

3D Dirac semimetals - Probing the Fermi surface with quantum oscillations

Filip Orbanić

Department of Physics, Faculty of Science, University of Zagreb

Laboratory for shynthesis and measurements of transport, magnetic and thermodynamic properties

3D Dirac semimetals

Dirac dispersion in 3D

• 2D – graphene: $\widehat{H}(\vec{k}) = v(k_x\sigma_x + k_y\sigma_y) \longrightarrow \text{SOC} \sim \sigma_z \text{ opens a gap.}$

• 3D:
$$\widehat{H}(\vec{k}) = v_{ij}k_i\sigma_j$$
, $j = x, y(z) \rightarrow \text{Robust against perturbations!}$

 Interesting properties: fundamental physics, large LMR, high mobility, transport...

3D Dirac semimetals

• Two classes of 3D Dirac semimetals:

SOC – spin orbit coupling

Quantum oscillations

• Electrons in strong B-field → Landau levels

Downloaded from J. Phy. Soc. Jap. **82**, 102001 (2013).

$$E_{\pm}(N) = \pm \sqrt{(2e\hbar v_f^2 B/c)N}$$

Periodic behaviour of DOS.

Oscillations of physical quantities with 1/B!

Magnetization → dHvA Conductivity (resistivity) → SdH Seebeck coefficient Heat capacity

Quantum oscillations

• Lifshitz-Kosevich theory (3D):

$$\Delta M = AR_T R_D R_s \sin\left[2\pi\left(\frac{F}{B} - \frac{1}{2} - \frac{1}{8} + \beta\right)\right]$$
$$\Delta \sigma_{xx} = AR_T R_D R_s \cos\left[2\pi\left(\frac{F}{B} - \frac{1}{2} - \frac{1}{8} + \beta\right)\right]$$

 $_{\pi} 2\pi\beta = \gamma$ (Berry phase)

For Dirac fermions $\gamma = \pi$.

Materials

• Some of successfuly synthesized materials in our group:


```
BiSbTeSe<sub>2</sub>
```


 $Pb_{0.83}Sn_{0.17}Se$

$Pb_{0.83}Sn_{0.17}Se$

 In Pb_{1-x}Sn_xSe increasing x leads to NI-TCI transition. In Pb_{0.83}Sn_{0.17}Se band gap closes → Dirac point.

Pb_{0.83}Sn_{0.17}Se

Landau level diagram

Orbanić et al, PRB, (2017)

- Intrinsic Dirac semimetal
- A pair of Dirac points in direction of rotational symmetry axis.

 Cd_3As_2

our group:

Colaborators:

Assoc. Prof. Ivan Kokanović

Doc. Dr. Sc. Mario Novak

Dr. Sc. Nikola Biliškov

Institute Ruđer Bošković

Thanks for the attention.

Questions?

This work has been fully supported by **Croatian Science** Foundation under the project No. 6216. 11

Bruno gudac Augustin Orešković

Department of Physics, Faculty of science, University of Zagreb