead to the eventual fixation of the selectively favoured allele (see
below). For example, it may be that allele A has a higher fitness than allele a. This means (assuming A is
dominant to a) that selection will favour the AA and Aa genotypes over the aa genotype. In terms of selective
coefficients, we can think of this as:

Genotype AA Aa aa

Fitness 1 1 1 s

On the other hand, if there is codominance, so that the Aa heterozygote has a fitness intermediate to those of the
two homozygotes, then:

Genotype AA Aa aa

Fitness 1 1 s 1 2s

As well as looking at a single locus, it is also possible to think of natural selection acting on a phenotypic
character which is under the control of many different loci, such as height or body weight. The genetics of these
quantitative characters is discussed more fully in section 4.3. Typically, characters of this sort have a bell-
shaped normal distribution of phenotypes, with most individuals somewhere near the middle (the mean) of the
distribution, and decreasing numbers at more extreme values (represented by a variance). Positive selection on
quantitative characters, more often referred to as directional selection, will move the mean of the distribution in
one direction (Fig.  4.3a).

Some of the best examples of positive selection involve the evolution of resistance to antibiotics, drugs and
pesticides, such as that built up by mosquitoes to the chemical DDT once used to control them. A spectacular
example of this, and one that has been of great practical importance in recent years, is the resistance developed
by HIV-1 to the drug AZT. AZT inhibits viral replication by terminating transcription of the enzyme reverse
transcriptase. In the absence of AZT, the wild-type allele for reverse transcriptase was found to be between 0.4
and 2.3% more fit than alleles adapted for drug resistance (s = 0.004 0.023). Although the drug works
extremely well for the first few months, and greatly reduces the amount of circulating virus, the benefit is only
short-lived and within six months or so the virus is able to evolve resistance through a small number of
mutations. The frequency of the wild-type allele then declines rapidly. Current approaches to HIV therapy
therefore involve combinations of drugs because the virus has a much smaller chance of developing multiple
resistance.

In other cases natural selection will favour the heterozygote over either of
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Fig. 4.3
Different types of natural selection and how they
effect the phenotypic distribution of a character

controlled by many genes (i.e. a quantitative
character with a normal distribution) and the
frequencies of alleles at a single locus where
each shaded ellipse represents a population
of individuals (circles) with an allele of a
particular colourblack or white. The open
and shaded bells represent the phenotypic

distributions before and after selection,
respectively, and the arrows signify

the direction of selection.

the homozygotes. This is called overdominance (sometimes heterozygous advantage) and we can think of it in
terms of fitnesses as follows:

Genotype AA Aa aa

Fitness 1 s 1 1 t

where t is simply the selection coefficient for the aa genotype. Overdominant selection will produce high
heterozygosity (i.e. over that expected under the Hardy-Weinberg equilibrium) and because it preserves both
the p and q alleles will maintain genetic variation in populations, giving rise to a balanced polymorphism. The
equilibrium allele frequencies (i.e. ) which reflect this balance depend only on the relative fitnesses of the three
genotypes, so that:
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which takes exactly the same form as the equilibrium achieved under forward and backward mutation pressure
(equation 4.7).

The most celebrated examples of overdominance are the sickle-cell polymorphism in human b-haemoglobin
and the alcohol dehydrogenase (Adh) polymorphism in Drosophila (see Chapter 7). Overdominant selection is
also likely to be operating on the MHC because a heterozygote with different MHC molecules will recognise
more parasites than a homozygote with only one type of MHC molecule. The analogous process to
overdominant selection for quantitative characters, in that genetic variation is actively maintained, is usually
called stabilising selection and means that individuals in the mean of the distribution will benefit over those at
the extremes (Fig. 4.3b).

The alternative to overdominance is where the heterozygote has a lower fitness than either homozygote:

Genotype AA Aa aa

Fitness 1 1 s 1

This is called underdominance and although homozygous genotypes are favoured, it still preserves both the A
and a alleles although this polymorphism will be unstable, with a change in allele frequency away from the
equilibrium leading to the fixation of A or a. For quantitative characters an analogous process is called
disruptive selection whereby individuals at the extremes of the distribution have a higher fitness than those with
mean values (Fig.  4.3c).

Underdominant selection appears to be controlling bill size in the African finch Pyrenestes ostrinus studied by
Thomas Bates Smith. Bill sizes in this species are either large or small, but not of intermediate dimensions. The
basis for this difference appears to be the hardness of the seeds eaten by the birds: during the reproductive
season both the large- and small-billed morphs prefer soft seeds but during the dry season, when food
abundance is low, the large-billed morph tends to feed on hard seeds while the small-billed morph expands its
diet to include other foods. No seeds of intermediate hardness are found in the localities where these birds live
so that selection acts against those with intermediate bill sizes.

Polymorphisms can also be maintained in populations through frequency-dependent selection (Fig. 4.4). This
occurs when the fitness of a genotype depends on its frequency in the population. For example, the genotype at
the lowest frequency may have the highest fitness (negative frequency-dependent selection). This may occur in
host-parasite systems where a parasite at low frequency is not recognised by the host immune system and is
therefore able to increase in frequency, whereas a strain at higher frequency may elicit a stronger immune
response against it and so be more easily cleared. This will cause an oscillation in the frequency of different
strains as they evade or are recognised by the immune system, leading to a polymorphism in the population. In
other circumstances the genotype with the highest frequency may be favoured (positive frequency-dependent
selection), which will
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Fig. 4.4
Allele and genotype frequencies under frequency-

dependent selection. Genotypes AA and aa are
subject to negative frequency-dependent selection

whereas the fitness of Aa is frequency-independent.
To the right of the point where the lines cross, the A

allele is favoured and increases in frequency although
the fitness of the AA genotype decreases. To the

left of this point, the frequency of the A allele declines
and the a allele is favoured. Although the relationship

between fitness and frequency is shown here as a
straight line, in reality it can take on any shape.

Adapted from Ridley (1996).

prevent polymorphisms from being established. Frequency-dependent selection may also occur if a population
occupies a heterogeneous environment, so that different alleles are favoured in different patches (micro-
environments) or at different times.

Unfortunately, detecting natural selection at the molecular level is a notoriously difficult thing to do because its
effects can be subtle and because different evolutionary processes can leave similar signatures in sequences (see
section 4.5 and Chapter 7). An added complication is that the agent of selection may no longer be present in the
population. For instance, the chemokine receptor 5 (CCR5) gene is an important factor in allowing HIV-1 to
infect cells called macrophages. About 10% of Caucasian people have a 32-bp deletion (called D32) which
inactivates this gene and those homozygous for this deletion (about 1% of individuals) have a greatly reduced
susceptibility to HIV infection, while those that are heterozygous may become HIV infected but seem to
progress more slowly to AIDS. What is puzzling is that this mutation is at such high frequency in Caucasians
(see Fig. 4.13) but is very rare in African and Asian populations. Because HIV is so recent an invader it cannot
be the selective agent responsible for the high frequency of this mutation, which raises the possibility that a past
infectious disease may have acted as a strong selective force favouring individuals with this deletion.

Despite this complexity, it is still possible to show how natural selection changes gene frequencies with some
simple mathematics. Taking the simplest example, of positive selection favouring AA and Aa over aa, so that:

Genotype AA Aa aa

Fitness 1 1 1 s

it is easy to see that frequency of the aa genotype, or q2 if we recall our HardyWeinberg formula, will be
reduced by 1 s in a given generation. The next thing we would like to do is calculate what p (the frequency of
the favoured
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allele) will be after a generation of this selective process.  We can denote this new frequency of p as p¢, and
can calculate it by:

The change in allele frequency (Dp) can then be simply computed as p¢ p or directly by:

It is worth illustrating this with a numeral example. Let's assume p and q in the population are initially 0.25 and
0.75, respectively, and the selection coefficient against aa is at the top end of what we observed in the case of
AZT resistance, say 0.025. Applying equation 4.11 to get Dp we discover that:

which means that p will have increased from 0.25 to 0.2535. Although this seems like a tiny increase it has
happened in a single generation, and represents spectacular progress compared with what happens under
mutation alone. If we run this process for long enough then the A allele will eventually achieve fixation.
However, the rate at which this occurs is not constant, being fastest when there are many heterozygotes in the
population and slowest when there are mostly homozygotes (plug in some different values for p and q and see
for yourself). The same will also be true if there is codominance, in which case the change in allele frequencies
takes on an S-shaped (symmetrical) form (Fig. 4.5). In sum, we can see that natural selection operates most
efficiently when there are large amounts of genetic variation for it to work with. Furthermore, the efficiency of
natural selection is also determined by the size of the population, working best when it is large. When
population

Fig. 4.5
The change in allele frequencies under positive natural

selection for a codominant advantageous A allele that has
entered a population of aa homozygotes. From Griffiths

et al. (1993), with permission from WH Freeman.
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sizes are small, mutations are more under the control of chance processes. This is the subject of the next
section.

4.2.3
Genetic Drift

Once a mutation has arisen in a population it can experience one of two evolutionary fates: it can be fixed and
so come to dominate the population, or it can be lost. Which outcome a new allele faces is not always down to
how much better or worse it is compared to those alleles already present in the population. Instead it may
simply be down to chance. For example, some alleles may reside in individuals who leave no offspring and
even if an individual does produce offspring only a random sample of their genes, those present in the
successful egg or sperm, will be inherited. Because of bad luck, most gametes will not make it to the next
generation. This means that alleles are in effect randomly sampled in every generation, and this random
sampling can change allele frequencies.  This is called genetic drift.

To understand how allele frequencies change with genetic drift we need to develop a stochastic model of
evolution, in which chance plays the leading role. This differs from our previous discussions of mutation and
selection where we dealt with deterministic models, which ignored random effects. First imagine a diploid
population of size N, so that there are a total of 2N allelic copies of each gene. Because of the random sampling
of gametes there is a chance that some of these alleles will contribute no copies of themselves to the next
generation, whilst others will contribute many. Some alleles will therefore be lost from the population in each
generation because the gametes carrying them have not been passed on. This will cause allele frequencies to
fluctuate slightly from generation to generation as some alleles are lost and others reproduce. If this stochastic
variation in reproductive success continues for long enough there will eventually come a time when all 2N
alleles will be descended from a single of our original 2N alleles because all others have failed to reproduce at
some stage along the way (Fig. 4.6). This allele will then have been fixed by the process of genetic drift alone.
The probability of fixation of an allele by random genetic drift is simply 1/(2N), which is its frequency in the
population after it has arisen by mutation. This also means that the probability of fixation is greater when the
population size is small, because 1/2N is larger.

Not only will genetic drift work better in small populations, but it will also be most important for those
mutations which have no effect on phenotype, and so are neither advantageous nor deleterious compared to
their predecessors. These mutations, which are free from the rigours of natural selection, are called neutral
mutations and their evolution is discussed in detail in Chapter 7. Because an individual carrying a neutral
mutation will not be at a selective advantage, the only way they can be fixed is through the chance action of
genetic drift (the one exceptiongenetic hitchhikingis discussed in Chapter 7). However, genetic drift will also
affect new mutations with a selective
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Fig. 4.6
Fixation of an allele (black circle) by genetic drift.

The shaded ellipse represents a population observed at
different time points. The other allele in the population

(individuals with white circles) dies out because it
fails to reproduce. On average it takes an allele
4N generations to get to fixation, although the

probability of this happening is only 1/2N.

advantage, most of which will also be lost by chance unless their benefit is substantial. For example, R.A.
Fisher calculated that a mutant with a 1% selective advantage only has about a 2% chance of being fixed (so a
98% chance of being lost). Loss by genetic drift is especially likely soon after the mutation has appeared and so
is still at low frequency.

Using a mathematical model it has been shown that it takes an average of 4N generations for a neutral allele to
get to fixation through genetic drift, although the random nature of the process means that there is a large
variance around this time. Mutations with a selective advantage will be fixed quicker than neutral alleles (that
is, in less than 4N generations) because individuals with the better gene will produce more offspring than those
with other alleles. Conversely, when natural selection is actively maintaining a polymorphism, alleles can
coexist in the population without any going to fixation for as long as the selection pressure exists, so that they
may survive for longer than 4N generations.

During the time it takes for an allele to be fixed by genetic drift, the population will exhibit polymorphism at
the locus in question. Obviously, the
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larger the population size, the more time it will take for an allele to be fixed and the longer the polymorphism
will last. However, if genetic drift continues for a long enough time and at enough loci, then eventually every
locus will become homozygous because in each case a single allele will have drifted to fixation. Left to its own
devices, genetic drift therefore tends to reduce genetic variation in populations. This situation is unlikely to be
reached, however, because new mutations continue to arise and these will generate
heterozygosity.  Consequently, in the absence of natural selection and assuming that each mutation produces a
new allele (this is the infinite alleles modelsee Box 4.2), the level of heterozygosity reached can be thought of
as a balance between the forces of genetic drift, which pushes the population towards homozygosity,

Box 4.2 Populatioin genetic models of mutation

Understanding the process of mutation is vital if we are to make good inferences
about the genetic structure of populations. A number of different models have
therefore been devised which describe the accumulation of mutations in a
population. Two of the most important are the infinite alleles and infinite sites
models which relate the process of mutation to that of genetic drift. In the former
is it assumed each mutation produces a new allele, not present anywhere else in
the population (for example, in a gene of 1000 bp there will be 41000 possible
alleles). In the related infinite sites model it is assumed that a locus contains so
many nucleotide sites that each new mutation occurs at a different site.

The infinite alleles model was very useful in the analysis of allozyme data
because it led to predictions about how many alleles would be created through
mutation and lost by drift. This also led to tests of the neutral theory of molecular
evolution (see Chapter 7). For example, if more alleles were observed than
expected then some force, such as natural selection, must be keeping them in the
population. With the advent of DNA sequence data, in which mutations can be
seen as discrete events, the infinite sites model has become more commonly used
in population genetics and especially in coalescent approaches. This model has
also led to tests of the neutral theory, for example by looking at the number of
variable nucleotide positionsthe segregating sitesbetween pairs of sequences (see
Box 4.1 and Box 7.1, pp. 92 and 242).

Another important model of mutation used in population genetics is the stepwise
mutation model, where mutations increase or decrease allele sizes by single
units. This model was originally developed to look at the different patterns of
mobility seen during protein electrophoresis but now is often used when
analysing microsatellite data in which allele sizes often differ by single steps. In
the case of microsatellites, adoption of the stepwise mutation model has led to a
new measure of population subdivision, RST, which replaces the classical
measure, FST, itself based on the infinite alleles model.
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and mutation, which generates heterozygosity. In these circumstances, the equilibrium level of heterozygosity
(H) is given by;

This is extremely important because it means that levels of genetic variation depend only on the mutation rate,
m, and the population size, N, so that heterozygosity will be lower in small populations and in those with low
mutation rates (and vice versa).

4.2.4
Changes in Population Size

The case of genetic drift illustrates how differences in population size are an important part of molecular
evolution because they alter the probabilities of random sampling. However, the measure of population size we
have considered so far, the 'census', or total number of individuals in a population, N, is too simplistic in most
cases because only a fraction of individuals will ever be able to produce progeny and so contribute genes to the
next generation. How small this fraction is depends on factors such as the sex ratio, the mating system,
variation in reproductive success and the extent of overlapping generations. It is therefore often more useful to
think about how big a theoretically 'perfect' population (that is, one where every individual has the same
probability of contributing genes to the next generation) would have to be for the random sampling of alleles to
have the same affect as in the real population.  This is known as the effective population size, denoted Ne, and
it will almost always be smaller than N. Although it is commonly used in population genetics, Ne is very hard
to measure in nature, although estimates are possible. For example, in a randomly mating population Ne
roughly corresponds to the number of breeding individuals, whereas in species that go through large
fluctuations in population size (see below), Ne can be estimated as the harmonic mean of N, which will give
values nearer to the smaller than the larger sizes. More recently there have been attempts to estimate Ne using
gene sequence data (see Box 4.1).

Another shorthand for population size frequently used in population genetics is the distinction between finite
and infinite population sizes. Clearly, populations of infinite size do not exist so, once again, this is more of an
idealised than a real condition. As we have already seen, genetic drift works best in populations with finite
(small) sizes.

One of the most dramatic ways in which changes in population size influence molecular evolution occurs when
a population experiences a rapid and severe decrease in the number of individuals, perhaps because of a natural
disaster or a disease. This is known as a population bottleneck (Fig. 4.7). Bottlenecks greatly reduce the amount
of genetic variation in populations because only a small number of alleles, contained in their lucky hosts, will
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Fig. 4.7
How a population bottleneck can change allele

frequencies. Three alleles, all at equal frequency,
are found in the initial population. A bottleneck
then occurs which drastically reduces the size of
the population. By chance, larger numbers of the

black allele survive than the others (the white
allele is lost completely). When the population

size increases again, the black alleles
are overrepresented.

survive the drop in size. This reduction in size will also lead to an increase in the amount of inbreeding (which
is more likely in small populations) and in doing so increase homozygosity. This effect is discussed in more
detail in section 4.2.5.

Population sizes will also change if a small group of individuals becomes isolated from the main population,
such as during the colonisation of an island. Because these isolated individuals will only carry a small
proportion of the genetic variation from the larger population, genetic drift (and natural selection) can radically
alter their genetic structure, sometimes leading to speciation. This is called the founder effect. More precisely, it
is likely that the founding population will, by chance, have lost certain alleles present in the larger population
(analogous to a bottleneck), or that alleles at low frequency in the large population will be overrepresented in
the new population. Although many rare alleles will be lost during founder events, some will survive and may
then reach high frequencies through a combination of genetic drift and inbreeding. This means that founder
effects can produce high frequencies of otherwise rare, and perhaps even deleterious, alleles. This is highlighted
by the case of the Ashkenazi Jews of Eastern Europe who have had a long history of population bottlenecks
and who suffer a range of otherwise rare genetic abnormalities such as TaySachs disease, familial
dysautonomia and idiopathic torsion dystonia (ITD).

4.2.5
Population Subdivision, Non-Random Mating and Gene Flow

So far we have only thought about genes within a population of individuals that are able to interbreed freely.  In
nature, however, population structures are often much more complicated. In many cases populations contain
smaller
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groups, known as subpopulations or demes, which may be partially isolated from each other. This means that
complete interbreeding (or panmixis) is not always possible.

The most important genetic effect of population subdivision is that individuals are unable to mate randomly
with each othersome will be out of reach. This is contrary to what is assumed in the HardyWeinberg theorem
where all individuals are equally likely to mate with each otherrandom mating. The term 'random' in this
context does not necessarily mean that individuals will mate with whoever they meet without any kind of
choice. Rather, individuals mate randomly with respect to the genes we are interested in. For example, most of
the allozymes traditionally used as markers in population genetics produce proteins which do not affect mate
choice so that for them random mating is a fair assumption. In contrast, genes that affect body size and strength
may directly influence which mate an individual chooses so that the assumption of random mating is harder to
justify.

One form of non-random mating we have already come across is inbreeding in which individuals mate more
frequently with their relatives than would be expected by chance. Inbreeding may take place if related
organisms live in the same area, or because of specific reproductive and behavioural traits. The most extreme
form of inbreeding is self-fertilisation which is common in crop plants such as barley and wheat.

A form of non-random mating similar to inbreeding is positive assortative mating.  In this case individuals
preferentially mate with each other because they share some sort of genetic similarity. For example, humans are
more likely to mate with people of similar height and skin colour. In contrast, negative assortative mating
occurs when individuals choose genetically different individuals. One possible, yet controversial, example of
this may be the preference shown by mice for animals with particular body odoursodourtypeswhich are present
in urine. Odourtypes are under the control of H-2, the mouse MHC, and it seems that laboratory mice prefer
mates with a different allele at this locus. This will have the effect of increasing genetic variation in a gene
where diversity is required to recognise as many pathogens as possible. Whether this applies in a natural setting
is uncertain and it is possible that the mating preference is the result of familial imprinting rather than genetic
inheritance. It has also been suggested that mate choice in other animals, including humans, may be partly
mediated by odours under the control of the MHC. Unlike inbreeding which will affect all the genes of an
organism, assortative mating, either positive or negative, only applies to a specific trait.

Although neither inbreeding nor positive assortative mating change allele frequencies, both will lead to an
increase in homozygosity above that predicted in the HardyWeinberg model. In contrast, because genetically
different individuals are preferred, negative assortative mating generates more heterozygosity. Inbreeding
increases homozygosity because individuals have a greater probability that they will inherit an identical allele
from both parents
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Fig. 4.8
Identity by descent (IBD) following a brothersister

(full sib) mating. The probability that two individuals
share a copy of an allele by descentcalled the
coefficient of relatedness, ris 0.5 for parents

and offspring. In this case the father gives the A1
allele to both  his daughter and son, who then mate
with each other. If they both pass on the A1 allele
on to their offspring (each with a probability 0.5,

so an overall probability of 0.25) then the offspring
will have become identical (homozygous) by descent.
The descent of the identical alleles in the offspring is

traced by the bold lines. r is also 0.5 for brothers
and sisters, 0.25 for grandparents and grandchildren
and 0.125 for cousins. Adapted from Griffiths et al.

(1993), with permission from WH Freeman.

(who are genetically similar), so that their alleles become identical by descent (IBD) or autozygous (Fig. 4.8).
This is an important concept in modern population genetics because it provides a link between genotype and
phylogeny: homozygosity occurs because the alleles share an immediate common ancestor. The probability that
two alleles are IBD is given by the inbreeding coefficient (F), where F = 0 represents a non-inbred population,
and F = 1 signifies complete inbreeding (so that the population consists only of AA and aa homozygotes). The
loss of genetic variation through inbreeding is similar to that which occurs under genetic drift: both result in an
increased likelihood of bringing together alleles which share a common ancestor. Indeed, under inbreeding,
heterozygosity is lost at the rate of 1/2N in each generation, which is the same as the probability that an allele
will be fixed by genetic drift.
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The increase in homozygosity due to inbreeding can also have severe phenotypic consequences.  For instance,
imagine that we have a deleterious recessive allele which causes a genetic disease when homozygous. Alleles
of this sort are usually rare, because they are removed by selection, and exist only as heterozygotes. However,
with inbreeding there is an increased probability that an individual could acquire two copies of this allele by
descent (i.e. one from each parent), which may then drastically reduce fitness. In humans, more than 40% of
offspring produced by full sib matings (between brother and sister) die young or develop serious disabilities.
This phenomenon, known as inbreeding depression, is also quite common in captive animals and there is some
evidence that the same is true of wild populations. For example, in an analysis of MHC and allozyme loci in
wild cheetahs and lions, Steve O'Brien and colleagues discovered that these species have a great deal less
genetic variation than other mammals, including the related domestic cat (Fig. 4.9). This is most apparent in a
population of about 250 lions living in the Gir Forest sanctuary in India and which suffered a severe population
bottleneck due to hunting at the turn of this century. No genetic variation in either allozymes or MHC RFLPs
was seen in this population, and they are reported to show increased levels of abnormal sperm and lower
amounts of testosterone.

Although population subdivision leads to local non-random mating, genes are sometimes able to move from
one subpopulation to another when individuals migratea process known as gene flow. This represents another
way, aside mutation, by which new genetic variation enters populations, although migration rates are usually
much higher than mutation rates. Gene flow can be a powerful force determining allele frequencies and,
because it means that genes are shared between populations, acts to homogenise allele frequencies among them,
thereby preventing speciation (see section 4.4). Conversely, because new genetic variation is imported, there is
an increase in heterozygosity within each subpopulation. The extent of genetic diversity within and between
subpopulations can therefore be thought of as a balance between the opposing forces of genetic drift, which
reduces diversity within populations but increases it between them, and gene flow which brings new genetic
diversity into populations but reduces it between them (Fig. 4.10).

To understand how migration affects allele frequencies it is first necessary to devise a scheme for how
subpopulations are arranged in space. The simplest way to do this is with the island model, where a large
population is split into many smaller subpopulations of equal size which are dispersed over a geographical area
and which exchange genes with equal probabilities. An alternative, although mathematically more complex,
arrangement is the stepping-stone model where subpopulations have a more regular spatial ordering, and in
which migration is only possible between adjacent subpopulations. The greater the geographical distance
between the populations, the less the chance of gene flow, so that there is genetic 'isolation by distance'.
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Fig. 4.9
Heterozygosity in different animal populations showing the limited genetic

variation in cheetahs and lions. The Serengeti lion population numbers about
300, while just 100 live in the Ngorongoro crater (also in Tanzania) following

a dramatic bottleneck in 1962. The Gir Forest (India) population today
numbers about 250, although it also suffered a severe bottleneck at

the turn of the century. Data fromYuhki and O'Brien (1990).

Given the island model, the rate of migration (gene flow) among subpopulations per generation is given by a
quantity m, which is equivalent to the probability that an allele randomly chosen from a population comes from
a migrant. Although this is often difficult to measure in nature, it can be done if the allele frequencies in the
donor (p1) and recipient (p2) populations are known, as well as the change in allele frequency in the recipient
population following migration (Dp):
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Fig. 4.10
How gene flow (migration) changes allele frequencies. In this example we have

two subpopulations within a larger total population. We are able to observe
these subpopulations at three points in time. Initially the subpopulations
have very different allele frequencies but during the second time-point

genes flow between them. This has the effect of homogenising the
allele frequencies between the subpopulations.

Today the extent of gene flow between populations is often estimated using the geographical distribution of
branches on molecular phylogenies: the more mixed the branches from different locations, the greater the
amount of gene flow between them.

If we know the migration rate it then becomes possible to work out how this changes allele frequencies in the
recipient population over time. This can be done with:

where pt is the frequency of allele A after t generations, p0 is the initial frequency of allele A in the
subpopulation,  is the probability this allele has in fact come from another subpopulation (i.e. that it is found in
a migrant) and m is the rate of migration per generation. From this equation we can infer that the change in
allele frequency following migration is proportional to the difference in frequencies between the donor and
recipient populations and that even low migration rates are able to keep subpopulations genetically
homogeneous.  Roughly speaking, genetic homogeneity is maintained if the number of migrants per generation,
Nm, is one or more, irrespective of population size. Migration rates of this magnitude are not unreasonable,
although they vary extensively between species. For example, an Nm of 9.9 has been reported in Drosophila
willistoni, although the rate is only 1.0 in D. pseudoobscura, and a paltry 0.22 in the salamander Plethodon
cinereus (see Hartl and Clark, 1989). In humans, values of Nm of around 2.0 have been estimated (Table 4.3)
implying that gene flow has been a fairly regular occurrence in our species (although it is also possible that
human populations are not at equilibrium, thereby complicating estimations of Nm, and that the similarity
between them is simply caused by a very recent originsee section 4.6).
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Table 4.3 Estimates of Nm (number of migrants per
generation) and FST (fixation index) among human
populations. Adapted from Takahata (1993), with permission.
Data Nm FST
84 protein loci 2.0 0.11
33 blood group loci 1.3 0.16
8 HLA and immunoglobulin loci 2.0 0.11
61 DNA markers 2.0 0.11
mtDNA: Papua New Guinea 1.1 0.31
mtDNA: worldwide 0.6 0.46
For nuclear loci Nm is calculated here as (1 FST)/4FST whilst
for mtDNA, where the genetic material is maternally inherited,
Nm refers to the number of migrant females (or Nfm) which is
estimated as (1 FST)/2FST.

Because population subdivision, inbreeding and gene flow are some the most important factors shaping the
genetic structure of populations, it is important to measure how frequently they occur. This can be done by
assessing how the observed levels of heterozygosity differ from those expected under HardyWeinberg
(inbreeding, for example, will lead to an excess of homozygotes). This is most commonly done using the F-
statistics devised by Sewell Wright.

F-statistics work as follows. Let us assume that we have three levels of population structure: individuals (I),
subpopulations (S) and the total population (T). We can think about heterozygosity at each of these three levels:
HI is the heterozygosity we observe in an individual in a subpopulation; HS is the heterozygosity we would
expect that individual to show in an equivalent subpopulation which is mating randomly; HT is the
heterozygosity expected to be shown by that individual in an equivalent randomly-mating total population. By
combining these measures and expectations of heterozygosity together in various waysthe F-statisticswe can
come to a detailed description of population structure. The most important of these is FST, or the fixation
index, which can be used to measure the extent of population subdivision, the reduction in heterozygosity
caused by genetic drift, or the amount of gene flow between subpopulations (high levels of gene flow will mean
low values of FST).  FST can be estimated in a number of different ways, a common method being:

where  is the mean heterozygosity across all subpopulations. If the number of migrants per generation is
known, and assuming an island model, then FST can also be estimated by 1/(1 + 4Nm). Values of FST for
humans range from 0.11 in nuclear loci to 0.46 in mitochondrial genes (Table 4.3), indicating that there is
relatively little genetic differentiation among populations (the values
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for mtDNA are expected to be about four times larger than those from nuclear genes because mtDNA is haploid
and maternally inherited so that its effective population size is only one-quarter as large).

Other F statistics have been developed to measure the reduction in heterozygosity of individuals relative to
their own subpopulation due to local inbreeding, , and of an individual relative to the total
population, FIT = (HT HI)/HT, which measures the effect of both inbreeding and population subdivision. With
the exception of plants that undergo self-fertilisation and insects that mate with close relatives, values of FIS
are generally close to zero indicating that most individuals within subpopulations are able to mate randomly.
The estimation of F statistics is also possible, although more complex, with multiple loci.

4.3
Genetic Change in Quantitative Characters

So far we have dealt with phenotypic variation as if it only ever falls into a limited number of discrete classes,
such as having brown or blue eyes or being AZT resistant or sensitive. In reality, most traits show a good deal
more phenotypic variation. For example, the body masses of animals famously occupy a very wide range of
values as do behavioural traits in humans, such as cognitive abilities (including spatial, verbal and memory
abilities) (Fig.  4.11).

Fig. 4.11
Frequency of general cognitive abilities in 240 Swedish twins. Cognitive ability

is measured according to the Wechsler Adult Intelligence Scale (WAIS). All
the twins studied were older than 80. The results showed that H2 was 0.62

confirming that there is a large genetic component of cognitive ability which
does not change from adolescence onwards. Figure from McClearn et al.

(1997); but also see Gottesman (1997).
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Because they produce such great measurable variation in phenotype, traits such as this are called quantitative
characters, with the genes controlling them quantitative trait loci (QTLs). The study of quantitative genetics is
not only an important way of understanding the evolution of more complex characters, but it is also very useful
for animal and plant breeders as it tells us which traits we are best able to select artificially, and for
conservation genetics where it provides information about the levels of standing genetic variation within
species. Unfortunately relatively little is known about the molecular evolution of quantitative characters and
very few QTLs have been mapped.

Many quantitative characters follow an approximately normal (Gaussian) bell-shaped statistical distribution,
which has a population mean, showing the more common phenotypes, and a variance reflecting those that are
progressively rarer (Fig. 4.12). Instead of being encoded by a single gene inherited in a Mendelian fashion,
quantitative characters are thought to be produced by the small effects of many loci acting in concert, each of
which adds a little to the overall variance (so that there is an additive effect). This is called polygenic
inheritance.

The most basic question in quantitative genetics is how much of the phenotypic variance we observe in a
character is due to environmental effects and how much can be put down to the underlying genetics. Most
phenotypic characters have a basis which is both environmental and genetic. This is true even in cases which at
first sight seem to have little to do with environmental factors. For example, the genetic disease
phenylketonuria involves an inability to metabolise the amino acid phenylalanine from food and leads to a
mental abnormality. However, if the trait is recognised in newborns and phenylalanine then removed from the
diet, the genetic defect is not expressed.  To think about this in another way, individuals may look similar
because their environments (such as their diet) are similar as well as because they share genes. Genetic
variation can also be thought of as heritable variation because it is passed between generations (causing the
resemblance between parents and offspring for example), whilst variation caused by the environment is not
inherited.

Fig. 4.12
Many quantitative characters show a normal
distribution of phenotypes. Numbers refer
to the standard deviation from the mean.
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Central to understanding the relative contribution of environmental and genetic factors is the concept of
variance (d2), which describes, in a statistical manner, the amount of phenotypic variation in the population for
the character in question. Variance is given by:

where xi measures the phenotype of the ith individual in the population,  is the mean value of the character
and N is the population size. The total variance is the product of that generated by the environment (E) and that
due to genetic factors (G):

To assess how much phenotypic variance is due to genetic variability it is necessary to estimate a quantity
known as the broad-sense heritability, H2, which is simply computed as . High values of H2 mean that
most of the phenotypic variance is due to genetic factors, whereas low heritabilities indicate that the
environment is the most important factor determining phenotypic variability. In the case of human cognitive
ability, a recent study of 240 identical (monozygotic) and fraternal (dizygotic) twins revealed that H2 is 0.62,
meaning that genes control 62% of variation in our cognitive ability.  Twins were used in this study because of
their extremely similar genomes, which allows the amount of variation due to environmental factors to be
assessed.

Although broad-sense heritability is a useful statistic, it is only a rough measure of the genetic control of a
character. It is also possible to examine genetic variation more precisely and break it down into a set of
component parts: additive genetic variance ( ), where each gene contributes a small and heritable effect to the
total variance, dominance variance ( ), caused by the fact that some alleles at a locus will be dominant and
others recessive, and epistatic ('interactive') variance (dI), an outcome of the fact that the many loci which
together make up a phenotypic character may interact in a more complex fashion than simple additivity. We
can therefore think of the total genetic variance as:

Of these components, the additive genetic variance ( ) is the most important because it is the part of the
variance that is directly inherited: although ( ) and ( ) are genetic, they are an outcome of genetic inheritance,
caused by the interaction of alleles at a single locus or between multiple loci, rather than physical, heritable
factors themselves.

The amount of additive genetic variance can be estimated with a quantity known as the narrow-sense
heritability, h2. This is simply calculated as ,but is often difficult to measure because it is necessary to
make very controlled experiments, in which both genes and environment can be manipulated. In
 

< previous page page_119 next page >



< previous page page_120 next page >

Page 120

general, traits that are closely related to fitness (such as the number of offspring) tend to have low values of h2
because natural selection (whether in the wild or imposed by humans) tends to optimise these characteristics. It
is also important to remember that both broad and narrow-sense heritabilities refer to one population in a
particular environment and might change in different environments.

Another of the key questions in quantitative genetics is how many genes encode characters of this type? The
answer to this question will also tell us a great deal more about adaptation as a genetic process.  The traditional
neo-Darwinian view is that most phenotypic characters are polygenic and that adaptation results from the
gradual accumulation of many allelic changes, each with a small additive effect on the overall variance.
According to R.A. Fisher, organisms are like complex machines with finely tuned parts so that small mutations
are much less likely to perturb the complex interactions within the machine than large mutations, which have
only a very small chance of being favourable. This has been called the 'micromutationist' view of adaptation.
Unfortunately, this theory is difficult to test because the genetic basis for adaptation is only known in a few
characters.

While some of the traits that have been studied in more detail are indeed under the control of many genes with
small additive effects, others, such as those that govern the evolution of resistance to pesticides, are controlled
by fewer loci (often called 'major genes'). For example, one of the most studied quantitative traits in D.
melanogaster is the number of abdominal and sternoplural bristles, which function as sensory organs in the
peripheral nervous system (PNS). A detailed analysis showed that approximately 10% of the additive genetic
variation in bristle number could be ascribed to a single locusscabrouswhich is important in development of the
PNS. It could be that only 1020 genes in total are responsible for the genetic variation in this character. Similar
findings are now appearing for other characters: for example, 47% of the variation in levels of the protein
serum leptin, itself a major controller of body fat in humans, is due to a single locus on chromosome 2.

4.4
Genetics and Speciation

One of the biggest puzzles in biology is how a continuous process of evolutionary change can produce the
discrete entities we recognise as different species? Could it even be that specific gene changes are involved in
reproductive isolation? Here we briefly outline what is known about the population genetics of speciation.

In the classic allopatric model of speciation, reproductive isolation is caused by the geographical isolation of
populations, perhaps by natural barriers such as mountains and rivers, so that gene flow between them is
prevented and genetic divergence occurs. Although particular gene changes may allow these incipient species
to adapt to their new surroundings, there is no selection for
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mutations which lead to reproductive isolation, which instead arises simply as a consequence of genetic
divergence built up at many different loci. This view of speciation is therefore based on the prevention of gene
flow between populations, rather than the action of natural selection.

The best evidence for the allopatric model is that many species show a great deal of genetic (and phenotypic)
variation over a geographical range, which provides the raw material for speciation. Sometimes this variation is
quite ordered spatially so that allele frequencies are high in one locality and then gradually decline with
distance. This is known as a cline. For example, the frequency of the DF508 cystic fibrosis mutation (see
Chapter 3) in Europe decreases from the northwest to the southeast, while that for the D32 mutant of the CCR5
gene, which lowers susceptibility to HIV infection, decreases from north to south (Fig. 4.13).

One important form of allopatric speciation involves peripheral isolation.  Here, subpopulations on the
periphery of the range occupied by the main population may become isolated, and begin to diverge genetically
until reproductive isolation occurs. This process is aided by the fact that peripheral populations are likely to be
small (and may have experienced bottlenecks), so

Fig. 4.13
Varying frequencies of the D32 mutation of the chemokine receptor 5 (CCR5)

gene in Europe. From O'Brien and Dean (1997), with permission.
 

< previous page page_121 next page >



< previous page page_122 next page >

Page 122

that genetic drift, as well as founder and inbreeding effects, will enhance their new genetic identity.

It is also possible that speciation occurs in geographically contiguous, rather than isolated, populations. This is
known as parapatric speciation. Evidence cited in favour of this mode of speciation is the existence of hybrid
zonesareas where 'species' do not show complete reproductive isolation and may hybridise with each other
(although they could also be caused by allopatrically isolated species re-establishing contact with each other).
A well-studied hybrid zone exists between two species of fire ants, Solenopsis invicta and Solenopsis richteri,
introduced into southern USA (Fig. 4.14). These species show fixed differences in some morphological and
genetic characters, while the hybrids are of mixed form. In other cases, natural selection could keep incipient
species genetically separate by fixing alleles that reduce the extent of mating between them, and hence the
number of hybrids. This process, which will complete speciation, is known as reinforcement.

Fig. 4.14
Hybrid zones between the fire ants Solenopsis invicta

and Solenopsis richteri in the state of Mississippi.
Pies represent the proportion of each type. From

Shoemaker et al. (1996), with permission.
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A controversial alternative to allopatric and parapatric speciation is sympatric speciation. In this case
reproductive isolation takes place within a single population without the help of geographical separation.  The
difficult aspect of this theory is how genetic divergence occurs within a population of organisms that are
continually exchanging genes. This generally requires groups of individuals in the population to utilise different
resources which can then be kept apart by natural selection, as in the way disruptive selection separates morphs
of P. ostrinus that feed on different seeds and so have different bill sizes (see section 4.2.2).

Although some closely related species currently live sympatrically, this does not mean that they evolved this
way. To demonstrate speciation without geographical isolation it is necessary to have a history of contact
between these species. This was difficult to do until recently, but can now be achieved through molecular
phylogenies. A case in point concerns the cichlid fish species from volcanic crater lakes in Cameroon. An
mtDNA tree of a sample of these species shows that they are monophyletic, suggesting that each lake was
colonised by the fish just once, so that the speciation occurred without geographical isolation (Fig. 4.15). Under
the competing allopatric model, the cichlid species would have entered the lakes on different occasions and so
those from each lake would be unrelated on the phylogenetic tree.

At the genetic level, sympatric speciation is usually thought to be driven by a small number of genes-
sometimes called 'speciation genes'. The search for speciation genes is one of the most exciting areas in
molecular population genetics. Most work here has been done on Drosophila. In some cases, it appears that
many genes are involved in reproductive isolation. In other situations, however, smaller numbers of genes
might be able to initiate speciation. One of the first and most important observations in this context is that most
speciation genes (and not just in Drosophila) are probably located on the sex chromosomes. There is a good
reason for this: mutations on the sex chromosomes (i.e. XY or WZ) do not have homologous copies when
heterogametic and so cannot be compensated for. This means that evolution and reproductive isolation will
proceed more quickly. This also manifests itself in Haldane's rule: that if, following hybridisation, one hybrid
sex is sterile or inviable in crosses between species, then it is the heterogametic sex.

In some cases it has even been possible to isolate speciation genes. One example is the per locus, found on the
X chromosome of Drosophila, which affects the rhythm of wing movement during male courtship and therefore
the likelihood of mating success. Another Drosophila speciation gene, although this time not found on a sex
chromosome, is that encoding the female cuticular hydrocarbon profile pheromones which influence male
mating behaviour.

Despite the emerging evidence from Drosphila that speciation may not always involve polygenic change, it is
clear that much more work is needed in this area. It will be especially important to investigate species which
have only
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Fig. 4.15
Sympatric speciation in crater lake cichlid fish. Tree
(a) supports sympatric speciation because the fish
species in each lake have a single origin so that
speciation must have occurred after the lake was
colonised. A phylogeny of this sort was obtained
with mtDNA. Allopatric speciation would have
produced a tree like that in (b), in which each
lake was colonised on a number of occasions

by different fish species. See Schliewen
et al. (1994) for more details.

recently diverged, so that there is a greater chance of detecting the genetic events which have led to
reproductive isolation.

4.5
Gene Genealogies and the Coalescent Process

Until recently, population geneticists relied upon analyses of allele frequencies from allozymes to determine
which evolutionary processes had shaped the genetic structure of populations. However, since the development
of modern molecular techniques it has become possible to measure genetic variation at the level of the DNA
sequence. These new methodologies have allowed even more genetic diversity within populations to be
uncovered: for example, in some studies using mtDNA, every sequence sampled may be different. Although
greater genetic variation gives more resolution, it also means that simple 'summary statistics', such as average
heterozygosity or FST, ignore much
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of the information in the data, particularly how alleles (the different sequences) are related to each other.
Furthermore, very different evolutionary processes may generate similar distributions of allele frequencies
which are then hard to distinguish through summary statistics (heterozygosites will often be near 1 in the case
of mtDNA). In the case of DNA sequence data genetic variation is therefore much more usefully presented as
gene genealogies (or gene treessee Chapter 2) which describe the phylogenetic relationships of the sequences
sampled from a population.

The increasingly widespread use of gene genealogies is one of the most important developments in population
genetics. One of the main reasons for this new found interest in phylogeny is the realisation that different
evolutionary processes, such as natural selection and genetic drift, and different demographic factors such as
varying rates of population growth, generate genealogies with different branching structures because they alter
when sequences share a common ancestor. In other words, if we study gene genealogies carefully, particularly
the distribution of branching events, we can say something about what processes have given populations their
present-day structure.

Much of this work on gene genealogies, especially in populations affected only by genetic drift, uses a
stochastic process known as the coalescent. Coalescent theory tells us what gene genealogies are expected to
look like if populations have different demographic historiesthat is, how genealogies are affected by changes in
population size and structure.  This works best for the genetic drift of neutral mutations because these do not
alter the fitness of the individual and hence the number of offspringand lineagesthey produce. Therefore
changes in population size, which also affect the number of lineages produced, are easier to detect. Conversely,
when an allele has been subject to natural selection the structure of the genealogy is also partly an outcome of
the reproductive success of that allelei.e. fit alleles will produce more copies of themselves, so producing more
branches. Recombination also complicates the analysis as it means that different portions of the gene sequence
have different genealogical histories. Finally, it is important to remember that coalescent theory describes what
happens when we take a small sample of genes from a population, as will be the case in most molecular
studies.

The essence of the coalescent process is as follows. Assume we sample gene sequences from two individuals in
a population that has been subject to genetic drift alone. For these two sequences it is possible to trace their
lineages back through time to when they last shared a common ancestral allele, at which point they are said to
coalesce. If we were to do this for a larger sample of genes, and provided there is random mating and no
recombination, then, in any past generation, the coalescence of any two lineages is equally likely. As we
continue to go backwards in time the number of lineages is reduced by one at each coalescence, creating nodes
on the tree. This backwards pruning of lineages gives rise to a bifurcating genealogy, with more branches, and
hence more coalescent events, near the present than near the past (Fig. 4.16).
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Fig. 4.16
A gene genealogy linking a sample of six individuals

(black circles) from a larger population observed
at different time points. We can trace the lineages
connecting these individuals back through time to

the point when they last shared a common ancestral
allelecoalescent events. The most recent common
ancestor (MRCA) for all individuals in the sample
will be reached after an average of 4N generations
under genetic drift (although this time is reduced if
the number of individuals sampled is very small).

Compare this with Fig. 4.6 which describes
the fixation of alleles by genetic drift.

Eventually we will arrive at the single ancestral allele from which all the alleles in the present day sample are
descended. This is called the most recent common ancestor (MRCA). What we have effectively done is run the
process of genetic drift backwards in time, gradually joining lineages as we go, whereas in classical population
genetics we usually think about time going forwards, as in how long it takes for an allele to reach fixation (look
at the similarity between Figs 4.16 and 4.6, but the difference in the direction of the time arrow).

The relationship between coalescent theory and genetic drift allows us to go even further and estimate
probabilities of when, in terms of generations, alleles last shared a common ancestor. As we have already seen,
the probability of fixation of a neutral allele by genetic drift in a diploid population is simply 1/2N. However,
1/2N is also the probability that two alleles share a common ancestor in the previous generation (so the
probability that they do not share a common ancestor in that generation is 11/2N). The probability that two
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alleles share an ancestor two generations ago is then (1 1/2N) 1/2N and the probability that this happened at G
generations in the past is:

which approximates to

assuming we have neutral alleles from a population which has maintained a constant size throughout its
history. This implies that the time back to the MRCA is the same as the time it takes for an allele to go to
fixation4N generations (although, crucially, these two times are actually derived in different ways). Coalescent
events get less likely as we go backwards, since there are less lineages left to coalesce, and half of the total
coalescence time will occur between the last two lineages: the time until only two lineages are left is, on
average, 2N generations, but it takes another 2N generations until the last two lineages coalesce as the MRCA.
However, because the coalescent process reflects a stochastic process (genetic drift) there will be a large
variance in the total coalescent time and if only a very small sample of genes is taken the time back to the
MRCA of the sample will be less than 4N generations. The mean time to the MRCA for mitochondrial genes is
one-quarter of that for nuclear genes because mtDNA is only transmitted in a haploid state and maternally.

Things are a little bit different if we have a growing, rather than a constant-sized population.  In this case
coalescent events are more likely to occur in the past, when the population size is small, than near the present
when the population is large. This means that more coalescent events will occur near the root of the tree,
producing a genealogy with a slightly different structure to that seen if the population has maintained a constant
size (compare Fig. 4.17a,b). This illustrates another important advantage of the coalescent: rather than just
saying that the size of a population is large or small, it tells us why this is the case. In other words, it can
distinguish between a population which has been large for a long time from one which has only recently
expanded in size.

Evolutionary processes other than genetic drift leave different signatures in the structure of evolutionary trees
because of how they affect the coalescence times of alleles. This is particularly important when trying to
decipher whether genetic drift or natural selection has acted on sequences. For example, positive selection will
produce a genealogy with a very short depth in time compared to genetic drift and with very little branching
structure near the root, where all the lineages coalesce rapidly (Fig. 4.17c). The tree takes this shape because
any variation in the population must have arisen since the advantageous mutation was swept to fixation and
removed all previous polymorphisms (positive selection of this kind is also called a 'selective sweep'). This
means that there will have been insufficient time for alleles to reach high frequencies and produce a more
structured population (also see Chapter 7). Similar
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Fig. 4.17
How evolutionary processes leave different signatures in the shape

of gene genealogies and the distribution of coalescence times.

genealogies will be produced if the population goes through a bottleneck, as this also has the effect of removing
much pre-existing genetic variation, and has then expanded in size (such 'star-like' phylogenies are actually a
general outcome of population expansions). Because they reduce the level of genetic variation, selective sweeps
can be also thought of as a kind of population bottleneck, although they will affect genetic diversity only at the
selected locus (and any linked loci), whereas a true population bottleneck will affect all loci. To choose between
positive selection and population bottlenecks it is therefore necessary to look at the genealogy of another,
unlinked, gene: positive selection will only affect one of the loci, so that the two genes will have different
shaped genealogies, whereas population bottlenecks will affect all loci, so the genealogies of both genes should
have similar structures.

In contrast, overdominant selection tends to preserve alleles for longer than expected under genetic drift, which
predicts that, on average, a neutral allele will persist for 4N generations. Therefore, some of the coalescent
events on the genealogy will be older than 4N generations with overdominant selection (Fig. 4.17d). A
genealogy of this structure may also be produced by frequency-dependent selection, or if the alleles in question
come from a subdivided population, because coalescent events between different subpopulations, which possess
different alleles, will only occur when there is migration between
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them.  Once again, these different evolutionary processesbalancing selection and population subdivisioncan be
distinguished by comparing genealogies constructed on different loci. Finally, negative selection will produce
an excess of recently diverged alleles with short coalescence times because deleterious mutations will only
survive for a short period of time before being removed by selection (Fig. 4.17e).

Although this field of genetics is still in its infancy, it is likely that as samples of DNA sequences from within
populations become increasingly common place, the study of gene genealogies and coalescence times will
become an integral part of molecular evolution. In the next section we show how such an approach has helped
provide us with a new view of the evolution of modern human populations.

4.6
Case Study:
The Population Genetics of Human Origins

The debate concerning the origin of (anatomically) modern human populations revolves around two very
different evolutionary scenarios. One that different regional populations ('races') of H. sapiens evolved
independently from their ancestor, H. erectus, long ago in different parts of the Old World. This is the
'multiregional' model. The competing hypothesis states that H. sapiens arose only once, and relatively recently,
in Africathe 'out of Africa' model (Fig. 4.18). An extreme version of the 'out of Africa' model proposes that the
origin of modern humans was also accompanied by a massive population bottleneck, perhaps down to just a
few individuals, who then gave rise to all descendants. This has been called the 'Noah's Ark' model.

The multiregional model starts with the migration of H. erectus from their place of origin in Africa to the rest
of the Old World at about 1 Myr ago, an event for which there is relatively good fossil evidence. After this
initial exodus, the geographically separated populations evolved subtle morphological differences, which are
claimed to be the origin of the 'racial' differences among H. sapiens today. However, these regional populations
were not completely isolated so that some gene flow occurred between them, which enabled the transition to H.
sapiens to take place across an enormous geographical range.

Evidence in support of the multiregional model comes primarily from the fossil record, especially the claim that
there are regional trends in skull morphology, suggesting local transitions from H. erectus to H. sapiens. For
example, it is proposed that the large cheek bones of Australian aborigines were derived from those found in
remains of H. erectus from Java in Indonesia ('Java man', which lived some 700 000 years ago). Likewise,
modern Europeans are believed to have acquired their distinctive large noses from the H. erectus descendants
in Europe, the Neanderthals, who inhabited this continent from 135 000 to 34 000 years ago. However, this
regionalist interpretation of the fossil record is considered dubious because the morphological features meant to
define local
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Fig. 4.18
The 'out of Africa' and multiregional models of modern human origins. Gene

flow is represented by diagonal lines and population extinction by dashed lines.
Kindly provided by J. Baum and adapted from Ayala et al. (1994), with

permission. Copyright (1994) National Academy of Sciences, U.S.A.

populations are often not confined to them and so cannot be taken as evidence for geographical separation.

According to the out of Africa model there was also an initial migration of H. erectus from Africa at about 1
Myr ago. However, a second African exodus followed, this time of anatomically modern humans, in the last
200 000 years or so. These migrant populations spread rapidly from Africa so that by the end of the Palaeolithic
(10 000 years ago) they had reached most areas of the world. Although there may have been some
interbreeding, these modern H. sapiens completely replaced the earlier populations so that the genetic variation
we see today is of recent origin.

Fossil evidence has also been provided in support of the out of Africa model. The key observation is that the
earliest anatomically modern humans are found in this continent, such as the remains from Border Cave, South
Africa at 115 000 years ago.  Modern human fossils are found at later times in other continents: in the Middle
East at 90 000 to 115 000 years ago (the oldest non-African populations), in Australia at 50 000 years ago, in
Europe at 40 000 years ago, and most recently in the Americas within the last 25 000 years. This suggests a
migration out of Africa with the Middle East as the first port of call.
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Even more support for the out of Africa theory has come from genetics. There are a number of important
discoveries here. First and foremost, African populations are often genetically different from non-African
populations (particularly in microsatellites and mtDNATable 4.4) and are usually the oldest lineages on gene
genealogies, as would be expected if this was the site of human origins. More than that, estimations of
coalescent times based on a number of genes suggest that the most recent common ancestor of modern humans
lived between 100 000 and 200 000 years ago (although these dates have proven highly controversial), whereas
the multiregional model would predict dates nearer the one million year mark.

The idea of an African MRCA living between 100 000 and 200 000 years ago was first proposed after an
analysis of maternally inherited mtDNA data and became known as the 'mitochondrial Eve' hypothesis. Indeed,
maternal inheritance means that the MRCA of all current mtDNA lineages must have been a woman. However,
this does not necessarily mean that Eve was the only individual in the population at the time of human origin,
but rather that hers was the only mtDNA lineage that survived: the mtDNA types of her contemporaries, of
which there may have been many, eventually became extinct because they, or their descendants, left no
surviving offspring or because they had only male children.  The important aspects of Eve are therefore when
and where she lived.

Since these initial studies of mtDNA, sequence data have gradually accumulated from other genes. Although
these are sometimes difficult to interpret, they also generally support an African origin. For example, analyses
of gene sequences on the Y chromosome, which is only paternally inherited (therefore representing a molecular
'Adam'), also give coalescence times of around 200 000 years ago. Microsatellite loci likewise depict African
populations as the most diverse with the deepest split on the tree, between African and non-Africans, estimated
to have occurred at around 150 000 years ago.

However, by far the most dramatic piece of genetic data supporting an African origin was provided by mtDNA
from the bone of a Neanderthal. Under

Table 4.4 Genetic variation in human populations revealed by different genetic
markers (mean heterozygosity × 100). Adapted from Bowcock et al. (1994), with
permission.
Region 110 Enzyme polymorphisms Nuclear RFLPs Microsatellites mtDNA*
Africa 16.3 ± 1.4 29.7 ± 0.7 80.7 ± 1.4 2.32
Europe 20.2 ± 1.7 37.9 ± 1.5 73.0 ± 1.6 0.95
Asia 18.9 ± 1.9 32.7 ± 1.2 68.5 ± 2.1 1.65
Oceania 13.7± 1.8 27.5 ± 1.2 63.6 ± 1.8 No data
America 15.5 ± 1.8 29.3 ± 3.8 58.8 ± 2.3 1.29
* Nucleotide diversity of the D-loop × 100.
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Fig. 4.19
Competing phylogenetic trees for the evolutionary

position of Neanderthals in relation to modern human
populations under the out of Africa and multiregional
models. The Neanderthal mtDNA sequence (dashed

line) clearly supports the out of Africa model.

the multiregional model Neanderthals are thought to be the ancestors of modern Europeans, whereas in the out
of Africa model they contribute little to the European gene pool, being replaced by invaders who originated in
Africa (Fig. 4.19). Analysis of the Neanderthal DNA sequence carried out by Svante Pääbo and colleagues
shows that it is more divergent than any modern human sequence, exactly as predicted under the out of Africa
model. Assuming that humans and chimpanzees diverged 45 million years ago, the split between Neanderthals
and modern humans was estimated to have occurred between 550 000 to 690 000 years ago, with the origin of
modern humans at 120 000 to 150 000 years ago, again fitting well with the out of Africa theory.

However, not all genes support a recent African origin of modern humans. Studies of enzyme and RFLP
polymorphisms, for instance, place Asian and European populations as the most diverse (Table 4.4), although it
is possible that these results are biased because many of the enzyme and RFLP loci included were specifically
chosen to reveal genetic diversity in populations of European descent. Furthermore, some globin genes depict
much older coalescent times than predicted by an African origin.  For example, although an analysis of a 3-kb
region from the b-globin gene cluster indicates that the ancestral allele was African, the presence of Asian
alleles dating to 200 000 years ago could not occur without modern human populations being considerably older
than this. An even bigger discrepancy is found in a study (albeit small) of the adjacent d-globin locus where
two alleles from a non-coding (and therefore neutral) region have apparently persisted for 3 million years in the
absence of balancing selection. To date, it is unclear how the patterns found in the globin genes can be
reconciled with a recent African origin of modern humans.
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As well as time and place of origin, there is also controversy as to whether a population bottleneck
accompanied the emergence of modern humans. The best way of testing this idea at the molecular level is to
calculate the distribution of coalescence times of alleles: we would only expect a few alleles (within their lucky
hosts) to make it through a severe bottleneck, so that any polymorphisms observed would have arisen since the
bottleneck, making most coalescence times very short (take a look at Fig. 4.17 again). An analysis of this kind
has been performed on the MHC class II locus DRB1 and showed that all 58 human alleles have been present
for the last 500 000 years, with some as old as 30 million years (so that they are found in other primate species),
probably because they have been maintained by balancing selection. To retain such a high level of
polymorphism population sizes would have to have been consistently high, with a mean of perhaps 100 000
individuals over many years, and at no time could drop below 20003000. Similar conclusions have been drawn
from analyses of polymorphisms in b-globin genes, on the Y chromosome and in mtDNA. Although these
calculations are heavily dependent on the assumptions made, together they suggest that while population sizes
are likely to have undergone large fluctuations, severe bottlenecks, such as those proposed in the 'Noah's Ark'
model, are unlikely to have played a major role in our evolutionary history.

To conclude, it seems most likely that anatomically modern humans evolved in Africa at around 200 000 years
ago, and then spread around the world.  However, the amount of sequence information available to date is very
limited: for example, an analysis of 2.6 kb of the Y chromosome from 16 humans of different geographical
origins (a total of 41 600 bases) uncovered just three nucleotide polymorphisms. There is clearly a need for
more sequence data to fully understand human origins.

4.7
Summary

1 Population genetics is concerned with understanding the factors responsible for the origin and maintenance of
genetic variation in populations. Traditionally this was based on the analysis of allele frequencies in allozymes
but today more attention is given to gene genealogies of DNA sequences because different evolutionary
processes and rates of population growth leave different signatures in these genealogies.

2 The simplest model in population genetics is one in which allele frequencies remain the same in time and
space. This is the HardyWeinberg theorem.

3 Evolution at the genetic level results in a change in allele frequencies. A number of different processes can
lead to such changes, including natural selection, genetic drift, changes in population size and gene flow.
Crucially, all these processes will also change the shape of gene genealogies.

4 Many phenotypic characteristics are produced by the concerted action of multiple gene loci. The study of the
molecular evolution of these quantitative
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trait loci is only just beginning. The same is true of the molecular population genetics of speciation, although
phylogenies are being increasingly used as a way of choosing between different evolutionary scenarios.

5 Gene sequence data have been particularly informative with respect to understanding the origin of modern H.
sapiens, giving support for the model in which human populations emerged in Africa only within the last 200
000 years, followed by a later migration to other parts of the world.

4.8
Further Reading

A number of textbooks exist which deal with the practicalities of population genetics with Hartl and Clark
(1989) being particularly complete, although good summaries are found in Griffiths et al. (1993) and Ridley
(1996). Those interested in coalescent theory should also refer to Donnelly and Tavaré (1995), Harding (1996)
and Hudson (1990), while descriptions of how to measure DNA sequence variation within populations can be
found in Nei (1987) and Li (1997). A particularly elegant demonstration of how molecular phylogenies can
provide important information about speciation and other ecological processes is provided by Avise (1994).

With respect to the more specific examples used, details of the ALDH2 polymorphism are given in Goedde et
al. (1992) and Ferguson and Goldberg (1997), while a beautiful example of the HardyWeinberg equilibrium not
mentioned in the text is provided by Shuster and Wade (1991). The population genetics of AZT resistance is
given in Goudsmit et al.  (1996) (but also see Leigh Brown (1997)), while the story of the DF508 mutation of
cystic fibrosis is told by Tsui (1992) and the D32 mutation of the CCR5 gene by Dean et al. (1996) and O'Brien
and Dean (1997). Those more interested in selection on morphological characters, in this case on bill sizes in
Pyrenestes ostrinus, should look at Smith (1993) and the accompanying article by Holmes and Harvey (1993),
while the strange case of mice odour types is summarised by Potts and Wakeland (1993). The circumstances
surrounding the low levels of genetic variation seen in cheetahs and lions are described in Yuhki and O'Brien
(1990). The quantitative genetics of human cognition is told in McClearn et al. (1997) and Gottesman (1997)
and of Drosophila bristles by Lai et al. (1994). In regard to speciation, the hybrid zone in fire ants is described
by Shoemaker et al. (1996) and the evidence for sympatric speciation in the cichlids by Schliewen et al. (1994),
while the search for speciation genes in Drosophila is documented in Coyne et al. (1994) and put into context
by Coyne (1992). Finally, the molecular population genetics of human origins is well summarised by Takahata
(1993) and Hey (1997), while the extraordinary story of Neanderthal mtDNA is told by Krings et al. (1997).
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Chapter 5
Measuring Genetic Change

5.1 Sequence Alignment and Homology

5.1.1 Homology

5.1.2 Homology among Genes

5.1.3 Homology among Sequences

5.1.4 Alignment of Protein Sequences

5.1.5 Multiple Alignment

5.2 Genetic Distance

5.2.1 Kinds of Substitution

5.2.2 Distance Measures for Nucleotide Sequences

5.2.3 Assumptions

5.2.4 Distance Measures for Protein Sequences

5.3 Measuring Evolutionary Change On a Tree

5.3.1 Estimating Branch Lengths

5.3.2 Testing Ancestral Reconstructions

5.4 Summary

5.5 Further Reading

Given two or more sequences the instinctive reaction of most molecular biologists is to calculate a genetic
distance. Just what do these distances measure? How might we choose between the many different kinds
available? Why are there so many alternatives? This chapter focuses on the notion of distance as a measure of
amount of evolution. It also addresses the problems of relating distances between genes to distances between
populations. We stress that distances themselves are only relevant when coupled with an underlying
phylogenetic structure.

5.1
Sequence Alignment and Homology

5.1.1
Homology

In this book we use homology in the evolutionary sense of the word: two nucleotides in different sequences are
homologous if and only if the two sequences both acquired that state directly from their common ancestor (Fig.
5.1 ). A key point is that determining whether a feature is homologous requires knowledge of the evolutionary
relationships among the species having that feature. In Fig. 5.1 the character state 'black' may be either
homologous or homoplasious depending on the relationships of the species a and b to species c and d.  If a and
b are each other's closest relatives then the simplest interpretation is that black is homologous; however, if a
and b are distantly related then we would attribute a and b sharing the same feature to independent evolution.

Whether a feature is homologous depends in part on what aspect of the feature we are considering. To use a
classic example from comparative anatomy,
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Fig. 5.1
The difference between homology and homoplasy.
In the tree on the left the character state 'black' is
homologous in the two species possessing it (a

and b) because black is inherited directly from an
ancestor which was also black. In the tree on the

right, the two species sharing black are not closely
related and the occurrences of black are not

homologous because they have evolved
independently from ancestors that were white.

the wings of a bird and a bat are homologous as forearms, but not as wings. Both birds and bats have inherited
their forearms from their last common ancestor; forearms have not evolved independently de novo. However, in
both groups the forearm has independently undergone modification for flight (the common ancestor of birds and
bats could not fly), hence when considered as wings the same structures are not homologous but homoplasious.

In the same way, at the molecular level our judgement of homology may vary depending on the properties in
which we are interested. Two proteins in two different organisms may be encoded by the same gene (i.e. the
two genes are direct descendants of a gene present in the ancestor of those two species). The two genes may
share many amino acids in common, and have similar function. However, if that functionality has been acquired
independently then that functionality is not homologous.

The classic molecular example is the parallel evolution of amino acid sequences in the lysozyme enzyme in
leaf-eating langur monkeys and in cows (Fig. 5.2).  Both animals have independently evolved foregut
fermentation using bacteria, and in both cases lysozyme has been recruited to degrade these bacteria. Therefore,
langur and cow lysozymes are homologous as genes; however, as digestive enzymes they are not homologous
because this functionality was not present in the ancestral lysozyme.

Homology can sometimes be difficult to distinguish from homoplasy, especially at the molecular level. At the
organismal level complex structures that superficially appear similar, such as bird and bat wings, on closer
inspection may prove quite different in detailed structure, mechanics and development, which may cause us to
question whether they are really the same thing (i.e. homologous). However, at the molecular level the features
we observe may be literally identical. The cow and langur lysozyme sequences share the identical
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Fig. 5.2
Independent evolution of amino acid replacements in cows and langur

monkeys. Although langur monkey lysozyme is phylogenetically closely
related to other primate lysozymes it has independently acquired several

amino acid substitutions in common with cow lysozyme (these are
indicated by the black squares). Redrawn from Li and Graur (1991).

amino acid (aspartic acid) at position 14. Although chemically the same entity, from an evolutionary
perspective the aspartic acid in the cow is not the same as the aspartic acid in the langur. As a consequence of
the redundancy of the genetic code the same amino acid may be encoded by different codons in the two taxa,
which may provide evidence that the amino acid is not homologous in the two genes. However, at the level of
nucleotides we reach the limits of any attempt to distinguish homology from homoplasy by simply looking for
differences in the two features being compared; a guanine in one species is the same as a guanine in any other
species. Deciding whether the two instances of this nucleotide are homologous requires knowledge of the
evolutionary relationships among the sequences being compared, a point we discuss in section 5.2.1.

5.1.2
Homology among Genes

Many genes are members of gene familiessuites of genes that are the descendants of an ancestral gene. Thus in
some sense, different genes may be homologous because they are descendants of the same gene.  As mentioned
in Chapter 2 (see section 2.4.2) we can distinguish two basic types of homology among genes: orthology and
paralogy (a third relationship among genes is xenology, where one gene owes its presence in an organism to
horizontal gene transfer from another organism). Recall that paralogous genes are descendants of an ancestral
gene that has undergone one or more gene duplications. If there is no duplication in the gene tree then the
sequences are orthologous. Staying with the example of lysozyme, the lysozyme genes expressed in the foregut
of cows and leaf-eating monkeys are orthologous; they are both
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Fig. 5.3
Phylogeny of some bird and mammal lysozymes.
The lysozyme in cows, langur monkeys and the

hoatzin bird have all independently evolved similar
digestive properties. The two mammalian genes are
orthologous, and are paralogous with respect to the
hoatzin gene, which is related to calcium binding

lysozymes found in birds and mammals.
After Kornegay et al. (1994).

descendants of conventional lysozyme (Fig. 5.3). The bizarre hoatzin bird of South America, apparently a
relative of the cuckoos, is the only bird known to be a foregut fermenter, and is hence the 'cow' of the bird
world. In this species, a lysozyme is also recruited as a digestive enzyme and shows striking parallel evolution
with mammalian lysozymes. However, although hoatzin lysozyme is related to cow and monkey lysozymes, it
belongs to a different gene lineage and is paralogous to the gene in the mammalian foregut fermenters (Fig.
5.3).

Hence, when using the term 'homologous' we need to be careful about what kind of homology we are talking
about; does it relate to the genes, their sequences, or their function? In the example above, all the lysozyme
genes are homologous (they are all ultimately descendants of the same gene). The homology between cow and
langur genes is due to their being descendants of the same copy of lysozyme, hence they are orthologous.  The
calcium-binding and conventional lysozymes trace their ancestry back to different copies of the ancestral
lysozyme, and are hence paralogous. The functionality of the calcium-binding lysozymes of horse and pigeon
are homologous because the ancestral function of those genes was calcium binding. Because the digestive
function of lysozymes in ruminant mammals, leaf-eating monkeys, and the hoatzin has arisen independently in
each group this functionality is not homologous.

5.1.3
Homology among Sequences

So far we have emphasised the need to compare homologous structures or features of organisms. In the case of
nucleotide or protein sequences it may not be immediately obvious which features should be compared. This is
because the sequences comprise only a few symbols (e.g. the four nucleotides) in varying order along the
sequence. Given two sequences that are similar but different the first task is to establish which regions of the
two sequences are homologous,
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that is, correspond to the same region of the gene and hence may be compared. Consider these two nucleotide
sequences:

These two sequences are clearly very similar, but are not identical. A useful graphical tool for comparing two
sequences is the dot plot (Fig. 5.4). Dot plots are constructed by making the two sequences the axes of a graph
and plotting a dot where the two sequences agree. If the sequences are identical an unbroken diagonal line or
'path' can be drawn from the bottom left to the top right connecting dots in adjacent cells. Sequence 2 is a
subsequence of sequence 1, differing only in lacking the last T in sequence 1, so there is an unbroken path
through the diagonal of the plot (path 1 in Fig. 5.4). This path corresponds to the following alignment of the
two sequences:

The alignment specifies the relationship between each nucleotide site in the two sequences. In this case the
alignment seems trivial; however there are other possible alignments we could create.  The dot plot (Fig. 5.4)
shows a number of other diagonal paths that are offset from the main diagonal, such as path 2. This path
corresponds to the alignment

In this case the first occurrence of the string of bases 'CGT' in sequence 1 is aligned with the second occurrence
of the CGT string in sequence 2, rather than the first. Doing so requires us to postulate a gap in sequence 1 of
three

Fig. 5.4
A dot plot for two sequences. In each cell in the plot
a dot is placed if the two sequences have the same
nucleotide at that pair of sites. Two possible paths
are shown through the plot, each corresponding to

two separate alignments of the two sequences.
Redrawn from Li and Graur (1991).
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bases. This gap corresponds to the vertical 'kink' in path 2 in Fig. 5.4, and is the result of either an insertion in
sequence 2 or a deletion in sequence 1 (i.e. an insertion/deletion or indel). This alignment is possible, but
intuitively seems worse than the first alignment because it requires us to hypothesise at least one extra event,
namely the insertion of three bases in sequence 1 (or a corresponding deletion in sequence 2).

Now consider these two sequences and their dot plot (Fig.  5.5).

In this instance the diagonal path crosses cells that do not contain dots. These cells represent sites where the
two sequences have different nucleotides at the same position, so that the alignment is

In this case the two sequences differ at the third and eighth positions. It is possible to align any two sequences
by postulating some combination of gaps and substitutions. By counting the number of these events, or some
function of them, we can compute the 'cost' of a particular alignment. For example, if we have two aligned
sequences the cost of that alignment may be given by

where s is the number of substitutions, g is the total length of any gaps, and w is the gap penalty. The gap
penalty specifies the cost of a gap relative to a substitution. For example if w = 1 then a gap of a single
nucleotide has the same cost as a single substitution; if w = 2 then gaps are twice as costly as base pair
mismatches. Note that equation (5.1) ignores the lengths of different gaps;

Fig. 5.5
Dot plot for two sequences that
are different but have no gaps.
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two single nucleotide gaps have the same cost as one gap two nucleotides long. There are other formulae that
take into account the length of the gap. Choosing a gap penalty makes implicit assumptions about how the
sequences have evolved. If indels are thought to be rare then w should be large; conversely, if indels are
frequent then low values of w are more appropriate.

The basic task of sequence alignment is to find the alignment with the lowest cost, for which several algorithms
are available. However, note that which alignment is deemed best can depend greatly on the value of the gap
penalty. If the gap penalty is low then alignments with large numbers of gaps may be favoured; in the extreme
case where w = 0 (and hence gaps have no cost) we can always introduce enough gaps to align the sequences.
Conversely, high values of w will favour alignments that introduce substitutions to explain sequence
mismatches.

Figure 5.6 shows a dot plot for two sequences and two alternative paths corresponding to the following
alignments:

The first alignment postulates a single gap of two nucleotides; the second postulates a one nucleotide gap and
two substitutions. If gaps have low cost (e.g. w = 1) then the first alignment would be favoured as its cost is D
= 0 + 1 × 2 = 2, whereas alignment 2 has cost 2 + 1 × 1 = 3.  However, if gaps are thought to be less likely then
the second alignment would be favoured as it has the smaller gap; for example, if w = 3 then the costs of the
two alignments

Fig. 5.6
Dot plot for two sequences and two alternative

alignments (paths 1 and 2). Path 1 requires a two
nucleotide insertion/deletion; path 2 requires a

single nucleotide insertion/deletion and two
nucleotide substitutions. The choice between

the two alignments depends on the cost
assigned to postulating indel events (i.e.

the gap penalty). After Li and Graur (1991).
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are 6 and 5, respectively. In some cases we may have additional information that may allow us to decide
whether the gaps introduced by an alignment are reasonable. If the two sequences being aligned are for
functional protein coding genes then any gaps would be expected to have lengths that were in multiples of three
(i.e. 3, 6, 9 etc.) to preserve the reading frame of the gene, so that each gap corresponded to the insertion or
deletion of one or more codons corresponding to one or more amino acids. For ribosomal genes there may be
aspects of the secondary structure that can be used to evaluate the plausibility of various gaps introduced in
alignment.

5.1.4
Alignment of Protein Sequences

Alignment of protein sequences differs from alignment of nucleotide sequences in two important
respects.  Firstly, there are more symbols (typically 20) in the sequence because there are more amino acids than
nucleotide bases. Secondly, alignment is not simply a matter of aligning the symbols so that the greatest number
match.

Fig. 5.7
The PAM 250 matrix. For each pair of amino acids (see Table 3.1, p. 41, for key to

the one-letter codes for amino acids) the matrix gives the ratio of the frequency
at which the pair is observed in pairwise comparisons of proteins to that are

expected due to chance alone, expressed as a 'log odd'. Amino acids that
regularly replace each other have a positive score, amino acids that rarely

replace each other have negative scores. Note that replacements more
often occur among chemically related amino acids (indicated

on the left). From Dayhoff (1978: Fig. 84).
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For nucleotide sequences the cost of a mismatch between two nucleotides is often scored simply as '1', whereas
a match has zero cost. Hence, nucleotides are either the same or they are different. Some methods are more
sophisticated and have different costs for transitions and transversions, as these two classes of substitution often
differ in frequency (see pp. 150151). However, for amino acids we need to take into account the possible
pathways in which one amino acid might be replaced by another. For example, a cysteine encoded by the triplet
UGU can be replaced by a tyrosine (UAU) by a single nucleotide substitution at the second codon position,
whereas replacing cysteine by methionine (AUG) requires three nucleotide substitutions, one at each codon
position. Hence aligning cysteine with tyrosine is less costly than aligning cysteine with methionine.  The cost
for every pair of possible amino acid replacements defines a cost matrix that can be used to score the alignment.
Protein sequence alignment programmes typically use matrices derived from empirical comparisons of protein
sequences. The best known are the Dayhoff matrices, one of which is shown in Fig. 5.7, and are often used
when estimating distances from protein sequences (see section 5.2.4).

5.1.5
Multiple Alignment

So far we have considered aligning pairs of sequences. However, in many if not most cases we will have more
than two sequences to align. There are various ways of performing such a multiple alignment (Fig. 5.8). The
first is to find the alignment that minimises the total cost of all the pairwise alignments. For the five sequences
in Fig. 5.8 there are ten possible pairings

Fig. 5.8
Three different kinds of alignments for the same position in five nucleotide
sequences. The sum-of-pairs alignment (a) counts the cost of aligning every
pair of sequences. A star alignment (b) aligns the sequences on a star tree,

which is a special case of a tree alignment (c). Pairwise alignments between
different nucleotides (cost = 1) are indicated by solid lines, and pairwise

alignments between identical nucleotides (cost = 0) by grey lines.
After Altschul and Lipman (1989).

 

< previous page page_143 next page >



< previous page page_144 next page >

Page 144

sequences, of which six connect different nucleotides hence the cost of the alignment is 6. A difficulty with this
approach is that this cost is very difficult to interpret biologically; how many actual evolutionary events does
this cost represent? From Fig. 5.8(a) it is clear that a single substitution in one sequence may contribute several
times to the total cost. An alternative to considering all possible pairs is to align the sequences using a tree. If
all sequences are equally related to each other then we can depict this using a star tree (Fig.  5.8b). If we knew
that some sequences were more closely related to some sequences than to others then we could align those
sequences on that tree to obtain a tree alignment (Fig. 5.8c). For the sequences shown in Fig. 5.8 the cost of the
tree alignment is 1; there is a single substitution on an internal branch of the tree. (The method used to work out
the minimum number of substitutions on a given tree for a single site is described below in section 5.3.)

Tree alignments have the advantage of being readily interpretable in terms of actual biological events. A
complication, however, is that the alignment may change depending upon the tree on which the sequences are
aligned. This has important implications, because most molecular phylogenetic studies align the sequences first,
then compute a phylogeny based on that alignment. However, if the details of the alignment depend on the
phylogeny of the sequences, then a particular alignment obtained, say by sum-of-pairs multiple alignment, may
bias the result of a tree building method. One solution to this dilemma is to infer both the alignment and the
phylogeny at the same time, so that the optimal alignment and tree are obtained together. This approach is
becoming increasingly commonly used, and most current alignment packages make some use of phylogeny,
either as a guide to the order in which pairs of sequences should be aligned, or by aligning the sequences and
estimating the phylogeny simultaneously.

5.2
Genetic Distance

In one sense, DNA sequences are not very informative about their evolutionary history. When comparing
homologous sites in two DNA sequences, we simply observe that the sequences are the same or not. Hence, for
any given site the maximum number of differences we can observe is one. Furthermore, there are just four
possible states each site can have: A, C, G or T. This means that if more than one substitution occurs at a site,
we lose any record of the previous substitution. When we look at, say, a bird's wing and our arm we can at least
imagine that some considerable evolutionary change has taken place along the phylogenetic path between the
bird and ourselves, but at a given nucleotide site, a bird might have A and ourselves G. In itself, this tell us
little about how much change has taken place at that site. At least one substitution must have occurred, but
many more might have taken place.
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5.2.1
Kinds of Substitution

Given two nucleotide sequences, we can ask how their similarities and differences arose. Figure 5.9 shows the
six possible kinds of substitution that can occur. The first is a single substitution, resulting from the replacement
of a nucleotide by another, different nucleotide just once in the history of one lineage. As a result, the two
descendants have different nucleotides. If the number of nucleotide substitutions that have occurred since the
two sequences last had a common ancestor is small, then most substitutions are likely to be single substitutions
simply because the probability of the same site mutating more than once is fairly small. However, as the
number of substitutions increases the probability that the same site may undergo more than one substitution
becomes higher. Multiple substitutions or multiple 'hits' can greatly obscure the actual evolutionary history of a
pair of sequences.  Figure 5.9(b) shows a simple case where one lineage has accumulated two substitutions (A
 C, and C  T), whereas in Fig. 5.9(c) each lineage has had a single, different substitution. In both these two
cases the two descendant sequences show only a single difference (they either have the same nucleotide or they
do not), yet there have been two substitutions. Simply counting the number of differences between the two
sequences underestimates the real amount of evolutionary change.

Fig. 5.9
Six kinds of nucleotide substitution. In each case the ancestral nucleotide was

A. In all except the case of a single substitution, the number of substitutions that
actually occurred is greater than would be counted if we just compared the two
descendant sequences. In the lower three cases the nucleotides are identical in
both descendant sequences, but this similarity has not been directly inherited

from the ancestral sequence. Such similarity is termed 'homoplasious'.
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Fig. 5.10
The possible substitutions among

the four nucleotides.

The last three kinds of multiple substitution shown in Fig. 5.9 have potentially more serious consequences. In
each case the two descendant sequences are identical, yet in no case is that similarity inherited directly from the
ancestral sequence. Similarity that is inherited from the ancestor is homologous similarity, whereas
independently acquired similarity is homoplasious similarity (Fig. 5.1). The occurrence of homoplasy can
obscure the actual number of evolutionary events: in each case shown in Fig. 5.9 the two descendant sequences
are identical, even though between two and three substitutions have occurred. Furthermore, homoplasy can
mislead our attempts to infer the evolutionary relationships among sequences. All tree-building methods rely on
there being sufficient homologous similarity among sequences for us to recover the evolutionary tree linking
those sequences.

We can also classify substitutions in other ways.  Nucleotides are either purines or pyrimidines. Substitutions
that exchange a purine for another purine, or a pyrimidine for another pyrimidine are called transitions, and in
some genes are more common than the remaining substitutions purine  pyrimidine or pyrimidine  purine
(transversions) (Fig. 5.10).

We can also classify substitutions in protein coding genes by the consequences they have for the protein the
gene encodes. Because of the degeneracy of the genetic code (Chapter 3), not all substitutions in a codon need
result in a different amino acid. A substitution that does not change the amino acid is a synonymous
substitution, whereas one that does change the amino acid is non-synonymous. More detail about types of
mutation is given in Chapter 3.

5.2.2
Distance Measures for Nucleotide Sequences

Given two sequences one obvious question to ask is 'how much evolutionary change has occurred between
these two sequences?' Answering this seemingly straightforward question has spawned a veritable industry of
measures of sequence difference.
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Observed Differences

The simplest measure of the distance between two nucleotide sequences is to count the number of nucleotide
sites at which the two sequences differ. We have already encountered this measure in our discussion of
pairwise sequence alignment (section 5.1.3). However, for all but very similar sequences this is a poor measure
of the actual number of evolutionary changes. If change has been relatively common (or if not all sites are
equally likely to change) then the same site may undergo repeated substitutions, each successive substitution
obliterating information the site conveys about evolutionary change. As time goes by, the number of differences
between two sequences becomes less and less of an accurate estimator of the actual number of substitutions that
occurred since two sequences diverged from their common ancestor.

Figure 5.11 shows the relationship between number of observed nucleotide differences and time since common
ancestry for some mitochondrial DNA sequences from bovid mammals (cows, buffaloes, and their relatives).
The youngest pairs of sequences show approximately 17 substitutions per million years (Myr).  Extrapolating
this back in time, we would expect the species that diverged 20 Myr ago to show about 340 substitution
differences. In fact, only some 94103 changes are observed. Indeed, sequences separated by 20 Myr are no more
different than sequences that diverged 15 Myr ago.

The relationship between sequence difference and the time elapsed since divergence is not linear but is instead
deflected downwards due to multiple hits at the same site. As more substitutions are accumulated between two
sequences they become progressively more saturated; most of the sites changing have already changed before.
As a result, more recent substitutions make little or no impact on the total number of observed differences
between the sequences. Hence in Fig. 5.11, sequences that diverged 20Myr, such as the

Fig. 5.11
Number of nucleotide substitutions between pairs
of bovid mammal mitochondrial sequences (684
basepairs from the COII gene) against estimated

time of divergence. Notice that the observed
number of substitutions is not linear with time

but curvilinear. Data from Janecek et al. (1996).
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goat and the cow, show no more total sequence difference than that observed between the cow and the lesser
kudu, which diverged some 15 Myr ago.

Models of Sequence Evolution

Given that observed distances may underestimate the actual amount of evolutionary change, there has been a
considerable amount of research on developing methods of converting observed distances into measures of
actual evolutionary distance. These techniques are often termed distance correction methods; their goal is to
'correct' the observed distances by estimating the amount of evolutionary changes that has been overprinted
(Fig. 5.12).

A bewildering array of methods has been proposed, all with various assumptions about the nature of the
molecular evolutionary process. Rather than review every single method, we will cover some of the more
commonly used measures. Most of the methods for 'correcting' distances are interrelated, differing only in how
many parameters they attempt to include. For example, some methods may allow for variation in nucleotide
frequencies; more complex methods may allow different kinds of substitution to occur with different
probabilities, while others may take into account variation in the rate of substitution between sites.

We can use a single general framework to show how these models are interrelated. Within this framework, the
probability of a given nucleotide

Fig. 5.12
The need to correct observed sequence differences.

The extent of observed differences between two
sequences is not linear with time (as we would expect

if the rate of molecular evolution is approximately
constant) but curvilinear due to multiple hits. The
goal of distance correction methods is to recover

the amount of evolutionary change that the
multiple hits have overprinted and to 'correct'
the distances for unobserved hits. In effect,

the methods seek to 'straighten out' the
line representing observed differences.
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substitution remains constant over time, and the base composition of the sequences is in equilibrium.  Given
these assumptions (which are discussed further in section 5.2.3), the substitution probability matrix is given by

where pAC is the probability that a site that started with A had nucleotide C at the end of time interval t, and so
on. In most models the matrix is symmetric so that, for example, pAC = pCA. The diagonal elements pAA,
pCC, pGG and pTT correspond to the case where there has been no (apparent) change at the site; the site has
the same nucleotide at the end of time interval t (note that this does not necessarily mean that there has been no
change, only that the end result of any substitutions has been the same nucleotide we started with). If we assign
the numbers 14 to each nucleotide (e.g. A = 1, C = 2, etc.) then the value of the diagonal elements is given by

In other words, the probability of observing an A at a given site at time 0 and again at time t is 1 minus the
probability of observing the substitution of A by any of C, G, or T.

The base composition of the sequences can be represented by a vector

where ¦A is the equilibrium frequency of A, and so on. In some models ¦A = ¦C = ¦G = ¦T so that all four bases
are present in equal proportion, whereas in other models the bases may vary in their relative frequency.

By specifying the probabilities of a given nucleotide substitution and the expected base frequencies a plethora
of models can be, and have been, generated. We consider four of the best known below.

JukesCantor (JC)

The JukesCantor (JC) model was one of the first proposed and is perhaps the simplest model of sequence
evolution. It assumes that the four bases have equal frequencies, and that all substitutions are equally likely.
Under this model the distance between two sequences is given by

where p is the proportion of nucleotides that are different in the two sequences, and In is the natural log
function. Expressed using equations 5.2 and 5.4 above,
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the JC model can be represented using the following substitution probability matrix and base composition
vector:

where a is the probability of a substitution and is the same for all possible substitutions (the values for the
diagonal elements pAA, pCC, pGG and pTT are given by equation (5.3) above).

Kimura's 2 Parameter Model (K2P)

From Fig. 5.10 one might expect transversions to be more common than transitions as only one of the three
possible substitutions for any nucleotide is a transition. However, the reverse is typically the case: transitions
are generally more frequent than transversions. This is especially true of mitochondrial DNA (Table 5.1).

If we consider separately the two classes of substitution in the bovid mtDNA sequences (Fig. 5.13) we can see
that transitions accumulate rapidly and begin to reach saturation, whereas transversions are much rarer and
appear to accumulate approximately linearly with time.  Kimura's 2 parameter model (K2P) incorporates this
observation that the rate of transitions per site (a) may differ from the rate of transversions (b), giving a total
rate of substitution per site of (a + 2b) (remember that for any nucleotide there are three possible changes, one
of which is a transition, the remaining two being transversions). The transition: transversion ratio a/b is often
represented by the letter kappa (k) In the K2P model the number of nucleotide substitutions per site is given by

where P and Q are the proportional differences between the two sequences

Table 5.1 Transition bias in four types of DNA sequence
(from Wakeley, 1996).
Type of sequences Transition/transversion ratio (k)
mtDNA 9.0
12S rRNA 1.75
a- and b-globins 0.66
Pseudo h-globin 2.70
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Fig. 5.13
The number of transitions and transversions
between the same bovid mammal sequences

used in Fig. 5.11. Transitions accumulate
much more rapidly than transversions and
become saturated, whereas transversions

accumulate more slowly and show no
evidence of saturation.

due to transitions and transversions, respectively. This model has the following substitution probability matrix
and base frequency vector:

Note how the substitution probability matrix differs from the JukesCantor model in having different
probabilities for transitions and transversions. Of course, if a = b, then the K2P model becomes the JC model.

Felsenstein (1981)

Another reason that some nucleotide substitutions might be more frequent than others is variation in base
composition. For example, insect mitochondrial DNA tends to be rich in adenine and thymine compared to that
of vertebrates; among eubacteria the total percentage of guanine and cytosine (G + C) ranges from 25% to
75%. If some bases are more common than others then we might expect some substitutions to be more frequent
than others; if a sequence contains very few Gs then we are unlikely to see many substitutions involving that
nucleotide. Felsenstein's (1981) model (F81) addresses this concern by allowing the frequencies of the four
nucleotides to be different. Note, however, that the method assumes that the frequency of each nucleotide is
approximately the same over all the sequences being considered. If different sequences have different base
compositions then this assumption is violated (see pp. 157158).  Base composition can vary among genes, and
among the same gene in different species.
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The F81 model has the following form:

where pi is the frequency of the ith base averaged over the sequences being compared. Note that if pA = pC =
pG = pT =  then the F81 model is the same as the JC model.

Hasegawa, Kishino and Yano (1985)

The HKY85 model proposed by Hasegawa, Kishino and Yano (1985) essentially merges the K2P and F81
models by allowing transitions and transversions to occur at different rates, and allowing base frequencies to
vary as well. It has the following form:

General Reversible Model (REV)

The REV, or general reversible model (Rodríguez et al., 1990; Yang et al., 1994) is, as its name implies, more
general than the previous models. Its probability matrix has six parameters, such that each possible substitution
has its own probability:

By suitably constraining the six parameters af and the base frequencies we can generate any of the previous
models. For example, if a = c = d = f and b = e then we have the HKY model; further constraining a = b = c=
d = e = f gives the F81 model, and so on.

Comparing the Models

The models we have discussed above are clearly interrelated (Fig. 5.14).  The K2P and F81 models each extend
the JC model by adding extra parameters to
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Fig. 5.14
Interrelationships among five models for estimating the number of nucleotide
substitutions among a pair of DNA sequences. The JC, K2P, F81 and HKY85

models can all be generated by constrainingvarious parameters of the REV model.

allow transitions and transversions to occur at different rates (K2P) and base frequencies to vary (F81). The
HKY85 model combines these two models. The REV model encompasses all four models, and hence each can
be regarded as a special case of the REV model.

These models are merely some of the best known and most commonly applied models in use. There are many
other methods that have been proposed. Given the range of models proposed, how do we choose which model
to use when computing a distance measure? One criterion would be to choose the most realistic model
available. However, realism comes at a cost.  For a given data set, each time we add a parameter to add realism
(say, allowing transitions and transversions to occur at different rates) we must estimate that parameter
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Fig. 5.15
Observed and expected numbers of nucleotide pairs between human and chimpanzee

mtDNA sequences for three different models. As the models add parameters they
more closely approximate the observed pattern. Data from Tamura (1994).

using our data. The more parameters we add, the greater the uncertainty in our estimates as, in effect, we are
spreading our data more and more thinly. Hence we might choose a more realistic model but end up with large
sampling errors, and hence loose statistical power. Clearly it would be desirable to use only the minimum
number of parameters that yield a reasonable estimate. Fewer parameters might give an inaccurate estimate;
more parameters may decrease the precision of our estimate.

Figure 5.15 shows the observed pattern of nucleotide substitutions between mtDNA sequences from humans
and chimpanzees. It is apparent that the frequencies of the bases are not equal, and that transitions are more
frequent than transversions. Given the observed nucleotide frequencies the different models predict different
patterns of nucleotide substitution, based on their different substitution probability matrices. Recall that the
JukeCantor model (pp. 149150) assumes that each nucleotide is present in equal proportions, and that all
substitutions are equally likely.  For the data in Fig. 5.15, 307 of the 1333 sites differ among human and chimps
(i.e. p = 307/1333 = 0.230), so JC distributes these changes evenly among all pairs of different nucleotides
resulting in an expected pattern of nucleotide substitution that does not resemble the observed pattern. One
source of the disparity is the transition/transversion bias; for these data p= 0.219 and Q = 0.011 (see pp.
150151). The Kimura 2 parameter model adds the transition/transversion ratio as a parameter and yields a
pattern that looks more like that observed than does JC. However, K2P still assumes that each nucleotide is
equally common and hence greatly overestimates the number of GG and TT sites. It also underestimates the
number of A « C transversions. A better fit to the observed data is achieved by incorporating the different
nucleotide frequencies, which for these data are pA = 0.371, pT = 0.176, pC = 0.405, and pG = 0.048. The
expected pattern under the HKY85 model (p. 152) matches the observed data rather well (Fig. 5.15). Further
refinements, such as allowing the transition
 

< previous page page_154 next page >



< previous page page_155 next page >

Page 155

rate to be different between purines and between pyrimidines, provide an even better fit.

The relative degree of fit between each model and the data can be evaluated by computing for each model the
likelihood (see Box 5.1) of obtaining the observed data. For the data shown in Fig. 5.15 the theoretical best
value for the log likelihood (In L) is 2064.80. Obtaining the observed data under the

Box 5.1 Likelihood

Given some observed data and an hypothesis of how that data came about, how
can we decide whether our hypothesis is an adequate explanation of the data?
One approach to this problem is the concept of likelihood. Likelihood is the
probability of observing the data given a particular model. Different models may
make the observed data more or less probable. For instance, if you are flipping a
coin and get a 'heads' only one time in 100 then you would suspect that the coin
you are flipping is biased.  If the coin was fair then you would expect to have
seen 'heads' about 50 times, not once. The chances of getting just one head out of
100 flips with perfectly fair coin seems very small; in other words, given a fair
coin the likelihood of the result of 1 head and 99 tails is very low.

It is important to distinguish between the probability of getting the observed
data, and the probability of the underlying model being correct. Likelihood says
nothing about the probability of the model itself. The philosopher of biology
Elliot Sober has used the following example to make the distinction clear.
Suppose you hear a loud noise in the room above you. You could suggest that it
was caused by gremlins playing ten-pin bowling in the attic. Given this
hypothesis your observation (a loud noise above you) has a high likelihood; if
gremlins were indeed bowling above you would almost certainly expect to hear
it! However, the probability that your hypothesis is true (namely, that it is
gremlins making the noise, as opposed to any other possible cause) is something
else again; it is almost certainly not the case that there are gremlins in the attic.
Hence in this case your hypothesis confers a high likelihood upon the data, but is
itself highly improbable.

Given a model that specifies probabilities of observing various events we can
compute the likelihood L of obtaining the observed data. This is often written as

where Pr(D\H) is the probability of getting the data D given hypothesis H. As L
is often a very small number likelihoods are often expressed as natural
logarithms and referred to as log-likelihoods.

Likelihoods for different models can be compared if those models are nested,
that is, one model is a special case of the other, Twice the difference between

continued on p. 156
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continued

Box 5.1

the log-likelihoods of two models is c2 distributed, hence it is possible to test
whether one model is significantly better than the other. This makes likelihood a
powerful tool for hypothesis testing. A common use is to compare models in
which one parameter (such as base composition, transition/transversion ratio, or
rate of evolution) is fixed in one model and allowed to vary in the other.

JC model is much less likely (In L = 2691.76). Adding the transition/transversion ratio parameter (the K2P
model) significantly increases the likelihood of obtaining the observed data (In L = 2424.79). Allowing
nucleotide frequencies to vary (HKY85) results in an even greater increase in likelihood (In L = 2075.41). The
likelihood values confirm the visual impression given in Fig. 5.15 regarding the relative merits of the models.
In order of fit to the data the models can be ranked HKY85 > K2P > JC, with HKY85 most closely resembling
the observed patterns.

5.2.3
Assumptions

All the methods we have discussed share these assumptions:

1 All nucleotide sites change independently.

2 The substitution rate is constant over time and in different lineages.

3 The base composition is at equilibrium.

4 The conditional probabilities of nucleotide substitutions are the same for all sites and do not change over time.

While these assumptions make the methods tractable they are in many cases unrealistic. We consider some of
these assumptions below.

Independence

The assumption of independence means that change at one site has no effect on change at any other site.  There
are a number of clear exceptions to this assumption. For example, once transcribed, ribosomal RNA assumes a
complicated secondary structure comprising 'stem' and 'loops' where the stems are held together by
WatsonCrick base pairing. A substitution in a stem may result in a pair of nucleotides that cannot pair correctly
(Fig. 5.16), reducing the stability of the structure. Often a compensatory change may occur, where a
substitution occurs that restores WatsonCrick base pairing. This tendency for sites in stems to covary means that
these changes are not truly independent. Because of the complicated secondary structure of the RNA molecule,
parts of the sequence that are far apart when the sequence is thought of as just a string of letters may be folded
into close proximity with each other. Hence, correlated changes may occur between sites that are separated by
many intervening nucleotides.
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Fig. 5.16
RNA molecules have a secondary structure comprising 'stems' of WatsonCrick
paired nucleotides and 'loops' of unpaired nucleotides. A substitution in a stem

can destroy the WatsonCrick bond and reduce the stability of the molecule.
A substitution that restores the stem is a compensatory

change. After Hickson et al. (1996).

This non-independence of substitutions in RNA has led to some discussion about 'down-weighting' sites in
stems to compensate for the correlated changes because a single substitution may ultimately result in two
substitutions: the original substitution and the subsequent compensation (Fig. 5.16). The issue of weighting
characters is discussed further in Chapter 6. However, compensatory changes need not occur very quickly;
basepair mismatches in stems may persist for millions of years.

Base Composition

The assumption that base composition is at equilibrium means that over the collection sequences being studied
the base composition is roughly the same. Deviations from this assumption do occur and can lead to problems
inferring the correct evolutionary tree. For example, the tree in Fig. 5.17 shows two

Fig. 5.17
Part of the phylogeny of bacteria showing the variation

in percentage G + C content in small subunit rRNA.
After Galtier and Gouy (1995: Fig. 4).
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closely related bacteria, Thermus and Deinococcus, that differ in their base composition, Deinococcus having a
composition more typical of other bacteria.  Trees inferred from distances computed using most methods will
not group these two bacteria together, but instead will group Deinococcus with bacteria with which it shares
little other than a similar base composition. One method developed specifically for this kind of problem is the
LogDet measure (see Box 5.2).

Box 5.2 LogDet

The principal goal of the distance measures described in this chapter is to
measure the number of nucleotide substitutions between a pair of DNA
sequences. However, one recently proposed method for comparing sequences is
not intended to estimate sequence divergence as such, although under some
circumstances it can be so used. This method, called LogDet, is designed to
circumvent the problem of variable base composition among sequences. While
some methods, such as the HKY85 model, allow base frequencies of the four
nucleotides to vary, they assume that these frequencies are approximately
constant across the sequences being compared. If different sequences have
different base compositions then these methods may be a poor choice. This has
particular consequences for phylogenetic tree construction (Chapter 6), where
some distance measures can lead to sequences being grouped together on the
basis of similarity in base composition rather than actual evolutionary
relationship.

The LogDet transformation is designed to recover an additive distance (see
Chapter 2) between sequences, even when base composition is variable. For each
pair of DNA sequences, x and y, a 4 × 4 matrix is constructed with the entries
being the proportion of sites which have each possible pair of nucleotides. For
example, this table shows the number of times a nucleotide in a 900 basepair
stretch of 16S rRNA sequence from photosynthetic organelles from Euglena
matched each nucleotide in the same gene in the organelle from Olithodiscus.

Olithodiscus
a c g t

a 224 5 24 8

Euglena c 3 149 1 16

g 24 5 230 4

t 5 19 8 175

From this table we construct a 4 × 4 matrix F with rows and cells corresponding
to each nucleotide, and the cells being the proportion of sites with each possible
pair of nucleotides. In this example,

continued
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continued

Box 5.2

and the LogDet distance is

where det is the determinant of the matrix Fxy. For more details see Lockhart et
al. (1994) from which this example is taken.

Variation in Rates of Substitution among Sites

The methods for calculating evolutionary distances between sequences described above make various
assumptions about the probability of substitutions between various nucleotides, but one assumption that they all
share is that each nucleotide site in a sequence is equally likely to undergo a substitution. This assumption
simplifies the mathematics but at the cost of biological realism. Different regions of DNA sequence may have
quite different probabilities of change. Figure 5.18 shows the relative rates of substitution in different parts of a
sample of mammalian genes and pseudogenes. Pseudogenes, which have lost all functionality evolve most
rapidly, with fourfold degenerate sites close behind. As we might expect, non-degenerate sites (at which any
nucleotide substitution results in an amino acid replacement) evolve relatively slowly.  The reasons why
different regions of DNA sequence evolve at different rates are discussed in more detail in Chapter 7.

Variable rates of substitution can have considerable impact on sequence divergence. Consider firstly the simple
case where some sites are free to vary,

Fig. 5.18
Average rates of substitution in different parts

of mammalian genes and pseudogenes.
From Li and Graur (1991).
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Fig. 5.19
DNA sequence divergence plotted against time

since divergence. For the upper curve (A) the rate
of substitution is 0.5%/Myr and 80% of sites are
free to vary, whereas for the lower curve (B) the
rate of substitution is higher (2%/Myr) but only

half the sites are free to vary. After Palumbi (1989).

and others are constrained to be invariant. This can be thought of as crudely modelling the case where
substitutions are either neutral, or are strongly deleterious and hence selected against. If some sites are not free
to vary then sequences that evolve at a fast rate can, over evolutionary time, paradoxically show less divergence
than more slowly evolving sequences that have fewer constraints. Figure 5.19 shows the expected divergence of
two sequences, A and B, that differ in rate of substitution and fraction of sites free to vary. In sequence A,
substitutions occur at a rate of 0.5% per million years (Myr) and 80% of sites can undergo a substitution,
whereas in sequence B the rate of substitution is higher, 2% per Myr, but half the sites are constrained. The
more rapidly evolving sequence (B) initially shows more sequence divergence but then begins to saturate such
that by 80 Myr the slower sequence (A) starts to show more divergence. In this hypothetical example, were we
to compare the divergence between the two sequences in a pair of species that diverged from their common
ancestor 100 Myr ago we might mistakenly conclude that sequence A was evolving more rapidly because the
sequences are more divergent.

Distribution of Rates

In reality, sites show a range of probabilities of substitution, rather than simply the two categories of zero and
non zero used in Fig.  5.19. The challenge is to develop tractable models of this rate variation. The most widely
used approach makes use of the gamma distribution. This distribution has 'shape' parameter a which specifies
the range of rate variation among sites. Small values of a result in an L-shaped distribution with extreme
variation of rates; most sites are invariable but a few have very high rates of substitution. Conversely, the larger
a the smaller the range of rates; when a > 1 the distribution is bell-shaped (Fig. 5.20).

Estimates of a obtained from nuclear and mitochondrial genes range from 0.16 to 1.37 (Table 5.2), in other
words the distribution of rates is generally L-shaped. These values are for all codon positions combined; when
codon
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Fig. 5.20
The distribution of relative substitution rate r corresponding to different values

of the gamma shape parameter a. Low a corresponds to large rate variation.
As a gets larger the range of variation diminishes, until as a approaches ¥

all sites have the same substitution rate. After Yang (1996: Fig. 1).

Table 5.2 Estimates of a shape parameter of the
distribution of rate variation for various genes (after
Yang, 1996, Table 1).
Type of sequences a
Nuclear genes
Albumin genes 1.05
Insulin genes 0.40
c-myc genes 0.47
Prolactin genes 1.37
16S-like rRNAs, stem region 0.29
16S-like rRNAs, loop region 0.58
yh-globin pseudogenes 0.66

Viral genes
Hepatitis B virus genomes 0.26

Mitochondrial genes
12S rRNAs 0.16
Position 1 of four genes 0.18
Position 2 of four genes 0.08
Position 3 of four genes 1.58
D-loop region 0.17
Cytochrome b 0.44
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positions are analysed separately, the value of a for first and second positions is much smaller than that for third
codon positions, the latter tending to have a more even distribution of rates.

The models of evolutionary change discussed on pp. 148152 above can be modified to include the gamma
distribution, typically represented by the symbol G. For example, adding a gamma distribution to the HKY85
model yields the 'HKY85 + G' model.

5.2.4
Distance Measures for Protein Sequences

In contrast to the plethora of methods for computing distances between nucleotide sequences, there are
relatively few methods for computing distances for protein sequences. This is largely due to the greater
complexity of the problem; instead of the four states required for nucleotide data, protein sequences comprise
some 20 different amino acids. A simple measure of dissimilarity between protein sequences due to Kimura is
given by

where p is the proportion of amino acids differing in the two protein sequences. This measure does not take into
account the differing probabilities of replacement among amino acids (see Fig. 5.7), and hence lacks realism.
The development of better measures is an active area of research.

5.3
Measuring Evolutionary Change on a Tree

So far in this chapter we have concentrated on measuring evolutionary change between two or more sequences
by comparing those sequences directly. We can also estimate evolutionary change on a tree.  For any pair of
sequences the total amount of evolutionary change that occurred since the time they diverged from their
common ancestor is the sum of the evolutionary change along each edge of the path in the tree between the two
sequences (Fig. 5.21).

Fig. 5.21
The evolutionary distance between b and d is
the sum of the edge lengths along the path in

the tree between the two sequences.
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There are a range of methods for inferring branch lengths, and these are directly related to the methods of tree
construction discussed in Chapter 6. In this chapter we will focus on parsimony, which is one of the few
methods that explicitly seeks to reconstruct the ancestral sequences themselves, rather than just the edge
lengths.

Given that ancestors are almost never actually observed (although see the HIV example in Chapter 2), we need
some rules for inferring what they looked like. In this context, we need rules to construct an ancestral sequence
from the sequences and relationships of its descendants. One approach might be to simply 'average' the
descendant sequences and use that as the ancestor. Indeed, such an approach is often used to construct a
consensus sequence which summarises the common features of a set of sequences (we encountered the notion
of consensus in Chapter 2 in relation to trees). However, a consensus sequence is not necessarily the same as an
ancestral sequence (see Box 5.3). Using the parsimony criterion we can construct the ancestral sequences that
can give rise to the observed sequences with the fewest possible evolutionary changes by following a simple
method. For each internal node in the tree we use the sequences of its immediate descendants to construct a
hypothetical ancestral sequence.

Under parsimony we assign to each node in the tree a character state set. For observed DNA sequences this is
simply the observed nucleotide at a

Box 5.3 Consensus sequences

Suppose we have the following six sequences for a homologous codon in six
different species.

1 CGA

2 CGA

3 ATT

4 TTT

5 TGT

6 TGG

There is sequence variation among these sequences. If we want to summarise
these sequences we could compute a consensus sequence which might, for
example, comprise the base found in a majority of sequences at each site.  For
these six sequences the consensus sequence is:

consensus TGT

While this approach does summarise the variation among the sequences in terms
of an 'average' sequence, it should not be confused with an ancestral sequence.
This is because sequence consensus methods implicitly assume that sequences are
equally related that is by a star tree (shown below left).

continued on p. 164
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continued

Box 5.3

Given a star tree the most frequent base at each site is the most parsimonious
estimate of the ancestral base. If, however, the sequences are related by the tree
on the right (above), then using parsimony the common ancestor of sequences 16
would have had this sequence:

ancestor CGA

which shares only one base with the consensus sequence. Hence, consensus
sequences are not appropriate for reconstructing the evolutionary history of a set
of sequences (unless those sequences are actually related by a star tree); they are
simply tools for summarising sequence variation.

given site. For example, if a sequence x has A then its state set is sx {A}. Suppose we have two sequences a
and b and we want to infer the state possessed by their ancestor x. The parsimony rules are as follows.

1 If the state sets of a and b are identical then x has the same state set, i.e.

2 If a and b have different state sets then if the state sets sa and sb have any states in common the ancestor has
those states, otherwise the ancestor has the combined state sets of a and b, i.e.  if saÇ sb¹ Ø, sx = saÈ sb,
otherwise sx = saÇ sb.

The first rule seems obvious; if both descendants have A then the simplest interpretation is that the ancestor
also had A. The second rule is a little more complex. If the two sequences have different states then the state set
of the ancestor has both states. For example, given descendants with state sets {A} and {T} we would assign
the state set {A, T} to the ancestor. This does not mean that the ancestor literally had both nucleotides (i.e. was
polymorphic), rather it means that we lack the information to decide at this point which one of the alternative
states it possessed. The second part of rule 2 comes in to play when
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we are looking at ancestors whose descendants include at least one node with a state set that contains more than
one state, for example {A, T}. If the other descendant of this node has {T} then the most parsimonious
interpretation is that the ancestor has state set {T}.

We can see these rules in action using the following example. Suppose we have the tree shown in Fig. 5.22.
Using parsimony we walk along the tree making sure we visit the descendants of a node before visiting the
node itself (technically, this is known as a post-order traversal). Hence, the first node we visit is node 1 (we
could also have started with node 3, as it makes no difference to the result). The descendants of this node have
states A and T, hence by rule 2 above, node 1 has the union of these two state sets, i.e. {A, T}. Having visited
node 1 we now know the state sets for the two descendants of node 2, {A, T} and {T}.  These two sets share
{T}, which is (by rule 2) the state set for this node. Before visiting node 3 we must first get the state set for
node 3. Both the descendants of node 3 have the same state set {G} so by rule 1, node 3 also has {G}.
Continuing down the tree, node 4 has {T} È {G} = {G, T} and node 5 has {G, T} Ç {G} = {G}.

We now have state sets for all the internal nodes in the tree. However, some state sets have more than one state
and hence are ambiguous. There are various methods for choosing which one of the possible states yields the
most parsimonious reconstruction. One of the simplest (called Farris optimisation) is simply to go back up the
tree assigning to any internal node

Fig. 5.22
Assigning state sets to internal nodes on a tree (see text).
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Fig. 5.23
Resolving the ambiguity in ancestral
reconstructions by going back up the

tree and assigning to ambiguous nodes
the intersection of its state set with

that of its ancestor.

that is ambiguous the intersection of its state set with that of its immediate ancestor.

Having obtained states for the ancestors we can infer where on the tree evolutionary changes took place, and
the nature of those changes. In the tree shown in Fig. 5.23 we can see that a total of two substitutions occurred
(between nodes 1 and its left descendant, and between nodes 2 and 4), and that one change was T  A and the
other was G  T.

In the example given above, there is only one most parsimonious solution for the ancestral states. However, this
need not always be the case, there may be a number of alternative reconstructions that postulate the same
number of events. However, the different reconstructions may imply rather different sequences of events and
hence different biological consequences. We should also stress that the amount of change recovered by
parsimony is, by definition, the smallest possible consistent with the data. The actual amount of evolutionary
change may have been somewhat larger. Furthermore, our estimates of the amount of change can depend on
how many sequences we have examined.

5.3.1
Estimating Branch Lengths

Just because two sequences may have the same nucleotide at the same position, this does not mean that there
has been no evolutionary change between those two sequences. As we noted above (Fig.  5.9) the same
nucleotide may arise independently in different lineages. Imagine that we have a few sequences for a group of
species and of those sequences, 1 and 2 are the most closely related (Fig. 5.24a). If those two sequences share
the same nucleotide (say, A) at the same site then the simplest interpretation is that the A is homologous, that is,
1 and 2 inherited it from some common ancestor. If, however, we discovered more sequences that were more
closely related to 2 than to 1, and these sequences have either T or G at this position, then the occurrence of A
in sequences 1 and 2 is more likely to be of independent origin (Fig. 5.24b). In
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Fig. 5.24
The effects of sampling on estimates of the amount

of sequence divergence. (a) Two sequences that
appear to be each others closest relative. If the
ancestral state is A then apparently there has

been no evolution along the path between
sequences 1 and 2. If, however, more

sequences are found that are more closely
related to sequence 2 than to sequence 1,

and these sequences have different
nucleotides at the same site then we
now have evidence for at least two

substitutions between 1 and 2.

this instance, obtaining more sequences to flesh out the evolutionary tree has uncovered more evolutionary
change. Furthermore, use of an evolutionary tree detects more substitutions (3 versus none) than would have
been counted just by directly comparing the two sequences.

This phenomenon of the dependence of the amount of inferred evolutionary change on how densely we sample
sequences can be illustrated by an oft observed pattern in molecular trees. If trees are plotted with branch
lengths proportional to change (i.e. as additive trees, see Chapter 2) then in many cases lineages that show
fewer cladogenetic events also show the least amount of evolutionary change. Figure 5.25 (a) shows this pattern
in a phylogeny for mammalian ribonuclease genes.  If we add up the total amount of evolutionary change along
the path from each sequence to the root of the tree, there is a clear relationship between the length of that path
and the number of internal nodes we encounter along that path. The tips of the tree that are separated from the
root by the most cladogenetic events show the most evolutionary change (Fig. 5.25b).

5.3.2
Testing Ancestral Reconstructions

Ancestors, as much as trees themselves, are hypotheses. The sequences we assign to them are hypotheses that
we can rarely test directly because the ancestors themselves are long extinct. There are few exceptions to this,
such as the experimental phylogenies discussed in Chapter 6. However, in the absence of such direct evidence
we must use other criteria.

Of course the real ancestral sequences were not merely strings of nucleotides, they were functioning entities (if
we exclude pseudogenes and other non-functional sequences). Hence one check on the reliability of our
inferred
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Fig. 5.25
Correlation between density of lineage sampling and total amount of evolutionary change inferred.

(a) Phylogeny of ribonucleases with branch lengths proportional to the minimum number of
nucleotide substitutions required by parsimony. (b) Plot of number of substitutions along

the path from tip to the root, against the number of nodes along that path. Note the
correlation between the two values for sequences < 12 nodes from the root.

A square ( ) denotes the clade reindeer to swamp buffalo; the remaining taxa
are indicated by a circle ( ). Adapted from Fitch and Beintema (1990).

ancestral sequences is whether they are, or could be, functional. For an example of this approach we can return
to the ribonucleases (RNAse) discussed above. In a pioneering study by Jermann and colleagues the sequences
for 13 ancestral RNAses were inferred for artiodactyl mammals (this order includes the pig, camel, deer, sheep
and ox) using parsimony. These hypothetical ancient proteins were then synthesised in the laboratory and their
properties compared with present day RNAses (Fig. 5.26).  All 13 RNAses had catalytic activity consistent with
being functional enzymes, suggesting that the hypothetical ancestral sequences inferred using parsimony were
indeed plausible.

What is particularly interesting is that the inferred properties of the RNAses at the base of the artiodactyl
phylogeny differ from those of their more recent
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Fig. 5.26
Recreating ancient protein sequences. Left is a phylogeny of artiodactyl ribonucleases. The ancestral
sequences marked with ( ) were inferred using parsimony, then created in the laboratory and their
catalytic and thermal properties measured with respect to present day ribonuclease (panels at right:

values for present day RNAse indicated by dotted lines). After Jermann et al. (1995).

descendants. Specifically, the earliest artiodactyls had much higher levels of activity against double-stranded
RNA and were slightly less thermally stable. These changes occurred at the same time that these mammals
evolved foregut fermentation, which requires digestion of large amounts of RNA generated by fermenting
bacteria in the foregut of these animals. Hence the reconstructed ancestral sequences suggest new insights into
the evolution of both the gene and the physiology of the organisms themselves.

Box 5.4 Using parsimony reconstructions to test for saturation

Parsimony reconstructions by definition provide only minimum estimates of
evolutionary change. Although this can be seen as a limitation, it does provide us
with a useful lower boundthe actual amount of evolutionary change must

continued on p. 170
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continued

Box 5.4

have been at least as much as inferred using parsimony. For example, we can use
this knowledge to look for evidence of saturation of pairwise distances (both
corrected and uncorrected) between sequences. Philippe et al. (1994) compared
branch lengths inferred using parsimony with observed pairwise distances
between sequences of the CuZn superoxide dismutase (SOD) gene and 28S
rRNA genes for a range of eukaryotes

For the SOD sequences there is a noticeable levelling off in the relationship
between sequence difference and parsimony branch lengths: a 65% difference
can correspond to anything from 70 to 190 substitutions.  By contrast the 28S
rRNA sequences show only the beginnings of saturation. This approach can be
used to detect saturation and to evaluate the effectiveness of different methods of
correcting for multiple hits.

5.4
Summary

1 Homology is the sharing of a feature due to direct inheritance from an ancestor. Independent evolution of the
same feature is termed homoplasy.

2 Different genes may be descendants of the same copy of an ancestral gene (orthologous), or descendants of
different copies (paralogous).

3 Sequences must be aligned to establish homology among nucleotide positions. The alignment can be sensitive
to the relative weights assigned to different events, such as insertion and deletion events versus substitutions.

4 Multiple 'hits' (multiple substitutions at the same site) result in the observed number of sequences differences
underestimating the actual number of substitutions that have taken place. A variety of methods has been
proposed to correct for these unobserved substitutions.

5 Standard assumptions that most distance correction methods make, such
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as independence of substitutions at different sites, and that each site is equally likely to undergo substitution,
are generally not true.

6 Evolutionary change can be measured on a phylogeny. The quality of these estimates can depend on how
many sequences have been sampled.

7 Ancestral sequences can be reconstructed on an evolutionary tree.

5.5
Further Reading

There is a huge literature on sequence alignment. William Day has made a comprehensive bibliography
available on the Internet from the Classification Society of North America's home page
(http://www.pitt.edu/~csna/). For a discussion of tree alignment see Hein (1990) and Wheeler (1996). Zharkikh
(1994) gives a detailed (and demanding) mathematical account of various models of sequence evolution. See
Goldman and Yang (1994) for more sophisticated models for analysing protein sequences. Tamura (1994)
discusses using maximum likelihood to evaluate different models of substitution.  Yang (1996) gives an
excellent overview of methods for handling variation in rate of substitution across sites. A detailed discussion of
reconstructing ancestral character states is given in Maddison and Maddison's (1992) book that accompanies the
MacClade program.
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Chapter 6
Inferring Molecular Phylogeny

6.1 Introduction

6.1.1 Kinds of Data: Distances Versus Discrete Characters

6.1.2 Clustering Methods Versus Search Methods

6.1.3 Subtree MethodsAssembling Larger Trees from Smaller Ones

6.1.4 How Do We Compare Different Tree-Building Methods?

6.2 Distance Methods

6.2.1 Goodness of Fit Measures

6.2.2 Minimum Evolution

6.2.3 Algorithms for Finding Distance Trees

6.2.4 Objections to Distance Methods

6.3 Discrete Methods

6.4 Maximum Parsimony

6.4.1 Generalised Parsimony

6.4.2 Weighted Parsimony

6.4.3 Justification for Parsimony

6.4.4 Objections to Parsimony

6.5 Maximum Likelihood

6.5.1 Models, Data and Hypotheses

6.5.2 Likelihood Ratio Tests

6.5.3 Parsimony and Likelihood

6.5.4 Objections to Likelihood

6.6 Splits and Spectra

6.6.1 Spectral Analysis

6.6.2 Split Decomposition

6.6.3 Is a Network Better Than a Tree?

6.7 Have We Got the True Tree?

6.7.1 Analysis

6.7.2 Known Phylogenies

6.7.3 Simulation



6.7.4 Congruence

6.8 Putting Confidence Limits On Phylogenies

6.8.1 Sampling Error

6.8.2 Estimating Sampling Error: The Bootstrap

6.8.3 Parametric Bootstrapping

6.8.4 What Can Go Wrong?

6.9 Summary

6.10 Further Reading

6.1
Introduction

The task of molecular phylogenetics is to convert information in sequences into an evolutionary tree for those
sequences. A great (and ever increasing) number of methods have been described for doing this, which raises
the inevitable question of how to come to grips with this plethora of possibilities. Two ways which seem useful
to us are either to divide the methods by how they handle data, or to divide them by the approach taken when
building trees. Both these divisions can help us appreciate the differences among the various tree building
techniques. Given the rapid development of methods in this field, we cannot hope to cover completely every
method that has been proposed, nor would this necessarily be helpful. Our goal is to cover the major methods,
and to show how they interrelate.

6.1.1
Kinds of Data:
Distances Versus Discrete Characters

This division is based on how the data are treated; distance methods first convert
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Fig. 6.1
A parsimony tree and a distance tree for the same sequence data. Note that both

trees have the same topology and branch lengths, but that the parsimony
tree identifies which site contributes to the length of each branch.

aligned sequences into a pairwise distance matrix, then input that matrix into a tree building method, whereas
discrete methods consider each nucleotide site (or some function of each site) directly. As an example, consider
the following sequences and corresponding (uncorrected) distance matrix:

The trees obtained by parsimony (a discrete method) and minimum evolution (a distance method) are identical
in topology and branch lengths (Fig.  6.1). The parsimony analysis identifies seven substitutions and places
them on the five branches of the tree. The distance tree apportions the observed distances between the sequences
over the branches of the tree, and you can see that both methods arrive at the same estimates of the lengths of
each branch. Under parsimony each of the seven sites requires one change, for a total of seven changes; if we
sum the branch lengths on the distance tree we obtain the same value: 2 + 1 + 2 + 1 + 1 = 7. Note, however,
that the parsimony tree gives us the additional information of which site contributes to the length of each
branch. Once we convert sequences into distances we lose this information. Furthermore, discrete methods
allow us to infer the attributes of extinct ancestors, in this case extinct nucleotide sequences. These
reconstructed ancestors can offer insights about molecular evolution (see Chapter 5).

6.1.2
Clustering Methods Versus Search Methods

Another way of dividing tree building methods is by the way they construct
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Fig. 6.2
An example of how a clustering method builds
a tree. The tree is constructed by starting with
the tree for three sequences, then adding each

remaining sequence in turn until finally all
sequences have been added.

trees. Cluster methods follow a set of steps (an algorithm) and arrive at a tree. For example, if we have five
sequences we might start with three of them (remember that there is only one possible unrooted tree for three
sequences) and decide where to place the fourth sequence. Given the resulting tree for four sequences, we then
decide where to add the fifth and last sequence to our tree (Fig. 6.2).

Clustering methods have the advantage of being easy to implement, resulting in very fast computer
programs.  Furthermore they almost always produce a single tree. This combination of speed and an apparently
unambiguous answer is naturally very appealing, and accounts for much of the sustained popularity of
clustering methods. However, they have some severe limitations as analytical tools. The result obtained from
simple clustering algorithms often depends on the order in which we add the sequences to the growing tree. For
example, had we started with sequences b, d and e rather than a, b and c in Fig. 6.2 we might have arrived at a
different tree. But the biggest limitation is that cluster methods do not allow us to evaluate competing
hypotheses, they merely produce a tree. It may be that two different trees could explain our data equally, or
nearly equally, well. Unless we have some way to measure the fit between tree and data, we will not be aware
of this.

Tree-building methods in the second class use optimality criteria to choose among the set of all possible trees
(Fig. 6.3). This criterion is used to assign to each tree a 'score' or rank which is a function of the relationship
between tree and data (examples include maximum parsimony and maximum likelihood). Optimality methods
have the great advantage of requiring an explicit function that relates data and tree (for example, a model of
how sequences evolve). These methods also allow us to evaluate the quality of any tree, hence we can compare
how well competing hypotheses of evolutionary relationship fit the data. The Achilles' heel of optimality
methods is that they are computationally
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Fig. 6.3
An optimality method assigns to every possible
tree a 'score' based on some measureof how the
data relate to the tree. Based on this score each
tree is ranked in order and typically the best tree

(or trees) is used as the estimate of the phylogeny.
In this example, there are three optimal trees
(indicated by the ranking of first equal [= 1]).

very expensive. An optimality method poses two problems that must be solved: firstly, for a given data set and
a given tree, what is the value of the optimality criterion for that tree? For example, what is the minimum
number of evolutionary events required to explain the observed data? Secondly, which of all the possible trees
has the maximum value of this criterion? For example, which tree requires the fewest evolutionary events? The
first problem is generally fairly straightforward; however, the second problem is rather more difficult as it
belongs to a class of problems called NP-complete (see Box 6.1).

Box 6.1 NP-completeness and the problem of finding the best evolutionary tree

Despite the best efforts of mathematicians and computer scientists there is a set
of problems called NP-complete (NP = non-deterministic polynomial) for which
no efficient algorithms for their solution are known to exist. Members of this
class of problems are all variants on the same problem, in that if one problem
could be solved efficiently then all could be. The problem of finding the optimal
evolutionary tree for a variety of criteria, including minimum evolution and
maximum parsimony, is known to be NP-complete. In practical terms this means
that for any reasonable number of sequences (e.g. more than 20) it is often
impossible to guarantee that the optimal tree has in fact been found.
Consequently, in many cases we must rely on heuristics (a euphemism for 'quick
and dirty'). Trees found by such methods may turn out to be far from optimal,
and the conclusions drawn from such trees may be somewhat suspect.  A
salutary example is the controversy over the geographic origins of human
mitochondrial DNA in which different workers obtained quite different trees
from different heuristic searches.

 

< previous page page_175 next page >



< previous page page_176 next page >

Page 176

While for small numbers of sequences (e.g. no more than 20) it is often possible to find the optimal tree (or
trees), in many cases this is not feasible, in which case we have to rely on heuristic methods. These are
strategies designed to explore some subset of all the possible trees, in the hope that that subset will contain the
optimal tree. A typical heuristic strategy is to start with a tree (which may be obtained using a simple clustering
algorithm, or even chosen at random) and rearrange it, keeping any rearrangement that produces a better tree.
Such algorithms are often called 'hill-climbing'. Imagine that you are in a valley and want to climb the highest
hill, but you cannot see (some malicious text-book author has forced you to wear a blindfold). A reasonable
strategy for climbing the highest hill would be to take a step, which may take you either a little bit downhill, a
little bit uphill, or may keep you on a flat surface; if the step was downhill you are clearly not going up a peak,
hence you retrace your step and try again; if the step is uphill you may be on the right track, and may wish to
take another step in the same direction.  If no step in any direction takes you up, but at least one takes you
neither up nor down, then you are on a plateau. This plateau may be the top of the highest hill in the region, in
which case you have succeeded; however, it may be merely a local high-pointbeing blindfolded you cannot tell.

Translating this analogy into the problem of tree searching, the 'hills' represent sets of locally optimal trees, and
your steps are the tree rearrangements. Figure 6.4 shows two 'hills' or 'islands' of trees, and two possible starting
trees, 1 and i. By rearranging the starting tree, and keeping only those trees that are better under our optimality
criterion, we arrive at two different islands (a and b), one of which (b) is better than the other. The search that
landed on island a would be unable to reach island b as to get there it would have to accept a suboptimal tree
(tree 5) before reaching island b. If a set of possible trees contains more than one island then heuristic methods
may land on a suboptimal island, and the optimal island goes undiscovered.

6.1.3
Subtree MethodsAssembling Larger Trees from Smaller Ones

Most algorithms for finding optimal phylogenetic trees use various techniques for rearranging trees to explore
the phylogenetic 'landscape' comprising possible solutions (Fig. 6.4). If we can readily compute a score for each
tree this approach is often reasonable. However, for some optimality criteria, such as maximum likelihood
discussed below, computing a score for even a single tree is time consuming. Because the effectiveness of a
heuristic search depends in part on how many trees we are willing to examine, this can hamper our search.

An alternative approach that has been used for both distance and discrete character methods is to divide the set
of sequences into smaller sets and find the optimal tree for these subsets, which are then combined to form a
larger tree. The smallest useful subset of an unrooted tree comprises four sequences (a quartet). For n sequences
there are ( ) = n(n 1)(n 2)(n 3)/24 possible
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Fig. 6.4
Landscapes and the problem of islands of trees (locally optimal sets of trees).

A hill climbing algorithm that started from tree 1 would succeed in finding
trees 3 and 4 (which comprise island a), but would fail to discover that tree iv
(island b) was even better, because to get to that tree it would have to cross a
plateau of trees that were worse than trees 3 and 4. However, a search starting
from tree i would succeed in finding the best tree. If the set of possible trees

contains more than one island then heuristic methods may land on a suboptimal
island, and the optimal island will not be discovered. After Maddison (1991).

quartets. Each quartet has three possible unrooted trees (see Table 2.1, p. 18) (Fig. 6.5). Each tree partitions the
set of sequences {A, B, C, D} into two pairs: for example Q1 corresponds to {A, B} and {C, D}. These two
sets are each other's neighbours. Quartet-based tree building methods follow these two steps:

1 For each quartet identify which of the three possible trees is optimal for those four sequences.

2 Take all the four-sequence trees from step 1 and assemble them into a tree.  Given perfect data the second
step is trivial as there will be only one tree that all the subtrees will agree on. However, given homoplasy it may
be that not all subtrees can be combined into one tree, in which case we want the tree that

Fig. 6.5
The three possible trees for four taxa (a quartet).
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accommodates the greatest number of the quartets. Finding this tree is, alas, also an NP complete problem (see
Box 6.1) so it suffers from the same computational complexity that besets other methods. However, fast
heuristic algorithms for assembling quartets into larger trees are available.

6.1.4
How Do We Compare Different Tree-Building Methods?

Based on the distinction we have made between tree-building methods that use distances versus those that use
discrete characters, and methods that use a clustering algorithm versus those with an explicit optimality
criterion, we can classify some commonly used methods (Fig. 6.6).

Note that methods from different classes may be related. For example, UPGMA can be considered a heuristic
method for finding the best least squares ultrametric tree, and similarly neighbour joining is a heuristic method
for estimating the minimum evolution tree.

Given the range of tree-building methods available, how can we decide which ones are better than others?
David Penny and colleagues have suggested five desirable properties a tree-building method should have:

efficiency (how fast is the method?);

power (how much data does the method need to produce a reasonable result?);

consistency (will it converge on the right answer given enough data?);

robustness (will minor violations of the method's assumptions result in poor estimates of phylogeny?);

falsifiability (will the method tell us when its assumptions are violated, i.e. that we should not be using the
method at all).

Efficiency is effectively the time in which a computer program can find a tree using a given method. As we
have seen above most, if not all, optimality

Fig. 6.6
Some common phylogenetic methods
classified by the method used to build
the tree, and by the type of data used.
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methods are NP-complete (see Box 6.1) and hence efficient tree searching algorithms that guarantee to find the
best tree are unlikely to be found.  As a result, we have to rely on heuristics for all but the smallest problems.
Some optimality criteria can be evaluated more quickly than others; for example, the most parsimonious set of
nucleotide substitutions can be calculated orders of magnitude more quickly than the likelihood of the same tree
giving rise to the same data. One practical consequence of this is that in the same period of time, heuristic
searches using parsimony can explore a much larger set of trees than a search using likelihood. Subtree
methods (section 6.1.3) may be used when the optimality criterion is time consuming to compute.

The power of a method is a measure of how much data we need to collect before we can be reasonably sure of
arriving at the correct result. A method might be theoretically very appealing, but if it requires huge numbers of
sites to be sequenced then it may not be of much practical use. Another consideration is whether the method
will converge on the true tree as we add more data. This desirable property is consistency; an inconsistent
method would fail even if we kept feeding it more data.

All tree-building methods make (implicit or explicit) assumptions about the evolutionary process. Violation of
these assumptions may result in a method returning a poor estimate of phylogeny, for example a method that
assumed a molecular clock when there was none may be very misleading about evolutionary relationships. The
sensitivity of a method to violations of its underlying model is a measure of its robustness. Ideally, we would
like to know whether these violations are sufficient to rule out a particular model, that is, the method is
falsifiable. A falsifiable method that assumed a molecular clock when there was none would allow us to test the
clock assumption; if that assumption was found wanting then we would abandon that method and use another
that did not make the clock assumption.

The ideal tree-building method would meet all five criteria, but such a method does not exist, nor is it likely to.
All current methods emphasise one or more of these criteria at the expense of the remainder. For example,
UPGMA is extremely fast (efficient) but is not robust to its implicit assumption of a molecular clock, whereas
maximum likelihood is consistent (with respect to its chosen model of evolution) but computationally very
intensive. In this chapter we will evaluate each method based on these five criteria.

6.2
Distance Methods

Distance methods are based on the idea that if we knew the actual evolutionary distance between all members
of a set of sequences, then we could easily reconstruct the evolutionary history of those sequences. This follows
from the relationships between distances and trees outlined in Chapter 2: evolutionary distance is a tree metric
and hence defines a tree. In practice, however, distances are rarely, if ever, exactly tree metrics, and hence one
class of 'goodness of fit'
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methods seeks the metric tree that best accounts for the 'observed' distances (i.e. the pairwise distances
calculated between the sequences). The second class of method seeks the tree whose sum of branch lengths is
the minimum ('minimum evolution').

6.2.1
Goodness of Fit Measures

The goodness of fit F between observed distance dij and tree distances pij (see Chapter 2) for each pair of
sequences i and j is given by

where a can take various values. If a = 1 then the criterion is Farris's ¦ statistic, if a = 2 then F is the least-
squares-fit criterion. As an example of the latter criterion, consider the distance matrix between hominoids
shown in Table 6.1 and the corresponding additive tree (Fig. 6.7).

Table 6.1 Kimura 2-parameter distances between hominoid sequences
(above diagonal) and tree distances obtained by least squares (below the
diagonal) for the tree shown in Fig. 6.7.  Tree distances larger than the
observed distances are shown in bold, tree distances smaller than the
observed are shown in italics.

Human Chimp Gorilla Orang-utan Gibbon
Human 0.09190 0.1083 0.1790 0.2057
Chimp 0.0919 0.1134 0.1940 0.2168
Gorilla 0.1068 0.1151 0.1882 0.2170
Orang-utan 0.1816 0.1898 0.1893 0.2172
Gibbon 0.2078 0.2160 0.2155 0.2172

Fig. 6.7
Additive tree for hominoid mtDNA sequences
showing branch lengths computed using least

squares. The pairwise tree distances for this tree
are given in the lower left triangle of Table 6.1.
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The observed and tree distances are in close agreement, but note that some tree distances are larger than the
observed, and some are less than the observed. While tree distances can be larger than observed distances due
to homoplasy (i.e. multiple substitutions), the reverse is counter intuitive as tree distances less than those we
observe between sequences imply that less evolutionary change took place than we actually observe. This
contradiction (discussed further on p. 186) has led some workers to abandon the use of distance methods, or to
use other methods of computing branch lengths from distances (see below).

In the example just given we were fitting an additive tree with (2n 3) branches to  pairwise
distances. However, measures of fit can also be applied to ultrametric trees, in which case there are (n 1)
independent branch lengths to be estimated. That there are fewer parameters to be estimated for an ultrametric
tree, which has one more branch than an unrooted additive tree, may seem paradoxical, but this is due to the
constraint that all terminal taxa are equidistant from the root.  This constraint is equivalent to postulating a
'molecular clock' (a concept which is discussed in detail in Chapter 7). For example, in the ultrametric tree
shown in Fig. 6.8 the branches e1 and e2 must be of the same length as they both represent the same interval of
time (i.e. the time since sequences A and B diverged).

If the distances between sequences are ultrametric then both the ultrametric and additive trees would fit those
distances equally well (indeed, the additive tree would be identical to the ultrametric tree). The greater the
departure from the molecular clock, the more the data will depart from being ultrametric, and the greater the
difference in fit between additive and ultrametric trees, the additive tree always being a better fit as it lacks the
constraints imposed by the ultrametric tree. This property is employed by some tests of

Fig. 6.8
Additive and ultrametric trees for the same sequences. Both trees specify
the same cladistic relationships among the taxa, but whereas the additive
tree has (2n  3 = 7) independent branches the ultrametric tree has only

(n  1) = 4 because some branches are constrained to be equal to others, or
to combinations of others. This constraint is equivalent to a molecular clock.
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Fig. 6.9
Ultrametric tree for hominoid mtDNA with least

squares branch lengths computed from the Kimura
2-parameter distances shown in the upper right triangle
of Table 6.1. Compare with the additive tree in Fig. 6.7.

the molecular clock, such as the likelihood ratio test described later in this chapter (see p. 198).

Figure 6.9 shows an ultrametric tree for the same distances used to compute the additive tree in Fig. 6.7. The
two trees specify the same cladistic relationships; however, the ultrametric tree also supplies a root (between
the gibbon and the great apes including humans) and the branch lengths are slightly different. For instance, the
additive tree apportions more evolutionary change to chimpanzee mtDNA than to human mtDNA, whereas in
the ultrametric tree these two sequences are constrained to have exactly the same amount of evolutionary
change since their divergence.

6.2.2
Minimum Evolution

Given an unrooted metric tree for n sequences there are (2n 3) branches, each with length ei. The sum of these
branch lengths is the length L of the tree:

The minimum evolution tree (ME) is the tree which minimises L. This method is similar in spirit to parsimony,
which we shall discuss below; however, the length in this case is computed from the pairwise distances
between the sequences rather than from the fit of individual nucleotide sites to a tree.  To
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use this method we need to be able to compute the length of any tree. However, these lengths are not always
biologically valid (see p. 186).

Linear Programming

Linear programming is a widely used mathematical technique to find the optimal solution to a problem, given a
set of constraints (most spreadsheet programs can perform linear programming). When applied to finding the
length of a tree, the two constraints that we must satisfy are that all the branch lengths are non-negative (i.e. ei³
0 for all i), and that for any pair of sequences the tree distances are never less than the observed distances (i.e.
pi,j³ di,j for all i and j). Table 6.2 gives the observed pairwise distances for the hominoid DNA sequences, and
the corresponding tree distances obtained for the tree shown in Fig. 6.10. The tree distances are in good
agreement with the observed distances.  Note that where the tree distances differ from the observed differences
(e.g. between human and gibbon) the tree distances are always greater than the observed distances, satisfying
the condition that the amount of evolutionary change inferred cannot be less than that which we have observed.

Table 6.2 Observed pairwise distances (p) between hominoid
sequences (above diagonal) and tree distances computed by linear
programming (below diagonal). Tree distances that differ from the
observed are marked in bold. The corresponding tree is shown in Fig.
6.10.

Human Chimp Gorilla Orang-utan Gibbon
Human 79 92 144 162
Chimp 79 95 154 169
Gorilla 92 102 150 169
Orang-utan 144 154 150 169
Gibbon 163 173 169 169

Fig. 6.10
Minimum evolution tree for the hominoid sequences
with the branch lengths computed from the observed

pairwise distances using linear programming.
The total length of this tree is 331.5.
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Least Squares

More commonly, the branch lengths of the minimum evolution tree are estimated using least-squares methods.
The branch lengths are estimated in the same way as for goodness of fit measures; however, rather than
compare the fit of the observed distances the least squares branch lengths are added together to give the length
of the tree.

6.2.3
Algorithms for Finding Distance Trees

As with discrete characters, finding the optimal distance tree is computationally difficult. For small numbers of
taxa exact methods can be used; for larger numbers we must rely on heuristics, of which there are a large
number, some of which have largely been used only with distance data. We mention three here.

Neighbourliness

Neighbourliness makes use of the additive condition (see Chapter 2) where, given any four sequences, it is
possible to label them AD such that the distances between them obey this condition:

Recalling from Chapter 2 that the additive condition defines a tree, this equation corresponds to the tree Q1
shown in Fig. 6.5. On this tree A and B, and C and D are neighbours with respect to each other, hence the
name of the method. Given data for n sequences that are perfectly additive (i.e. perfectly tree-like) we could use
equation (6.3) to identify the additive subtrees for the data and from them construct the phylogeny for all n
sequences. For actual data additivity may not hold, in which case we could seek the tree that has the greatest
number of quartets for which equation (6.3) holds.

Neighbour Joining

Neighbour joining (NJ) is a widely used method for tree building which combines computational speed with
uniqueness of resultmost implementations give a single tree.  These two attributes (i.e. getting one tree, fast)
have made it seem very appealing. Neighbour joining is a clustering method rather than an optimality method,
and hence suffers from the limitation that it does not optimise a criterion of fit between tree and data. However,
it is a good heuristic method for estimating the minimum evolution tree. One strategy for finding the ME tree is
to first compute the NJ tree, then see if any local rearrangement of the NJ tree produces a shorter tree. Note that
this strategy is not guaranteed to find the ME tree, for the reasons given in section 6.1.2. However, in practice
the NJ tree is often the same or very similar to the ME tree.
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Unweighted Pair Group Method with Arithmetic Means (UPGMA)

UPGMA is one of the few tree-building methods that constructs an ultrametric tree (see Chapter 2). In an
ultrametric tree all the tips are equidistant from the root of the tree, which is equivalent to assuming a molecular
clock (see Chapter 7). Indeed, UPGMA is best viewed as a heuristic for finding the least squares ultrametric
tree for a distance matrix.

Box 6.2 Are distance methods 'phenetic?'

A criticism often levelleds at distance methods is that they are phenetic', and
therefore inferior to other, 'phylogenetic', methods. Our view is that phenetics is a
philosophy of systematics that eschews phylogenetic analysis as a search for the
unknowable (because, with very few exceptions, no one has observed a
phylogeny unfold over time). Hence phenetics favours summarising observed
features of organisms using 'maximally informative or 'predictive' classifications
(which may or may not be actual phylogenies; if they are, this is merely a happy
accident). Typically such classifications were constructed by computing a
measure of similarity between organisms, then doing a cluster analysis on those
similarities. Phenetics was rejected by most systematists by the late 1970s,
largely because: (1) estimating evolutionary trees was thought to be a more
worthwhile goal; (2) techniques (such as cladistics) existed which claimed to be
able to estimate such trees; and (3) phenetics was unable to provide unambiguous
reasons for choosing between a plethora of measures of similarity and clustering
algorithms. However, if the goal is to reconstruct phylogeny then there are clear
reasons for favouring one measure of similarity over another, and for favouring
particular methods for converting distances into trees. This does not mean that all
criticisms of distances raised by opponents of phenetics do not apply in this
phylogenetic context, rather, we suggest that the criticism that a method is
'phenetic' is not, by itself, meaningful.

6.2.4
Objections to Distance Methods

In considering distance methods we should distinguish between methods for constructing the trees and methods
for obtaining the distances. If the estimates of evolutionary distance are poor then the performance of a distance
method may be adversely affected, which may not be a true reflection of the merits of the tree building method
itself.  Furthermore, many existing computer programs for finding distance trees lack the sophistication of
equivalent programs for discrete data, making it difficult to determine if there is more than one optimal tree for
example, or how many trees are nearly as good as the optimal tree. Again, this is a limitation of existing
software, not distance methods as such. Hence in this section we consider objections to the use of distance data
per se.
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The major objections to distance methods are:

summarising a set of sequences by a pairwise distance matrix loses information;

branch lengths estimated by some distance methods may not be evolutionarily interpretable.

Distances Lose Information

If the original data are in the form of distances, such as those obtained from DNA hybridisation studies, then
we have no other option but to use distances. However, if we have the sequences we have the option of
analysing them directly or converting them into distances (Chapter 5). Doing the latter may lose information.
For example, once converted to distances, we cannot trace the evolution of individual sites, or categories of
sites on a tree, we have only an overall estimate of the relationship between tree and data. This can be clearly
seen in Fig.  6.1 where the parsimony analysis of the original sequence data allows us to locate where in the
tree each site changes, whereas the distance tree merely tells us how much change occurs along each branch.

Another way of expressing the loss of information inherent in converting sequences to distances is to compare
the number of possible distance matrices with the number of possible data setsthe latter greatly exceed the
former.

Uninterpretable Branch Lengths

It is possible to reconstruct branch lengths from distances that are mathematically valid but biologically difficult
to interpret. For example, on p. 183 we used linear programming to fit observed distances between hominoid
sequences to a tree. The length of that tree was 331.5 substitutions. This value raises two problems, the first
being how to interpret 0.5 substitutionsa nucleotide can either be substituted or not; we cannot have half a
substitution. One response to this difficulty is that branch lengths can represent two quite different quantities:
the expected amount of evolutionary change and the actual or realised amount of change. For example, if we
have a branch in a tree that corresponds to an interval of 1Myr, and the rate of nucleotide substitution is 2.5%
per Myr, then given a sequence of 100 bases in length we expect on average 2.5 substitutions to have occurred.
Obviously, we cannot have half a substitution, so in reality some whole number of substitutions would have
occurred, say 2 or 3 (or some other whole number). Under this interpretation, a branch length of 2.5 is entirely
reasonable.

The second problem is that the figure of 331.5 substitutions is biologically not possible for this data set. As we
shall see below when we discuss maximum parsimony, the minimum number of substitutions that must have
occurred in the evolution of these particular sequences is 353. The tree length obtained by linear programming
is internally consistentbut biologically impossible. In
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much the same way, when estimating branch lengths using least squares we can obtain tree distances that are
less than the distances observed between the sequences (e.g. Table 6.1). Again, we cannot have less
evolutionary change than we actually observe in the data.

6.3
Discrete Methods

In contrast to distance methods, discrete methods operate directly on the sequences, or on functions derived
from the sequences, rather than on pairwise distances. Hence they endeavour to avoid the loss of information
that occurs when sequences are converted into distances. The two major discrete methods are maximum
parsimony (MP) and maximum likelihood (ML).  Maximum parsimony chooses the tree (or trees) that require
the fewest evolutionary changes. Maximum likelihood chooses the tree (or trees) that of all trees is the one that
is most likely to have produced the observed data. We also consider two methods that treat the data not as
individual sites but as 'splits' (see Chapter 2): spectral analysis and split decomposition.

6.4
Maximum Parsimony

The data for maximum parsimony comprise individual nucleotide sites. For each site the goal is to reconstruct
the evolution of that site on a tree subject to the constraint of invoking the fewest possible evolutionary
changes. Consider the following four sequences:

1 ATATT

2 ATCGT

3 GCAGT

4 GCCGT

Figure 6.11 shows the unrooted tree ((1,2),(3,4)) and two possible reconstructions of the evolution of the first
site on that tree. In each reconstruction we have postulated which nucleotide the two internal nodes (ancestral
sequences)

Fig. 6.11
An unrooted tree for four sequences 14 and two possible reconstructions
of the evolution of the same site on that tree. One reconstruction requires

one change, the other requires five. The former is more parsimonious.
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possess. On branches where the nucleotide at each end differs we postulate a substitution. Note that our
reconstruction does not specify where along that branch the change took place, merely that it did. Under the
principle of parsimony the reconstruction that invokes a single substitution is preferred over the less
parsimonious reconstruction that requires five substitutions. We can now find the most parsimonious
reconstructions for each of the remaining sites (Fig. 6.12). Note that for the third site there are two equally
parsimonious reconstructions, both requiring two steps.

The total number of evolutionary changes on a tree (often referred to as the tree's length) is simply the sum of
the number of changes at each site. Hence, if we have k sites, each with a length of l, then the length L of the
tree is given by

Hence the tree in Fig. 6.11 has a length of 1 + 1 + 2 + 1 + 0 = 5 steps. The other two trees have lengths of six
and seven steps (Table 6.3), so the tree ((1,2),(3,4)) is the most parsimonious tree.

Fig. 6.12
Most parsimonious reconstructions for sites 25. There are

two equally parsimonious reconstructions for site 3.
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Table 6.3 Changes required for each site to fit the three
possible trees for four sequences.Sites

Sites
Tree 1 2 3 4 5 Total
((1,2),(3,4)) 1 1 2 1 0 5
((1,3),(2,4)) 2 2 1 1 0 6
((1,4),(2,3)) 2 2 2 1 1 7

Notice that the number of steps at sites 4 and 5 are the same for all three trees, hence these sites do not
discriminate between the three alternative trees.  Such sites are termed phylogenetically uninformative; sites
that are invariant (each sequence has the same nucleotide at the same position) or sites where only one sequence
has a different nucleotide are examples of such sites.

6.4.1
Generalised Parsimony

When counting changes in the above example, each substitution was accorded the same 'cost', so that the
transition A  G counts as one step, as does the transversion A  C. Another way of representing this is by
means of a step matrix (Fig. 6.13).

In the first model, which we have implicitly used above, each substitution has equal cost, so each cell in the
corresponding step matrix has the entry '1'. Note that the cost of not changing is zero; if the nucleotide at each
end of a branch is the same then we infer that no change has occurred.

The second model assigns a higher cost to transversions, in this case twice the cost of a transition. This is
equivalent to saying the transversions are rarer

Fig. 6.13
Two different substitution models and the
corresponding step matrices. The value in

each cell in a step matrix is the 'cost'
of the corresponding substitution.
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than transitions, and therefore may be more reliable indicators of phylogeny. If we were to use this step matrix
on the data discussed above, the number of steps for sites 1, 2 and 4 would not change as they all involve
transitions. However, site 3 requires an AC transversion. Trees 1 and 3 require this transversion to occur twice,
hence for those sites the total cost for site 3 is 4. Tree 2 requires a single transversion with cost 2. Under this
model tree 2 is now just as parsimonious as tree 1.

Generalised parsimony is very flexible in that we can specify a wide range of substitution models (see Chapter
5) using step matrices.  However, it is not immediately obvious what cost to assign the different kinds of
substitutions. We shall return to this point below.

6.4.2
Weighted Parsimony

Not all sites may be equally phylogenetically useful. Sites that evolve very rapidly are likely to become quickly
saturated so that the trace of history is overprinted and lost. Indeed, such sites may even be positively
misleading. In contrast, sites that are conservative and evolve very slowly are less likely to suffer the effects of
saturation. The relative value of different sites can be reflected by the weight w given to each site. Hence the
length of a tree becomes

The greater the phylogenetic value of the character, the greater the weight we might wish to assign it.

As with step matrices, weighting adds flexibility to parsimony analyses, but raises the question of exactly what
weights to assign different sites.

6.4.3
Justification for Parsimony

Among parsimony's advantages are that it is relatively straightforward to understand, it apparently makes few
assumptions about the evolutionary process, it has been extensively studied mathematically, and some very
powerful software implementations are available. However, the justification for choosing the most
parsimonious tree as the best estimate of phylogeny is the subject of considerable controversy. Essentially two
main arguments have been presented. The first is that parsimony is a methodological convention that compels
us to maximise the amount of evolutionary similarity that we can explain as homologous similarity, that is, we
want to maximise the similarity that we can attribute to common ancestry. Any character which does not fit a
given tree requires us to postulate that the similarity between two sequences shown by that character arose
independently in the two sequencesthe similarity is due to homoplasy not homology. Hypotheses of homoplasy
(such
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as convergence or parallel evolution) may be judged ad hoc in that they are attempts to explain why data do not
fit a particular hypothesis. The most parsimonious tree minimises the number of ad hoc hypotheses required,
and for that reason is preferred.

The second view is that parsimony is based on an implicit assumption about evolution, namely that evolutionary
change is rare. Rarity of change implies that the tree that minimises change is likely to be the best estimate of
the actual phylogeny. Under this view, parsimony may be viewed as an approximation to maximum likelihood
methods (discussed below), and indeed it was in this context that parsimony methods were first proposed by
Edwards and Cavalli-Sforza.

The debate between advocates of these two positions has been explored in great detail by Elliot Sober (1988), to
which the reader is referred for more details. Of the two positions, the latter has the advantage that it is possible
to explore the circumstances under which parsimony will fail to reconstruct the correct phylogeny, and to
develop a framework in which parsimony can be compared with other methods.

6.4.4
Objections to Parsimony

The principal objection to parsimony is that under some models of evolution it is not consistent (see section
6.1.4), that is, even if we add more data it is possible to obtain the wrong tree. The classic scenario where this
might happen has been termed 'long branches attract'.

In the tree shown in Fig.  6.14, there are two unrelated sequences that are each separated from their ancestor by
a long edge. In order for parsimony to recover the correct tree ((A, B),(C, D)) there must be more sites
supporting

Fig. 6.14
The problem of 'long branches attracting'. The edges
leading to sequences A and C are long  relative to

the other branches in the tree, reflecting the relatively
greater number of substitutions that have occurred
along those two edges. If the differencein numbers
of substitutions is sufficiently great, there may be

more apparent support for the split {{A, C),
{B, D}} than for the split {{A, B},{C, D}}.
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the split {{A, B},{C, D}} than either of the two other possible internal splits: {{A, C},{B, D}} and {{A,
D},{B, C}}. If the internal edge is short relative to the long terminal edges then by chance alone A and C may
acquire the same nucleotide independently. These convergences may outweigh the sites changing along the
internal edge, and hence by the parsimony criterion the tree ((A, C), (B, D)) would be favoured. Under some
circumstances, no matter how much data is added parsimony will obtain the wrong tree, hence it is inconsistent.

The problem of long branches attracting is most likely to occur when rates of evolution show considerable
variation among sequences, or where the sequences being analysed are quite divergent. One strategy to reduce
the effects of long edges is to add sequences that join onto those edges thus breaking them up (see Box 6.3).

Box 6.3 Big trees and long branches

The problem of 'long branch attraction' may be severe in the case of trees for
four sequences.  Paradoxically, it may be less of a problem for large phylogenies.
The diagram below shows a tree for 228 angiosperm (flowering plant) 18S
ribosomal DNA sequences.

This tree contains several prominent long edges. To test our ability to recover
this tree Hillis (1996 generated artificial data sets by simulating the evolution of
DNA sequences of various lengths on this tree, then analysed those data sets
using a range of tree-building methods (this approach of simulating data on a
tree is called 'parametric bootstrapping' and is discussed in section 6.8.3).
Parsimony and neighbour joining both did surprisingly well, requiring only 5000
nucleotides to recover the original tree. The crucial problem posed by

continued
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continued

Box 6.3

'long branches' is not so much the length of the branches, but that the same
substitutions have occurred along the two branches, fooling tree-building
methods into joining them together. The probability of such covarying
homoplasies is less if the branches are widely separated. Intuitively, if the long
branches are close together then their ancestral states probably closely resembled
each other; whereas branches far apart in a tree likely had very different ancestral
states. It is more likely that similar substitutions will occur in two lineages that
were similar to start with than in two lineages that were very different, Hence, in
small trees (such as the four-taxon trees much used in simulationssee section
6.7.3), the rapid rate of evolution in the two lineages that were initially quite
similar is more likely to yield the same substitutions in the two edges than in
large trees.

6.5
Maximum Likelihood

Given competing explanations for a particular outcome, which explanation should we choose? The principle of
likelihood, which we encountered in Chapter 5, suggests that the explanation that makes the observed outcome
the most likely (i.e. the most probable) occurrence is one to be preferred. Put more formally, if given some data
D, and a hypothesis H, the likelihood of that data is given by

which is the probability of obtaining D given H. In the context of molecular phylogenetics D is the set of
sequences being compared, and H is a phylogenetic tree, hence we want to find the likelihood of obtaining the
observed sequences given a particular tree. The tree that makes our data the most probable evolutionary
outcome is the maximum likelihood estimate of the phylogeny.
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Even though equation (6.6) is couched in terms of probability, it is important to distinguish between likelihoods
and probabilities. Probabilities sum to 1, whereas likelihoods do not. Given a tree and a model of sequence
evolution, we could in principle work out the probability of obtaining all possible data sets.  The sum of these
probabilities would equal 1. However, here we are interested in the probability of obtaining just one of those
possible data sets (the one we actually observed). The likelihood is not the probability that the tree is the true
tree, rather it is the probability that the tree has given rise to the data we collected.

Maximum likelihood is an appealing method of inference as it can incorporate explicit models of sequence
evolution, and also permits statistical tests of evolutionary hypotheses.

6.5.1
Models, Data and Hypotheses

Maximum likelihood requires three elements, a model of sequence evolution, a tree and the observed data. Note
that the tree specifies both the topology (branching order) and the branch lengths. In common with other
optimality methods, maximum likelihood methods of tree building must solve two problems: (1) for a given tree
topology, what set of branch lengths makes the observed data most likely (i.e. what is the maximum likelihood
value for that tree); and (2) which tree of all the possible trees has the greatest likelihood.

Suppose we have two sequences, 1 and 2, separated by an average of d substitutions per site. This distance d =
mt, where m is the mutation rate and t is time.

Given a model of substitution (see Chapter 5) for each site we can compute the probability Pij(d) that two
sequences separated by d would have nucleotides i and j, respectively (put another way, if sequence 1 has
nucleotide A, PAG(d) is the probability that sequence 2 would have nucleotide G). This probability is the
likelihood of that site having that pair of nucleotides in the two sequences. The log likelihood of obtaining the
observed sequences is the sum of the log likelihoods of each individual site:

where k is the number of sites. Different values of d will have different likelihoods; the value that maximises
equation (6.7) is the maximum likelihood estimate of d.

To compute the likelihood of a given tree we need to find the maximum likelihood estimate for the tree's
branch lengths. This is equivalent to the problem just discussed, but with one important difference: in all
branches at
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Fig. 6.15
The 16 different combinations of ancestral
states for a single site on a four-taxon tree.

least one, if not both of the nodes connected by the branch are internal (ancestral) nodes with unknown
sequences. Hence to compute the likelihood of a given site we need to compute the probabilities of the
observed states at that site given all possible combinations of ancestral states. Figure 6.15 shows the 16 possible
combinations of ancestral sites for a tree for four sequences. Obtaining the maximum likelihood estimate of
branch lengths for a given tree is computationally time consuming, and in practice this has limited the
application of the method to fairly small data sets.

In describing likelihoods we have glossed over the model used to compute those likelihoods. This model may
include parameters for the transition/transversion ratio (TS/TV), base composition, and variation in rate among
sites (Chapter 5). Which values do we use for these parameters? Unlike parsimony, which also enables us to
include variation in rates of substitution, likelihood methods provide us with a criterion for choosing the best
values for the parameters, namely those values that maximise the likelihood of the data. For example, in any
but the simplest of models (such as the JukesCantor model; see Chapter 5) the rate of transitions and
transversions is different. The likelihood of a tree will vary with the transition/transversion ratio.  If transitions
in the data are much more common than transversions the observed
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Fig. 6.16
To find the maximum likelihood estimate for

the transition/transversion ratio for the hominoid
data set, the likelihood of obtaining the observed

data is calculated for a range of values for the
ratio, holding everything else constant (including

the tree). The ratio yielding the highest likelihood is
the best estimate. In this case it is approximately 5.

data are more likely to be the result of a high rather than a low TS/TV ratio. The value of TS/TV that
maximises the likelihood of the data is the maximum likelihood estimate of the TS/TV ratio. Figure 6.16 shows
the likelihood of the hominoid data set given various values of TS/TV, showing that the best estimate of TS/TV
is about 5. The same approach can be used to obtain maximum likelihood estimates of other parameters, such as
rate variation among sites (see Chapter 5).

6.5.2
Likelihood Ratio Tests

We can test alternative hypotheses concerning the same data using a likelihood ratio test. The likelihood ratio
statistic (D) is the ratio of the likelihood of the alternative hypothesis (H1) to the null hypothesis (H0). Because
likelihoods are often very small it is more convenient to use log-likelihoods, so the likelihood ratio test statistic
becomes

where L1 is the maximum likelihood of the alternative hypothesis H1, and L0 is the maximum likelihood of the
null hypothesis H0 In some cases the significance of A can be evaluated by consulting standard c2 tables.  Such
cases occur when H0 is a special case of H1, obtained by constraining one or more parameters in H1. For such
nested hypotheses 2D is approximately distributed as c2 with the degrees of freedom (d.f.) being the difference
in the number of parameters in the two hypotheses. An example (discussed below) is the molecular clock
hypothesis, which is equivalent to comparing the likelihoods of an ultrametric and an additive tree (the former
is a special case of the latter). If the hypotheses are not nested then use of the c2 distribution is not warranted
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and the distribution of D must be evaluated by other means, such as the parametric bootstrap (see section
6.8.3).

Likelihood ratio tests can be used to test a range of hypotheses, such as whether a particular model of
molecular evolution is valid, whether a molecular clock adequately describes the data, and whether one
phylogenetic hypothesis is significantly better than another.

Is the Model Valid?

Given the dependence of maximum likelihood on an explicit model of sequence evolution, it is clearly desirable
to be able to say when we would reject the chosen model. One way to evaluate the model is to measure how
well it fits the observed data by comparing the likelihood a tree and model confers on the data, Ltree, with the
theoretical best value for the likelihood, Lmax, using a likelihood ratio test. Figure 6.17 shows this result of
using this test to evaluate the adequacy of the HKY85 model (see Chapter 5) when applied to the hominoid
mtDNA data set. The observed value of log Lmax log Ltree is outside the expected distribution, indicating that
the HKY85 model can be rejected for these data.

On the basis of this test the HKY85 model is not adequately describing the actual evolution of these sequences.
Recall from Chapter 5 that the HKY85 model allows the ratio of transitions and transversions to vary (the test
in Fig. 6.17 used the maximum likelihood value of 5 as determined in Fig.  6.16), but does not allow for
variation in rates of substitution among sites. If we incorporate site variation using the gamma (G) distribution
(see Chapter 5), then the resulting HKY85 + G model is a significantly better fit to the data (Yang et al., 1994).

Note that, although the HKY85 + G model does better than HKY85 alone, using either model results in the
same maximum likelihood tree. In this sense,

Fig. 6.17
Inadequacy of the HKY85 model when applied

to the hominoid mtDNA data. The observed value
of log Lmax  log Ltree falls outside the expected

distribution generated by parametric bootstrapping
(see section 6.8.3), hence the HKY85 model is

rejected for these data.
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the maximum likelihood estimation of the tree topology for the hominoids is robust to violation of assumptions
of the model. However, estimates of branch lengths can be greatly affected by the choice of model, hence for
questions involving rates of evolutionary change having a good model is very important.

Rate Variation

Maximum likelihood methods can be used to test hypotheses about rate variation, in particular, hypotheses of
'molecular clocks'. If sequences are evolving different rates then an ultrametric tree would be a poor
representation of the relationships among those sequencesan additive tree would be more appropriate. However,
given a constant rate of evolution an ultrametric tree would not be significantly worse than an additive tree (see
Fig. 6.8). We can test the hypothesis of a molecular clock using the likelihood ratio test

which is distributed as c2 with (n2) degrees of freedom where n is the number of sequences. The degrees of
freedom in this case correspond to the difference in the number of branch lengths we have to estimate in an
additive and an ultrametric tree (see Fig.  6.8). Applying this test to the hominoid mitochondrial data set, Fig.
6.18 shows the maximum likelihood trees with and without the molecular clock constraint. The two trees have
the same topology. For these two trees 2D = 2(2659.18 (2660.61)) = 2.86, which is not significant (c2(3, 0.05)
= 7.81). Note also that in the tree inferred without the clock assumption the five hominoid sequences roughly
line up, which visually confirms what the likelihood ratio test tells usthe data is consistent with a molecular
clock. Two other tests of the molecular clock are presented in Chapter 7, Box 7.2.

Comparing Phylogenetic Hypotheses

As well as testing specific hypotheses about models of molecular evolution we

Fig. 6.18
Maximum likelihood trees for the hominoid mtDNA

data set inferred with and without a molecular
clock assumption. Using the likelihood ratio test the

molecular clock hypothesis is not rejected, hence
the data are consistent with a single rate of

evolution for these sequences. The scale
bar is number of substitutions per site.
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Fig. 6.19
Three different hypotheses of relationship among the hominoids and

the likelihoods thateach tree has given rise to the observed data.

can use likelihood ratio tests to evaluate the merits of competing hypotheses about evolutionary relationships.
Given two different trees for the same data, we can ask whether one tree is significantly more likely to have
given rise to the observed data than the other tree.

Kishino and Hasegawa (1989) proposed a test to compare the likelihoods of different trees that resembles the
likelihood ratio test. Given two different trees, such as the first two in Fig. 6.19, the difference in log
likelihoods is computed by taking each site in turn and finding the difference between the log likelihoods for
that site on the two trees. Some sites may favour one tree, some sites the other tree. If the two trees are not
significantly different then the sum of these likelihood differences:

will not be significantly different from zero. Kishino and Hasegawa's test assumes that the distribution of
likelihood differences is approximately normal, so if D ± its standard error (S.E.) includes zero then the two
trees are not significantly different. For the first two trees in Fig. 6.19 the difference in log likelihoods is D =
4.76 ± 7.97, hence by this test these two trees are not significantly different. Although the data cannot
distinguish between the (human, chimp) and (chimp, gorilla) hypotheses, it can reject the hypothesis that the
'great apes' (chimp, gorilla and orang) are monophyletic: D = 42.18 ± 14.62.

The analogous test can be applied to parsimony methods as well.  In this instance the test statistic is the sum of
the differences in the number of steps each site requires on the two trees. Again, the null hypothesis is that this
sum is zero.

6.5.3
Parsimony and Likelihood

Parsimony was originally proposed by Edwards and Cavalli-Sforza as an approximation to maximum
likelihood. Faced with serious computational
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Fig. 6.20
Relationship between tree length and log likelihood
for all 15 unrooted trees for the hominoid data set.

problems in computing likelihoods, they suggested that under some circumstances the shortest tree may also be
the maximum likelihood tree. The most parsimonious tree is indeed the maximum likelihood tree when the
expected amount of evolutionary change is very small, the tree that postulates the least amount of evolutionary
change is also the maximum likelihood tree.

In practice, maximum parsimony and maximum likelihood trees can be very similar. Figure 6.20 shows the
relationship between tree length and likelihood for the hominoid data set. Both criteria rank the trees in almost
the same order, and both recognise a gulf between the possible resolutions of the tree (((human, chimp, gorilla),
orang-utan), gibbon) and the 12 other trees. In this example, parsimony favours the (chimp, gorilla) clade,
whereas likelihood prefers (human, chimp). In cases where rates of substitution are high, or are unevenly
distributed over the branches of the tree, we might expect parsimony and likelihood to disagree about the
relative merits of the same trees.

6.5.4
Objections to Likelihood

Likelihood requires an explicit model of evolution, which may be seen as both a strength and a weakness. It is
a strength because it makes us aware of the assumptions being madein other methods these assumptions are
often only implicit and hence may be overlooked. However, dependence on a model raises the question of just
which model to use, and what values of the parameters, such as transition/transversion ratio, should be
employed. This is a familiar phylogenetic dilemma: if we knew the probabilities of different evolutionary
events we could use that insight to reconstruct evolutionary trees. Where do these probabilities come from?
Well, if we knew the evolutionary tree we could obtain the probabilities from that tree.  The information we
require to infer the tree presupposes that we have the tree in the first place. One approach
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is to choose the combination of model and parameters that maximises the likelihood. However, this requires
that we search for the best model as well as the best tree, greatly increasing the computational difficulty of
obtaining an answer. A further technical difficulty concerns computing the likelihood itself. This is
computationally time consuming, and recently it has been shown that more than one maximal likelihood value
may exist for a given tree, making it difficult to guarantee that the likelihood value for that tree is actually
maximal. These problems may make likelihood more useful as a tool for testing models of molecular evolution
than as an all-purpose method of phylogenetic inference.

6.6
Splits and Spectra

In Chapter 2 we introduced the concept of a split. Now we consider two methods of data analysis that use
splits: spectral analysis and split decomposition. An advantage these methods share is that they emphasise the
importance of exploring the data, and they can help uncover patterns that might otherwise be missed.

Box 6.4 Split numbers

A split can be represented as a binary character where a species is either '0' or '1',
depending on which set the species belongs in.  For example, the split {{gorilla, orang,
gibbon}, {human, chimp}} can be written as 00011. If we treat this string as a binary
number then each split can be assigned a unique number (Hendy & Penny, 1993). Below
are the 16 splits for the five hominoid species and their corresponding numbers:

Human 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Chimp 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Gorilla 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Orang 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Gibbon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

By convention, the split numbers are in the range 0 to 2(n 1), so the split
{{gibbon},{human, chimp, gorilla, orang}} is written as 01111 = 15 rather than 10000 =
16. The advantage of this numbering scheme is that we can refer to any split by a single
number rather than listing all the species in that split.

6.6.1
Spectral Analysis

For n sequences there are 2(n1) splits, hence for the five hominoid mtDNA sequences there are 16 possible
splits. Five of these splits separate a single sequence from the other four (e.g. humans from the apes), and hence
do not tell us about the relationships among the sequences. Only splits that divide
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the sequences into two sets that both have more than one sequence can tell us about phylogenetic relationships.
However, any given unrooted tree for n sequences contains only (2n 3) such splits. For the hominoids this
means that only two of the 11 non-trivial splits can be in the tree for these sequences. Ideally, our data would
contain evidence for just mutually compatible splits, but this is rarely, if ever, the case.

Spectral analysis provides a means for visualising the support for all the splits in a data set. In its simplest form,
spectral analysis consists of plotting the frequencies of each split in the data set. This is straightforward if there
is a maximum of two character states per character, because then each character can be directly translated into a
split.  To illustrate, the first informative sites in the hominoid data set each have only two states:

Human G T C A T C A T C C

Chimp A T T A C C A T T C

Gorilla G T T G T T A T T A

Orang-utan A C C A C T C C C A

Gibbon A C C G C C C C C A

so we can substitute 0 and 1 for the two states:

Human 1 1 0 1 1 0 1 1 0 1

Chimp 0 1 1 1 0 0 1 1 1 1

Gorilla 1 1 1 0 1 1 1 1 1 0

Orang-utan 0 0 0 1 0 1 0 0 0 0

Gibbon 0 0 0 0 0 0 0 0 0 0

Split 5 7 6 11 5 12 7 7 6 3

Each split is numbered according to the scheme described in Box 6.4. Doing this we discover that these 10 sites
correspond to seven different splits. Applying this procedure to the remaining sites, we obtain the spectrum for
this data set (Fig. 6.21).

Note that every split has at least some support, hence we need some grounds for choosing which splits will be
used to construct a tree (not all splits can coexist in the same tree). The five trivial splits labelled {human},
{chimp}, {gorilla}, {orang} and {gibbon} will of course be in any tree, but which of the non-trivial splits
should we choose? One possible solution for this data set is to choose the two mutually compatible splits that
have the most support. From Fig. 6.21 we can see that the split labelled {orang, gibbon} has the most support
of any non-trivial split, and that the next best supported split is {human, chimp}, which is also compatible with
{orang, gibbon}. These two splits give the tree ((human, chimp), gorilla, (orang, gibbon)). These splits are
highlighted in Fig. 6.22. Note that the data contains almost equal support for the {human, chimp} and {gorilla,
chimp} splits. When we analysed this data using maximum likelihood as our optimality criterion the best tree
contained the {human, chimp} split, but was not significantly better than a tree containing the {chimp, gorilla}
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Fig. 6.21
The spectrum for the hominoid data set. Note

that every split has at least some support.

split (p. 199). The inability to chose between these two is understandable given the almost equal support for
these two conflicting splits in the data.

Another way of inferring a tree from a spectrum is the 'closest tree' method (see Box 6.5). For the hominoid
data set the closest tree (Fig. 6.23) contains the two best supported splits.

Box 6.5 Spectral analysis and the Hadamard transform

Consider this unrooted tree labelled with the probability of observing a change
along each branch.

continued on p. 204
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continued

Box 6.5

If this was the true tree, what would the sequences look like? Hendy & Penny.
(1993) have developed a method that uses a mathematical procedure called the
Hadamard transform to generate the expected spectrum for a given tree and edge
lengths. The expected spectrum for this tree is shown below, where the vertical
axis is the probability of observing each split:

Note that while the split {{a, b}, {c, d}} has the most support of any nontrivial
split, the two competing splits {{a, c}, {b, d}} and {{a, d}, {b, c}} also have
some support. An attractive property of the Hadamard transformation is that it is
reversible: given the spectrum above we can exactly recover the original edge
lengths of the tree we used to generate the spectrum. Hence, one method for
constructing a tree from a spectrum is to find the tree that would have generated
a spectrum most like the actual spectrum we observed.  This is the 'closest tree'
method. See Hendy (1991) and Hendy and Penny (1993) for details.

Although spectral analysis is a potentially powerful technique, it has some limitations which stem from the
rapid increase in the number of possible splits with increasing numbers of sequences; for 20 sequences there are
over half a million splits in the spectrum. Furthermore, for discrete data the method is effectively restricted to
two-state characters. Nucleotide sites may have up to four states, which have to be converted in some way into
two-state characters, such as purines and pyrimidines. However, spectra can also be obtained from distance
matrices which circumvents this difficulty to some extent.

6.6.2
Split Decomposition

The spectrum for the hominoid data set (Fig. 6.21) shows that all possible splits have at least some support.
However, this fact is lost as soon as we
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Fig. 6.22
The spectrum shown in Fig. 6.21, but with each split ranked by amount of

support. The two largest non-trivial splits, {gibbon, orang-utan} and
{human, chimp}, are compatible with each other and form the best tree
(Fig. 6.23). Note that the bulk of the evolutionary change in this data is

concentrated along the terminal branches (the 'pendant edges') and
hence does not tell us about groupings among the five sequences.
The human, chimp split is in the best tree but is only fractionally

better supported than the {chimp, gorilla} split.

Fig. 6.23
The 'closest tree' for the spectrum shown in
Fig. 6.21. The branch lengths correspond to
the amount of support for each split, and are
in units of expected nucleotide substitutions.
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represent the spectrum by a single tree (e.g. Fig. 6.23) because the tree, by definition, contains only compatible
splits. Looking at the spectrum we can see that the split {chimp, gorilla} has almost as much support as the
{human, chimp} split. Split decomposition is a method that seeks to represent more of the information
contained in the spectrum.

The method can be best explained by an example. Consider the following nine sites for the five hominoids.

1 2 3 4 5 6 7 8 9

Human T C C T T A A A A

Chimp T T C T A T A A A

Gorilla T T A C A A T A A

Orang-utan C C A C A A A T A

Gibbon C C A C A A A A T

At each site there are just two nucleotides, hence each site corresponds to a split. For example, site 1
corresponds to the split {human, chimp} {gorilla, orang, gibbon}. Taking each split in turn, we can attempt to
construct a tree by combining the splits.  The first site partitions the five hominoids into those with T (human,
chimp, and gorilla) and those with C (orang and gibbon). In Fig. 6.24(a) this is represented by dividing the set
of five hominoids into two sets, connected by a line labelled by the site that supports this split. The second site
corresponds to the split {chimp, gorilla} {human, orang, gibbon}. These two splits are compatible, so we now
have the tree ((human, (chimp, gorilla)), (orang, gibbon)) (Fig. 6.24b). However, site 3 poses a problem. The
split {human, chimp} {gorilla, orang, gibbon} cannot be combined with the split supported by site 2. If we
were to continue to build a tree we would have to decide which of these splits to accept. However, we can
attempt to represent both splits using a network. In this example, we can depict both splits 2 and 3 by
introducing a parallelogram to indicate that there are two alternative splits (Fig. 6.24c). Site 4 supports the same
split as site 3, hence adding that to the network does not change the network topology (Fig. 6.24d). The
remaining sites (59) are all trivial splits that each partition a single sequence from all the other sequences (Fig.
6.24e).

Figure 6.24(f) summarises the network for these nine sites. The length of each link in the graph is proportional
to the number of sites supporting each split. By collapsing the parallelogram linking human, chimp and gorilla,
we could obtain either the tree ((human, chimp), gorilla) or (human, (chimp, gorilla)). Hence, in a sense the
network represents a set of possible trees in a single diagram. Applying this method to the complete hominoid
data set, we obtain the diagrams shown in Fig. 6.25.

Although split decomposition diagrams can be difficult to interpret at first, they do offer a way of representing
more of the information in a data set, and promise to be a useful tool for exploring phylogenetic spectra.
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Fig. 6.24
Example of constructing a network from incompatible splits.

6.6.3
Is a Network Better Than a Tree?

In the discussion of split decomposition above, we have assumed that the sequences are related by a tree, even
though there may be conflicts among different sites. Hence the split decomposition network depicts the
conflicting signals rather than an actual picture of how the sequences are related. However, the assumption that
a tree is an appropriate representation of relationships among the sequences may be incorrect. If competing
splits have significant support, then perhaps the relationships among the sequences are better represented by a
network. This may be particularly true where the sequences have undergone recombination.
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Fig. 6.25
Two views of the splits for the hominoid mtDNA

data set. In the top diagram the lengths of each
line are proportional to the support for the
corresponding split; in the bottom diagram
each split is drawn at the same size. Note
the conflicting splits involving the human,

chimp and gorilla sequences.

Box 6.6 The difference between precision and accuracy

It is important to distinguish between precision and accuracy. When thinking of
trees, accuracy is proximity to the true tree; precision is how many alternative
trees are excluded. A method that finds only one tree is very precise, but if that
tree is wildly different from the true tree, then the method is inaccurate. The
difference may be clearer if you consider two thermometers, A and B, that are
both used to measure the temperature of water at boiling point (100°C). The
temperature according to thermometer A is 101°C, whereas according to B it is
98.76°C; thermometer A is more accurate but less precise than B.

A related consideration is that some optimality criteria are real numbers (e.g.  In
L = 2965.3098) and others are integers e.g. 395 steps). A method that assigns an
integer score to each tree (such as parsimony is more likely to assign the same
length to different trees simply because there are a finite number of integer tree
lengths for a given data set, but an infinite number of real numbers Hence, tree
criteria that use real numbers may give a false sense of precision simply because
it is almost impossible to obtain more than one tree with exactly the same value
of the criterion.
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6.7
Have We Got the True Tree?

Given the range of possible methods for inferring phylogeny, we naturally want to know if they work, that is,
do they recover the actual evolutionary relationships among nucleotide sequences? Several approaches have
been developed to answer this question: analysis, simulation, known phylogenies, and congruence.

6.7.1
Analysis

In some cases, the phylogenetic method is simple enough that we can establish mathematically the exact
conditions under which that method would fail. A good example of this is UPGMA, which requires a molecular
clock. This condition can be expressed more formally in terms of branch lengths for a three-taxon tree (Fig.
6.26). This amounts to requiring that the two most closely related taxa are more similar to each other than they
are to any other taxa. If this is not the case, then using UPGMA will generate an erroneous tree (Fig. 6.27).

Parsimony methods have been much debated and much studied. Early on it was shown by Felsenstein that
under a very simple model of evolution with

Fig. 6.26
The condition required for UPGMA to successfully
reconstruct the true tree is that the sum of the edges
leading to sequence 1 (a + b) must be greater than
the larger of c and d. After Mooers et al. (1994).

Fig. 6.27
An example where UPGMA will reconstruct the wrong tree. Theedge lengths

on the true tree violate the condition shown in Fig. 6.26, as a + b = 3 + 2 < max
(c, d) = 10. Sequence 2 has evolved more rapidly than the other two sequences,

so that sequence 1 and 3 are more similar to each other than either is to 2.
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just two character states, parsimony could be inconsistent (see section 6.4.4). Originally it was thought that this
inconsistency was due to the unequal rates of evolution in Felsenstein's example, hence parsimony might be
consistent if rates of evolution were more equal. However, counter-examples have been found for five or more
sequences where parsimony is inconsistent even if rates of evolution are constant. These examples serve to
emphasise that it is not unequal rates of evolution per se, but the distribution of edge lengths that can cause
problems for parsimony (see also Box 6.3).

While analytical methods are elegant and can yield important insights into phylogenetic methods, for more than
a few sequences and for more complicated models of evolution, analytical methods become increasingly
intractable. This has prompted the use of other strategies, such as experimental phylogenies and simulation.

6.7.2
Known Phylogenies

The most compelling evidence for the success of our tree-building methods would be that they could
reconstruct known phylogenies, that is, phylogenies which we knew to be true from other evidence.
Unfortunately, known phylogenies are very rare. Typically the only 'known' phylogenies are those of laboratory
animals and crop plants, and even these are often suspect.  David Hillis and colleagues have addressed this
problem by creating 'experimental' phylogenies in the laboratory. By subdividing cultures of bacteriophage T7
grown in the presence of a mutagen they constructed a known phylogeny (Fig. 6.28). At the end of the
experiment, they obtained restriction site maps and nucleotide sequences for the eight T7 cultures. This data
was then input into various tree-building programs, the output of which was compared with the actual T7 tree.

For the restriction site data, UPGMA, neighbour-joining, Fitch & Margoliash, Cavalli & Sforza and parsimony
all recovered the topology of the actual tree. Because they had the actual ancestor cultures, Hillis et al. were
also able to compare those ancestors with the reconstructions obtained by parsimony. Fully 97.3% of the
ancestral states were correctly inferred.

Although encouraging, this particular study is perhaps less informative than

Fig. 6.28
Artificial phylogeny for bacteriophage T7 constructed
by culturing the phage in the presence of a mutagen.
Letters in circles are ancestors, numbers on branches
are numbers of restriction site differences between

phages at each node. After Hillis et al. (1992).
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might have been hoped. The tree is well balanced and all nodes are accompanied by numerous changes making
the tree a relatively easy one to reconstruct; indeed, every method tried was successful. More will be gained by
fabricating more difficult trees and discovering under what circumstances different methods fail.

6.7.3
Simulation

Very rarely do we have known evolutionary trees for actual organisms or sequences, whether obtained from
nature or 'grown' in a laboratory. An alternative source of known trees is computer simulation. In this case, we
supply a computer program with a tree and 'evolve' DNA sequences along the branches of the tree according to
some model. We then provide the resulting sequences as data for a range of tree-building methods, and
determine which tree-building methods succeed in recovering the original tree. An advantage of this approach
is that we can explore the effects of a wide range of parameters on the performance of tree-reconstruction
methods. A disadvantage is that the models used to generate the artificial sequences may be unrealistic, making
it difficult to generalise the results of the simulations to actual data sets (although see 'parametric bootstrapping'
in section 6.8.3). In particular, we need to avoid biasing the model towards a particular method.  For example,
if we used the model implicit in one tree-building method to generate the sequences, then we would expect that
method should perform very well, perhaps better than any other method. However, this result does not allow us
to claim that this method is therefore the best tree-building methodall we can say is that under the chosen model
the method works well.

A group of researchers led by David Hillis has used simulation to explore the relative merits of a range of tree-
building methods for the simplest phylogenetic problemfinding the unrooted tree for four sequences. They
varied the overall rate of nucleotide substitution, and the rate of substitution in different parts of the tree. These
two parameters can be represented by a diagram showing the simulation space (Fig. 6.29).

By generating many thousands of data sets for different combinations of branch lengths and recording the
success of various methods in recovering the actual trees upon which the data was generated, a picture emerges
of the overall performance of the different methods.

Figure 6.30 shows the relative performance of UPGMA and parsimony under the same conditions. As we would
expect, UPGMA does best when the rate of evolution is relatively constant, hence the high degree of success
along the diagonal line in the chart. However, the further a tree departs from this diagonal line the less
successful UPGMA is in recovering it. Parsimony does not require a molecular clock, and this is reflected in
the wider range of branch lengths that parsimony can accommodate. However, there is a region in the top left
of the parameter space, corresponding to a short internal edge and two long terminal edges. In this region, often
called the 'Felsenstein zone', is where
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Fig. 6.29
The tree space explored by the computer simulations

analysed in Fig. 6.30. At each corner of the square the
corresponding tree is drawn. Along the dotted line the

rate of substitution is the same on each edge in the tree.
The trees at top left and bottom right show two extremes
in rate variation, differing in how much change occurs
along the central edge. The region at the top left-hand

corner has become known as the 'Felsenstein zone',
and corresponds to parameters Felsenstein (1978)
used to show that parsimony could be inconsistent.

After Huelsenbeck and Hillis (1993: Fig. 4).

Fig. 6.30
Performance of UPGMA (left) and parsimony (right) in recovering the true tree

under the range of parameters shown in Fig. 6.29. The success rate is the
percentage of times that the correct tree was recovered in that region of

the parameter space. Note the white region in the top left of the two
diagrams (the 'Felsenstein zone') where neither method

performs well. After Huelsenbeck and Hillis (1993).

'long branches attract' (see section 6.4.4), misleading parsimony into inferring the wrong tree.

Another variable affecting the performance of phylogenetic methods is the amount of data available. By
creating artificial data sets of different sizes, it is
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Fig. 6.31
The accuracy of several different phylogenetic methods in reconstructing
two four-taxon trees with (a) all edges equal in length and (b) with a short
internal edge and two long terminal edges. In each graph the proportion
of analyses that recovered the correct tree is plotted against the length of
the simulated sequences. From Huelsenbeck et al. (1996: Figs 2 and 3).
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possible to see how if adding more data improves a method's rate of success. Figure 6.31 shows the results of
two simulation experiments to evaluate the accuracy of several different phylogenetic methods in reconstructing
four-taxon trees with all edges equal in length and with a short internal edge and two long terminal edges. In
the case of equal branches all the methods are consistent, but differ in their efficiency (Lake's method, which is
not discussed here, requires about 10 million base pairs to converge!). The tree with unequal rates of evolution
requires more data to accurately reconstruct, and methods such as unweighted parsimony, neighbour joining on
uncorrected distances, and UPGMA all converge on the wrong answer and are hence inconsistent. Hence the
accuracy of different tree-building methods can vary depending on the tree being reconstructed.

The four-taxon tree studied by Hillis and colleagues is the simplest possible, and may be unrepresentative of
the problems faced when we try and infer larger phylogenies (see Box 6.3). The difficulty of simulation
experiments on larger trees is that as the trees get larger the numbers of combinations of tree shape and edge
lengths also increases, prohibiting the kind of thorough investigation possible for the four-taxon case.

6.7.4
Congruence

Congruence is the agreement between estimates of phylogeny based on different characters. If the data sets are
independent then the probability of obtaining the same or even similar trees for the same organisms using the
different data sets is vanishingly small for any reasonable number of species. This is a simple consequence of
the large numbers of possible phylogenies (see Chapter 2). Hence, if different data sets give us similar trees this
gives us confidence that both reflect the same underlying cause, namely they reflect the same evolutionary
history.

The power of the congruence test stems from the assumption that there is a single phylogeny and that each data
set being analysed should reflect that history, coupled with the improbability of obtaining similar phylogenies
due to chance alone (Box 6.7).  Congruence has been used in two related, but distinct ways: validating a
method of phylogenetic inference, and validating a particular source of data.

Validating a Method of Inference

If two data sets for the same set of taxa contain phylogenetic information then we might expect the trees
inferred from those two data sets to be similar, if not the same. This follows from the assumption that each data
set has the same evolutionary history. Hence, a method that consistently recovered similar trees from different
data sets would be preferred to a method that produced different trees from different data sets. An early
illustration of this approach using DNA
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Box 6.7 How similar are two trees?

In this example the two trees each share four identical splits (solid circles) and
each have two unique splits (open circles), making a total of four unique splits.
Hence the partition distance between the two trees is four. As each tree has five
internal nodes, two maximally dissimilar trees would have a partition distance of
10. The chart below shows the distribution of this measure of tree dissimilarity if
pairs of trees are drawn at random from the set of all possible trees for seven
sequences. The bulk of trees are as different as it is possible to be, and fewer
than 0.6% of trees share as much in common as the two trees shown above.

sequences is the study by Penny and colleagues. Using parsimony they found minimal and near-minimal length
trees for five different proteins (cytochrome c, fibrinopeptide A and B, haemoglobin a and b) and asked
whether the trees
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Fig. 6.32
Observed distribution of pairwise distances between
39 parsimony trees for 11 mammals inferred from
five genes and the expected distribution if the trees
were sampled at random. Note that the trees from
the five genes are much more similar than could

be expected due to chance alone.

were more similar to each other than could be expected due to chance alone using the partition distance (Box
6.7).  The trees parsimony analysis obtained from the different genes were much more similar than could be
expected due to chance alone (Fig. 6.32).

Validating a New Source of Data

As an example of the second use of congruence, we could ask whether a newly sequenced gene, or a new
measure of genetic variation, contained phylogenetic information by comparing trees constructed using those
data with trees from other data sources. Indeed, this test can be applied to any potential source of phylogenetic
information. Figure 6.33 shows trees for modern humans based on genetic data and languages. The trees are
different, but more similar than could be expected due to chance alone, suggesting that some common cause
underlies this similarity. The obvious possibility is that both the genes and the language of modern human
populations reflects the historical relationships among those populations.

6.8
Putting Confidence Limits on Phylogenies

In the previous section we discussed accuracy, that is, how close we are to the truth. Now we turn to precision.
In molecular phylogenetics our goal is to recover 'the one true tree' for a set of sequences. A measure of the
phylogenetic precision is how many trees we can reject as candidates for the true tree. If we reject all but one,
then we have maximum precision. Of course, this sole surviving tree may not be the true tree for our method
might have misled us (remember that precision is not the same as accuracy; see Box 6.6, p. 208). The greater
the number of trees we cannot reject, the
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Fig. 6.33
Evolutionary trees for modern humans derived from genes and from language
characteristics. The two trees are different but more similar than two randomly
chosen trees. This suggests that both genes and language reflect the history of

modern humans. After Penny et al. (1993).

lower the precision. Most scientific measurements are accompanied by some estimate of precision, such as 13.5
± 0.2 mm. Phylogenetics should be no different, hence estimates of phylogeny should be accompanied by some
indication of confidence limits.
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Box 6.8 Congruence and total evidence

Suppose that the trees shown in Box. 6.7 are for the same organisms but obtained
from different genes. The trees show points of similarly and points of difference.
If our goal is to obtain a tree for the organisms themselves we have a
dilemmawhat is the best estimate of the phylogeny of these organisms? Two
different solutions are to combine the two data sets and analyse them as one data
set ('total evidence') or to analyse the data separately and combine the resulting
trees for each data set using a consensus tree (see Chapter 2).

There are arguments for and against both views.  Combining data sets makes use
of all the data, whereas combining trees can result in less than optimal solutions.
However, analysing data sets separately can reveal whether the different data sets
support similar trees. If they do not then it may be that the genes have quite
different histories and the data sets should not be combined to estimate
organismal phylogeny (Bull, 1993) (see Chapter 8 for the gene tree/ species tree
problem).

6.8.1
Sampling Error

One reason for a poor estimate of a phylogeny may not be the method used, but the data itslelf. If a data set
contains homoplasy then different nucleotide sites support different trees, hence which tree (or trees) a given
data set supports will depend on which character have been sampled. As a consequence, estimates of phylogeny
based on samples will be accompanied by sampling error.

As an example, consider the 896 base pairs of mitochondrial DNA used by Brown and colleagues to study
hominoid phylogeny. Of these 896 sites, 90 are phylogenetically informative using parsimony (Fig. 6.34). The
most parsimonious tree for all 90 sites is ((human, (chimp, gorilla)), orang, gibbon). However, consider what
would happen if sampled only the first 31 base pairs, recovering just five informative sites. The first such site
supports (human,
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Fig. 6.34
The 90 phylogenetically informative sites from the Brown

et al. (1982) mitochondrial DNA data for hominoids.

gorilla), the second site supports (human, chimp, gorilla), the third site contradicts the first and supports
(chimp, gorilla), site four groups gorilla and orang, and site five again supports human + gorilla. The most
parsimonious tree for this subset is (((human, gorilla), chimp), orang, gibbon), which is not the most
parsimonious tree for the complete data set. This example is rather contrived, but it illustrates the point that
results may depend on the sample of sequences. Indeed, the 896 sites sequenced by Brown et al. represent in
themselves only a small fraction of the approximately 16 000 base pairs that comprise the mammalian
mitochondrial genome, and more extensive mtDNA data sets support the tree (((human, chimp), gorilla), orang,
gibbon).

The effects of sampling error can be seen by comparing trees for different mitochondrial genes. The
mitochondrial genome is inherited without recombination, and so every gene has the same phylogenetic history.
Årnason and colleagues recently compared trees for different mitochondrial genes from mammals for which the
complete mtDNA sequence was known.  While most genes agreed on the same tree, others supported different
trees (Fig. 6.35).

Just as we often have limited samples of DNA, we may also have limited samples of taxa. In the example just
given, mammalian relationships were being inferred based on just six species, a tiny fraction of the total extant
Mammalia. Relationships among sequences can change if additional sequences are added. Indeed, for clades
with a good fossil record, morphological data may prove superior to molecular data because the evidence from
the extinct taxa is crucial to recovering the actual phylogeny.

6.8.2
Estimating Sampling Error:
The Bootstrap

One way to measure sampling error is to take multiple samples from the population being studied and compare
the estimates obtained from the different samples. The spread of those estimates gives us an indication of the
extent of sampling error, that is, how much our conclusions would vary depending on
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Fig. 6.35
Phylogenies for the same six mammals based on 15 different

mitochondrial genes. After Årnason and Johnsson (1992).

what sample we took. Given that repeated sampling is often expensive, it would be nice to be able to calculate
sampling error without having to take multiple samples. For many simple distributions (for example, the normal
distribution) there are simple equations for calculating confidence intervals around an estimate (for example,
the standard error of a mean). Trees are rather complicated structures, and it is extremely difficult to develop
equations for confidence intervals around a phylogeny. Hence the reliance on other means of measuring
confidence intervals, such as the computer intensive methods of jack-knifing and bootstrapping. Of these two
the bootstrap is most often used in phylogenetics.

In a sense the bootstrap mimics the first method of estimating sampling error, but instead of sampling from the
population it resamples from our sample. Each resampling is a pseudoreplicate. From each pseudoreplicate we
derive an estimate of the parameter we are trying to measure, such as the mean height of a population.  The
variation among estimates derived from each pseudoreplicate is a measure of the sampling error associated with
the parameter. For example, we could use the standard deviation of the means of the pseudoreplicates as an
estimate of the standard error of our original estimate of the mean (Fig. 6.36).
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Fig. 6.36
Two methods for estimating the sampling error of the estimate of population
mean.One method (left) is to take repeated samples from the population and

obtain the distribution of the mean of each sample. An alternative method is to
apply the same method but to a single sample (right). Instead of resampling
from the original population, the single sample is itself repeatedly sampled

to generate pseudoreplicates, and the distribution of the mean of each
pseudoreplicate is used to estimate the sampling error of the

original estimate of the population mean.

Bootstrapping can be applied to phylogenies by generating pseudoreplicates from the sequence data. For
example, given the 896 nucleotide hominoid data set, we could generate a single pseudoreplicate by sampling at
random and with replacement from the original data set until we had a new data set comprising 896 nucleotide
sites. Because we are sampling with replacement (i.e. any site sampled is 'returned' to the data set before the
next sample is taken) some sites may occur more than once in the pseudoreplicate, while others may not be
represented at all. Hence the pseudoreplicate will resemble the original data set in that it contains only sites
found in that data set, but it will differ in the frequencies of different sites.  From this pseudoreplicate we would
then build a tree using any of the methods described in this chapter. We then repeat this two-step process a
large number of times (anywhere from 100- to 1000-fold), resulting in a set of bootstrap trees. This set of trees
contains information on the sampling error associated with our sample.
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Fig. 6.37
The three trees for the hominoid sequence data that are obtained from 100 bootstrap

pseudoreplicates and their relative frequencies. All three trees have the split
{{orang, gibbon} {human, chimp, gorilla}} but they disagree about

relationships between humans and the African apes.

Bootstrapping the hominoid data 100-fold produces 100 trees, each of which is one of the phylogenies shown
in Fig. 6.37. The split {orang, gibbon} {human, chimp, gorilla} occurs in all the trees and hence has a bootstrap
value of 100%. However, there is clearly conflict about relationships among the humans and African apes, with
all three possible hypotheses receiving almost equal support. This result suggests that, on the basis of this data
set, we lack sufficient information to discriminate between these three trees, and that different samples may
favour different resolutions of humanchimpgorilla relationships purely due to accidents of sampling.

For small numbers of sequences, such as the five hominoid mtDNA sequences, it is feasible to show the
frequencies of the bootstrap trees. However, for larger numbers of sequences this becomes impractical. Instead,
the most common splits found among the bootstrap trees can be assembled into a bootstrap consensus tree (see
Chapter 2). These are often drawn with each node labelled with its frequency of occurrence among the
bootstrap trees. When originally applying the bootstrap to phylogenies, Felsenstein suggested that only nodes
with bootstrap values above 95% should be accepted as well supported.  It is important to stress that bootstrap
values estimate precision, not accuracy (see Box 6.6). A node may have a high bootstrap value but be
completely wrong. In particular, if a tree-building method infers the wrong tree for a given data set,
bootstrapping that data set may yield a robust, but wrong answer.

6.8.3
Parametric Bootstrapping

'Parametric bootstrapping' resembles a cross between the bootstrap and simulation. Like simulations, it involves
generating artificial data using a computer. However, whereas the simulations discussed in section 6.7.3 were
conducted using made up trees and simple evolutionary models, in parametric
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Box 6.9 Caveats concerning the bootstrap

One important caveat concerning the bootstrap is that this technique makes the
assumption that nucleotide sites are independent and identically distributed
(i.d.d.). This means that each site is independent of every other site, and that
there is a single distribution of rate of revolutionary change across all the sites. In
other words, if we were sampling from the mitochondrial genome this
assumption means we could treat the genome as a single, homogeneous, entity.
Cummins et al. (1995) made a sample test of this hypothesis by comparing the
tree for 10 complete mitochondrial genomes with trees computed from two types
of samples from those genomes: contiguous blocks of sequences, and randomly
chosen sites scattered throughout the genome. The first method mimics how the
mtDNA genome is sampled in practice; typically a single gene, or part of that
gene is sequenced.  If the i.i.d. assumption is valid then both kinds of samples
should yield equally good approximations to the tree for the whole genomein fact
the randomly scattered sites performed better. Hence, the i.i.d. assumption is not
valid for mtDNA. It is not known how robust the phylogenetic bootstrap is to
violation of this assumption.

A further consideration is that the results of bootstrapping are often summarised
using a majority-rule consensus tree (consensus trees are discussed in Chapter 2)
showing the frequency of each split that occurs in at least half of bootstrap trees
(splits that are compatible with these splits but occur in less than half the trees
may be subsequently added to this consensus tree). If one or more sequences
have uncertain relationships they may appear in very different positions in the
bootstrap trees (i.e. they 'float' over the tree), resulting in a general lowering of
bootstrap values for those parts of the tree over which the sequences float.
Hence, parts of the tree which are actually quite robust may have spuriously low
bootstrap values. This problem can be addressed using other consensus methods
(Page, 1996a; Wilkinson, 1996).

bootstrapping the evolution of the DNA sequences is simulated using parameters (including the tree) estimated
from real data. For example, analyses of 18S rRNA sequences suggests that birds and mammals are sister taxa
(each other's closest living relative), whereas morphological evidence from both living and fossil taxa groups
birds with crocodiles. One possible reason for this conflict between molecules and morphology is that the 18S
rRNA data has suffered from long branch attraction (section 6.4.4). Certainly the tree resulting from parsimony
analysis of these data shows long edges leading to both the birds and mammals (tree 1, Fig. 6.38), but this is
not of itself evidence for long branch attraction. What we want to know is even if tree 3 was the real tree for the
18S rRNA data (as suggested by morphology) could our analyses mistakenly conclude that the birdmammal
tree (tree 1) was best for these data? If this was the case then this would be evidence for long branch attraction.
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Fig. 6.38
Parametric bootstrapping. Three alternative trees for 18S rRNA sequences from
a bird, mammal, crocodile and lizard are shown on the left. For each tree 1000

artificial data sets of the same length as the original 18S rRNA data were generated
using parameters derived from that tree. On the right is shown the proportion of

times each tree was the most parsimonious tree for the data sets derived from each
tree. Note that no matter which tree was used to generate the data, tree 1 is most
often recovered as the most parsimonious tree. After Huelsenbeck et al. (1996).

This question can be investigated by simulating the evolution of 18S rRNA on the three possible trees for the
four taxa and seeing how often a tree-building method recovered the correct tree. Huelsenbeck et al. (1996)
performed this analysis by first estimating the branch lengths, shape parameter of the gamma distribution (see
Chapter 5), and transition/transversion ratio for the real 18S rRNA data set on each of the possible trees for the
four taxa. They then used these parameters to generate 1000 artificial data sets of the same size as the original
18S rRNA data set. The results (Fig. 6.38) show that no matter which tree the sequences were evolved on, tree 1
was recovered at least 85% of the time. Even if tree 3 is the true tree (as suggested by morphology), the 18S
rRNA data would support tree 1.  This suggests that the 18S rRNA data may indeed have been affected by long
branch attraction.
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6.8.4
What Can Go Wrong?

There are several sources of error that may confound our attempts to reconstruct the true evolutionary
relationships among a set of sequences. Many of these have been covered above, but we will summarise them
here.

Sampling Error

Almost all phylogenetic inference is based on samples of characters, hence the conclusions obtained will in part
reflect the vagaries of sampling. This is especially true given the ubiquitous presence of homoplasy, hence the
importance of trying to gauge the confidence limits around a tree. Although our focus has been on sequence
relationship as opposed to organismal phylogeny, the latter is one of the major uses of molecular phylogenies.
In this context a further sampling problem arises, namely the requirement that species relationships are based
only on orthologous sequences. If this requirement is not met, organismal and gene trees can become
confounded. This topic is considered further in Chapter 8.

Incorrect Model of Sequence Evolution

Methods of phylogenetic inference make assumptions, either implicit or explicit, about the evolutionary
process.  If these assumptions are violated then we may be misled. Basic assumptions made include variation of
rate of substitution among sites, among branches in the tree, and among different nucleotides. To give but one
example, the frequencies of the four nucleotides can vary considerably among organisms. If, for example, a
gene is AT-rich then most substitutions are likely to involve these two nucleotides simply due to chance. If
another, unrelated organism, is similarly AT-rich then it is quite likely that they will share similarities due to
independent parallel substitutions, and consequently may be incorrectly grouped together due to this similarity
in base composition.

Tree Structure

In some cases evolutionary history itself may conspire to thwart our efforts to recover it. Rapid successive
cladogenesis, widely differing rates of divergence and extinction can all compromise our ability to accurately
reconstruct evolutionary trees. Both simulations and analytical studies have shown that there are situations
when current tree-building methods perform poorly. Despite our best efforts, the trace of history may have been
eroded by subsequent evolution.
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6.9
Summary

Different methods may be more appropriate in different circumstances. This conclusion may seem disturbingly
inconclusive, but it reflects the nature of the problem. Maximum likelihood is a very attractive method but it is
computationally very expensive, which limits its usefulness as an optimality criterion for trees. Its strength lies
in its explicit statistical basis, making it a powerful tool for analysing models of evolution. For all but relatively
small data sets, maximum likelihood's main use is likely to be investigating molecular evolution on given
phylogenies, rather than as a tool for finding those phylogenies. While advocates of maximum likelihood often
look askance at methods such as parsimony, in reality the latter often performs very well, and it generally
allows a broader exploration of alternative trees than does maximum likelihood. Rapid methods of tree
assembly, such as neighbour joining, come to the fore in the analysis of very large data sets of many sequences
where other methods might prove too sluggish. Newly emerging methods such as spectral analysis and split
decomposition emphasise visualising and exploring the data rather than simply finding the 'best' tree.  Trees are
hypotheses of evolutionary relationship, and are inferences made on limited data using often greatly simplified
models of evolution that nevertheless pose immensely challenging computational problems. Finding the 'one
true tree' is important, but so is knowledge of the range of signals in the data and the appropriateness of the
model used.

6.10
Further Reading

The sources given here are by no means exhaustive, but instead offer entry points into a large (and growing)
literature on inferring evolutionary trees. Useful reviews include Swofford et al. (1996) and Penny et al. (1992).
For a treatment of phenetics see Ridley (1986); Hull (1988) provides a stimulating overview of the history of
the debates about phenetics and cladistics. The classic critique of distance methods is Farris (1981); Penny
(1982) provides additional objections. Sober (1988) provides an excellent discussion of the foundations of
parsimony and its relationship to maximum likelihood. Felsenstein (1981) has long been a proponent of
maximum likelihood methods. For detailed evaluation of the merits of different likelihood models see Goldman
(1993) and Yang (1994). For a technical treatment of the question of whether the maximum likelihood value for
a given tree is unique see Steel (1994). Huelsenbeck and Rannala (1997) give a recent review of likelihood
ratio tests. A good introduction to spectral analysis is given by Lento et al. (1995). Split decomposition is
described by Bandelt and Dress (1992) and Dopazo et al. (1993). Hillis et al. (1992) describes their elegant
work on experimental phylogenies using bacteriophage T7. Leitner et al. (1996) give an example of using a
known phylogeny for HIV to evaluate different phylogenetic
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methods. For a critique of experimental work see Sober (1993). Hillis's group have also made extensive
simulation studies (Huelsenbeck and Hillis, 1993) and have recently applied parametric bootstrapping to
phylogenetic studies (Huelsenbeck et al., 1996). Sanderson (1995) reviews the debate about the merits of
bootstrapping in phylogenetics.
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Chapter 7
Models of Molecular Evolution

7.1 Models of the Evolutionary Process

7.1.1 The Classical and Balance Schools of Population Genetics
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7.7.1 Examples of Molecular Natural Selection

7.7.2 Relative Rates of Non-Synonymous and Synonymous Substitution

7.8 Conclusions: Can We Resolve the NeutralistSelectionist Debate?

7.9 Summary

7.10 Further Reading

7.1
Models of the Evolutionary Process

Haemoglobin is one of the most studied of all proteins. Its role is to bind oxygen from the lungs (or gills) and



deliver it to the tissues where it can be released, and to bring carbon dioxide, a by-product of oxidation, back to
the lungs where it is then removed from the body. As we have already seen, haemoglobin in most vertebrates is
made up of four polypeptide chains, two encoded by genes from the a-globin family and two from the b-globin
family. Chapter 3 described some of the ways in which the organisation of this multigene family has changed
through time. But how have the amino acid sequences themselves evolved? One way to approach this question
is simply to count up the number of amino acid changes between different species using some of the methods
described in Chapter 5.  We have done this for a selection of vertebrate a-chainscomparing each with
humanand plotted the results in Fig. 7.1. What we see is striking: as we compare more and more distantly
related species, the number of amino acid changes (shown as Dayhoff distances) steadily increases.
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Fig. 7.1
The a-globin molecular clock. The distances between the amino
acid sequences of humans and a number of other vertebrates are

used to estimate species divergence times, using the split between
humans (primates) and cows (artiodactyls) at approximately 80
Myr ago as a calibration point. These molecular estimates (open

circles) are then compared with those taken from the fossil record
(closed circles). The difference between the two estimates is

indicated by the dotted line. The Quoll is a marsupial cat.

In fact, the increase is so steady that it appears that mutations are accumulating at a constant rate.

Now let us assume that we know the divergence time of one of the points on the graph, say that between
humans and cows at approximately 80 million years ago. With this information in hand we can calculate the
divergence times of humans and the other species. For example, humans and cows differ at 17 of the 149 amino
acid sites in the alignment (Dayhoff distance of 0.131), whereas human and alligator have 47 differences
(Dayhoff distance of 0.445), 3.4 times as many. This suggests that humans and alligators diverged 3.4 times
longer ago than humans and cows, which works out at 270 million years ago. Remarkably, the fossil record
suggests that alligators and humans diverged at about 300 million years ago. So the a-globin sequences have
kept a fairly accurate record of when these two species split. If we do this for every point on the graph we find
that the divergence times stored in a-globin are generally close to those suggested by the fossil record. There
are some exceptionsthe divergence time of chicken is greatly underestimated and that of shark greatly
overestimatedbut overall the sequences of this protein are surprisingly good time-keepers.  In other words, a-
haemoglobin behaves like a molecular clock.

But why should such a clock exist and how accurate is it? The answers to these questions will tell us a great
deal about the underlying processes of
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molecular evolutionhow nucleotide and amino acid sequences evolve. This is the subject of this chapter.

Since the 1960s there have been two conflicting models of how molecular evolution takes place: one that it is
dominated by the genetic drift of neutral mutations, the other that the natural selection of advantageous
mutations is the more important force. Because of the historical importance and impact of this debate, we will
use it as the framework to understand some other aspects of sequence evolution. Knowing which of these
models best explains molecular evolution is also important because it will ultimately lead to the development of
more realistic models of DNA substitution, so improving the accuracy of phylogenetic analyses. Conversely,
phylogenetic trees are being increasingly used as a way of testing which of these two models best fits the data.

7.1.1
The Classical and Balance Schools of Population Genetics

The foundations of the neutralistselectionist debate were laid in the 1950s in the debate between the classical
and balance schools of population genetics. The dispute here was over how much genetic variation existed
within populations. The classical school believed that natural selection was predominantly a negative or
purifying force, removing deleterious alleles, so that there was little genetic variability within populations. Most
individuals were therefore thought to be homozygous for a common wild-type allele at the majority of loci. For
example, the Nobel laureate H.J.  Muller famously predicted that in an average human only 1 locus in every
1000 would be heterozygous. The balance school, on the other hand, claimed that levels of genetic variation in
populations were so high that most loci were polymorphic and that individuals were heterozygous at a large
number of loci. These high levels of variation were thought to be maintained by different forms of balancing
selection such as that favouring heterozygotes (overdominant selectionsee Chapter 4). Although both schools
were agreed that natural selection was the driving force of evolution, there was no evidence for the central issue
which divided them: how much genetic variation existed within and between species?

The question of how much genetic variation existed between species was eventually answered during the 1950s
and 1960s when the new molecular technique of protein sequencing uncovered substantial diversity in the
polypeptide chains of various proteins. The globins were an early example and, like many other proteins,
revealed a huge variation in sequence between different species (see the amino acid alignment in Fig. 7.6). The
same was also found to be true of genetic variation within species when, in 1966, a series of papers using
protein electrophoresis, another new technique, showed that natural populations harboured far more genetic
variation than was previously anticipated.

Within populations genetic diversity in proteins (allozymes) can be quantified as the number of loci in an
individual that are polymorphic and, at each
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Fig. 7.2
Summary of estimated levels of heterozygosity and proportion
of polymorphic loci in allozymes from different species groups.

Closed circles denote average values for major taxonomic
groups. It should be noted that the human values are artificially
large compared with those from other mammals because highly
polymorphic proteins were over represented in this case. Data

from Nevo (1978). Adapted from Hartl and Clark (1989).

polymorphic locus, the average heterozygosity (described in Chapter 4). Lewontin and Hubby (1966) surveyed
18 loci in five populations of Drosophila pseudoobscura and found an average of 30% to be polymorphic with
a mean heterozygosity of 11%. In the human populations studied by Harris (1966), the comparable values were
30% polymorphic and 9.9% average heterozygosity. Similarly high levels of variation have been subsequently
found in other taxa (Fig. 7.2).  These figures are also likely to be underestimates because mutations which do
change protein weight or charge, and hence electrophoretic mobility, escape detection.

7.1.2
The Cost of Natural Selection and the Rise of the Neutral Theory

By the mid-1960s protein sequencing and electrophoresis had shown that the fuel of evolution, genetic
variation, was available in abundance within and between species. The balance school was right in that
populations were generally very variable at the genetic level. But these results also posed a problem. If, as it
was assumed, natural selection had produced all this diversity, would not it also be true that individuals with
inferior alleles would be selectively removed from the population? Could the population even go extinct with
all this 'selective death'? This has been called the cost of natural selection.
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The cost that natural selection imposes when it acts can be thought of as part of the overall genetic load carried
by a population. Genetic load describes the extent to which the fitness of any individual is below the optimum
for the population as a whole because of the deleterious alleles they carry. In the 1950s and 1960s genetic load
was thought to be a serious problem and was one of the reasons why the classical school thought genetic
variation was limited. It can arise in two ways. Substitutional load, as we have just seen, occurs when a
mutation replaces (substitutes) the previously most frequent allele in a population because it has a selective
advantage (positive selection).  The great geneticist J.B.S. Haldane (1957) calculated that there would be an
upper limit on the number of mutations that can be fixed in this way in a population at any time, estimated to
be one allele substitution every 300 generations, otherwise the level of selective death (the load) would be too
high and the population would go extinct.

Segregational load, on the other hand, occurs when a polymorphism is maintained through overdominant
selection. A famous and highly illustrative example of segregational load is provided by human sickle-cell
haemoglobin. An individual homozygous for the HbA haemoglobin allele produces the normal protein.
However, in some parts of the world individuals with this genotype are susceptible to infection with the
parasite Plasmodium falciparum which causes malaria. Conversely, individuals who are homozygous for the
sickle-cell allele, HbS, produced by a single amino acid change in b-haemoglobin, will develop the disease
sickle-cell anaemia. About 80% of those with this genotype will die before reproduction. Crucially, those
heterozygous for the normal and sickle-cell alleles do not develop the pathogenic sickle-cell form and are
much less susceptible to malaria, although the precise reasons why are unknown. Clearly there is a selective
advantage for individuals to be heterozygous at this locus and this heterozygous advantage is known to
maintain a high frequency of the sickle-cell allele in areas endemic for malaria (the HbS allele reaches a
frequency of 40% in some West African populations). Unfortunately, the laws of Mendelian segregation do not
allow for the production of only heterozygotes: in an HbA × HbS cross only 50% of individuals on average will
be heterozygous. Individuals who are HbAHbA homozygous (susceptible to malaria) and HbSHbS homozygous
(subject to sickle-cell anaemia) are still produced as long as heterozygotes are favoured, so that the population
will suffer a genetic load. But if this was the situation at every polymorphic locus how could populations
possibly survive?

There was, however, a way in which high levels of genetic variation could be explained without encountering
excessive selective death: simply by dropping the assumption that natural selection was the driving force of
molecular evolution and instead allowing the majority of the mutations fixed to have no effect on fitness.
Mutations like this would obviously confer no selective cost. These mutations, which are not subject to natural
selection, are called neutral mutations and are lost (usually) or fixed (very occasionally)
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by the process of genetic drift, caused by random sampling of gametes during sexual reproduction (see Chapter
4). This neutral theory of molecular evolution was first proposed by Motoo Kimura in 1968 and Jack King and
Tom Jukes in 1969 and has become one of the most important and controversial theories in evolutionary
biology.

To neutralists most mutations are either deleterious and selectively removed, or neutral, in which case there is a
small probability that they are fixed. Natural selection is therefore incorporated into the neutral theory but only
as a negative, purifying force, removing deleterious mutations from the genome, and plays only a very minor
role in the fixation of mutants (Fig. 7.3). Although the vast majority of neutral mutations are lost by chance, a
tiny minority, which will be important in evolutionary time, will eventually be fixed (see Chapter 4 for more
about the probability of fixation of neutral mutations). Because neutralists believe that natural selection does
not play an important role in the fixation of mutant alleles, we can think of the neutral theory as one which
gives the dual processes of mutation and genetic drift predominance over that of selection at the molecular
level. Selectionists, on the other hand, believe that substitutions are fixed because they confer a selective
advantage and that neutral mutations are rare, although they agree that overall most mutations are likely to be
deleterious and so removed from populations. These opposing schools therefore have very different views of
the evolutionary process: to neutralists it is dominated by chance, to selectionists necessity is the key.

Fig. 7.3
Neutralist and selectionist models of molecular evolution.
The pie represents the total number of mutations arising
in a gene. In the neutralist model the majority of these

mutations are deleterious and removed by negative
selection but of those fixed most are neutral, with only a
small number advantageous. Although the selectionist
model agrees that most mutationsare deleterious and
lost, it differs in predicting that a majority of those

fixed are selectively advantageous with neutral
mutations being rare.The proportions given for
each type of mutationare designed to highlight
the differences between the two schools, not
to accurately reflect the number of mutations

in each category (for example, neutralists
would probably give an even smaller

slice to advantageous mutations).
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7.1.3
The NeutralistSelectionist Debate

When it was first proposed the neutral theory was seen as a challenge to one of the central pillars of neo-
Darwinism because it seemed to say that some characteristics of a species could be non-adaptive. However, this
does not mean that the neutral theory attempts to replace the idea of evolution by natural selection.  Rather, it
claims that the fixation of mutants with a selective advantage, acknowledged to be the main process of
morphological evolution, occurs at such low frequencies at the molecular level to make it irrelevant on a large-
scale. Indeed, neutralists effectively believe that most genes and proteins are so well adapted, because of the
past action of natural selection, that it is hard to improve upon them. Most new mutations will therefore be
either deleterious or neutral.

Early debates also spent a lot of time on genetic loads. For example, even with the limited amount of amino
acid sequence data available in the late 1960s it was obvious that rates of amino acid substitution were far
higher than Haldane's upper limit of one change every 300 generations. In the original paper proposing the
neutral theory, Kimura estimated an average rate of one substitution every two years in mammalian populations
and argues that natural selection could not be responsible for such a rapid rate because the number of selective
deaths, given Haldane's calculation, would be too large. His solution to this paradox was to propose that most
substitutions were neutral. Since this time the amino acid sequences of many more proteins have been
determined and most evolve at rates higher than the maximum envisaged by Haldane (Fig. 7.4).

However, a number of unrealistic assumptions were made when calculating the cost of natural selection which
undermine the use of high rates of substitution as evidence in support of the neutral theory. First, it was
assumed that each gene acted independently so that the load could be worked out by simply multiplying the
figures for one gene by the total number of loci. However, because of the complexity of metabolic and
developmental pathways genes will often act together so that the number of independent genotypes will be less
than the number used to calculate selective costs. It was also assumed that individuals with an inferior allele
will die before reproduction because of a direct consequence of that allele and in doing so generate extra
mortality in the populationa process known as hard selection. But it is also possible that the death of an
individual who carries this particular allele is caused by intraspecific competition, which happens in any
circumstance, so that no extra mortality is caused. This is soft selection. If most mortality in a population is the
outcome of soft rather than hard selection, the overall cost of natural selection will be greatly reduced as the
number of deaths caused by gene substitution will be lower. Put together, these relaxed assumptions allow the
maximum rate of substitution due to natural selection to greatly increase (by reducing the cost) and in so doing
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Fig. 7.4
Rates of amino acid substitution for various mammalian proteins. *Excluding
guinea pig and coypu, the phylogenetic position of which has been debated
(see section 7.4); ** Excluding non-repetitive ends. Data from Nei (1987).
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remove a potential barrier to the importance of natural selection in molecular evolution.

The same is also true of the excess genetic load supposedly produced when natural selection acts to maintain the
high levels of genetic variation within species: because of the flaws in the load argument, too high a selective
cost cannot be used as a way in which to discount the power of natural selection in maintaining
polymorphisms. Furthermore, heterozygous advantage is not the only way natural selection can preserve genetic
variation within species and other than sickle-cell haemoglobin there are few reported examples. A possible
alternative is frequency-dependent selection in which the fitness of an allele is a function of its frequency in the
population (see Chapter 4). Selection of this type may produce little or no genetic load.

Today the debate surrounding the neutral theory has moved on from criticisms of neo-Darwinism and the
weighty theory of genetic load and is instead concerned with finding the most suitable explanation for the
large-scale patterns of molecular evolution. In the sections that follow we will discuss four important
predictions about the nature of molecular evolution made by the neutral theory. If we can determine whether
these predictions are right or not, we will learn a great deal about how genes evolve. These predictions are that:

1 There is an inverse correlation between the rate of substitution and the degree of functional constraint acting
on a gene, such that functionally constrained genes, or regions within genes, evolve at the lowest rates (and vice
versa).

2 Patterns of base composition and codon usage reflect mutational rather than selective processes.

3 There is a constant rate, or molecular clock, of sequence evolution.

4 The level of within species genetic variation is the product of only population size and mutation rate and is
correlated to the level of sequence divergence between species.

7.2
Functional Constraint and the Rate of Substitution

7.2.1
Functional Constraint at the Amino Acid Level

As we can see from Fig. 7.4, not only are rates of amino acid substitution relatively high but they are often
extremely variable: fibrinopeptides, for example, evolve about 900 times faster than ubiquitin. To neutralists
this variation in rate between different proteins (or between different regions of the same protein) is explained
by differences in selective constraint rather than in positive selection. According to the theory, genes (or
proteins) differ in what proportion of their possible mutants will be deleterious and selectively removed, or
neutral and fixed with a small probability (advantageous mutations occur so rarely that they can be
ignored).  The more functionally constrained the gene, the greater the probability that a mutation will be
deleterious rather
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Fig. 7.5
The effects of functional constraint on the relative frequency of deleterious and

neutral mutations. In a functionally constrained gene (or region within agene) most
of the mutations that occur will be deleterious and so are removed by negative

selection. As only a few mutations will be neutral the rate of substitution will be
low. For genes with less functional constraint the number of mutations that are

neutral is higher (reaching a peak in non-coding DNA) so that the rate of
substitution increases. Once again, the actual proportions used are arbitrary.

than neutral and so the lower the rate of nucleotide substitution (Fig. 7.5). For less functionally constrained
genes fewer of the mutations that occur will be deleterious and more will be neutral so the rate of substitution
will increase. In this way differences in functional constraintthat is, in the strength of negative selectionwill also
lead to differences in substitution rate. The large-scale differences in rates of amino acid substitution between
proteins shown in Fig. 7.4 are compatible with differences in functional constraint. For example, proteins like
histones that interact structurally with DNA so that any amino acid change may be deleterious, evolve at the
lowest rates whilst those that only interact with other proteins, such as members of the immune system or
hormones, evolve at the highest rates presumably because there is a great deal more flexibility in which amino
acids are functionally suitable. To many, this correlation between functional constraint and rate of substitution
represents the best evidence for the neutral theory.

The globins provide a good example of the relationship between functional constraint and the rate of
substitution. The most functionally important positions in haemoglobin are those where haem is bound. There is
a remarkable conservation of the amino acids occupying these sites over millions of years of evolutionary
history.  For example, the amino acids at positions 44 and 94 in the sequence alignment shown in Fig. 7.6 (F,
phenylalanine and H, histidine, respectively; indicated by arrows), both of which are involved in haem-binding,
are conserved in all known functional a- and b-globin sequences, as well as in myoglobin, the invertebrate
globins and the leghaemoglobins found in some plants. Other sites of functional importance and which are
highly
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Fig. 7.6
Alignment of amino acid sequences from adult a- and b-haemoglobin and myoglobin (Mb) proteins from
four vertebrate species. Light-shaded residues are those conserved between all four sequences from each

protein while heavy-shaded residues are those conserved across all proteins. Arrows indicate residues
which are also conserved in  invertebrate and plant globins. For ease of presentation a repetitive

sequence of STSTSTS was removed from the start of the shark a-haemoglobin sequence.
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conserved are those involved in binding with D-2,3-biphosphoglycerate (DPG) (a heterotropic ligand which
reduces oxygen affinity so that more can be released into the tissues), those which make up salt bridges and
those which provide contacts between the a- and b-chains of the molecule.

7.2.2
Functional Constraint at the Nucleotide Level

More evidence for the influence of functional constraint on rates of substitution is found at the nucleotide level.
As we saw in Chapter 3, most eukaryotes have far more DNA than is needed to make or regulate proteins, so
that large parts of the genome appear to lack a function. As predicted by the neutralists even before DNA
sequences became available, this non-coding DNA evolves faster than parts of the genome which encode
proteins and is characterised by insertions and deletions which are generally rare in coding regions. This is
evidence that most non-coding DNA is neutral. Pseudogenesduplicated but inactivated copies of genes (see
Chapter 3)provide another example of the relationship between functional constraint and substitution rate.
Although pseudogenes were originally derived from working genes they are free from functional constraints
and, in accord with neutral theory, evolve at higher rates. For example, the rate of substitution for the human
yal-globin pseudogene is higher than that of all three codon positions of the functional a-globin gene from
which it was derived (Table 7.1).

While it is clear that DNA without a function evolves at the highest rate, presumably because it is completely
neutral, whether this is also true of nucleotide positions within fully functional genes is more controversial.
Because of the degeneracy of the genetic code, mutations in different codon positions differ in the probability
that they will alter an amino acid, so that the three codon positions might also differ in functional constraint.
For example, one-half of third positions are fourfold degenerate whereas no second positions are

Table 7.1 Rates of nucleotide substitution per site, per year ×109 for
mammalian globin pseudogenes and their functional homologues. The
rate of substitution for each codon position within the functional genes
has been estimated separately.  Adapted from Nei (1987). Copyright
1987, Columbia University Press. Reprinted with permission of the
publisher.

Functional genes
Gene Pseudogene Position 1 Position 2 Position 3
Mouse ya3 5.0 0.75 0.68 2.65
Human ya1 5.1 0.75 0.68 2.65
Rabbit yb2 4.1 0.94 0.71 2.02
Goat ybx and yz 4.4 0.94 0.71 2.02
Average 4.7 0.85 0.70 2.34
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Fig. 7.7
Estimated numbers of non-synonymous (dN) and synonymous (dS) substitutions per site
for 49 genes from primates, rodents and artiodactyls combined. The data are organised
according to the number of non-synonymous changes (highest at top, lowest at bottom).

Compare this to the rates of amino acid change shown in Fig. 7.4. Data from Ohta (1995).
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of this type. Sequence analysis has shown that this prediction is upheld in the vast majority of genes: in the
globin genes presented in Table 7.1, for example, the third codon positions are evolving approximately
threefold faster than the first two positions although not as quickly as pseudogenes, suggesting they are still
subject to weak constraints. More generally it is also clear that synonymous (silent) sites evolve faster than non-
synonymous (amino acid changing) sites within the same gene and that the latter are much more variable in
rate, again as predicted by neutral theory (Fig. 7.7; also see Box 7. 1). Although this topic is addressed more
fully in the next section, it looks as if synonymous sites in mammalian genomes are evolving in a generally
neutral manner. On the other hand, the question of whether non-synonymous substitutions are neutral or
advantageous in mammals remains open. In fact, instead of being strictly neutral, many non-synonymous
substitutions may only very slightly reduce or improve fitness because they only make minor alterations to
protein structure and function. Substitutions of this sort are called nearly neutral and may be very important in
molecular evolution.  A refinement of the neutral theory based on the idea that most non-synonymous or amino
acid changes are nearly neutral is outlined in section 7.5.

7.2.3
Changes in Functional Constraint

It is important to remember that functional constraints are not fixed entities: an amino acid which is selectively
important in one environment may be neutral in another (and vice versa). Changes in functional constraint over
time are often cited as a way in which the neutral theory can explain variable rates of substitution because this
can also be thought of as a change in the proportion of sites that are neutral and thus in the number of
substitutions which can accumulate.

Changes in functional constraint can be measured by the ratio of non-synonymous to synonymous substitutions
(dN/dS) (Box 7.1). We can turn to the human and simian immunodeficiency viruses, HIV and SIV, for an
example (Fig. 7.8). It is likely that the highly pathogenic viruses found in humans (HIV-1) and macaque
monkeys (SIVMAC) emerged through recent cross-species transmission events from primates in which these
viruses are much less pathogenic, such as SIVAGM from African green monkeys and SIVSMM from sooty
mangabeys. HIV-1 and SIVMAC elicit a strong immune response in their new hosts and there is positive
selection for the envelope proteins of the virus to change to evade this response. This is reflected in the dN/dS
ratio of sequences from the envelope protein gp120 which is higher for HIV-1 and SIVMAC than for SIVAGM
and SIVSMM. The lower dN/dS ratio in the non-pathogenic monkey viruses, which have probably been
associated with their host species for longer, occurs because they generate a weaker immune response and so
are under less selection pressure for change in the viral envelope. HIV-2, a mainly West African virus and
another recent invader into human populations, has an intermediate level of pathogenicity and an intermediate
dN/dS ratio.
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Box 7.1 Testing the neutrality of mutations

Although a variety of tests of the neutrality of mutations has been proposed, we
focus on three of the most common, all of which use nucleotide sequence data.

1 Levels of genetic variation within and between species

Because the neutral theory predicts that the rate of substitution is only dependent
on the underlying mutation rate, genes that evolve quickly will exhibit more
genetic variation within and between species than genes that evolve more slowly.
Therefore, levels of variation within and between species should be correlated
under neutrality (assuming recombination is absent). This can be tested in a
number of ways.

The McDonaldKreitman test examines whether the ration of non-synonymous to
synonymous substitutions differs within and between species. If both types of
substitution are neutral, so that their rate of fixation is determined minded only
by the mutation rate, their ratio will remain the same within and between species.
This can be assessed with a 2 × 2 test of independence (a G-test; see Fig. 7.22).
Although this test assumes that the neutral mutation rate is constant, it does not
require population size to be so. The more complex HudsonKreitmanAguadé
(HKA) test assesses whether sequence variation in different gene regions (such
as flanking and coding regions) is the same within and between species.  Unlike
that of McDonaldKreitman, the HKA test assumes that population sizes have not
changed through time.

2 Tajima's D statistic

One drawback with the McDonaldKreitman and HKA tests is that they require
data from at least two species. In contrast, Tajima's D statistic allows the
neutrality of mutations to be tested using sequence (polymorphism) data from a
single species.

Under neutral theory, the expected amount of genetic variation per nucleotide is
based on 4Nem, usually denoted q. q can be estimated using either the number of
segregating sites, S, or the average number of pairwise differences, P, between
the sequences in the sample (see Chapter 4, Box 4.1). If evolution is neutral then
estimates based on S and P give the same value of q. However, natural selection
changes the structure of genetic variation within populations because alleles
persist for different times under selection compared with drift. Because S and P
consider different aspects of population variationP assesses the frequency of
mutant alleles in the population whereas S examines the number of polymorphic
sitesthey will be affected in different ways by natural selection and so give
different estimates of q. This led Tajima (1989) to propose that the difference (D)
between the estimates of q given by S and P could serve as a test of the neutrality
of mutations (D = 0 under neutrality).

continued
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continued

Box 7.1

Another way to think about how genetic drift and selection change the genetic
structure of populations is with the frequency spectrum of segregating sites (the
frequencies of alleles at each polymorphic site). For example, hitchhiking
produces an excess of segregating sites with alleles at low frequencies (negative
D value), whilst balancing selection will produce an excess of segregating sites
with alleles at high frequencies (positive D value).

3 Comparing rates of non-synonymous and synonymous substitution

If we assume that synonymous substitutions are neutral, their rate of substitution
(fixation) is equal to the rate at which they are produced by mutation. If non-
synonymous sites are also evolving in a neutral manner then their rate of
substitution should be the same as that at synonymous sites (dN = dS). In most
genes, however, non-synonymous sites will be under functional constraint
(negative selection) so that their rate of substitution will be less than that at
synonymous sites (dN < dS). In contrast, under positive selection more non-
synonymous than synonymous substitutions will occur (dN > dS) because the
rate at which natural selection fixes advantageous changes is greater than the rate
at which they are produced by mutation. dN > dS therefore rejects neutrality.

Nevertheless, there are problems associated with testing neutrality in this manner.
First, the test is highly conservative in that it is difficult to detect dN > dS if
selection only involves a small number of changes.  Second, synonymous sites
are assumed to be neutral which may not be the case if constraints are imposed
by codon usage or secondary structure. Also, precise estimations of dN and dS
are often difficult because they depend on the accurate correction of multiple
substitutions (see Chapter 5). Finally, analyses of dN and dS are usually based on
pairwise comparisons of sequences, ignoring the phylogeny linking them. This
means that certain branches (especially those near the root of the tree) will be
analysed many times, thereby biasing the results. Estimates of dN and dS which
take into account the phylogenetic relationships of sequences are therefore a
more informative way to detect positive natural selection (as in the case of
jingweisection 7.8).

7.3
Patterns of Base Composition and Codon Usage

7.3.1
The Isochore Structure of Vertebrate Genomes

With the development of the polymerase chain reaction (PCR) in the mid-1980s, there was a rapid increase in
the amount of DNA sequence data available to analyse. This enabled evolutionary biologists to ask important
questions about the large-scale patterns of genome evolution. One question of particular interest is why patterns
of base compositionthe frequencies of the four
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Fig. 7.8
Ratio of non-synonymous (dN) to synonymous

substitutions (dS) for the envelope protein gp l20
from different primate immunodeficiency viruses.

The phylogeny presented is a simplified interpretation
of the evolutionary history of these viruses (see
Chapter 8). HIV-1 and HIV-2 are from humans,

SIVAGM from African green monkeys, SIVMAC
from macaques and SIVSMM from sooty mangabeys.

The higher the ratio, the higher the relative rate
of non-synonymous substitution and a ratio >

1.0 indicates the action of positive natural
selection (see Box 7.1). Data from

Shpaer and Mullins (1993).

bases and of the codons used to specify amino acidsdiffer between genomes? The answer to this question will
not only provide us with clues as to the underlying mechanisms of molecular evolution, but also improve
methods of phylogenetic reconstruction because uneven base composition is one way in which errors can creep
into trees (see Chapter 6).

As soon as the first DNA sequences became available from different organisms it was apparent that there was
great variation in the frequencies with which the four bases were used. The usual way to express differences in
base composition is the frequency of G + C nucleotides compared to A + T nucleotides. In bacteria, for
example, mean G + C content varies from approximately 25% to 75% between species, but there is little
intragenome variation. The genomes of vertebrates, on the other hand, internally have a much greater range of
G + C values. This variation in base composition is caused by the presence of isochorescontinuous sections of
DNA sequence > 300 kb in length, each of which has a fairly uniform G + C content. The homogeneity of base
composition within each isochore extends to non-coding regions, introns and exons, and even the amino acid
composition of proteins reflects the underlying base composition.

The G + C content of isochores also varies between species. Those in most cold-blooded vertebrates tend to
have a narrow range of G + C content,
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Fig. 7.9
The isochore structure of the human genome.

Isochores are large DNA segments (>300 kb in
length) of homogeneous base composition. The

human genome is a mosaic of five isochore
families (L1, L2, H1, H2 and H3) which differ

in base composition. Adapted from
Bernardi (1993), with permission.

centred around 40%.  The base composition in the isochores of warm-blooded vertebrates (birds and mammals)
is much broader, with both G + C rich and G + C poor isochores found within the same genome. In humans, for
example, five different isochore families have been identified (L1, L2, H1, H2 and H3) with a G + C content
ranging from 39% to 53% (Fig. 7.9). The L1 and L2 families have low G + C content and together make up
62% of the genome, whereas isochores H1, H2 and H3 have a high G + C content and constitute 22%, 9% and
3% of the genome, respectively (the final 4% of the genome is made up of satellite and ribosomal DNAs). A
similar pattern is found in most other mammals although rodents seem to lack the heavily G + C-rich H3
family. Isochores have also been found in higher plants with, in the angiosperms, monocots having higher G +
C contents than dicots.

Not only do isochores reflect base composition, but they also appear to be associated with other aspects of
genome organisation, such as the density and type of genes found, replication time in the cell cycle, the
presence of transposable elements and the frequency of chiasmata (the sites of crossingover) (Table 7.2).

Both neutralist and selectionist theories have been put forward for the existence of isochores. A selectionist
hypothesis proposed by Bernardi et al. (1985) is that G + C-rich isochores, predominantly found in birds and
mammals, are an adaptation to the high body temperatures of these species. This occurs because G + C
nucleotides have an extra hydrogen bond between them and may therefore be more thermally stable than A + T
nucleotides at increased temperatures. To put it another way, the evolution of high body temperatures in birds
and mammals increased the possibility of thermal damage to their DNA so that placing genes in G + C-rich
isochores was selectively advantageous. This explanation may also apply to other taxaplant species which live
in arid climates also favour G + C-rich isochores. Evidence put forward in support of this hypothesis is that the
development G + C-rich isochores
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Table 7.2 The properties of isochores in vertebrates. Adapted from Holmquist
and Filipski (1994), with permission.
G + C-rich isochores A + T-rich isochores
Correlate with reverse Giemsa bands (R
bands) on chromosomes

Correlate with Giemsa bands (G
bands) on chromosomes

Early replicating Late replicating
High density of genes, including both
housekeeping and tissue-specific

Low frequency of genes, only
tissue-specific

SINEs present LINEs present
CpG islands in genes No CpG islands
High G + C content at third codon
position

High A + T content at third codon
position

High frequency of retroviral sequences Low frequency of retroviral
sequences

High frequency of chiasmata Low frequency of chiasmata
More details about the evolution of genome organisation are given in Chapter
3.

must have occurred independently, as birds and mammals do not share an immediate common ancestor, which
suggests that it is linked to their high body temperatures (the similar genome structures in birds and mammals
also mean that they have proteins more similar than expected, which may explain the small distance between
the human and chicken a-globin sequences seen in Fig. 7.1, and may even make them group together by
mistake in phylogenetic trees). However, it is also the case that some thermophilic (heat-loving) bacteria are A
+ T-rich, so that the association between G + C content and thermal stability is tenuous, and it is hard to
visualise how selection would act upon changes in base composition which, individually, would have a very
small effect on fitness.

As noted previously, it is possible to think of neutralism as an evolutionary theory based on the importance of
mutation. Consequently the neutralist explanation for the existence of isochores is that they simply reflect
variation in the process of mutation across the genome. For example, Wen-Hsiung Li and colleagues looked at
mutation patterns in the argininosuccinate synthetase-processed pseudogenes (and their flanking regions) from
anthropoid primates.  These pseudogenes were derived from the same ancestral functional gene at around the
same time but then inserted into different regions of the genome. Yet, despite their common ancestry, they now
differ in base composition. Because pseudogenes are unlikely to be subject to natural selection, the differences
in base composition must have been caused by regional variation in mutation patterns. But why should
mutation patterns vary across genomes? There are three mechanisms by which this could occur, involving DNA
replication, DNA repair and recombination.

According to the replication hypothesis there is a correlation between replication time and base composition so
that genes which replicate early in the cell cycle are more G + C-rich than genes that replicate at later times.
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This is thought to occur because the G and C nucleotide precursor pools (dNTPs), which contain the
nucleotides to be inserted into the replicating DNA molecule, are larger than the A + T pools during the early
phase of replication so that polymerase errors are more likely to result in the insertion of G + C at this time.
Although the extent of the correlation between replication time and base composition is disputed, the sizes of
isochores are compatible with the amount of chromosome replicated at a particular time, suggesting that
patterns of replication may indeed influence patterns of genome evolution.

In contrast, the repair hypothesis is based on the assumption that the efficiency of DNA repair varies across the
genome and that certain DNA errors are repaired more efficiently than others. This variation may be an
outcome of transcriptionally active areas of the genome being repaired more efficiently than genomic regions
that are transcribed less often. Further, CpG islandsregions of the genome with a high frequency of CpG
dinucleotides and which are associated with the presence of genes (see Chapter 3)are maintained by a special
repair system, suggesting that the efficiency of DNA repair is dependent on genome location. However, it is
uncertain whether these repair differences can extend over large enough sections of the genome to produce
isochores.  The repair hypothesis is described in more detail in section 7.4.

Finally, the recombination hypothesis claims that the isochore structure of vertebrate genomes is the outcome of
differences in the pattern and frequency of recombination, with low G + C localities associated with regions of
reduced recombination. There are a number of pieces of evidence for this in mammals. First, and most obvious,
genes with low rates of recombination have low G + C values. The second piece of evidence cited is a more
dramatic extension of this: the large non-recombining part of the Y chromosome likewise has a low G + C base
composition. Finally, there is a positive correlation between G + C content and chiasmata density, a marker of
recombination rate. Although the mechanics by which the correlation between base composition and
recombination rate takes place are unclear, the fact that recombination does seem to play a major role in
structuring the eukaryotic genome (as we saw in Chapter 3), makes this an attractive hypothesis for the
existence of isochores.

Although it is currently undetermined which of these hypotheses, singly or in combination, explains why
patterns and rates of mutation vary across the vertebrate genome, such a neutralist interpretation presently
seems a more likely explanation for the existence of isochores than theories based on selective differences
between nucleotides.

7.3.2
What Determines Codon Usage?

Another important aspect of genome organisation is the observation that species and genes differ in patterns of
codon usage. The degeneracy of the genetic code means that most amino acids can be specified in a number of
different
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triplet combinations of nucleotides. The null hypothesis is that all codons for a particular amino acid are used
with equal frequency. This was refuted when nucleotide sequences became available for a wide range of
organisms and genes and extreme biases were found in the usage of codons. For example, the amino acid
glutamic acid is specified by two codons, GAA and GAG. In human nuclear genes GAG is used more often
than GAA (frequencies of approximately 40 and 28 per 1000 codons, respectively) whereas in E. coli the
relationship is reversed. The full codon usage patterns of human nuclear genes and E. coli are shown in
Fig.  7.10. There has been a great deal of debate about how the 'choice' of a particular codon is made, especially
at those codons which differ only in the third position so that they code for the same amino acidthe
synonymous codons.

A selectionist argument to explain non-random patterns of codon usage is that the choice of particular
synonymous codons some how increases the fitness of the organism. For example, in some unicellular
organisms, such as E. coli and yeast, highly expressed genes show more codon bias than lowly expressed genes
because the former require more translational efficiency (rapid production with low error) than the latter.
Natural selection therefore favours codons that match the set of tRNA molecules required to transport them to
the ribosome and which have themselves coevolved to match the codon population (Fig. 7.11). In lowly
expressed genes there is more flexibility in which tRNAs can be used and therefore less codon bias.

Although the differences in fitness between synonymous codons will be very small, the large population sizes
of unicellular organisms mean that even these small differences can lead to particular codons being favoured
(remember that natural selection works best in large populations). There is even evidence from E. coli that the
selection for codon choice may partly determine which amino acids are used because changing amino acids
might provide a more or less translationally efficient codon. However, because so few unicellular genomes have
been studied in detail it is premature to say how widespread selection for codon choice is.

Although the codontRNA coevolution model is a selectionist explanation of codon choice, it also supports the
neutralist prediction that there is a relationship between functional constraint and the rate of nucleotide
substitution: high expressionhigh codon bias genes have a lower rate of synonymous substitution than low
expressionlow codon bias genes because there are fewer potentially neutral changes in the former group (Fig.
7.11 ). A correlation between codon bias and substitution rate is also found in Drosophila genes (Fig. 7.12). For
example, the Adh and Adhr genes are located very close to each other (on chromosome II) and obviously arose
from a gene duplication, yet they differ greatly in levels of expression: Adh is very highly expressed but Adhr
only at low levels. As predicted, Adh has a strong codon bias and a low rate of silent substitution whereas Adhr
is only weakly codon biased and has a high rate of silent change. Such a correlation, along with direct measures
that
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Fig. 7.10
Overall patterns of codon usage in human nuclear genes and those from E. coli.
The human data is based on 8701 genes and the E. coli data from 5976 genes.

It should be noted that these patterns vary greatly between genes (see text).
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Fig. 7.11
How gene expression in some unicellular
organisms determines the extent of codon

bias and the rate of synonymous substitution.

Fig. 7.12
Relationship between the number of silent substitutions
per site (dS) and synonymous codon bias (chi/L) in 10

Drosophila genes. Each point represents the comparison
of one gene from the D. melanogaster species group

(usually D. melanogaster) with one from the D. obscura
species group (usually D. pseudoobscura). Chi/L

represents a c2 for deviation from equal useof
synonymous codons, divided by gene length (L),

averaged for each species pair. Adh and Adhr
are highlighted by closed circles.

Adapted from Sharp and Li (1989).

highly expressed genes are the most biased and that codon choice matches tRNA abundance, suggests that
natural selection plays an important role in determining patterns of codon bias in Drosophila. It is also possible
that codon
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choice is selected in some plant species. In maize (Zea mays), for example, highly expressed genes tend to be
more G + C-rich.

Different explanations have been put forward to explain patterns of codon usage in mammalian genomes. In
particular, codon bias seems more likely to be determined by differences in (neutral) mutational pressure than
natural selection. Evidence for this is that the base composition of synonymous codons does not differ
significantly from that of the surrounding non-coding DNA and introns which are assumed to be neutral, so
that the codons used in any particular gene correspond to the local mutational bias: genes in G + C-rich regions
of the genome tend to use G + C-rich codons. This contrasts with what is seen in unicellular organisms where
codon choice can be selected and where the base composition at silent sites may be unlike that seen in
surrounding non-coding regions. Furthermore, patterns of codon usage in mammals do not appear to be
associated with either the level or timing of gene expression or with tissue type, as might be expected if natural
selection were in operation. Natural selection is also less likely to be the explanation for codon bias in
mammalian genomes because the smaller population sizes of these species mean that selection pressures would
have to be considerably stronger than those observed in E. coli to explain the differences in codon bias.  As
with intragenomic differences in base composition, variation in the patterns of codon usage along the
mammalian genome seem best explained by varying patterns of mutation.

7.4
The Molecular Clock

Perhaps the most exciting, unexpected and controversial claim in molecular evolution, and one that we
encountered at the start of this chapter, is that genes evolve at a constant rate, giving rise to a molecular clock.
Neutralists have taken the clock as support for their theory because to them it demonstrates the constancy of the
underlying neutral mutation rate, the driving force of molecular evolution. But the molecular clock is important
not only because of its potential support for the neutral theory. It may also represent a general evolutionary rule,
and one which enables us to estimate times of species divergence simply by comparing their gene sequences.
At the same time, methods of phylogenetic reconstruction are more likely to be accurate if genes evolve at a
constant rate (Chapter 6).

When the neutral theory was first proposed in the late 1960s, many of the protein sequences available appeared
to show a picture of long-term rate constancy. We have already seen that this is generally true of a-globin. This
clock-like behaviour is very different to evolution at the morphological level which is characterised by extreme
rate variation. Examples of low rates of evolutionary change are provided by 'living fossils' such as the
coelacanth Latimeria which has seemingly remained little changed over millions of years, while adaptive
radiations, such as the diversification of the orders of eutherian
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(placental) mammals at the end of the Cretaceous period (approximately 80 million years ago), show evolution
at higher speeds.

The concept of a molecular clock does not mean, however, that all genes and proteins evolve at exactly the
same rate, as it was clear from the earliest studies that there was great variation between proteins (see Fig. 7.4).
As we have already pointed out, variation in rate among genes and proteins is compatible with the neutral
theory if the underlying causes are differences in selective constraint. It is also clear that different genetic
systems evolve at different rates: for example, vertebrate mitochondrial DNA evolves much faster than
vertebrate nuclear DNA. The debate concerning the existence of a molecular clock, and thus the validity of the
neutral theory, therefore focuses on whether rates of substitution are constant within genes across evolutionary
time.  Furthermore, a long-term average rate does not exclude the possibility of short-term rate fluctuations.

7.4.1
Neutral Theory and the Molecular Clock

At face value, the neutral theory has a simple explanation for existence of a molecular clock. The rate of
nucleotide substitution (or fixation) at a nucleotide site per year, k, in a diploid population of size 2N is equal
to the number of new mutations (neutral, deleterious or advantageous) arising per year, m, multiplied by their
probability of fixation, u. Therefore:

For a neutral mutation, the probability of fixation is simply the reciprocal of the population size (see Chapter 4):

so that the rate of substitution of a neutral mutation is given by:

The fact that both 2N and 1/2N are included in this equation means that the population size part can be
cancelled out, so that:

This is one of the most important formulae in molecular evolution because it means that the rate of substitution
of a neutral mutation is dependent only on the underlying mutation rate and independent of other factors such as
population size. This also holds for mutants where the selective coefficient, s, is so small that it is less than the
reciprocal of the effective population size (s < 1/2Ne) (note that when we are dealing with natural selection we
need to consider the effective population size, Ne, rather than the census size N, because the probability of
fixing an advantageous mutant depends on it arising in a subset of the population that are able to reproduce).
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The situation is different for selectively advantageous mutations. Although the rate of substitution will depend
on the precise type of selective process assumed, Kimura showed using a simple model that the probability of
fixation of a selectively advantageous mutation with codominance is:

i.e. roughly twice the selective coefficient (although see Gillespie (1995) for a discussion of some more
complex selective models). If this is substituted into equation (7.1) we get:

Therefore the rate of substitution for an advantageous mutation depends on the population size and the
magnitude of the selective advantage, as well as the mutation rate. For natural selection to produce a molecular
clock it is then necessary for three variables, Ne, s and m, incorporating ecological, mutational and selective
events, to be the same across evolutionary time. This makes a molecular clock highly unlikely with natural
selection.

The fact that the neutral theory appeared to predict a molecular clock and that this clock was observed in the
protein sequence data available in the late 1960s initially led Kimura to cite rate constancy as the best evidence
for the neutrality of mutations. However, during the 1970s, as more comparative protein sequence data
accumulated and particularly from mammalian genes, examples of rate variation started to appear and a debate
surrounding the constancy of the molecular clock began.

The most common way to test the molecular clock at this time was with the dispersion index, R(t), which
measures whether there is more variation between lineages than expected under a Poisson process, the statistical
distribution which describes the accumulation of substitutions under neutral theory. This test recognises that a
molecular clock driven by neutral mutation is not a metronome, perfectly in time, but that there will be some
random statistical fluctuations in the rate of substitution because the genetic drift of neutral mutations is itself a
random sampling process. We can therefore think of neutral theory as predicting a Poisson clock.  If the data fit
a Poisson clock (and therefore support the neutral theory) the variance in substitution rate should be no greater
than the mean substitution rate, resulting in an R(t) not significantly greater than 1.0 (see Box 7.2). However, it
was soon evident that in many mammalian proteins values of R(t) were greater than 1.0, with an average of
around 2.5 (Table 7.3). This represented a serious problem for the neutralists and led to claims that natural
selection was in fact the more important force in molecular evolution.

How could the neutral theory explain this rate variation? One possibility is that rates do not vary at all but they
have been miscalculated because mistakes have been made concerning the phylogenetic relationships or times
of divergence of the species analysed. For example, anomalously high rates of substitution
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Table 7.3 Estimates of the dispersion index, R(t), for
different mammalian proteins. Data from Kimura
(1983) and Gillespie (1986b).
Protein Species (n) Amino acids R(t)
Haemoglobin a-chain 6 141 1.17
Haemoglobin b-chain 6 146 3.04
Myoglobin 6 153 1.60
Cytochrome c 4 104 3.22
Ribonuclease 4 123 2.15
a-Crystallin 6 175 2.71

are found in guinea pigs and other histricomorph rodents which if true pose a problem for the neutral theory.
However, it now seems likely that the guinea pig is not a rodent at all but in fact a much more divergent lineage
of mammals. The large genetic distance between the guinea pig and other mammals is then due to its ancient
divergence rather than an increase in substitution rate. One way to reduce the problem of phylogenetic error in
rate estimation is to make use of the relative rate test (Box 7.2), which only requires sequence information from
three species, although accurately determining rates of substitution is likely to remain a problem in molecular
evolution.

Box 7.2 Testing the molecular clock

Testing the accuracy of the molecular clock has formed an important part of the
study of molecular evolution.  Here we describe two tests that are often applied
to sequence data. A likelihood ratio test of the molecular clock is described in
Chapter 6.

1 The dispersion index, R(t)

Historically, the most important way to test the molecular clock has been to
examine whether there is more rate variation between lineages than expected
under a Poisson process, the statistical distribution used to describe the
accumulation of mutations under neutral theory. If the data fit a Poisson process,
then the variance in the number of substitutions between lineages should be no
greater than the mean number. The dispersion index, R(t), tests whether this is
the case: if the data fit a Poisson process then R(t)= 1.0, if not then R(t) > 1.0 and
the clock is said to be overdispersed (although recent studies indicate that R(t) is
a poor statistic for determining whether the data fit a Poisson process).

Initially R(t) was calculated by estimating the mean and variance in the number
of substitutions on the lineages of a star phylogeny, where all sequences are
taken from species that diverged within a short time period, such as the orders of
placental mammals. A star phylogeny is used because it removes any
phylogenetic structure which would complicate the calculations. However,

continued
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continued

Box 7.2

whether the mammalian radiation is a star phylogeny is questionable as this may
simply reflect a lack of knowledge about their branching order. For this reason,
later work using R(t) is more often based on the unrooted tree of just three
mammalian ordersprimates, rodents and artiodactyls.

2 The relative rate test

The simplest way to test the accuracy of the molecular clock is to estimate the
difference in the number of substitutions between two closely related taxa in
comparison with a third, more distantly related outgroup species. The advantage
of this test is that it does not require any knowledge of the divergence times of
the taxa in question. An example is presented in Fig. B7.1. Here Old World
monkeys (species 1) and humans (species 2) are compared with a more distantly
related New World monkey (species 3).  If the human and Old World monkey
sequences have evolved according to a molecular clock, both should be equally
distant to the New World monkey, so that d13= d23. However the data analysed
here show that humans have in fact evolved at significantly lower rates than Old
World monkeys.

Fig. B7.1
The relative rate test. Because Old World monkeys (species 1) and humans

(species 2) share a more recent common ancestor (node x) than either does to
New World monkeys (species 3), any difference in rate between them must have

occurred since they split from this common ancestor. This can be determined
by measuring their respective distances to the outgroup (species 3) and testing

whether any difference in these distances (d13  d23) is significantly greater than
zero. In the test shown here the human lineage appears to be evolving slower
than the Old World monkey lineage because it has a smaller distance to the

New World monkey. Distances given as percentage substitutions. *Significant
at the 1% level. Data from Li et al. (1987) and Li (1993).

continued on p. 256
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continued

Box 7.2

Despite their simplicity there are problems with relative rate tests. First, it is
critical that species 1 and 2 are the most closely related, so that some (albeit
limited) knowledge of phylogeny is required. In case such as the orders of
placental mammals phylogenetic relationship are uncertain, which may lead to
errors. Second, it is important not to use an outgroup that is too distantly related
to species 1 and 2 because the more divergent is, the a greater the problem of
multiple substitution and the smallers the impact any difference in rate will have
on the distance measurements. Finally, relative rate tests are often simultaneously
applied to the same sequences for multiple sets of taxa so that they are not
independent.  This will make the assignment of significance values more
difficult.

7.4.2
Can Lineage Effects Explain Variation in the Molecular Clock?

Another way to explain rate variation, and one which gained momentum during the 1970s, was based on the
realisation that if the underlying neutral mutation rate varies, so will the rate of substitution (because k = m;
equation (7.4)). There are three ways for mutation rates to vary between species, depending on differences in (i)
generation time, (ii) metabolic rate and (iii) the efficiency of DNA repair. Because these are ways in which the
mutation rate can vary between lineages they are collectively known as lineage effects. Uncertainties in the
phylogenetic relationships of the species under analysis can also be put into this category. The neutralist
argument is that lineage effects can explain all variation in the tick of the molecular clock while selectionists
believe that even if these differences are taken into account genes still show rate variation, a residue which is
due to the action of natural selection (residue effects).

The generation time hypothesis has attracted most attention. This simply states that if the mutation rate is set to
generation rather than real (chronological) time, so is the rate of substitution. At the molecular level generation
time (g) can be defined as the time it takes for germ-line DNA to reproduce (replicate) itself: for a gamete to
produce another gamete (Fig. 7.13). If most mutations are the result of errors in this process and if species have
similar numbers of cell divisions per generation, then we should expect that species with longer generation
times to accumulate fewer substitutions within a given period of real time than those with shorter generations
because there will be fewer opportunities for replication errors in the former. This means that the rate of
substitution under neutral theory should be a function of both the mutation rate and generation time:

so that the molecular clock will be set to generation time.
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Fig. 7.13
The generation time molecular clock. Each open circle

represents a generation from gamete to gamete and
each closed circle a mutation (with one occurring in
each generation). If a species has a short generation
time (small circles) more generations will take place

over a given time period, so that there are more
opportunities for germ-line mutations and

hence a faster molecular clock.

There have been many studies testing whether the molecular clock is better correlated with generation or real
time, particularly for mammalian genes. A general conclusion is that the clock at silent sites (and non-coding
DNA) is generation time dependent; or rather, that the observed variation in rates of substitution correlates with
differences in generation time. For example, Ohta (1995) shows that silent rates are 2.6-fold higher in rodents
than primates (Fig. 7.14). Rodents have shorter generation times than primatesthose in mouse and rat may be
40-fold (or more) shorter than those in humansso that mutation rates should be higher in these species.  Another
example of how generation time affects the molecular clock is the slowdown in rate which

Fig. 7.14
Numbers of synonymous and non-synonymous substitutions for 49 genes

from three mammalian orders: primates, rodents and artiodactyls, the
phylogenetic relationships of which approximate a 'star phylogeny'. Note

that, in both cases, rodents have accumulated more substitutions than
primates or artiodactyls. Adapted from Ohta (1995).
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has occurred along the human lineage. Li et al. (1987) found the silent rates in the orang-utan, gorilla and
chimpanzee lineages to be 1.3-, 2.2- and 1.2-fold faster, respectively, than those in humans, which matches the
differences in generation times between these species. A similar observation has been made in non-coding
regions (see Box 7.2). A generation time molecular clock at silent sites and non-coding DNA supports the
neutral theory because these parts of the genome are often regarded as strictly neutral (see section 7.2), so that
their rate of substitution will only depend on the mutation rate, itself set to generation time.

More evidence for a generation time clock comes from plants. Although generation time is a difficult concept
to apply to plant species, because there is no clear distinction between the germ-line and the soma, an analysis
of chloroplast rbcL gene sequences revealed that rates of substitution in grasses are five-fold higher than those
in palms. This is compatible with their different ages at first flowering, a possible measure of generation time.
Other studies of rbcL sequences have uncovered similar patterns: for example, annual species of angiosperms
evolve more rapidly than perennial species, whilst woody bamboos evolve slowly and have long times to first
flowering.

However, the relationship between generation time and substitution rate is not always so simple. One obvious
complication is in the assumption that the number of germ-line cell divisions per generation is constant among
diverse taxa. If this number were to differ between species then those with similar generation times may
actually experience different numbers of replications and hence have different mutation rates.  This may in part
explain why differences in substitution rate are often not as great as expected given differences in generation
time (i.e. rodents do not evolve 40-fold faster than primates). For example, although human and rat females
undergo similar numbers of germ-cell divisions per generation (estimated to be 33 and 28, respectively), human
males experience many more divisions than their murine counterparts (estimated to be 205 compared with 57 in
the rat), which may reduce the difference in substitution rate between these species. The same hypothesis
predicts that mutation rates should be higher in males than females because more cell divisions take place in
spermatogenesis than oogenesis. This appears to be the case: silent rates are 2.3-fold higher in the human Y-
linked zinc-finger-protein gene (ZFY) than its X-linked homologue (ZFX). Similar results have been found for
other mammalian genes which possess copies on both the X and Y chromosomes (and also in birds where the
females are heterogameticZW). This has been taken as evidence that much of mammalian molecular evolution
is male-driven and, crucially, that it is the number of germ-line DNA replications which ultimately determines
the rate of substitution, as predicted by the generation time hypothesis. However, an alternative explanation is
that the mammalian X chromosome has a selectively lower rate of mutation compared with the Y chromosome
and the autosomes because deleterious recessive mutations on the X will be expressed when hemizygousthat is,
when an X
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chromosome is matched with a Y chromosomebut not when heterozygous (i.e. XX, but with different alleles on
each).

A more serious problem with the generation time hypothesis is that the expected correlation between generation
time and substitution rate is not always found. For example, anomochlooid grass species evolve more slowly
than woody bamboos but flower earlier. Furthermore, back in mammals, the molecular clock at non-
synonymous sites (or in protein sequences) seems to correlate better with real than generation time. For
example, while Ohta shows that rodents evolve 2.6-fold faster than primates at synonymous sites, they are only
1.6-fold faster at non-synonymous sites (Fig. 7.14). Why the clocks at synonymous and non-synonymous sites
are set to different time-scales has proven a difficult problem for the neutral theory and one which has been a
major impetus in the development of the nearly neutral theory (see section 7.5).

Even more dramatic departures from the generation time clock are found in mtDNA where some mammals,
reptiles and fish with relatively short generation times have low rates of substitution. A notable case is sharks in
which the rate of silent change is about five- to sevenfold lower than in primates and ungulates despite the fact
that these species have similar generation times. Similarly, although whales have shorter generation times than
primates, they appear to evolve at lower rates.  These results have led to the hypothesis that differences in the
metabolic rate of species are a better explanation of the variation in rates of molecular evolution than
differences in generation time. The basis of this metabolic rate hypothesis, proposed by Martin and Palumbi
(1993b), is that organisms with high metabolic rates have increased rates of DNA synthesis and consequently
higher rates of mutation than species with lower metabolic rates. Furthermore, free-oxygen radicals, which are
produced during aerobic respiration, have mutagenic affects which increase the mutation rate in species with
high metabolic rates.

There are two pieces of mtDNA evidence which support this hypothesis. First, small-bodied animals, which
have fast metabolisms, tend to have higher rates of substitution than large-bodied animals with slower
metabolisms. Second, warm-blooded vertebrates, which might be expected to have high metabolic rates, have
higher rates of substitution than cold-blooded vertebrates (Fig. 7.15).

However, both metabolic rate and generation time (as well as other life-history variables) are correlated with
body size (see Fig. 7.15) which makes it difficult to discriminate their individual contributions to the rate of
sequence evolution. In fact, when the affects of both factors are analysed using phylogenetically independent
comparisons, as has been done for mammals, generation time appears as a better predictor of rate of sequence
change than metabolic rate.

A final problem with the generation time hypothesis is the assumption that the main source of mutation is the
miscopying of bases during DNA replication. However, it is also possible that most substitutions are in fact the
 

< previous page page_259 next page >



< previous page page_260 next page >

Page 260

Fig. 7.15
Relationship between the rate of sequence evolution in mtDNA
(percentage divergence per million years) and body mass (in kg)

for various vertebrates. Mean values are used in all cases and
both axes are drawn on a logarithmic scale. Poikilotherms
(cold-blooded vertebrates) have lower rates of change than

homeotherms (warm-blooded vertebrates) and in both groups
larger species (with slower metabolisms) evolve slower than

smaller species. Data from Martin and Palumbi (1993b).

result of incorrectly repaired damage to DNA (Fig.  7.16). If species differ in their ability to repair this damage,
and rodents are claimed to be less efficient than primates in this respect, then they may also differ in rates of
substitution, with species which repair their DNA in the most efficient manner evolving at the lowest rates.

There has been considerable debate about whether differences in DNA repair efficiency can produce the
observed differences in rates (and patterns) of nucleotide substitution. Unfortunately, repair mechanisms appear
to be extremely complex and our knowledge of them is far from complete: not only are many genes involved
but there are different repair pathways depending on the type of damage, when it occurs and its location in the
genome (see Chapter 3). There is, however, some support for the hypothesis that DNA repair influences
mutation rate. First, there is growing evidence for a connection between the machinery of DNA transcription
and that of DNA repair such that highly transcribed genes are repaired more efficiently than genes transcribed
at low levels. Repair also seems to be directed to the transcribed strand of DNA. This connection could arise if
genes are preferentially repaired when there is an open chromatin structure, as is found in transcriptionally
active regions, or because the same gene is involved in both processes, which has been found with the basal
transcriptor factor 2 (TFIIH) gene of humans. Second, base composition and substitution rate at silent sites in
mammalian genes tends to be gene rather than species specific, perhaps signifying that homologous genes are
transcribed and repaired in a similar manner.
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Fig. 7.16
Schematic representation of the relationship between

DNA repair and mutation. Damage to DNA can occur
either directly, for example through the action of

mutagens, or because of miscopying during replication.
The DNA repair hypothesis states that the ability to
correctly repair DNA varies between species and

genes so that the mutation rate will also vary.

Taken together these observations imply that differences in the efficiency of DNA repair might partially
determine rates of substitution, although it is unlikely that they can explain all instances of rate variation
because closely related species which differ in substitution rate, such as the hominoid primates, are unlikely to
differ greatly in the efficiency of DNA repair.

7.5
The Nearly Neutral Theory

So far we have described the ways in which the neutral school has tried to explain variation in the tick of the
molecular clock by examining how mutation rates can vary among species and genes. Another way in which
variation in substitution rates can be incorporated within the framework of the neutral theory is by incorporating
mutations with very small selective coefficients (Fig. 7.17). This is the nearly neutral theory of molecular
evolution.

Fig. 7.17
Summary of the possible causes of
rate variation under neutral theory.
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7.5.1
Development of the Nearly Neutral Theory

By the early 1970s it was becoming clear that the variation in the rate of amino acid substitution in a number of
proteins was inconsistent with a Poisson clock (Table 7.3) and that levels of heterozygosity observed for many
species were often not as high as expected under the neutral theory (this is discussed in more detail in the next
section). These two problems led Tomoko Ohta to propose that most non-synonymous substitutions (or amino
acid changes) are not perfectly neutral but slightly deleterious or nearly neutral. This, she thought, was a more
biologically realistic view of how mutations would affect the complex interactions between the amino acids
which make up a fully functional protein (Fig. 7.18).

Mathematically, nearly neutral mutations are defined as those where the product of the population size and the
selective coefficient is near zero (for completely neutral mutants, Ns = 0). This means that although the
selective coefficients against these changes are very small, s, as well as N, will influence their probability of
fixation so that they are subject to both (weak) natural selection as well as genetic drift. The inclusion of weak
selection together with genetic drift is how the nearly neutral theory differs from its older brother.  The rate of
substitution (per year) for nearly neutral mutations will therefore depend on population size and the selective
coefficient as well as the mutation rate, itself set to generation time. Mutations in non-coding DNA and at
synonymous sites are still regarded as strictly neutral so that their rate of substitution will depend only on the
mutation rate and the species generation time.

Since the nearly neutral model was first proposed in the early 1970s, a number of different versions have been
developed which differ in the type of

Fig. 7.18
The nearly neutral model of molecular evolution. The pie
represents the total number of mutations arising in a gene.
When it was originally proposed nearly neutral theory only
considered slightly deleterious mutations but more recently
it has been modified to incorporate slightly advantageous

changes. The proportions assigned to each class of
mutation are for graphical purposes only.
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Fig. 7.19 
How the nearly neutral theory produces a real time

molecular clock at non-synonymous sites. Mutations
that occur in species with small populations have a

higher probability of fixation, but because these
species tend to have long generation times, the
rate at which new mutations arise each year is

low. Conversely, the probability of fixation will
be lower in species with large population sizes
but their generation times will be short so that

new mutations will arise more frequently.

statistical distribution used to describe the selection coefficients of nearly neutral mutations. The most
significant development occurred when the theory was modified to accommodate slightly advantageous
mutants, whereas in its original form it was assumed that all nearly neutral mutants were slightly deleterious.

If most nearly neutral mutants are slightly deleterious, then Ohta's theory predicts that the relative importance of
(negative) selection or genetic drift, and hence the probability of allele fixation, will depend on the size of the
population: negative selection is more important in large populations, so that the probability of fixation of any
mutant allele is low, whereas genetic drift is stronger in small populations so that the probability of fixation is
higher. This can be used to explain why the molecular clock at non-synonymous sites and in proteins fits real
time better than generation time. The mechanism for this is the inverse relationship between population size and
generation time which balances out rates of mutation and probabilities of fixation. This works as follows.
Species which live in large populations tend to have shorter generation times (and smaller body sizes) than
species which have small population sizes.  This means that although the nearly neutral mutations which arise
in species with small population sizes have a higher probability of being fixed by genetic drift, there will be
few such mutations each year because the generation times of these species are long. Conversely, mutations in
species with large populations have a lower probability of fixation but more will arise each year because their
generation times are shorter and as a consequence mutation rates are higher (Fig. 7.19).

7.5.2
Can Nearly Neutral Theory Explain Variation in the Molecular Clock?

As we have already noted, synonymous rates in mammals are more generation
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Fig. 7.20 
Estimates of R(t) for synonymous and non-synonymous substitutions for 20 loci from primates,

rodents and artiodactyls. Weights take into account lineage effects and are calculated as the
average number of synonymous or non-synonymous substitutions divided by the number of

synonymous or non-synonymous sites. No correction is made for lineage effects in the
case of equal weights. Values of R(t) still significantly greater than 1.0 after weighting

are indicated. Lineage effects have less effect at non-synonymous sites but R(t)
is more often > 1.0. Data from Gillespie (1989b).

time dependent than non-synonymous rates, which in turn show a better fit to real time (Fig. 7.14). This could
mean that synonymous substitutions are strictly neutral and non-synonymous ones nearly neutral, in keeping
with Ohta's theory. This can also be seen in analyses of R(t).

At face value, the R(t) values for both synonymous and non-synonymous substitutions from 20 mammalian
genes are well over 1.0, thereby rejecting the Poisson clock (Fig. 7.20). However, if a correction ('weighting') is
made for generation time (and other lineage effects) then the R(t) for synonymous sites falls from 14.41 to 4.64.
This means that most rate variation in synonymous rates is indeed due to lineage effects, although there are still
some cases where R(t) is significantly greater than 1.0 after the correction. After correcting for lineage effects at
non-synonymous sites values of R(t) only decline from 8.26 to 6.95, meaning that lineage effects have little
impact on rates of non-synonymous substitution. Therefore Ohta is right in saying that non-synonymous rates
are less generation time dependent than synonymous rates. However, values of R(t) for non-synonymous sites
are often significantly greater than
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1.0 so that there is not an overall real time molecular clock of non-synonymous evolution.  Ohta suggests that
this residue rate variation is due to fluctuations in population size: when populations are small, and particularly
during bottle-necks, more nearly neutral substitutions will be fixed because genetic drift will be stronger.
Evidence for this comes from Drosophila and particularly the observation that Hawaiian species, which have
smaller population sizes than their continental cousins, are very diverse at the amino acid level: the ratio of
non-synonymous (nearly neutral) to synonymous substitutions is 4050% higher in Hawaiian Drosophila
compared with continental species. However, it is also possible that the residue left in R(t) after removing
lineage effects is due to natural selection, which is more apparent in the case of non-synonymous substitutions
because these have larger effects on protein structure and function.

7.6
Explaining Genetic Variation within Species

7.6.1
Testing the Neutral Theory within Species

So far we have concentrated on the molecular evolution of genes sampled from different species. Yet for a
theory to adequately explain molecular evolution it must be able to link change at this level to that which takes
place within a single population. To many, the beauty of the neutral theory is that it makes this connection with
great simplicity. It is therefore important that we assess whether this is really the case.

The neutral theory makes two very important predictions about levels of genetic variation within species. The
first is that the extent of polymorphism (usually measured as average heterozygosity) is a function of only the
population size (N) and the mutation rate (m), so that the larger the population and the higher the mutation rate,
the greater the amount of variation seen within species (see Chapter 4). The second prediction is that levels of
polymorphism are correlated with the amount of variation between species, so that genes which evolve slowly
between species will also exhibit low levels of sequence diversity within them (and vice versa), assuming that
functional constraints and mutation rates remain constant. This correlation arises because under neutral theory,
genetic variation, whether it occurs within or between species, is the outcome of the same evolutionary
processthe genetic drift of neutral mutations. The only difference is that this process will have run for a longer
period of time between species than within them. For neutralists, polymorphism is therefore a transient 'phase'
of molecular evolution. For selectionists, on the other hand, polymorphisms are thought to be actively
maintained by selection and not transient phenomena.

During the 1970s the results from electrophoretic studies seemed to cast doubt on the neutralist prediction that
there is an association between heterozygosity, population size and mutation rate. Specifically, and rather
ironically given that the neutral theory was formulated to explain high levels
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Fig. 7.21
The observed heterozygosities for 77 species (points) compared with
those expected under the neutral theory (diagonal line). The expected
heterozygosities were calculated using estimates of population size

and generation time for each species and assuming a mutation rate per
generation of m = 107. Data from Nei and Graur (1984). From
Gillespie (1987), with permission of Oxford University Press.

of genetic variation, levels of heterozygosity were found to be too low and occupied too narrow a range for the
neutralists (Fig. 7.21): for example, humans and Drosophila show similar levels of allozyme polymorphism but
have very different population sizes. Although these observations suggested that there were problems with the
original neutral model and were a key factor in the development of the nearly neutral theory, firm conclusions
were difficult to draw because N and m are hard to estimate and electrophoresis underestimates the extent of
genetic variation. More recent studies of allozyme polymorphism based on cross-species comparisons have
revealed a general association between heterozygosity and mutation rate. However, analyses of this type are not
the best way to test evolutionary models because they lack discriminatory power.  We therefore focus on studies
of DNA variation.

An important way of assessing the neutral theory in recent years has been to test the proposed correlation
between the levels of within species polymorphism and between species divergence (Box 7.1). For example, if
synonymous and non-synonymous substitutions are neutral then the ratio of these two types of change will be
the same within and between species because both are outcomes of the same neutral mutation process. Positive
natural selection, on the other hand, would alter this ratio because an advantageous
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non-synonymous substitution will be fixed quicker by natural selection (i.e. will be a polymorphism for less
time) than one subject to only genetic drift, so that there will be less within species non-synonymous variation
than expected given what is seen between species.

Over a number of years Martin Kreitman and colleagues have analysed patterns of synonymous and non-
synonymous substitution at the alcohol dehydrogenase (Adh) locus in D. melanogaster and its close relatives
and found lower proportions of non-synonymous variation within than between species, as expected if positive
natural selection has acted on this gene: 29% of the fixed nucleotide differences between species are non-
synonymous compared with only 5% of the polymorphisms within species (Fig. 7.22). This is also true of some
other genes in Drosophila. In the glucose-6-phosphate dehydrogenase (G6pd) gene of D. melanogaster and
D.  simulans for example, the level of non-synonymous variation within these species is far less than would be
expected given the observed levels of divergence between themonly two non-synonymous polymorphisms
compared with 21 fixed non-synonymous changes. Although these patterns of substitution suggest the past
action of natural selection, they can also be explained if the non-synonymous substitutions are nearly neutral: if
Drosophila populations have only recently increased in size (which is uncertain) then little non-synonymous
variation will have accumulated within them (because nearly neutral mutations are fixed more

Fig. 7.22
Numbers of non-synonymous and synonymous substitutions in the Adh locus

within (polymorphic) and between (fixed) three species of Drosophila. The results
of a G-test show that there are significantly fewer non-synonymous polymorphisms

than expected by the neutral theory given the number of fixed non-synonymous
changes observed between species. The double-headed arrow at the bottom of
the tree signifies that the fixed substitutions leading to D. yakuba could have
occurred at any time since this species separated from D. melanogaster and

D. simulans. Adapted from McDonald and Kreitman (1991).
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slowly in large populations) and the observed pattern of high interspecific divergence but low intraspecific
variation will be produced.

7.6.2
Recombination and Levels of DNA Polymorphism in Drosophila

The most dramatic incompatibility between levels of genetic variation within and between species occurs in
those regions of the Drosophila genome where rates of recombination are low, such as near the distal tip of the
X chromosome and on the small fourth chromosome, and which also show greatly reduced levels of
polymorphism. In contrast, chromosomal regions with higher levels of recombination tend to have higher levels
of genetic variation. The extent of this correlation in D. melanogaster is given in Fig. 7.23. The neutralist
explanation for this pattern is that genomic regions exhibiting low diversity have either lower mutation rates or
greater selective constraints and hence evolve at lower rates than other regions. But if this is the case then these
regions should also show reduced levels of variation between species. However, this is not the pattern observed.
For example, the yellow-achaete (y, ac) region on the X chromosome has a reduced level of polymorphism but
the extent of divergence in this region between D.  melanogaster and D. simulans (5.4%) is similar to that
observed in a number of other genes (an average of 4.7% for nine genes). Consequently the neutral theory
cannot explain the data.

Natural selection, however, can explain this discrepancy through the dual action of selective sweeps and
genetic hitchhiking. Hitchhiking was used in the early 1970s to explain why levels of allozyme polymorphism
were often lower than the neutralists predicted. As its name implies, it occurs when a neutral mutation receives
a ride with a mutation that selection is driving to fixation. To put it another way, as selection 'sweeps' an
advantageous mutation to fixation in a population, all those nucleotides linked to itthose parts

Fig. 7.23
Relationship between the rate of recombination and

levels of DNA polymorphism for 20 genes from
D. melanogaster. The position of yellow-achaete

(y, ac), a gene on the X chromosome with low rates
of recombination and low levels  of polymorphism,
is shown. The correlation coefficient (r2) is 0.42.

Data from Begun and Aquadro (1992).
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Fig. 7.24
The hitchhiking of neutral sites linked to a selectively

favoured mutation. The different combinations of
symbols and shades represent different nucleotide
combinations in a population of four sequences.
If a mutation is selectively advantageous (black

square at time t1) it will sweep through the
population at the expense of the other variants
until it achieves fixation (at time t4). Because
of the low rate of recombination nucleotides
linked to this favoured variant will hitchhike

with it and also be swept to fixation.

of the genome that are not routinely separated from the selected site by recombinationare also swept to fixation
(Fig. 7.24). Because only one sequence type will be lucky enough to be linked to the selected site,
polymorphisms (i.e. other sequence types in the population) near to this site are eliminated and the level of
genetic variation is reduced within species, but not between them. In parts of the Drosophila genome where
recombination rates are low many nucleotides will be linked together so that genetic diversity will be reduced
over a large area.

Unfortunately, hitchhiking causes more complex effects than a simple reduction in the amount of genetic
variation within species. It also means that any variation that does occur in regions subject to hitchhiking will
mainly be in the form of alleles at very low frequencies in the population. This is so because these alleles must
have arisen since the sweep, will not have existed for very long (they have very recent coalescence timessee
Chapter 4) and so will not have had time to reach high frequencies in the population. Therefore, not only does
hitchhiking reduce the number of variable nucleotide positionscalled the segregating sitesbut it also biases the
frequency distribution, or spectrum, of alleles at these sites towards those that are rare in the population. In
contrast, fewer rare alleles are expected under neutral theory because they will, on average, have persisted for
longer periods without being swept away, and consequently will be present in a greater proportion of
individuals in the population (Box 7.1).  Although in some cases where hitchhiking has been proposed in
Drosophila, such as yellow-achaete, this frequency spectrum of segregating sites fits the hitchhiking
expectation in having an excess of rare
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variants, in other regions it bears more resemblance to the neutral model! Clearly, a more complex model than
selective sweeps and hitchhiking is required for these regions.

One such model is based on background selection against deleterious mutations. This was first proposed by
Charlesworth et al. (1993) who claimed that negative selection against newly arising deleterious mutations may
also reduce the amount of genetic variability at linked neutral sites (which will also be removed by negative
selection) as long as these deleterious mutations arise at a high enough rate and within a restricted area. One
class of mutations that have these characteristics are insertions of transposable elements, such as P elements,
which are common in the Drosophila genome (see Chapter 3).  As with hitchhiking, the tighter the linkage
between the neutral sites and those subject to selection, the easier background selection will be to detect. The
difference between the two models is that hitchhiking considers the outcomes of positive natural selection on
the evolution of linked neutral changes, whereas the background selection model looks at the affects of negative
selection. Because it deals with negative selection, the background selection model can also be thought of as a
neutralist explanation and it predicts a frequency spectrum of segregating sites more like that expected under
neutral theory.

Although the DNA sequence data currently available rule out the strict neutralist explanation for the reduced
levels of within species variation seen in many Drosophila genes where levels of recombination are also
reduced, they do not allow us to clearly choose between the background selection and hitchhiking models
(although new tests are currently being developed to do just this). It is also possible that a combination of
different evolutionary processes, both neutral and selective, have all left their mark on genomes.

7.7
Natural Selection at the Molecular Level

When the neutral theory was first proposed in the late 1960s, there was an immediate response from those who
believed that natural selection was the more important force in molecular evolution. As we have seen, part of
this response was to question the observations which the neutralists claimed supported their theory. Others
attempted to develop models which could explain the observed patterns of molecular evolution through the
action of natural selection. The most notable work in this area has been undertaken by John Gillespie. Through
a complex statistical argument based around measurements of R(t), Gillespie has concluded that the molecular
clock at non-synonymous sites in mammals is episodiccharacterised by periods of stasis interspersed with
bursts of substitutions as genes adapt to changing environmentsrather than one where substitutions are evenly
spaced, as predicted under the neutral theory. This episodic molecular clock is therefore taken as evidence that
natural selection is the driving force of molecular evolution. Furthermore, some lineages are more
'environmentally challenged'
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than others, because their environments change more frequently, and as a consequence evolve more rapidly,
causing the residue effect in estimations of R(t). However, Ohta believes that an episodic clock can also be
explained by the nearly neutral theory: bursts of non-synonymous substitution occur when population sizes are
small, because many nearly neutral mutations are fixed by genetic drift, while few take place when population
sizes are large. Furthermore, the complex interactions between the amino acids of a protein mean that many
substitutions are likely to occur together in order to preserve protein structure and function ('compensatory
mutations').

Whether non-synonymous changes are nearly neutral or selectively advantageous is the main focus of the
neutralistselectionist debate today. Although it will be difficult to choose between these explanations, selective
models such as Gillespie's predict that rates of substitution will be higher in large populations, whereas under
nearly neutral theory small populations will have the highest rates of change.

7.7.1
Examples of Molecular Natural Selection

Another approach used to counter the neutral theory, and one which has gathered momentum in recent years,
has been to accumulate examples of the action of natural selection at the molecular level. Although detecting
molecular natural selection can be difficult, because selective events may involve just a few base changes and
because selection and drift may produce similar outcomes, molecular adaptation can still sometimes be inferred
through sequence comparisons. To some, each of these examples represents a vote against the neutral
theory.  Here we outline a few of the most informative.

In some cases it is possible to infer natural selection by studying the evolution of proteins in great detail. Not
surprisingly, one such protein is haemoglobin. Because of greatly varying lifestyles, different species have
different oxygen requirements, some of which have been met by specific amino acid replacements in the
haemoglobin molecule. An interesting example is provided by the crocodilians (crocodiles, alligators and
caiman). Although crocodilians spend long periods under water they do not keep large reserves of myoglobin in
their tissues, which is how diving mammals and birds store oxygen. Instead, their haemoglobin has adapted to
store oxygen in their lungs and blood. The Nobel laureate Max Perutz claims this was achieved with only three
amino acid changes. Another case of adaptation in haemoglobin may have occurred in birds that fly at
extremely high altitudes, such as the bar-headed goose (Anser indicus) which flies at 9000 metres over the
Himalayas. Perutz suggests that this could be due to a single proline to alanine replacement in the a-chain
(position 126 in the sequence alignment shown in Fig. 7.6) which produces a higher oxygen affinity.

Natural selection has also been detected in proteins that have experienced large-scale convergent or parallel
evolution because this is unlikely to have
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occurred through the chance action of genetic drift. One of the best examples of parallel evolution are the
stomach lysozymes of ruminant artiodactyls (such as the cow) and leaf-eating monkeys (such as the langur).
The lysozymes of these species have acquired the new function of digesting the bacteria that pass from the
fermentative forgut to the true stomach and have independently evolved amino acids which allow this enzyme
to function in stomach fluid (see Chapter 5). Convergent evolution is a common occurrence in the envelope
protein of HIV-1 where those amino acid changes which allow the virus to escape from immune surveillance
evolve regularly in patients infected with unrelated viruses. Despite these examples, there are few well-
documented cases of natural selection at the amino acid sequence level.

Traditionally, population geneticists have attempted to detect natural selection by determining the factors which
shape heterozygosity either in large multiple allozyme studies across diverse species groups or at a single locus
within a much more closely related set of taxa. While the multiple allozyme studies have often been
inconclusive, the single-locus work has provided some good evidence for natural selection.  This is particularly
true of the Adh gene of Drosophila where there is evidence for a selectively maintained polymorphism at the
site of a threonine to lysine amino acid substitution that distinguishes the 'fast' (Adhf) and 'slow' (Adhs) alleles,
which differ in their ability to process alcohol. Part of the evidence that balancing selection occurs in this gene
is that there is more silent polymorphism than expected under neutral theory, especially at sites close to the
fastslow polymorphism. This is suggestive of selection because any silent (neutral) variation linked to a
balanced polymorphism that has been maintained for a long period of time would itself persist for longer than if
genetic drift were the only process determining its fate (see the coalescent theory section of Chapter 4).

The fastslow polymorphism in Adh has been studied in more detail by Berry and Kreitman (1993) who found a
cline in the frequency of the polymorphism in populations of D. melanogaster along the east coast of the USA.
The frequency of the Adhf allele ranged from 40% in the south (Florida City, Florida) to 80% in the north
(Cherryfield, Maine), whereas other sites in the Adh region did not show clinal variation. Although the reasons
why populations at different latitudes have different requirements for this polymorphism are unclear, this result
is not expected under neutral theory which predicts that all loci (or regions within the same locus) will show the
same pattern of geographical differentiation. The reverse pattern was seen in populations of the American
oyster, Crassostrea virginica. Here DNA markers revealed a marked geographical structuring, with populations
from the Atlantic coast and the Gulf of Mexico very distinct. In contrast, no spatial differentiation was observed
in various allozymes suggesting that they are under strong selection to maintain particular allele frequencies
(Fig. 7.25).
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Fig. 7.25
Geographical differentiation and balancing selection

in the American oyster, Crassostrea virginica.
Trees based on mtDNA and scnDNA (single-copy
nuclear DNA) show a strong difference between

oyster populations sampled from the Atlantic coast
compared with those from the Gulf of Mexico (a).
In contrast, less geographical structure is seen in

trees based on allozyme data from the same
populations (b). This indicates that allozymes are
subject to balancing selection which maintains
homogeneous allele frequencies across large

distances. Trees are schematic only; see
Karl and Avise (1992) for more details.

7.7.2
Relative Rates of Non-synonymous and Synonymous Substitution

For those analysing nucleotide sequence data, the most fruitful way to detect natural selection has perhaps been
to document cases where there are greater numbers of non-synonymous (dN) to synonymous (dS) substitutions
within a gene. This is suggestive of positive selection because it means that the rate of substitution is higher
than the rate of mutation, which cannot occur if mutations are neutral (in which the substitution rate is
equivalent to the mutation rate). In the case of negative selection, greater numbers of synonymous than non-
synonymous substitutions are fixed because the latter are often deleterious and therefore selectively removed
(Box 7.1).

To date, most examples of dN > dS have been described in genes involved in the interaction between the
mammalian immune system and the antigens of intracellular parasites (bacteria, plasmodia and viruses). This
can perhaps best be seen at the major histocompatibility complex (MHC)a set of about 100 genes which present
parasite antigens for clearance by antibodies and cytotoxic T-lymphocytes (CTLs). In humans these genes are
called the human leukocyte antigens (HLA) and are located on chromosome 6 (Fig. 7.26). A great deal of
research has been directed towards understanding the genetics of the MHC because these genes determine our
susceptibility to infectious and autoimmune diseases and are important in tissue transplantation.
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Fig. 7.26
Map of the polymorphic human leukocyte antigen (HLA) class I and

class II genes on chromosome 6. The number of alleles known for
each gene is also shown. From Hill et al. (1991), with permission.

Some of the most important HLA genes are those classified as class I and class II, which produce glycoproteins
that are expressed on cell surfaces.  Class I antigens are expressed on all nucleated cells, whereas class II
antigens occur on the antigen-presenting cells of the immune system. Because mammals are exposed to a great
number of genetically different parasites, which can impose large selective costs, it is important for the MHC to
be as diverse as possible so that the immune system can recognise and control as many of these as possible.
Consequently these genes exhibit enormous allelic diversity. For example, there are three class I genes in the
human MHC (labelled A, B and C) which have many different alleles (Fig. 7.26). The selective importance of
the MHC can be seen in its response to Plasmodium falciparum malaria which causes up to 2 million deaths
each year in sub-Saharan Africa. Both class I and class II MHC alleles are associated with protection from
malaria and most notably the class I allele Bw-53, which is common in West African populations where
malaria is endemic but rare elsewhere.

More evidence for natural selection is that some MHC alleles persist for a very long time, so long in fact that
polymorphisms are maintained across species boundaries. For example, a deletion polymorphism, denoted 

 is found in both mice and rats which means that it must be at least as old as this species split, perhaps 15
million years. This is too long for a polymorphism to be maintained by genetic drift because it would be
expected that one allele would drift to fixation within this time period (see Chapter 4) so that it must be
preserved by some form of balancing selection.

The region of MHC genes that is most intimately involved with the recognition of parasites is called the antigen
recognition site (ARS) and there is a great deal of amino acid variation in this region both within and between
species. Detailed analyses of the ARS has provided strong evidence for positive selection because values of dN
are greater than dS, unlike other regions in MHC genes (Fig. 7.27).

Although there is good evidence for natural selection in the MHC it is unclear exactly what form this selection
takes. One model is overdominant selection where the fitness of alleles in the heterozygous state is greater than
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Fig. 7.27
Numbers of nucleotide substitutions per non-synonymous

(dN) and synonymous (dS) site between various HLA class
II genes (comparisons shown in bold) and alleles of these

genes. Positive selection dominates in the ARS because the
dN/dS ratio is usually > 1.0, whereas negative selection is more

important in D2 because synonymous substitutions are more
frequent (dN/dS < 1.0). Data from Hughes and Nei (1989).

those that are homozygous. An alternative explanation is frequency-dependent selection. Here individuals
carrying a new, and hence rare, mutant MHC allele have a selective advantage because parasites will not have
had enough time to evolve the ability to evade them. However, this advantage will decrease with time as the
MHC allele increases in frequency and is recognised by more parasites.

Host immune systems also act as selection pressures for parasites because those that can avoid being cleared
will be at a selective advantage and so will propagate. This often involves surface antigens. For example, in
HIV-1 strong selection pressures (dN > dS) have been detected on those parts of the surface envelope
glycoprotein gpl 20 that are implicated in the escape from immune clearance, whereas the proteins involved in
construction of the viral capsid (gag) and in replication (pol) seem to be under negative selection.  Likewise, in
P. falciparum positive selection has been detected at the major surface antigen (MSA-1) and at the T-cell
epitopes of the cell surface circumsporozoite (CS) protein, while in the haemagglutinin 1 (HA 1) gene of
human influenza A
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virus selection occurs at amino acid residues thought to be antigenically important. Positive selection by hosts
on parasites has also led to the resurgence of bacterial drug resistance, most notably in tuberculosis
(Mycobacterium tuberculosis) and Streptococcus spp.

While good examples of natural selection at the molecular level are still relatively few in number, it is certain
that many more will be uncovered as our ability to distinguish the signatures of natural selection and genetic
drift improves and as more comparative DNA sequence data become available.

7.8
Conclusions:
Can We Resolve the NeutralistSelectionist Debate?

Most support for the neutral theory of molecular evolution has come from comparisons of gene sequences from
relatively distantly related species, particularly the different orders of placental mammals, where patterns of
substitution have built up over millions of years. Natural selection, on the other hand, is more apparent in
sequence comparisons made over shorter time periods, as in the interaction between hosts and parasites or
within populations of Drosophila. It may be that as time proceeds the evidence for natural selection, the fixed
amino acid changes, is obscured by successive and generally neutral changes. For example, in most of the
mammalian genes analysed it is likely that the majority of adaptive events occurred in the distant past as these
animals radiated and initially adapted to their new environments. Adaptations that have taken place since this
time may have required fewer and more subtle changes in sequence (as shown by the haemoglobins), which
might have been masked by later neutral substitutions. It is only when we compare genes where adaptation has
clearly occurred in the recent past, as in the arms' race between hosts and parasites or in the selective sweeps of
Drosophila, that we can still detect the footprint of natural selection in the shape of amino acid substitutions.

An example of how the evidence for positive selection can be obscured in sequence comparisons comes from
the jingwei (jgw) gene found in two African Drosophila species, D. yakuba and D.  teissieri. Although jgw
arose through a retrotransposition event from the adjacent Adh gene, it differs from Adh in that it lacks introns
and has accumulated a large number of non-synonymous substitutions, which initially led to reports that it was
in fact a pseudogene. However, closer inspection shows that reports of its death have been greatly exaggerated:
jgw produces a viable mRNA, is not characterised by the stop mutations and insertions and deletions so often
found in pseudogenes, and is in fact a chimera between the processed mRNA of Adh and another gene,
unrelated and as yet unidentified. Although the overall dN/dS ration is suggestive of neutrality (compatible
with jgw being a pseudogene), more detailed phylogenetic analysis reveals that this ratio has changed through
time, with a burst of non-synonymous substitutions occurring after the initial insertion event, perhaps as the
gene acquired a new function (Fig. 7.28). The case of jgw also
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Fig. 7.28
Evolutionary history of the jingwei (jgw) gene in two African species of Drosophila,

D. yakuba and D. teissieri. jgw arose through the retrotransposition of an mRNA
sequence from the parental Adh gene. jgw then captured the 5¢ region of an

unrelated gene (shaded region). The numbers of non-synonymous to
synonymous substitutions are shown next to each lineage and indicate

that the initial evolution of jgw was dominated by positive natural
selection (8/0 non-synonymous to synonymous changes) compared

with Adh (0/0). Adapted from Long and Langley (1993).

illustrates how important it is to consider the phylogenetic relationships of sequences when trying to judge
which evolutionary processes have shaped them.

Overall it seems reasonable to conclude that both natural selection and genetic drift determine the evolutionary
fate of mutations. Neutralists are probably correct in believing that the majority of nucleotide substitutions do
not affect fitness, and most notably in non-coding DNA and at synonymous sites (in mammals at least). Most
selectionists would also agree with this. However, if we look at the dynamics of molecular evolution within a
smaller window of time, and particularly at non-synonymous sites, we can clearly make out the footprints of
natural selection. To fully resolve the neutralistselectionist debate will undoubtedly require many more gene
sequences from many more species as well as better statistical methods for distinguishing between the two
processes, particularly those that incorporate more information about the phylogenetic relationships of the
sequences in question.

7.9
Summary

1 A central task of molecular evolution is to determine the processes by which gene sequences change through
time.

2 During the 1950s and 1960s extensive genetic variation was discovered within and between species. This
posed a problem for theories of natural selection which were thought to impose too high a selective cost on
populations.

3 The neutral theory, first proposed by Kimura and King and Jukes, overcame
 

< previous page page_277 next page >



< previous page page_278 next page >

Page 278

this problem by claiming that molecular evolution is dominated by the genetic drift of neutral mutations which
have no selective cost.

4 The best evidence for the neutral theory is the relationship between functional constraint and rate of
substitution, so that functionally constrained genes (or regions within genes) evolve at the lowest rates (and vice
versa). Other supporting evidence is that rates of silent substitution and patterns of codon usage in mammals
are determined mainly by mutation pressure.

5 The opposing argument is that the natural selection of advantageous mutations is the more important force in
molecular evolution. Evidence for this comes from within Drosophila populations, where there is support for
selective sweeps and hitchhiking, and from genes involved in hostparasite interactions where the high numbers
of non-synonymous to synonymous substitutions suggest the action of positive selection. Patterns of codon
choice in unicellular organisms and Drosophila also appear to be selected.

6 The most important debate concerns the molecular clock.  The constancy of the clock at synonymous sites in
mammals is determined by the constancy (or not) of the underlying neutral mutation rate, itself affected by
generation time, metabolic rate and DNA repair, collectively known as lineage effects. In contrast, the clock at
non-synonymous sites is less subject to lineage effects but is instead characterised by episodes of substitutions,
which has been taken as evidence for natural selection.

7 To overcome the problems of the original neutral theory, Ohta proposed that most non-synonymous
substitutions are nearly neutral and so subject to both genetic drift (especially in small populations) and weak
negative selection (more important in large populations). The episodic molecular clock at non-synonymous sites
can then be explained by fluctuating population sizes.

8 Although it is clear that both natural selection and genetic drift determine the substitution dynamics of gene
sequences, the neutralistselectionist debate continues, particularly with respect to the processes governing non-
synonymous evolution.

7.10
Further Reading

Good accounts of the early work on genetic variation within and between species and of the development of the
neutral theory are given in Avise (1994), Lewontin (1991) and Ridley (1996). Although highly personal, the
two most important texts in the neutralistselectionist debate are Kimura (1983) for the neutralist perspective and
Gillespie (1991) for a selectionist argument, whilst Ohta (1992) and Chao and Carr (1993) present the case for
the nearly neutral school.

Examples of the correlation between functional constraint and rates of substitution are provided by Dickerson
and Geis (1983) (haemoglobin), Shpaer and Mullins (1993) (HIV) and Li et al. (1981) (pseudogenes). The
neutralistselectionist debate as it relates to the evolution of base composition and codon
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usage is well summarised in the papers of Bernardi (1993), Casane et al. (1997), Eyre-Walker (1993),
Holmquist and Filipski (1994) and Sharp and Matassi (1994), with the situation in Drosophila receiving a great
deal of recent attention (see Powell and Moriyama, 1997). Papers discussing the molecular clock and the
possible causes of rate variation are common, but Li (1993) presents an excellent overview, while more detailed
descriptions of the generation time, metabolic rate and DNA repair hypotheses are given in Li et al. (1987),
Martin and Palumbi (1993) and Filipski (1988), respectively. An important recent analysis is that of Ohta
(1995), but also see Gillespie's (1995) companion paper. The evidence for and against the male-driven
evolution of mammalian genomes is presented by Shimmin et al. (1993) and McVean and Hurst (1997),
respectively. The more complex problem of the molecular clock in plants is tackled by Gaut et al. (1992, 1997).

Some key papers dealing with genetic variation within species, and particularly the evidence for selective
sweeps and hitchhiking are Begun and Aquadro (1992), Eanes et al. (1993), Kreitman and Hudson (1991 ),
Langley et al.  (1993) and McDonald and Kreitman (1991 ), whilst Charlesworth et al. (1993) discuss the
evidence for background selection (although also see Braverman et al., 1995).

For those interested in natural selection at the molecular level, Kreitman and Akashi (1995) present an excellent
review of the available evidence, while more specific examples are provided by Perutz (1983) (haemoglobin),
Stewart et al. (1987), (lysozymes), Berry and Kreitman (1993) (Adh), Karl and Avise (1992) (oysters), and
Hughes and Nei (1989) and Hill et al. (1991, 1992) (MHC). The fascinating evolution of jingwei is discussed
by Long and Langley (1993). Finally, methods for testing the neutrality of mutations are given in McDonald
and Kreitman (1991), Hudson et al. (1987) and Tajima (1989) (although also see Fu and Li, 1993), and for
testing the molecular clock in Gillespie (1989b) and Li (1993).
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Chapter 8
Applications of Molecular Phylogenetics

8.1 Organismal Phylogeny

8.1.1 Combined or Separate Analysis?

8.1.2 When to Combine Data and When Not To

8.2 Gene Trees and Species Trees

8.2.1 Reconciled Trees

8.2.2 Reconstructing the History of a Gene Family

8.2.3 Inferring Organismal Phylogeny from Complex Gene Trees

8.3 HostParasite Cospeciation

8.3.1 Molecular Phylogenies and Cospeciation

8.3.2 Calibrating Rates of Evolution in Cospeciating Clades

8.3.3 Maximum Likelihood Tests of Cospeciation

8.4 Age and Rates of Diversification

8.4.1 Ages of Taxa

8.4.2 Rates of Diversification

8.5 Phylogenies in Molecular Epidemiology

8.6 Summary

8.7 Further Reading

Biologists are making increasing use of phylogenies to address questions across a broad range of scales, from
virologists tracking the diversification of viral lineages within a single patient, to biogeographers investigating
whether biological diversification is correlated with major geological activity such as continental drift. Previous
chapters have emphasised the importance of phylogenies for studying molecular evolution. In this chapter we
focus instead on the implications of molecular phylogenies for evolutionary biology. It is not our intention to
review all the applications of phylogenies (see the reading list for recent overviews); rather we focus on a
sample that highlights the impact molecular phylogenies are having on the study of evolutionary biology.

8.1
Organismal Phylogeny

The oldest use for phylogenies of genes is inferring organismal phylogeny. Prior to the molecular revolution,
data for phylogenetic inference came from sources such as morphology, ontogeny, behaviour, and geographic
distribution. In the 20th century molecular data ranging from immunological distances, allozyme frequencies,
restriction sites, DNA hybridisation, and protein and nucleotide sequences have provided much additional
data.  With depressing regularity, the advent of each new molecular technique has led to claims that this
technique is the best source of phylogenetic data, and that all previous sources are irredeemably defective. In
particular, advocates of molecular techniques have regularly claimed that morphological data is obsolete, or at
best too prone to homoplasy to be of much use, whereas molecular data alone yields the true phylogenetic
history. In practice, unconditional claims of the
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superiority of any one type of data have foundered, and it is increasingly appreciated that many different types
of organismal attributes retain the trace of those organisms' evolutionary history. Different sources of data each
have their strengths and weaknesses, and these may vary depending on the taxonomic group being studied and
the kinds of phylogenetic questions being addressed. Molecular data, particularly nucleotide sequences, offer
potentially huge data sets that are comparable across a wide taxonomic range. Whereas disparate taxa may share
few morphological traits (think of a human and a bacterium), there are numerous homologous genes shared by
all the major groups of living organisms. Because different genes (or parts of the same gene) evolve at different
rates, molecular data can also be tailored to different time scales, be it the tree of life on Earth unfolding over
billions of years, or the evolution of HIV viruses within a single patient over a period of months. Genes that
show approximate rate constancy also allow us to make inferences about times of divergence using molecular
clocks.

Morphological data have considerable strengths as well. In many groups we have morphological information
for many more taxa than we have molecular data; this is particularly true where extinct taxa are concerned.
Given that DNA is unlikely to be sequenced from fossil or subfossil remains older than about 40 000 years
(Austin et al., 1997), the fossil record is largely the province of morphology. This has implications for extant
groups as well, because fossil members of a clade may contain important phylogenetic information that is not
present in the surviving taxa.  Taxonomic sampling can have a major impact on phylogenetic analyses; results
based on a few taxa, or restricted to just the extant members of a clade may give misleading results. In many
clades the morphological data base far outweighs the molecular data base.

8.1.1
Combined or Separate Analysis?

Given that there are numerous sources of phylogenetic data, even if we were to restrict ourselves to molecular
data, inevitably the question arises of how to combine these different sources. Three approaches have been
proposed. The first, often called total evidence (also called 'simultaneous analysis') advocates always combining
different data sets into a single data set for analysis. This view is contrasted with 'separate analysis' (also called
the 'congruence' or 'consensus' approach) in which the data sets are analysed separately and the resulting trees
then combined using consensus trees (see Chapter 2 for a definition of consensus trees). The third approach is
'conditional combination': the data sets are combined unless there is evidence for significant conflict among
them.

The primary argument for combining the data in one analysis is that it utilises all the information available to
the systematist in a single analysis. Different kinds of datawhich may provide information about different parts
of the treeare allowed to jointly affect the result. Conflicts are resolved by weight of evidence, irrespective of
the source of data.
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Separate analyses seem attractive because they allow for independent estimates of the phylogeny using different
data sets. If these independent sources of information yield similar trees, then our confidence in our ability to
recover the actual phylogenetic history of a group or organisms is reinforced. Merging all the data together
eliminates the opportunity for independent testing. Furthermore, separate analysis allows us to discover whether
each data set supports essentially the same (or a compatible set of) relationships, or whether some data sets
yield quite different trees. The latter case immediately alerts the investigator to potential problems, and may
yield insights into the evolution of different character systems.

The relative merits of combined and separate analyses have been much debated in the literature (see suggested
reading at the end of this chapter). Combining data would be a good strategy if the phylogenetic method used
was consistent (Chapter 6), such that by adding more data the method would always converge on the correct
tree. However, if a method was inconsistent the additional data would not improve the accuracy of the
phylogenetic estimate. Indeed, 'good' phylogenetic signal may be swamped by other more numerousbut
misleadingcharacters. Combining all the data into a single analysis assumes that all the data reflect the same
evolutionary history. Different genes may have different, conflicting histories, in which case combining their
nucleotide or protein sequences into a single data set may be inappropriate.  Techniques for dealing with
complex, contradictory gene trees are discussed in section 8.2 below.

While separate analysis facilitates detecting conflicts among different data sets, it is not without its own
problems. Among the objections raised against separate analysis are concerns about the objectivity of the
criteria used to delimit the different data sets, and the limitations of combining trees using consensus methods.
In some cases partitioning organisms (and their genomes) into separate categories of data seems arbitrary.
Different ontogenetic stages may be discrete (for example, in insects), yet form part of the continuum that is an
organism's life cycle. Distinguishing between behavioural and morphological characters may be difficult as a
behaviour may be intimately linked with particular morphological features of the organism. Sequencing
different fragments of the genome may yield different data sets, but these may reflect the availability of suitable
primers and other historical contingencies, rather than 'real' divisions of the genome. While these objections
have some validity, a case can be made for the existence of different partitions that are not arbitrary. Unlinked
nuclear genes may have different evolutionary histories, which may in turn differ from the histories of
organellar genomes such as the mitochondrion. Similarly, in the (almost complete) absence of recombination,
animal mitochondrial genes all share the same evolutionary history and hence could be combined and treated as
a single data set.

Given that separate analyses will produce one or more trees for each data set, the question naturally arises of
how to combine these into a single tree that best summarises all the data sets. One obvious approach is to
construct
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a consensus of the trees from the different data sets, so that the resulting tree contains only those groups found
in, say, all of the separate analyses. Such an approach has the apparent virtue of being conservative because
groups supported by some but not all the data will not be included. Hence, one might argue that while the price
of consensus may be a lack of resolution relative to a combined analysis, at least we can be sure that groups in
the final consensus tree are supported by all the data. However, this need not be the case: Barrett et al. (1991)
constructed a clever counter-example of a case where two data sets analysed separately both yielded support for
a clade which was not in the best tree when the two data sets were combined and analysed together (see Box
8.1).

Box 8.1 Why consensus and combination can give different results

Barrett et al. (1991) constructed an example where combining data sets and
combining trees yield different results. Given these two data sets, each
comprising four weighted binary characters (in the diagram below these weights
are shown in boldface), the best trees for the two data sets treated separately both
contain the group BCD, which is therefore in the consensus tree. However, when
analysed together the best tree for the combined data does not contain this group.

The reason for this seemingly paradoxical result can be seen when the lengths of
the 15 possible rooted trees for four taxa for the two data sets are plotted

continued on p.  284
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continued

Box 8.1

against each other (diagram below). The tinted zone encompasses the possible
combination of lengths for trees that are suboptimal for either data set taken
separately, but are more parsimonious for the combined data than either of the
best trees for the data sets considered separately. Trees falling on the same
dashed line (sloping down from left to right) will have the same length for the
combined data sets. This length is indicated at the bottom of each line.

The best trees for the two data sets considered separately have lengths of 10 steps
for data sets 1 and 2, respectively. However, each tree requires an additional
three steps for the other data set, hence each tree has a total length of 23 steps for
the combined data. The tree that is best for the combined data has a total length
of 22 steps (11 for each data set). Because it is not the optimal tree for either data
set, this tree is not considered in the separate analyses. After Page (1996a).

8.1.2
When to Combine Data and When Not To

An intermediate strategy that incorporates aspects of the 'combined' and 'separate' approaches is to combine
different data sets unless there is evidence that one or more data sets markedly conflicts with the remainder. If
data sets are telling essentially the same story (within the bounds of sampling error), then combining the data
would make the most use of the available information.  If the data sets conflict, then separate analyses may be
preferable.

Given that our decision to combine or not combine data sets is based on the degree of conflict among those data
sets, how can we test whether it is reasonable to combine the data? Several approaches have been suggested,
the one we shall describe here is the likelihood heterogeneity test of Huelsenbeck
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and Bull (1996). This test is a likelihood ratio test like those described in Chapter 6 (section 6.5.2). The null
hypothesis (H0) is that the same tree underlies the different data setseven though the relative rates of evolution
and the values of parameters such as base composition and transition/transversion ratio may vary among the
genes, all the genes have the same maximum likelihood tree topology. The alternative hypothesis (H1) is that
different trees underlie the different data sets. As in Chapter 6, the likelihood ratio test statistic is

where L1 is the maximum likelihood of the alternative hypothesis H1 and L0 is the maximum likelihood of the
null hypothesis H0.

Applying this test to the birdmammal problem discussed in Chapter 6 (section 6.8.3), there is significant
heterogeneity between the mitochondrial 12S and 16S rRNA genes, valine tRNA, and the nuclear 18S and 28S
rRNA genes (Fig. 8.1). Under two different models of DNA evolution, the classical tree grouping birds and
crocodiles was the maximum likelihood tree for three of the five genes; under both models, the 18S rRNA gene
consistently favoured grouping birds and mammals, whereas most of the other genes favoured the classical
grouping. Removing this gene and performing the test on the four remaining genes failed to reject the null
hypothesis of homogeneity among the genes, hence the 18S rRNA data appear to provide quite a different
signal

Fig. 8.1
(a) The three unrooted trees for bird, mammal, lizard, and crocodile. (b) For
two different models of sequence evolution (JukesCantor and HKY85 + G)

the table indicates which of the three trees in (a) is the maximum likelihood tree
( ) for each of five genes. Adapted from Huelsenbeck and Bull (1996).
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from the other genes. Based on this test, the 12S, 16S, 28S and tRNA genes could be combined into a single
analysis, and the 18S data should be analysed separately.

8.2
Gene Trees and Species Trees

The implicit assumption made when we use molecular phylogenies to infer organismal relationships (section
8.1) is that gene trees are isomorphic with species treesthe former can be converted into the latter merely by
substituting the name of the sequence with the name of the organism from which the sequence was
obtained.  As sequence data have accumulated it has become increasingly clear that the relationship between
gene trees and species trees may be more complex than a simple one-to-one correspondence.

8.2.1
Reconciled Trees

One of the first attempts to deal with this problem is the concept of a reconciled tree, first introduced by Morris
Goodman and colleagues in 1979 to account for discordance between mammalian haemoglobin gene trees and
previously accepted notions of mammal phylogeny (similar ideas were proposed independently by workers in
parasitology and biogeography; see Box 8.2).

Box 8.2 Historical associations

The association between two or more lineages over evolutionary time is a
recurrent theme that spans several different fields within biology, from the
molecular level through to macro-evolutionary patterns. Across these disparate
levels, there occur many instances of 'historical associations', where genetic or
organismal lineages are associated with another, and one lineage may be thought
of as tracking the other over evolutionary time with a greater or lesser degree of
fidelity.

continued
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continued

Box 8.2

In each case, one entity may be thought of as 'tracking' the other over time. At
the molecular level, each gene family has a phylogenetic history that is
intimately connected with, but not necessarily identical to, the history of the
organisms in which those genes reside. Processes such as gene duplication,
lineage sorting and horizontal transfer can produce complex gene trees that differ
from organismal phylogeny. Some hosts and their parasites (including viruses)
may have a long evolutionary history of close association, reflected in
similarities between their evolutionary trees. Similar patterns can be found
between other ecological associations, such as insects and their host plants, and
the bacterial endosymbionts of insects. At a larger scale still, organisms may
track geological history such that sequences of geological events such as
continental break-up are directly reflected in the phylogenies of those organisms.

Associations among genes, organisms and areas have traditionally been studied
by different biologists from different disciplines, with little interaction between
them. Consequently, recognition of the fundamental similarity of the problem
faced by molecular systematists, parasitologists and biogeographers has been
slow in coming. Despite the relative lack of interaction between these different
disciplines, it is striking how similar concepts have arisen independently in these
different contexts.  Parasitologists (Hopkins, 1948; Clay, 1949) clearly
formulated the problem of multiple parasite lineages decades before Fitch's
(1970) analogous distinction between paralogous and orthologous genes (Page et
al., 1996). Molecular systematists (Goodman et al., 1979) and cladistic
biogeographers (Nelson and Platnick, 1981) independently developed very
similar methods for interpreting the history of gene trees and biogeograhic
patterns, respectively.

If we have a species tree and a gene tree which are incongruent (Fig. 8.2), and we are confident that both are
correct for the species and genes, respectively, then we might ask under what circumstances could both be true.
If we regard genes as 'tracking' species, then we can embed the gene tree in the species tree. The incongruence
between these two trees can be explained by postulating a gene duplication that gave rise to two sets of
paralogous genes, of which only four have survived to the present day (Fig. 8.3).

Genes a and b are orthologous, as are c and d. Given the duplication d at the base of the gene tree we would
have expected to find two copies of this gene in each taxon ad. The presence of only a single copy in each
requires at least three independent gene losses.

Figure 8.4 shows the reconciled tree computed for the trees shown in Fig. 8.2. This tree can be thought of as the
tree obtained by 'unfolding' the gene tree embedded in the species tree in Fig. 8.3 and laying it flat on the page.
This tree reconciles the incongruent gene and species trees by postulating that the observed gene tree is a relict
of the larger gene tree, resulting from the gene
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Fig. 8.2
Incongruent organism and gene phylogenies.

Fig. 8.3
The incongruence between the trees shown in Fig. 8.2

can be explained by hypothesising a gene duplication (d)
at the base of the gene tree, with genes a and b being
paralogous with genes c and d. The presence of only

a single gene in each present day species requires
us to postulate three gene losses ( ).



Fig. 8.4
Reconciled tree for the gene and species

trees shown in Fig. 8.2. The tree has one gene
duplication (d) and three losses (represented
by branches changing from black to grey).
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duplication d. This larger tree is the reconciled tree, and is the tree we would obtain if no gene loss or extinction
occurred. As before, given the duplication d we would have expected two copies of the gene in each species.
That we do not see these copies requires us to postulate gene losses in species a and b, and in the ancestor of
species c and d. Note that these genes may be present but as yet undetected.  The total number of events the
reconciled tree postulates (one duplication plus three losses) is the 'cost' of the tree, and can be written c(G, T),
where G is the gene tree and T is the species tree.

8.2.2
Reconstructing the History of a Gene Family

A straightforward use of reconciled trees is to visualise the history of a gene embedded within an organismal
phylogeny. From this we can determine how many gene duplications took place, and where in evolutionary
time they occurred. This may yield insights into organismal evolution, particularly if episodes of gene
duplication are concentrated in particular parts of the organismal phylogeny.

In relatively simple cases the gene tree itself reveals much about the evolution of that gene. However,
comparison with the organismal tree may provide evidence of hitherto unsuspected gene duplications. An
example of this is the mammalian interleukin-1 (IL) genes.

The gene tree for these genes (Fig. 8.5) shows clear evidence for gene duplications as indicated by the presence
of multiple copies of the gene in the

Fig. 8.5
Tree for mammals and for mammalian interleukin-1 genes.

 

< previous page page_289 next page >



< previous page page_290 next page >

Page 290

Fig. 8.6
Reconciled tree for the mammalian interleukin-1 gene tree shown in Fig. 8.5.

Of the four duplications required, three are supported by the presence of
multiple copies of IL in the same mammal species, and one (d3) is required

to explain the incongruence between IL-1b and mammalian phylogeny.

same species. Given that there are four copies in humans, there must have been at least three duplications in the
history of the interleukins. Reconciling the interleukin tree with a tree for the mammals (Fig. 8.6) uncovers
evidence for a fourth duplicationmouse IL-1b is more closely related to human IL-b than are bovine and sheep
IL-b, which contradicts the species tree.
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Box 8.3 Rooting trees using gene duplications

While gene duplications can complicate the task of reconstructing organismal
phylogeny, they can also be a useful source of information about the location of
the root of the tree. Most methods of tree building produce unrooted trees which
are subsequently rooted using an outgroup (a sequence or taxon that does not
belong to the group of interestfor example, a chimpanzee sequence could be used
to root a tree of human DNA sequences). However, in some cases a suitable
outgroup may be lacking; for example, we cannot use an outgroup to root the
tree of life. Gene duplications provide an alternative means of locating the root
of a species tree. In the example below, we have a gene tree for six sequences
from three species (13). The genes form two groups (a and b) within which the
species relationships are identical.

Although we could root the gene tree on any of its nine edges, placing the root
between the a and b genes (root 1) requires only a single gene duplication,
whereas rooting on any other edge requires additional duplications (two in the
case of root 2). Hence the tree is most parsimoniously rooted between the a and b
genes.

8.2.3
Inferring Organismal Phylogeny from Complex Gene Trees

Given that the relationship between gene and organismal phylogeny can be complex, how can we infer species
trees when faced with gene duplications? One approach is to use reconciled trees.  Like those optimality
methods (such
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Fig. 8.7
Phylogeny for lactate dehydrogenase (LDH)

sequences. From Quattro et al. (1993: Fig. 2).

Fig. 8.8
(a) Consensus tree for the five optimal species trees for the LDH
gene tree shown in Fig. 8.7; and (b) reconciled tree for the LDH

gene tree in Fig. 8.7 and one of the five species trees.
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as parsimony and maximum likelihood) that we discussed in Chapter 6, we are trying to solve two problems: (i)
for any given tree, what is its 'score' under the chosen optimality criterion, and (ii) which tree has the best
score? In this case, the criterion is the number of gene duplications and losses required to embed the gene tree
into a species tree. Note that in this instance, we are searching for the best species tree, not the best gene tree,
as we were in Chapter 6.

As an example of this approach, Fig. 8.7 shows a phylogeny for 22 lactate dehydrogenase (LDH) sequences
from organisms as diverse as humans and bacteria (but with a decided bias towards vertebrates). The tree
clearly contains information about species relationships, but it is not a species tree as several species occur
more than once. There are five species trees that can account for this gene tree with the least costthree
duplications and nine losses. A consensus of these is shown in Fig. 8.8(a). This is in reasonable agreement with
accepted relationships among these taxa, with the notable exception of the teleosts, shark and lamprey. This
suggests that unless the LDH tree is in error, more duplications have occurred in this gene family than the three
shown in Fig. 8.8(b).

Box 8.4 Inferring species trees from multiple gene trees

Reconciled trees can be used to find the best species tree for more than one gene.  Given n
gene trees G1, G2, . . ., Gn, and species tree T, the cost of reconciling all n gene trees is
simply the sum of the costs of reconciling the individual gene trees, c(G1, T) + c(G2, T) +
. . . + c(Gn, T). Note that this is analogous to parsimony analysis of individual characters
(e.g. nucleotide sites) where the total length of the tree is the sum of the minimum number
of changes required for each individual character to evolve on the tree (Chapter 6). Guigó
et al. (1996) used this approach to compute a tree for major eukaryote groups based on
trees for 53 different nuclear genes. Disturbingly for molecular systematists, they found
only 17 of the 53 genes were perfectly consistent with the preferred species tree, implying
that two-thirds of the genes were at least partially misleading about organismal
relationships. Reanalysis of their data (Page and Charleston, 1997b) suggests that this
figure is nearer one half, but it is still a sobering result. There is considerable scope for
evaluating how reliable different genes are as indicators of organismal relationships.

8.3
HostParasite Cospeciation

Hostparasite systems are intrinsically interesting to evolutionary biologists because they potentially signal a
long and intimate association between two or more groups of organisms that are often distantly related and
quite dissimilar biologically. This long history of association often leads to reciprocal adaptations
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in the hosts and parasites (classical coevolution or coadaptation) as well as contemporaneous cladogenetic
events in the two lineages (cospeciation). The phenomenon of cospeciation is of particular interest to
comparative biologists because it allows us to identify events of the same age in the host and parasite
phylogenies, and thus provide an internal time calibration for comparative studies of rates of evolution in the
two groups. Evidence of cospeciation also can be used to test hypotheses of coadaptation in the hosts and
parasites.

A fundamental problem in the study of hostparasite coevolution is the reconstruction of the history of the
association between host and parasite. We want to know to what extent hosts and parasites have cospeciated
(association by descent) and to what extent parasites have switched hosts (association by colonisation). These
processes, combined with independent speciation and extinction of either member of the association, will leave
their trace on the phylogenies of the hosts and parasites.

8.3.1
Molecular Phylogenies and Cospeciation

Molecular phylogenies are powerful tools for the study of cospeciation, not because molecular data are
inherently better than morphological data, but because molecular data offer the prospect of being able to
compare host and parasite divergence using comparable units such as nucleotide substitutions per site,
especially if homologous genes are studied in both host and parasite.

Molecular divergence may also permit us to decide between the two primary explanations of incongruent
hostparasite phylogenies: host switching and multiple lineages. Figure 8.9(a) depicts a pair of incongruent host
and parasite cladograms (see Chapter 2 for a definition of a cladogram). The incongruence may be due to host
switching or the presence of multiple lineages. By themselves the cladograms do not allow us to decide
between these explanations, although the relative likelihood of either 'host switching' or 'multiple lineages and
extinction' scenarios may be assessed.  A host-switching explanation for Fig. 8.9(a) suggests that the ancestor
of parasite P2 colonised host H2 from host H1 and displaced the parasite species (P4) already present on H2
(Fig. 8.9b). This scenario requires two evolutionary events, one host-switching event and the extinction of
parasite P4. A multiple lineage explanation suggests that, initially, two parasite lineages were present on the
ancestral hosts, and as those parasites cospeciated with their hosts, three parasite lineages went extinct (Fig.
8.9c). Which scenario we decide is most likely may be determined by the biology of the hostparasite system,
i.e. how common are host switches relative to extinctions?

If we have information on relative time of divergence between the host and parasite species then we may be
able to use that information to choose between these explanations. In Fig. 8.9(d) the parasite lineage P2 is
younger than its host H2, consistent with host switching, whereas in Fig. 8.9(e) the greater antiquity of P2
supports a multiple lineages explanation (the persistence
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Fig. 8.9
(a) Incongruent cladograms for hosts and parasites

with (b) 'host switching' and (c) 'multiple lineage and
extinction' scenarios to explain the incongruence. Of
the two alternative possible molecular phylogenies

(d and e) consistent with those cladograms, (d)
is consistent with host switching, whereas

(e) is consistent with multiple lineages.
After Page et al. (1996: Fig. 2).

of relict parasites on their original hosts). Data on timing may come from molecular clocks (see Chapter 7);
hence estimates of times of divergence from molecular data may help discriminate between competing
explanations of incongruence between host and parasite phylogenies.

8.3.2
Calibrating Rates of Evolution in Cospeciating Clades

Given estimates of the amount of divergence between two pairs of taxa, say two insects and two mammals, and
estimates of the age of these taxa we can readily compare rates of evolution in the two taxa. Estimating
sequence divergence is relatively straightforward (Chapter 5). However, estimating taxon
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ages can be problematic as it relies on having a sufficiently complete fossil record. Incompleteness, as revealed
by a poor correlation between cladistic rank and taxon age, is a widespread problem in the fossil record, and
seriously hampers calibration of rates of evolution.

In order to reduce reliance on the fossil record, some workers have calibrated molecular evolution in one
lineage using the fossil record of a lineage with which it is closely associated. Examples include endosymbiotic
bacteria of aphids and cockroaches, and vertebrate alpha-herpes viruses. If two clades are cospeciating then
equivalent events in the two lineages can be identified. Nodes in the lineage lacking a fossil record can be dated
using the ages of the corresponding nodes in the lineage having a fossil record (Fig. 8.10).

If we can go a step further and compare sequence divergence in both host and associates then we are freed from
any reliance on the fossil record, providing we are content to measure relative rather then absolute rates of
evolution. Alternatively, we can maximise the usefulness of the fossil record by effectively combining evidence
from the fossil records of both host and parasite.

Fitting a line to a plot of parasite divergence against host divergence (Fig.  8.11) allows us to describe two
aspects of hostparasite divergence. The slope of the line is the relative rate of host and parasite evolution; the
intercept measures the divergence of parasites when their hosts speciate. An intercept of zero implies
synchronous cospeciation: host and parasite speciate together. A negative intercept implies delayed
cospeciation: the parasites tend to speciate

Fig. 8.10
Phylogeny of 12 aphid species and their endosymbiotic

bacteria. The two phylogenies are nearly identical,
indicating that the bacteria have cospeciated with

their insect hosts. Four nodes in the bacterial
phylogeny (labelled AD) can be approximately

dated using ages for the equivalent nodes
in the aphid tree derived from the fossil record

and biogeography. These dates can then be
used to calibrate the rate of evolution of the

endosymbionts, which have no fossil
record themselves. After Moran

et al. (1993: Fig. 1).
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Fig. 8.11
Bivariate plots of the relationship between parasite divergence and host
divergence. The slope of the relationship (a) indicates the  relative rates

of evolution in the two clades, the intercept (b) indicates the relative
timing of speciation. From Hafner and Page (1995).

after their hosts; a positive intercept indicates that the parasites diverge prior to their hosts.

Returning to the analogy with gene trees, if the bivariate plots shown in Fig. 8.11 were instead plotting
sequence divergence for a given gene against taxon divergence time, then a positive intercept would reflect the
average sequence divergence within a single species, i.e. heterozygosity (Lynch and Jarrell, 1993). By analogy,
a positive intercept for parasite sequence divergence reflects differentiation among parasites of a single host
lineage. We would expect the intercept to be positive in situations where the parasites of different host
populations (or different individual hosts) are genetically divergent.

8.3.3
Maximum Likelihood Tests of Cospeciation

Maximum likelihood methods similar to those encountered in Chapter 6 can be employed to make detailed
comparisons of host and parasite phylogenies.  Recently, Huelsenbeck and colleagues (1997) outlined a series
of nested hypotheses concerning cospeciation that can be tested using likelihood ratio tests (Fig. 8.12).

The first, most general question is whether host and parasite phylogenies have the same branching order,
irrespective of details of branch length or speciation time (Fig. 8.12a). In other words, the question is whether
the cladograms for host and parasite are identical. Huelsenbeck et al. point out that this is equivalent to the
problem of whether different data partitions of a data set are congruent (see section 8.1.2); in this instance the
two partitions are the host and parasite nucleotide sequences, respectively, and the null hypothesis is that they
are estimating the same tree.
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Fig. 8.12
Three null hypotheses concerning hostparasite

cospeciation. The first (a) is that the topologies of
the host and parasite trees are identical, although

the rates of evolution and speciation times may differ.
The second (b) is that, given that the topologies are
the same, the relative speciation times are identical,

even if the rates are different in the two clades.
The third (c) is that topologies, speciation times,

and rates are identical in host and parasite.
After Huelsenbeck et al. (1997: Fig. 3).

Even if host and parasite phylogenies have the same cladistic topology, host and parasite could have speciated
at different times (Fig. 8.12b). This is because there are typically several different orderings in which speciation
events can occur but still give rise to the same tree topology (Fig. 8.13). In the terminology used in Chapter 2, a
cladogram may correspond to one or more ultrametric trees.

If we have a molecular clock, the null hypothesis of identical speciation times ('temporal cospeciation') can be
tested using ultrametric trees for host

Fig. 8.13
Two phylogenies that have the same topology but

different speciation times. In the tree on the left, taxa
4 and 5 speciated after taxa 1 and 2, whereas in
the tree on the right, the split between 4 and 5

predates the split between 1 and 2. After
Huelsenbeck et al. (1997: Fig. 2).
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and parasite that have both the same order of speciation and the same relative ratio of time between speciation
events (Fig. 8.12b)although the host and parasite clades may be evolving at different rates.

The final null hypothesis is that host and parasite are cospeciating at the same time and are evolving at an
identical rate (Fig. 8.12c). This is equivalent to the previous hypothesis but with the additional constraint of
equality of rates in host and parasite.

Huelsenbeck and colleagues applied these tests to the five Orthogeomys gophers and their lice (Box 8.5).  For
these five pairs of hosts and parasites Huelsenbeck et al. could not reject the hypothesis that the COI sequences
were clock like, nor could they reject the null hypotheses that the tree topologies were identical (Fig. 8.12a) and
had the same speciation times (Fig. 8.12b). However, the null hypothesis of equal rates of nucleotide
substitution (Fig. 8.12c) was rejected; the lice are evolving 3.02 ± 0.53 times as rapidly as their hosts.

At present, these tests all suffer the limitation that they require each parasite to have a single host, and each
host to have a single parasite. Furthermore, the tests of temporal cospeciation and equal rates of evolution
require identical host and parasite phylogenies. Future developments may broaden the applicability of these
methods.

8.4
Age and Rates of Diversification

One of the great challenges in reconstructing the history of life on earth is to establish the age of origin of
different lineages. The only direct evidence for the age of a lineage is the fossil record, which is frequently
rather poor. Furthermore, fossils provide minimum estimates of taxon age; the oldest fossil for a taxon tells us
that lineage must be at least that oldthere is still the possibility that older fossils remain to be discovered. These
limitations can to some extent be addressed by interpreting fossils in light of phylogeny. A good illustration of
this is the 'sister group rule'. This rule follows from the fact that the two immediate descendants of an ancestral
species are of the same age. Hence, if A and B are two sister species (i.e. each other's closest relative) then A
and B are at least as old as the oldest fossil of either A or B (Fig. 8.14).

8.4.1
Ages of Taxa

Perhaps the most powerful approach to combining phylogenies and the fossil record is to use the fossil record
to calibrate rates of molecular evolution, then use those calibrated rates to extrapolate the ages of taxa for
which fossils are not available. A recent example of this is provided by Cooper and Penny's (1997)
investigation of the age of modern birds. There is considerable controversy about the extent and nature of the
extinctions at the Cretaceous/Tertiary (K/T) boundary some 65 million years ago. A popular hypothesis is
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Box 8.5 Pocket gophers and their lice

Pocket gophers are small rodents found in the western and central United States,
Mexico, and Central America. They are host to two genera of ectoparasitic lice,
Geomydoecus and Thomomydoecus. These flightless insects are highly host
specific and spend their entire life history on their mammalian hosts. Because of
the similarity of the gopher and louse phylogenies these taxa have played a
prominent role in recent studies of hostparasite cospeciation. Hafner et al. (1994)
obtained DNA sequences for a homologous 379-bp region of the mitochondrial
cytochrome oxidase subunit I (COI) gene for both gophers and their lice. These
data have been used by a number of authors to illustrate methods for comparing
rates of evolution in hosts and parasites. Hafner et al. originally suggested that
the lice show a 10-fold higher rate of substitution than gophers; subsequent
reanalyses suggest the actual disparity is nearer 23 (Huelsenbeck et al., 1997;
Page, 1996b).

continued on p.  301
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continued

Box 8.5

The figure above shows phylogenies for pocket gophers and their chewing lice
parasites (the organisms are shown in inset) with branch lengths proportional to
numbers of substitutions at the third codon position in the COI gene. Pocket
gopher genera are Orthogeomys, Pappogeomys, Cratogeomys, Geomys,
Thomomys and Zygogeomys; louse genera are Geomydoecus and
Thomomydoecus. Grey lines connect gophers with their species specific parasite.
After Hafner et al. (1994).

Fig. 8.14
The sister group rule. Lineages A and B both have
fossils, although of different ages. Because they are

sister taxa, lineage B is at least as old as A, even
though B's fossil record does not extend back
nearly as far as that of A.This rule means that

even groups with no fossil record can be
assigned a minimum age using the fossil

record of their nearest relatives.

that modern bird (and mammal) orders only radiated after the K/T boundary; prior to that time, dinosaurs were
the dominant terrestrial vertebrates. The bird fossil record is patchy as most birds have lightweight skeletons
and (at least in modern birds) no teeth, which does not favour their preservation. Although some fossils of
putatively modern bird orders have been found in Cretaceous fossil beds, the identity of these fossils has been
disputed. Hence, a conservative interpretation of the fossil record is consistent with a post-Cretaceous radiation
of modern birds.

Cooper and Penny set out to test this hypothesis by calibrating the rates of evolution in two genes,
mitochondrial 12S rRNA and the nuclear c-mos gene, in 16 orders of birds using the avian fossil record.  They
then extrapolated back to estimate the divergence times for modern bird orders. Because the details of bird
phylogeny are controversial, Cooper and Penny chose to use quartets of birds about which there is little
argument concerning their relationships. For example, given the ostrich, rhea, loon, and shearwater, there is
little doubt that ostrich and rhea go together, as do the loon and the shearwater (each quartet was chosen such
that the root lay between the two pairs of taxa). We can then use the oldest fossil for each pair of birds to
calibrate the rate of evolution and extrapolate back to the age of the common ancestor of the four taxa (Fig.
8.15).
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Fig. 8.15
The quartet method used by Cooper and Penny

(1997) to infer the age of the common ancestor of
four taxa AD. The rate of  molecular evolution

in the taxon pairs (A, B) and (C, D) is calibrated
using the oldest fossil for each pair of taxa. Given
this calibration, and the divergence between the

two pairs of taxa, the age of their common
ancestor can be inferred.

The other advantage of using quartets is that they reduce the dependence on there being a molecular clock
ticking uniformly across all birds because each non-overlapping quartet of taxa is calibrated separately. Cooper
and Penny found that different quartets yielded similar rate estimates. It should be noted, however, that these
estimates are not completely independent due to overlap among the subtrees for the quartets that span the root
of bird phylogeny.

Applying this method to the 12S rRNA and c-mos data strongly suggests that modern birds as a whole
originated in the Early Cretaceous and that at least 21 lineages survived the K/T extinction, leading Cooper and
Penny to talk of 'mass survival' of birds rather than mass extinction (Fig. 8.16). However, it should be noted that
survival of lineages does not mean that modern birds were unaffected by events at the K/T boundary; the
lineages that survived may be only a subset of those extant in the Cretaceous, with each surviving lineage
having undergone a reduction in diversity at the time of the K/T boundary.

The dates for the radiation of birds (Cooper and Penny, 1997), mammals (Hedges et al., 1996) and animals in
general (Wray et al., 1996) obtained using molecular data have caused some controversy, given that they
suggest many lineages are older than previously thought. However, this discrepancy between fossil and
molecular evidence may be due to a too literal reading of the fossil record.  Palaeontologists using phylogenetic
methods have argued for some time that lineages may be older than a naïve reading of the fossil record would
suggest (Novacek and Norell, 1982).

8.4.2
Rates of Diversification

The fossil record is imperfect, but seemingly is the only source of information
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Fig. 8.16
Two alternative views of the evolution of birds. One interpretation of the fossil

record suggests that modern birds radiated after the K/T boundary extinction
event; Cretaceous birds were present but did not belong to the modern orders
and went extinct at the end of the Cretaceous. However, calibrating rates of
molecular evolution with fossils of modern birds suggests that many modern

bird orders were already present in the Cretaceous, and that the post K/T
'radiation' is an artefact of interpreting the fossil record too literally.

about extinction prior to human historical recordsthe prima facie evidence for extinction is that there are
organisms found as fossils that are not found alive today. However, recent work suggests that using molecular
phylogenies for present-day taxa it is possible to make inferences about extinction rates, even in the absence of
fossils. This approach relies on molecular phylogenies that are both consistent with a molecular clock and are
largely complete in their sampling of the entities (species, populations, strains, etc.) being studied.

Consider the diagram in Fig. 8.17(a) of a phylogeny that has been sampled at six different intervals; for
example, at interval 3 there were six lineages extant, of which three went extinct and three survived and
speciated to yield the seven lineages present today. If we plot the actual number of lineages present at each time
interval (a 'lineages through time' plot), and the number of lineages that are ancestral to extant species, we
obtain the two curves shown in Fig. 8.17(b).  If we considered only the phylogeny of the extant species (shown
as thick lines in Fig. 8.17a) then we would underestimate the number of lineages actually present in several of
the time intervals; this is shown by the gap between the two curves in Fig. 8.17(b).

If we assume a simple model of speciation in which the rates of speciation (b or 'birth rate') and extinction (d or
'death rate') is constant over time then the lineages through time plot for a group of extant species has a
characteristic shape: a steep rise at the beginning, a middle phase with a flat slope, then an
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Fig. 8.17
Lineages through time plots. (a) A phylogeny for a group of seven extant species
and their ancestors. Four lineages (thin lines) have gone extinct. (b) A plot of the
number of lineages actually present at each time interval ( ), and the number of
lineages that have descendants alive today ( ). The gap between the two lines

is due to lineage extinction. After Nee et al. (1994).

Fig. 8.18
Lineages through time plots for a simulated
phylogeny and its reconstruction. The slopes

of both curves are the difference between rates
of speciation (b) and extinction (d) over most

of the clade's history, asymptotically approaching
the speciation rate b at the present day. The gap

between the actual and reconstructed curves
varies with the rate of extinction; the greater the

extinction rate the more pronounced the gap.
Modified from Nee et al. (1994).

upward rise near the present (Fig. 8.18). The slope of the line in the middle is the birth rate minus the death
rate, b d, and represents the effective rate at which lineages are added. The upswing as we approach the present
is due to the decreasing likelihood of observing a lineage extinction once the time interval between our
observation point and the present day becomes short relative to the probability of a lineage going extinctwe are
more likely to observe at
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least one lineage going extinct over a period of 10 million years than over a period of 10 000 years. The slope
of the curve as it approaches the present day can be used to estimate the birth rate for the clade, b.

Analyses of lineages through time have the potential to provide new insights into rates of organismal
differentiation. Rates can be compared among different clades, and within the same clade but over different
time periods. Estimates of lineage extinction derived from molecular phylogenies can also be used to assess the
completeness of a clade's representation in the fossil record.

8.5
Phylogenies in Molecular Epidemiology

Since the start of the AIDS epidemic in the early 1980s, there has been a heightened interest in the emergence
and evolution of infectious diseases. It is clearly extremely important to know what factors allowed new
infections like HIV to appear, or older ones to reappear, and then to track their spread through populations.
These tasks form part of the science of molecular epidemiology.

Although tracing the spread of infectious diseases was traditionally approached by serology, that is by studying
the movement of pathogen strains which differed in immunological (= serological) response, today a great deal
of research in this area is undertaken using comparative gene sequence data. This in turn means that
phylogenetic trees have become an important analytical tool.  In this section we shall illustrate a few of the
ways in which phylogenies have been used to study the origin and spread of viral infections.

One of the most basic questions to ask with any infectious disease is where it comes from. As we saw in
Chapter 7, there are two types of HIV: a highly virulent global type (HIV-1) and a somewhat less virulent strain
which is found most often in West Africa (HIV-2). HIV-like viruses are also commonly found in many African
monkeys, and are referred to as simian immunodeficiency viruses (SIV). Because they are infected at such high
frequencies, African monkeys are almost certainly the animal reservoir that ultimately gave us the AIDS
viruses. However, if we construct phylogenetic trees of gene sequences from these different viral groups, we
find that the relationships between them are rather complex. A tree depicting the phylogenetic relationships
among the known primate immunodeficiency viruses, summarised from a number of sources, is shown in Fig.
8.19.

The first thing to take in from this tree is that HIV-1 and HIV-2 are most closely related to different primate
species: HIV-1 to the viruses found in chimpanzees (SIVCPZ) and HIV-2 to those found in sooty mangabey
moneys (SIVSM). Because HIV-2 is predominantly a West African virus, and sooty mangabey are West
African monkeys, it is possible that the sooty mangabey is the direct source of HIV-2. However, whether
chimpanzees are the ultimate source of HIV-1 is less clear as chimpanzees are very rarely infected in the wild.
Furthermore, because other monkey species are known to carry immunodeficiency viruses which have not yet
been sequenced, it may be that
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Fig. 8.19
Schematic phylogenetic tree illustrating the evolutionary relationships between

different primate immunodeficiency viruses and the different subtypes of
HIV-1 and HIV-2 (denoted by letters). Branch lengths are not drawn
to scale. Abbreviations for simian immunodeficiency viruses are as
follows: SIVAGM = African green monkeys (ver = vervet, gri =

grivet, tan = tantalus, sab = sabaeus); SIVMAC = macaque;
SIVMND = mandrill; SIVSM = sooty mangabey; SIVSYK =

Sykes' monkey. Adapted from Holmes (1998).

both HIV-1 and SIVCPZ were derived from another, as yet undescribed, monkey source. Whatever their
precise origin, the separation of HIV-1 and HIV-2 on the tree means that they must have entered human
populations on different occasions.

Even more interesting patterns arise if we look at the phylogenetic relationships of the main viral lineages
within HIV- and HIV-2. These lineages are called 'subtypes' and ten (denoted A to J) have so far been
identified in HIV-1 worldwide, although more may be lurking below the surface (and only the most common
eight are shown on the tree here). The most interesting
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features of these subtypes are that they may have spread through different populations at different times and
sometimes by different routes. Subtype A, for example, is commonly found in sub-Saharan Africa where it is
predominantly transmitted through heterosexual intercourse. It may also be one of the oldest of all subtypes,
although it still probably emerged within the last 50 years or so. In contrast, subtype B is associated with the
HIV epidemic in homosexual men and injecting drug users from North America, Europe and Japan and
probably did not emerge until the late 1970s or early 1980s. Most striking of all are the subtype O viruses
which infect some people in parts of West Africa.  These are separated from the other HIV-1 sequences by
those viruses present in the chimpanzee. This means that HIV-1 must also have entered humans from other
primates at least twice. Multiple entry of viruses into humans has also taken place in HIV-2, where there is
more of a mix of human and monkey lineages. Overall, this phylogenetic analysis tells us that rather than being
very rare events, the emergence of AIDS viruses in humans has been depressingly common.

Another interesting virus on the tree is found in rhesus macaque monkeys (SIVMAC). The puzzle here is that
rhesus macaques are Asian monkeys, yet every other SIV collected to date comes from an African monkey
species. How could an African virus have got to an Asian monkey? The answer seems to be that rhesus
macaques were kept in primate colonies in the United States along with sooty mangabeys and that the virus
somehow managed to transfer between the two species. Proof that rhesus macaques are not normally SIV
infected is that wild populations do not harbour the virus.

Similar studies have been performed on many other emerging viruses. One example which generated a great
deal of interest concerned the appearance of a mysterious and highly virulent respiratory (pulmonary) illness in
the 'Four Corners' region of the Southwestern United States (the shared border region between Arizona,
Colorado, New Mexico and Utah). This infection killed 26 people in 1993 and prompted a large-scale
epidemiological investigation about its likely cause. In the first part of the study, blood samples from infected
individuals were tested, using standard serological techniques, against a wide variety of pathogens to see
which, if any, were responsible for the disease. The only positive results were with the Puumula strain of the
hantaviruses. These RNA viruses have long been known in Europe (like Puumula), and more commonly in
Asia, where they are responsible for renal and haemorrhagic diseases, killing from 4000 to 20 000 people each
year. However, hantaviruses primarily infect rodents rather than humans, were not known to cause human
disease in the Americas and were certainly not associated with pulmonary symptoms. But although a hantavirus
was an unusual suspect for the Four Corners outbreak, a subsequent molecular epidemiological analysis
revealed that this cluster of cases was indeed caused by a new strain of hantavirus, and one which had evidently
adapted to infect the lungs instead of the kidneys (Fig. 8.20). However, rodents were still a very big factor in
its spread: this new
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Fig. 8.20
Phylogenetic relationships between the Hantavirus

pulmonary syndrome virus (now called 'Sin Nombre'
virus) which led to the Four Corners outbreak and

viral sequences from other hantaviruses. The tree was
reconstructed on a 241 bp region of the M segment

of the viral genome using parsimony. Values of
bootstrap support > 50% are shown in ovals next

to the appropriate nodes and branch lengths
(numbers of substitutions) are also indicated. The

details of the other viruses included in the tree
are as follows. The Hantaan strain is from Asia,
causes a serious haemorrhagic fever with renal
syndrome (HFRS), and circulates in field mice
(Apodemus agrarius), while the Seoul strain
causes a milder form of HFRS and is found
worldwide, using the rat (Rattus norvegicus)

as a reservoir. The Puumula strain is European
in origin and again causes a mild HFRS, this

time with the bank vole (Clethrionomys
glareolus) as its host population. Finally, the

Prospect Hill virus is North American in origin
and only known to infect bank voles (Microtus

pennsylvanicus). From Nichol et al. (1993).

strain of hantavirusoriginally called 'Hantavirus pulmonary syndrome', and now 'Sin Nombre virus'was found to
be circulating at high frequencies in deer mice (Peromyscus maniculatus) from the Four Corners region.
Furthermore, these rodents had recently experienced a massive expansion in population size, evidently bringing
with it increased opportunities for disease transmission to humans.

As we have seen with both HIV and hantaviruses, the movement of pathogens from animals into humans is
often associated with the outbreak of
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Fig. 8.21
Phylogenetic tree (reconstructed using parsimony) of 89 nucleoprotein (NP)

gene sequences from different isolates of influenza A virus. Isolates are
designated by their strain name and their HN type. The species from
which the strains were isolated are indicated by the animal symbols

and roman numerals denote the five viral groups (also based
on NP analysis) that have been proposed. In some cases,
dates of appearance have also been estimated and placed
next to the appropriate nodes. Branch lengths are drawn



to scale. From Webster et al.(1995), with permission
from Cambridge University Press.
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disease. Another important example is provided by an infection that has been with us since Greek and Roman
timesinfluenza. It may come as a surprise to learn that the worst epidemic of infectious disease ever recorded
was that of 'Spanish flu', which killed at least 20 million people worldwide in 191819. The virus also managed
to infect a staggering 28% of the US population and had a mortality rate of > 2.5%, when rates of < 0.1% are
the norm. Why was this virus so virulent? Once again, molecular phylogenies can provide us with important
clues.

There are three different types of influenza virus: influenza A, the most virulent and mutagenic form and which
is associated with the major epidemics and pandemics in humans; influenza B which occasionally causes severe
illness; and influenza C which, if it causes a disease at all, is usually very mild. Not surprisingly, most attention
has focused on influenza A.

Viruses similar in structure and sequence to influenza A are found in a variety of animal species, such as pigs,
horses and, most notably, birds. Within the birds, waterfowl (such as ducks) are the most commonly infected
group but suffer no ill effects. Phylogenetic trees constructed on sequences from the nucleoprotein (NP) gene
from all these species show that viral lineages are very species-specific (Fig.  8.21). Influenza viruses clearly do
not cross species boundaries that often. However, when they do, the results can be devastating. The key to
understanding this process is the genome of the virus itself.

Influenza virus has a segmented genome which means that recombination (called reassortment in this context)
among the haemagglutinin (H) and neuraminidase (N) proteins found on the surface of the virus takes place
regularly. This reassortment allows new strains, with different combinations of H and N types, to be formed.
Birds naturally carry many different H and N combinations (look at the tips of the tree in Fig. 8.21), some of
them potentially highly pathogenic for humans. Fortunately, these virulent combinations are usually unable to
infect humans directly because they lack a particular nucleoprotein gene sequence which seems to determine
host range. This explains why the NP gene tree is so species-specific. Pigs, however, can be infected with both
the bird and human viruses and so serve as a 'mixing vessel' for these viruses, allowing new H and N
combinations to acquire human NP sequences. These recombinant viruses, with new and possibly dangerous
cocktails of H and N proteins, may then enter and spread through human populations, sometimes with terrible
consequences. This process of slower evolution of viral strains from year to year, seemingly driven by natural
selection, is known as 'antigenic drift'. For example, the 191819 flu pandemic was caused by the combination
H1N1. This appeared again in 1977 in the guise of 'Russian flu'. In the interim period, two other major
pandemics ravaged human populations; the 'Asian flu' of 1957, caused by an H2N2 strain, and the 'Hong Kong
flu' of 1968 which was the product of an H3N2 outbreak. Despite the importance of pigs, very occasionally a
virulent viral strain can move directly from birds into humans,
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as occurred in the 'Asian flu' of 1957, and more recently in Hong Kong, where a new and seemingly highly
virulent surface protein combination, H5N1, has entered humans from chickens.

We will consider one more use of phylogenetic trees in molecular epidemiology, as a 'forensic' tool in
documenting the source of particular infection events. We have already come across one famous case of this in
Chapter 1where trees of HIV sequences were used to show that a dentist in Florida had infected a group of his
former patients with this virus. Similar studies have been performed on another important blood-borne human
pathogen, and one that also evolves frighteningly quicklyhepatitis C virus (HCV).

As with HIV, HCV (another RNA virus) can also be transmitted through contaminated blood products, such as
the clotting factors used by haemophiliacs. Despite this, it came as a surprise to many when it was discovered
that the virus had been transmitted in anti-rhesus D immunoglobulina blood product which is routinely given to
rhesus-negative mothers to prevent them from being immunologically incompatible with their babies if they
happen to be rhesus-positive. However, just such a transmission took place in Ireland in 1977 where up to 900
women were infected with HCV following exposure to the same, contaminated, batches of this
immunoglobulin. The conclusive

Fig. 8.22
Phylogenetic tree of HCV sequences depicting an
anti-rhesus D immunoglobulin (Ig) transmission

case in Ireland. Sequences from those HCV infected
individuals who received the implicated batches of
anti-D Ig are denoted by closed circles and cluster

together along with those sequences recovered from
one of the original batches (B250) and the suspected
HCV infected donor (denoted by open squares). A

background population of individuals from different
parts of the world infected with the same HCV

subtype (la) are shown as open circles. A sequence
from HCV type 1b (PT) was used to root the

phylogenetic tree. Data from Power et al. (1995).
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evidence that infected batches of anti-rhesus D immunoglobulin were responsible for this epidemic came from a
phylogenetic analysis of HCV sequences. All women who had received the implicated batches of
immunoglobulin were infected with viruses classified as type 1a, whereas others infected in the same area had
type 1b, and formed a tight cluster on the phylogenetic tree, indicative of a transmission group.  Crucially, viral
sequences were also available from one of the suspected batches and from the original HCV-infected blood
donor and these grouped closely with the infected women (Fig. 8.22).

We have illustrated only a few of the uses phylogenetic trees have in molecular epidemiology. As pathogens
become more routinely studied at the nucleotide sequence level, it is certain that molecular phylogenies will
become an increasingly useful tool by which to understand their origins and spread.

8.6
Summary

1 Inferring organismal phylogeny may require combining data from different genes, or from more diverse
sources such as morphology and behaviour. These data sets may be combined into a single analysis, analysed
separately, or combined on the condition that there is no significant heterogeneity among the data sets.

2 The relationship between gene trees and species trees can be complex, particularly if the gene has undergone
several duplications in its history. Reconciled trees can be used to visualise this history.

3 Cospeciating lineages of hosts and associated organisms can be used to calibrate rates of molecular evolution
in distantly related taxa, with or without using the fossil record.

4 Combining molecular evidence, phylogenies, and the fossil record can yield new interpretations of the time of
diversification of major clades.

5 Rates of lineage diversification and extinction can be inferred from 'lineage through time' plots of molecular
phylogenies.

6 Phylogenies of viruses contain important information about their epidemiological history and can be used to
determine from where they (and other pathogens) originated and how they have then spread through
populations. It is even possible to determine the source of localised transmission events.

8.7
Further Reading

The book edited by Harvey et al. (1996) is an excellent overview of the range of evolutionary questions that
can be addressed using phylogenies. More specific topics, such as hostparasite cospeciation, biogeography, and
character evolution are discussed by Brooks and McLennan (1991) and Harvey and Pagel (1991). There is a
large, robust literature on the total evidence debate. Recent reviews include de Quieroz et al. (1995), Nixon and
Carpenter (1996), and
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Huelsenbeck et al. (1996). The gene tree-species tree problem is discussed by Pamilo and Nei (1988), Doyle
(1992), and Brower et al. (1996), among others. The reconciled tree method was first proposed by Goodman et
al. (1979), and has recently received renewed attention (Guigó et al., 1996; Mirkin et al., 1995; Page, 1994).
Our treatment here is based on Page and Charleston (1997a; 1997b).

Brooks and McLennan (1991; 1993) review the application of phylogenetics to the study of cospeciation. For
recent, opposing views on the methodological details of comparing host and parasite trees see Hoberg et al.
(1997) and Paterson and Gray (1997).  Hafner and Page (1995,1996) describe the use of cospeciating host and
parasites to compare rates of evolution. Applications of this approach include Hafner et al. (1994), McGeoch et
al. (1995), Moran et al. (1995) and Huelsenbeck et al. (1997). The utility of molecular data in hostparasite
cospeciation studies is emphasised by Page et al. (1996). The evidence that the bird and mammal radiations
predate the K/T boundary is presented by Hedges et al. (1996) and Cooper and Penny (1997). See Gibbons
(1997) for a commentary and Mindell (1997) for the most recent overview of avian molecular phylogenetics.
Wray et al. (1996) present the molecular evidence that the Burgess Shale is much younger than the radiation of
the Metazoa. Smith (1994) is an excellent introduction to the phylogenetic interpretation of the fossil record.

The theory behind lineage through time plots is developed by Nee, Harvey, and colleagues (Harvey et al., 1994;
Nee et al., 1992, 1994a,b, 1995).

Applications of phylogenies to epidemiological studies are discussed in Holmes (1998), Holmes and Garnett
(1994) and Holmes and Harvey (1998). With respect to the specific viral examples used, the evolution of
primate immunodeficiency viruses was approached by Hirsch et al. (1995) and Sharp et al. ( 1994, 1995), that
of Sin Nombre virus by Nichol et al. (1993), of influenza by Scholtissek (1987) and Webster et al. (1995), and
of HCV by Power et al. (1995).
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back mutations 63
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classical school of population genetics 2301

classification 2830

cline 121

clock, molecular see molecular clock
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'closest tree' method 2034
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degenerate sites 159
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mutations at level of 634
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rate of evolution 239

repetitive sequences 7785
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repair 65
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regional variations in mutation patterns related to 247

replication 37, 579
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repair during 65
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structure 3840
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transcription 51, 601

DNA elements (class II transposable elements) 81, 83

DNA library 85
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DNA sequences see nucleotide (DNA) sequences

dominance variance 119

dominant alleles 90

dot plot 139, 141
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Drosophila

Adh gene 51, 52, 248, 272

glucose-6-phosphate dehydrogenase gene (G6pd) 267

HOM genes 746

jgw gene 2767

quantitative traits 120

recombination and levels of DNA polymorphisms in 26870

speciation genes 123
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gene 301, 56, 736, 286293

rooting trees using 291
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ectopic exchange 83

edges see branches

effective population size (Ne) 109

electrophoresis

DNA fragments 86

protein 92, 230

endosymbiotic bacteria, aphids and 296

enhancers 51

environmental vs. genetic factors, phenotypic variance due to 11820

enzymes 40

with alleles differing in electrophoretic mobility see allozymes

polymorphisms in human populations, genetic variation revealed by 131, 132

epidemiology, molecular 30512

episodic molecular clock 2701

epistatic variance 119

Escherichia coli 65

codon usage patterns 248, 249

DNA repair 65

genome size and organisation 701

euchromatin 42

eukaryotes

phylogenetic relationships 12

genome organisation 7085

excision repair 65



exons 52

shuffling 535

extinctions 299305

at K/T boundary and age of modern birds 299302

F

F-statistics 11617

fecundity 100

Felsenstein zone 211, 212

Felsenstein's 1981 (F81) model 1512

compared with other models 1526

finite population size 109

fire ants, hybrid zones 122

fitness 99, 1001

inbreeding reducing 113

mutations having no effect on see neutral mutations

fixation, allele 98

fixation index 11617

fossil record/remains

age of lineage determined via 299305

ancestors 24

great apehuman split 5, 6

modern human origins and 129, 130

molecular evolution in one lineage calibrated via 296

founder effect 110

four-taxon trees 193, 214 see also quartet-based tree building

fragile X syndrome 65, 80

frameshifts 634

frequency (of alleles/genes/genotypes in populations) 912, 96117

assessing 913

G

gametes 58

gametic selection 100

gamma distribution 1602

gap (in sequence) 13943



gap penalty 1401

GC box 52

G + C content of isochores 2445

gel electrophoresis of DNA fragments 86

gene(s) 3789

cloning 85

vectors 85

diversity 92 see also genetic variance

duplication see duplication

expression, control 501

regulatory sequences in 40, 501

families of related see multigene families

frequency see frequency

function 5770

genealogies see gene trees

homology among 1378

housekeeping 50

loci 42

number

in different species 72

in quantitative characters 120

orthologous 31, 137, 287

paralogous 31, 137, 287

in populations, frequency see frequency

random sampling of see genetic drift

sequencing see nucleotide (DNA) sequences

speciation 123

structure 505

tissue-specific 50

xenologous 137

see also alleles; mutations

gene conversion 68

gene flow 11317

gene trees (gene genealogies) 303, 1249, 28693

complex, inferring organismal phylogeny from 2913
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genealogies, gene see gene trees

general reversible model (REV) 152

compared with other models 1526

generation time molecular clock 25660

genetic change 15571

measuring 15571

in quantitative characters 101, 11720

genetic code 436

deviation from universality 46

reading frames and 50

see also codons

genetic drift 1069

coalescent theory and 1257

neutral theory and 1067, 2323

nearly neutral theory and 2623

genetic hitchhiking 26870

genetic load 232, 234, 236

genetic variance 11920

genome 42

chloroplast 49

complete genome sequencing 1

mitochondrial 47

organisation 8, 7085

evolution and 7085

size, interspecies differences 712

vertebrate, isochore structure 2437

genotypes 90

frequencies see frequency

globin chains 412

amino acid substitution rate and functional constraints 2379

genes

evolution 56, 2289



glucose-6-phosphate dehydrogenase (G6pd) gene of Drosophila 267

glycosylation 62

goodness of fit measures (in tree building) 1801

gophers, pocket, and their lice 299, 3001

gp120 (HIV envelope protein) 275

ratio of synonymous and non-synonymous substitutions 241, 244

great apeshuman split 57, 20 see also hominoids

group IIII introns 55

guanine 38 see also CpG islands; G + C content of isochores

H

Hadamard transform 2034

haemagglutinin of influenza virus 310

haemoglobin

gene family 56

Lepore mutant of 67

mammal phylogeny and 286

natural selection in 2712

sickle-cell 232

structure 412

Haemophilus influenzae 1

Haldane's rule 123

hantavirus molecular epidemiology 3078

haploid chromosomes 58

hard selection 234

HardyWeinberg theorem 946

Hasegawa, Kishino, Yano (HKY85) model 152, 197

compared with other models 1526

hepatitis C virus (HCV) molecular epidemiology 31112

heritable variation 118

heterochromatin 42

heterozygosity 92

heterozygote 90

frequency

forces affecting balance between homozygosity and see homozygote



heuristic methods in tree building 176

hitchhiking, genetic 26870

HIV (human immunodeficiency virus) 23, 224, 3057

and ancestors 224

AZT resistance 38, 101

chemokine receptor 5 gene (CCR5) deletion 104, 121

functional constraints and rate of substitution 241, 244

gp120 see gp120

molecular epidemiology 3057

HKY85 see Hasegawa, Kishino, Yano (HKY85 model)

HLA (human leukocyte antigens) see MHC

HOM genes 746

hominoids (man and anthropoid), trees

construction 180, 1989, 201, 2023, 206

sampling error (and its estimation) 21819, 222

unrooted 16

Homo erectus 1301

Homo sapiens see humans

homologous chromosomes 58

homology 13542

among character states 21, 135

among genes 1378

among sequences 13842

homoplasy 212, 1357

homology and, difference between 1367

nucleotide sequence evolutionary information obscured by 146

homozygote (homozygous genotype) 90

frequency (homozygosity), forces affecting
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genetic drift 1089

natural selection 1013

non-random mating 11113

Hox genes 41, 746

HudsonKreitmanAquadé (HKA) test 242

human(s)

codon usage patterns 248, 249

modern (H.  sapiens)

origins 12933

trees for 216

mtDNA sequences compared with chimpanzees 154

split from great apes 57, 20

see also hominoids

human immunodeficiency virus see HIV

human leukocyte antigens (HLA) see MHC

hybrid dysgenesis 83

hybrid zones 122

I

identity by descent (IBD) 112

immune systemparasite interactions in mammals 2736

immunoglobulin genes 68

inbreeding 11113

coefficient of 112

depression 113

incongruence

between cladograms for host and parasites 294

between trees 287

infectious disease, phylogenies in molecular epidemiology 30512

infinite alleles model 108

infinite population sizes 109



infinite sites model 108

influenza virus, molecular epidemiology 31011

initiation codon 46

insertions 63

gaps (in sequence alignment) due to 140

interleukin-1 gene trees 28990

interspecific recombination 689

introns 525

evolution 535

group IIII 55

mtDNA 47

protein-spliced 53

rate of substitution in 159

spliceosomal 535

inversion, chromosome 65

island model, of migration 1134

'islands' of trees 176, 177

isochores 2437

isolation, peripheral 1212

J

jingwei (jgw) gene 276, 277

JukesCantor (JC) model 14950

compared with other models 1526

'junk' DNA 8

K

K/T boundary extinctions and age of modern birds 299302

Kimura's 2 parameter model (K2P) 1501, 180

compared with other models 1526

L

lactate dehydrogenase sequences, phylogeny 292, 293

landscape, phylogenetic 176, 177

language, trees for modern humans based on 216, 217

langur monkey lysozyme see lysozyme

least square methods, branch length determination 180, 184



Lepore mutation of haemoglobin 67

lice and pocket gophers 299, 3001

likelihood 1556, 193201, 213, 226

maximum 193201

objections to 2001

parsimony and 199200

ratio test 1969

in tests of cospeciation 2979

lineage(s) 299305

age of origin of different, establishing 299305

extinction see extinctions

molecular evolution in one, calibration 296

through time plot 304

lineage effects, molecular clock variations explained by 25661

lineage sorting 313

linear programming, branch length determination 183

linkage disequilibrium 99100

LogDet transformation 1589

log-likelihoods 155, 156

long branch attraction 1912, 2234

long interspersed nuclear elements (LINEs) 82

long terminal repeat (LTR) retrotransposons 812

LTR retrotransposons 812

lysozyme 1368

cows and langur monkeys 1368

parallel evolution 136, 272

M

major histocompatibility complex see MHC

majority-rule consensus tree 35

mammals

amino acid substitution rates in proteins 234, 235

birds and, mtDNA and tRNA genes
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molecular clock in 25760

non-synonymous substitutions in 240

phylogeny 290

synonymous substitutions in 240

mating

non-random 111

random 111

maximum likelihood see likelihood

maximum parsimony 18793, 213, 226 see also parsimony

McDonaldKreitman test 242

meiosis 589, 66

meiotic drive 78

messenger RNA see RNA

metabolic rate and mutation rate 259

Methanococcus jannaschii 12

methylation, DNA 57

metric distance (between sequences) 25, 179

metric tree see additive tree

MHC (major histocompatibility complex) 2735

linkage disequilibrium and 100

modern human origins and 133

natural selection in 2735

microsatellites (STRs) 7880

in human populations, genetic variation revealed by 131

migration

gene frequencies and 11317

miniature inverted-repeat transposable elements (MITEs) 81

minimum evolution 178, 180, 1824

minisatellites 789

mismatch repair 65

mitochondria 468



mitochondrial genes/DNA 478

genetic variation revealed in human populations 131

mutation rate of

generation time clock and 259

metabolic rate and 25960

sequence evolution/species comparisons/molecular phylogeny 147, 1602

birds and birdsmammals 223, 2856, 3012

bovid mammals 1478, 151

cytochrome oxidase subunit I of Orthogeomys gophers and their lice 299, 3001

hominoids 154, 198, 208, 21819, 222

sampling error (and its estimation) 21819, 222, 223

mitosis 589

mobiles trees and 12

molecular biology, techniques 857

molecular clock 5, 25161

a-globin 229

assumption 179

episodic 2701

hosts and parasites 295, 2989

generation time 25660

lineage effects and variations in 25661

nearly neutral theory and 261, 2635

neutral theory and 2516

tests of 1812, 198, 2536, 2989

molecular epidemiology, phylogenies in 30512

molecular markers 7980, 867

molecular phylogenies see phylogenies

molecular systematics 5

monkeys, langur, lysozyme see lysozyme

monophyletic groups 28

monosomy 65

most recent common ancestor (MRCA) 1267, 131

motifs

DNA

promoter 512



short repetitive 7980

protein 401

Muller's Ratchet 99

multigene families 557, 28991

evolution 56, 737

recombination in 68

reconstructing the history of 28991

structure of 557, 76

multiple alignment of sequences 1434

multiple nucleotide substitution 145

multiregional model of modern human origins 12933

mutation(s) 378, 635

allele frequency changes due to 968

deleterious

background selection against 270

fitness lowered by 101

in population genetics 9899

slightly, nearly neutral mutations as 241, 262263

transposable elements causing 835

directed 98

interspecies variations in rate of 25661

nearly neutral 241, 2623

definition 262

see also nearly neutral theory

neutral see neutral mutations

recombination and 6670, 834, 989
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mutation(s)

recurrent 98

see also alleles; stepwise mutation model and specific types of mutation

mutation-selection balance 98

'mutator' bacteria 98

N

narrow-sense heritability 11920

natural selection 1006, 2314, 2706

background, against deleterious mutations 270

directional 101, 102, 1046

disruptive 103

frequency-dependent 1034

hard and soft 234

molecular 2706

overdominance 1013

positive see positive selection

sexual 100

stabilising 103

Neanderthals, origin 1312

nearly neutral theory 241, 2615, 271

negative assortive mating 111

negative frequency-dependent selection 103

neighbour joining (in tree building) 178, 184, 213, 226

neighbourliness (in tree building) 184

networks 356

construction from incompatible splits 206

trees and, comparisons 207

neuraminidase of influenza virus 31011

neutral mutations 106, 2323

in evolution see neutral theory of molecular evolution

neutrality tests 2423



neutral theory of molecular evolution 89, 2314 see also nearly neutral theory

Neisseria bacteria 689

'Noah's Ark' model of human origins 129, 133

nodes (on trees) 11, 12, 13

degree 13

internal 11, 13, 14

character state sets assigned to 1656

terminal 11

non-coding DNA see DNA

non-determinist polynomial (NP)-completeness 175, 178

non-random mating 11112

nonsense strand of DNA 61

non-synonymous (replacement) substitutions/mutations 63, 146

rates (of evolution) 241, 257, 2645, 2701

relative (compared to synonymous substitutions) 243, 2736

NP-completeness 175, 178, 179

nucleotide(s) 38

bases of see bases

diversity 923

sites

assumption of independent change 1567

variations in rate of substitution among 15960

substitutions see substitutions

nucleotide (DNA) sequences 38, 13842

alignment 9, 13942, 14862

distance measures 14862 see also distance

homology among 13842

models of evolution 45, 14862, 18990, 1946, 197

assumptions 15662

incorrect 225

substitutions 14856, 18990, 194

Nutall, George 34

O

operational taxonomic units (OTUs) 11



operon 52

optimality method of tree building 1745

orang-utan and humangreat ape split 57

organismal phylogenies 2833, 2806, 2913

inferring 2913

origin of modern humans 129133

Orthogeomys gophers and lice 299, 3001

orthologous genes 31, 137, 287

'out of Africa' model 129133

overdominance 1013

oyster, American 272

P

P elements 83

PAM 250 matrix 142

parallel evolution 22, 136, 272

parallel nucleotide substitution 145

paralogous genes 31, 137, 287

parametric bootstrapping 2224

parapatric speciation 122

paraphyly 29

parasites

cospeciation of host and 2939

mammalian immune system interactions with 2736

parsimony (in tree building) 1636, 16970, 173, 18793, 199200, 213, 226, 293

assessing merits of 20910, 21116

generalised 18990

justification for 1901
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likelihood and 199200

maximum 18793, 213

objections to 1912

weighted 190

partitions

distance 215

see also splits

peptide bonds 40

per gene 123

peripheral isolation speciation 1212

phages see bacteriophages

phenetics 185

phenotypic variance, environmental vs. genetic factors 11820

phylogenetic trees see trees

phylogenies

molecular 7, 8, 172227, 280313

ancestors in 224

application 280313

confidence limits 21625

inferring 172227

known, tree building success evidenced by reconstruction of 21011

in molecular epidemiology 30512

organismal see organismal phylogenies

plants, molecular clock 258

plasmids (in cloning) 85

plesiomorphy 21

ploidy see aneuploidy; diploid chromosomes; haploid chromosomes; polyploidy

pocket gophers and lice 299, 3001

point mutations 63, 64

Poisson molecular clock 253

poly(A) tail 61

polyadenylation 61



signal for 52

polymerase chain reaction (PCR) 7, 856

polymorphic DNA, randomly amplified (RAPDs) 867

polymorphisms 90

allele fixation and 1079

balanced 102

DNA 923

neutral theory and levels of 26570

polyotomy 13

polypeptides 40

polyphyly 29

polyploidy 645, 73

population(s)

bottlenecks 10910, 1289, 133

frequencies of alleles/genes in see frequency

genetic load carried by 232, 234, 236

measuring genetic diversity in 923

size, changes in 10910

subdivision see subpopulations

population genetics 8, 89134, 2301

classical and balance schools of 2301

of human origins 12933

positive assortive mating 111

positive frequency-dependent selection 103

positive selection 101

gene genealogies and 127

at molecular level 27076

post-order transversal 165

Pribnow box 52

prokaryotes, two groups of 12

promoters 51, 512

proofreading of DNA 65

protein(s) 402

genetic diversity in 2301

natural selection in 2712



sequences (of amino acids) 45, 1423, 162

alignment 1423

distance measures 162

structure 402

synthesis 51, 5962

types 40

see also amino acids

protein-spliced introns 53

pseudogenes 567

in gene conversion 68

rate of evolution 159, 239

pseudoreplicate 220, 221

Punnett square 945

purines 38 see also transitions; transversions

pyrimidines 38 see also transitions; transversions

Q

quantitative characters, genetic change 101, 11720

quantitative trait loci (QTLs) 118

quartet-based tree building 1768

R

Ramapithecus and humangreat ape split 57

random mating 111

random sampling of genes see genetic drift

randomly amplified polymorphic DNA (RAPDs) 867

reading frames 50

RecA 70

recessive alleles 91

recombination 6670

in Drosophila, DNA polymorphisms and 26870

genetic diversity produced by 689, 99

homologous 67

interspecific 689

in multigene families 68
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recombination

mutation caused by 67, 834, 989

non-homologous 83

regional variations in mutation patterns related to 247

reconciled trees 2869

recurrent mutation 98

redgreen colour blindness 67

regulatory sequences/genes 40, 501

reinforcement 122

relative rate test of molecular clock 2546

repetitive DNA sequences, non-coding 7785

replacement substitutions see non-synonymous substitutions

resampling in estimating sampling error 21922

residue effects in the molecular clock 256

restriction enzymes 86

restriction fragment length polymorphisms (RFLPs) 86

in human populations, genetic variation revealed by 1312

retroelements 812

retroposons 82

retrotransposons 812

retroviruses, endogenous 823

REV model see general reversible model

reverse transcriptase 62

transposition using 81

ribonuclease, evolutionary change 167, 1689

ribonucleic acid see RNA

ribosomal DNA/RNA see DNA; RNA

ribozymes 39

RNA 389

DNA synthesis from (by reverse transcriptase) 62

messenger



editing 612

processing 612

synthesis (DNA transcription) 51, 5961

translation 51, 60, 612

ribosomal 62

array see DNA

secondary structure and effect of substitutions 156

tree of cellular life 12

transfer 62

birdmammal evolution and 285

codons and, coevolution 248

RNA polymerases 60

RNAses, evolutionary change 167, 1689

rooted trees 1618

locating root 291

S

Saccharomyces cerevisae 1, 73

sampling error (in estimating phylogenies) 21822, 225

estimating 21922

satellite DNA 78 see also microsatellites; minisatellites

saturation (of sequences) 147

search methods in tree building 1736

secondary loss, homoplasy due to 22

segregating sites

genetic hitchhiking and 26970

number (S) 923

segregational load 232

selection see natural selection

selection coefficient 100

selectionist theory of molecular evolution 230, 233

selective sweep 127, 26870

selfish DNA 78

sense strand of DNA 61

seraantisera cross-reactions 34



humangreat ape split and 5

sex chromosomes 43

mutation rate 2589

sexual selection 100

ShineDalgarno box 52

short interspersed nuclear elements (SINEs) 82

short tandem repeat polymorphisms see microsatellites

sickle-cell haemoglobin 232

silent mutations see synonymous substitutions

simian immunodeficiency virus see SIV

simple sequences 7980

simulation, computer (in assessment of tree building) 21112

sister chromatids 59

sister group rule 299

sister taxa 22

SIV

evolution of 241

phylogenies in molecular epidemiology 3057

Sivapithecus and humangreat ape split 67

soft selection 234

Solenopsis spp, hybrid zones 122

spacer DNA 76

speciation 1204 see also cospeciation

species trees 301

inferred from multiple gene trees 293

spectral analysis 2014, 205

spliceosomal introns 535

split(s) (partitions) 1920, 2018

hominoids 2013, 206

humangreat ape 57, 20

incompatible 20
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split decomposition 2046, 207, 208

stabilising selection 103

star trees 13

sequence alignment on 144

start (initiation) codons 46

step matrix 189

stepping-stone model 113

stepwise mutation model 108

stochastic models of evolution 106

stop codons 43, 46

Stowaway element 81

strict consensus tree 34

STRs see microsatellites

subpopulations 11016

coalescent events between different 1289

reproductive isolation in 121

substitution(s) (amino acid), rates

functional constraints and 2369

mammalian proteins 234, 235

substitution(s) (nucleotide and in general) 1446, 14856

compensatory 156

distribution of rates 1602

independence/non-independence 1567

kinds 1456 see also specific kinds

in models of molecular evolution, rates 2326

codon bias and 24751

functional constraints and 23941

molecular clock and 25165

non-synonymous see non-synonymous substitutions

in parsimonious tree reconstructions 18990

synonymous see synonymous substitutions

variations in rate of (among sites) 15960



see also mutations

substitutional load 232

subtree methods of tree building 176

sums of pairs alignment 143

superoxide dismutase gene, Cu-Zn 170

sympatric speciation 123

synapomorphy 21

synonymous codons 248

synonymous (silent) substitutions/mutations 63

codon bias and 24851

rates (and variation) 239241, 25165

relative (compared to non-synonymous substitutions) 2736

systematics, molecular 5, 293

T

T7 (phage), tree building and 210

Tajima's D statistic 2423

tandemly repeated genes (tandem arrays) 767

tandemly repeated non-coding DNA 78

Taq polymerase 85

TATA box 512

taxa

ages of 299302

autapomorphies and 22

sister 22

terminal 11

telomeres 43

terminal nodes/taxa 11

termination (stop) codons 43, 46

tetraploidy, Xenopus laevis 73

Thomomys and Orthogeomys gophers 300

thymine 38

total evidence 218, 281284

Tourist element 81

transcription 51, 601



transcription factors 61

transfer RNA see RNA

transitions 63, 146, 1501

tree reconstructions and 1956

parsimonious methods of 189

transition/transversion ratio 150, 189190, 224

translation (of mRNA) 51, 60, 612

translocation 65

transposable elements 73, 805

transposition 73

transversions 63, 64, 146, 1501

tree reconstructions and 1956

parsimonious 18990

tree(s), phylogenetic/evolutionary 7, 1136, 172227, 30512

additive see additive trees

branches on see branches

building/(re)construction 172227

accuracy (evidence for) 20816

parsimony in see parsimony

precision 208, 21625

sources of error 225

ways of comparing different methods 1789

cladograms and 24

closest (method of inferring a tree) 203

comparing 215

consensus see consensus trees

distances (between sequences) and 248, 16270, 1723, 17987

evolutionary change on, ways of representing 20

four-taxon 193, 214

gene see gene trees

horizontal axes 15
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tree(s)

humangreat ape split 57, 20

lengtah 188

definition 188

metric see additive trees

networks and, comparisons 207

nodes on see nodes

numbers of 18

reconciled 2869

reconstruction 9

rooted see rooted trees

shape/topology 1819

shorthand for 14

species see species trees

splits see splits

star see star trees

terminology 1113

ultrametric 1516, 181

unrooted see unrooted trees

vertical axes 15

weighted 12

tree alignment 144

triangle inequality 25

trisomy 65

U

ultrametric distance (between sequences) 26, 27, 28

ultrametric trees 15, 16, 27, 181, 298

underdominance 103

unequal crossing-over 67, 73, 77

unrooted trees 1618, 1878

quartets and 1767



rooting 291

UPGMA 1789, 185, 20911, 212, 213

V

variable number of tandem repeats (VNTRs) 789

variance, genetic 11920

W

weighted parsimony 190

weighted trees 12

X

X chromosome

fragile site 65, 80

mutation rate 2589

xenologous genes 137

Xenopus laevis, tetraploidy 73

Y

Y chromosome, mutation rate 2589

yeast artificial chromosomes (YACs) 85

yellow-achaete region in Drosophilia 268

Z

zidovudine (AZT) resistance, HIV see AZT

zinc fingers 40, 258

zygote 58
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