Molecular virology - Laboratory exercises -

SDS-PAGE ANALYSIS OF VIRAL PROTEINS

Sandra Kolundžija, Ph.D.

Asst. Prof. Silvija Černi, Ph. D.

Lucija Nuskern Karaica, Ph. D.

Prof. Dijana Škorić, Ph. D.

CHARACTERISTICS OF POLYACRYLAMIDE GELS:

- Synthetic polymer
- Chemically inert
- Irreversible chemical polymerisation
- Pore size is well defined good resolution
- Good mechanical properties
- Applicable for analysis of proteins and nucleic acids

% Acrylamide	MW Range (kDa)
7	50 - 500
10	20 - 300
12	10 - 200
15	3 - 100

Advantages of PAGE in NA analysis

- Higher sample load per well
- Better NA purity for further analysis
- 0.2% resolution

Composition of polyacrylamide gel (10 mL, 8%):

6.63 mL EF-buffer

1.93 mL **AA** (40%)

1.33 mL **BIS** (2%)

100 μL **APS** (10%)

10 μL **TEMED**

AA = acrylamide BIS = bis-acrylamide APS = ammonium persulfate

EF buffer = electrophoresis buffer

TEMED = tetramethylethylenediamine

polymerisation for **15 min** at room temperature

APS – source of free radicals for polymerisation **TEMED** – catalyst, induces the production of free radicals

APPLICATION IN VIROLOGY:

• **Identification** of specific viral proteins (structural or functional, e.g. reverse transcriptase)

often followed by **western blot**e.g. detection of specific antibodies in serum (HIV)

Detection in Western Blots

Diagram 2: Illustration of detection in Western Blots

SDS-PAGE vs NATIVE PAGE

Electrophoretic mobility depends on: **charge** (dependent on buffer pH)

shape

size

mass of molecules

Sodium dodecyl sulphate (SDS) or **sodium lauryl sulphate (SLS)** – anionic detergent; acts as a denaturing agent and a surfactant, binding to the denatured protein and **masking** its charge

1 g of protein binds 1.4 g of SDS

constant charge-to-mass ratio

Proteins are separated based on their polypeptide chain length by electrophoresis in a polyacrylamide gel with an appropriate mesh size.

Cathode side

Separation based on difference in molecular mass

PROCEDURE:

- preparation of the gel
- preparation of samples
- electrophoresis
- staining

SAMPLES:

- freshly purified TMV, negative control, lyophilised TMV-protein
- freshly purified: PVX, CMV, TBSV...
- Protein marker 10-250 kDa (New England Biolabs)

Composition of polyacrylamide gel (10 mL, 8%):

6.63 mL EF-buffer

1.93 mL AA (40%)

1.33 mL BIS (2%)

100 μL APS (10%)

10 μL TEMED

Polymerisation for **15 min** at room temperature

Composition of electrophoretic buffer (1 L, 10x concentrated, pH 8.3):

30.3 g TRIS

144 g glycine

10 g SDS

fill up to 1 L with deionised water

Composition of Laemmli hydrolysis buffer (2x conc., 100 mL):

12 mL Tris-HCl (1M, pH 6.8)

40 mL SDS (10%)

20 mL glycerol

10 mL β-mercaptoethanol

0.01 g bromphenol blue (BPB)

fill to 100 mL with deionised water

Sample hydrolysis:

15 μl sample

15 μl Laemmli hydrolysis buffer

heat for 5 min at 95°C and put on ice

SDS, β-mercaptoethanol and heat – protein denaturation

β-mercaptoethanol – reduces disulphide bonds **glycerol** – increases sample density

Proteins Folded with positive and negative charges

Unfolded to a linear structure with negative charge proportional to the polypeptide chain length

Sample laoding:

- protein marker 7 μL per well (*ready to use*)
- virus samples 20 μL per well
- 60-90 min at 70 V

Composition of staining solution:

0.25% Coomasie Brilliant Blue

50% methanol

10% acetic acid

40% deionised water

incubate the gel for **10 min**rinse with deionised water 2x
boil briefly in a microwave oven 2x
rinse with deionised water 2x
leave to de-stain on orbital shaker overnight

Protein Ladder (10–250 kDa)

Alternative staining methods:

- silver best sensitivity
- amido-black...

EXCERCISE:

protein	Molecular mass (Da)	Logarithm of molecular mass	Electrophoretic mobility (mm)
albumin	66000	4.81954	3
ovalbumin	45000	4.65321	11
pepsin	34700	4.53237	15
trypsin	24000	4.38021	22
β - lactoglobulin	18400	4.25624	28
lysozyme	14300	4.14706	35 log M

Protein X has electrophoretic mobility of **7.5**. Calculate its molecular mass!

TASK:

Study all materials of virtual laboratory on link: http://vlab.amrita.edu/?sub=3&brch=186&sim=319&cnt=1

and short video on apparatus assembly and gel casting: https://www.youtube.com/watch?v=EDi n ONiF4