Synthesis, preparation and transport analysis of topological insulators BiSbTeSe, and BiSbTe₂S

¹<u>Bruno Gudac</u>, ¹Mario Novak, ¹Filip Orbanić, ²Petar Popčević, ¹Ivan Kokanović

¹Department of physics, Faculty of Science, University of Zagreb, Zagreb, Croatia ²Institute of physics, Zagreb, Croatia

E-mail: bgudac@phy.hr

Sveučilište u

Zagrebu

Topological insulator		
rface or	Somiconductor on the incide]

Synthesis and sample preparation

Preparing ampoules with materials

- Quartz ampoule
- Mixing pure elements in glovebox
- Sealing ampoule

From room temperature to 800°C in 24 hours

Conductive surface or

edge states

Bi₂Te₂Se (BTS)

- Large inner resistance
- Te-Bi-Se-Bi-Te arrangment good for decreasing defects

$Bi_{2-x}Sb_{x}Te_{3-v}Se_{v}$ (BSTS)

- Rhomboedric crystaline structure
- (Bi,Sb)/Te place swap and Se vaccancy are dominating defects lacksquare
- Composition optimizing with goal of making bigger inner resistance

XRD analysis

Modified Bridgeman <u>method</u> – temperature gradient achieved using copper heat conductor

Characterization preparation

- Razor cutting
- *Capton* tape -> thickness ≈10 µm

- 800°C kept for 4 days (homogenization)
- Cooling -> Modified Bridgeman method
 - 800°C to 700°C in 12 hours
 - 700°C to 450°C in 3 days
 - 450°C kept for 3 days (annealing)

Synthesis results

- BiSbTeSe₂ monocrystal (right)
- BiSbTe₂S monocrystal (left)

Both materials crystalize in rhomboedric structure with cell parameters a= 4.16 Å, c=29.41 Å in **BiSbTeSe**, and a=4.21 Å, c=29.55 Å in **BiSbTe₂S**

Characterization outside magnetic field

- At higher temperatures resistance grows with temperature ulletdecrease -> semiconductor
- At lower temepratures resistance starts decreasing with temperature -> conductive surface

Characterization inside magnetic field

— 45 K

10

B [T]

15

Contacts: Conductive silver paste \bullet and platinum wires (ϕ =25 μ m)

- Interesting temperature dependence of magnetoresistance
- Shubnikov-de-Haas oscilations
- Cyclotron frequency of charge carriers has temperature dependance (inset)

This research was completely funded by HRZZ projects 6216 and IP-2018-1-8912.

