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Local adaptation in Chouardia litardierei (Asparagaceae), a geophytic perennial endemic to the
western Balkans, demonstrates how sharp ecological contrasts drive genomic and phenotypic
divergence. The species inhabits three ecologically distinct environments: flooded karst poljes, arid
dolomite slopes, and coastal salt marshes, providing a natural system to study how environmental
heterogeneity influences adaptive differentiation. As an initial step towards understanding the
genomic basis of local adaptation, a chromosome-level reference genome was assembled.
Subsequently, ddRAD sequencing was employed to genotype individuals from selected
populations, enabling genome-wide association studies (GWAS), genome—environment
association analyses (GEA), and population genetic analyses. GWAS revealed high heritability for
several phenological and reproductive traits, underscoring their strong genetic basis, while GEA
identified precipitation during the coldest quarter as a key climatic driver with the strongest
influence on genetic variation. Phenological patterns in the common garden experiment showed
substantial overlap in flowering time and vegetative growth across habitat types, indicating no
consistent differences among populations. Morphometric analyses additionally indicated reduced
clonal investment in dolomite populations. Population genetic analyses revealed partial genetic
structuring, with dolomite populations forming a distinct cluster, while seashore and meadow
populations remained genetically undistinguished, likely due to shared ancestry or gene flow.
Rather than constituting discrete ecotypes, populations seem to diverge through trait-specific,
localised responses to environmental pressures. Overall, these findings illustrate how contrasts in
ecological conditions influence fine-scale patterns of genomic and phenotypic divergence in C.
litardierei, providing valuable genomic resources and a framework for future investigations of
plant adaptation in heterogeneous South-European landscapes.
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Lokalna prilagodba livadnog procjepka (Chouardia litardierei, Asparagaceae), geofitne
viSegodiSnje biljke endemic¢ne za zapadni Balkan, oblikovana je djelovanjem izraZenih ekoloSkih
kontrasta koji utjecu na njegovu genetsku i fenotipsku divergenciju. Vrsta nastanjuje tri ekoloski
izrazito kontrastna staniSta: poplavljena krSka polja, suSne dolomitne padine i slane priobalne
mocvare, ¢ime predstavlja pogodan model za istrazivanje utjecaja okoliSne heterogenosti na
adaptivnu divergenciju. Kao prvi korak prema razumijevanju genetske osnove lokalne prilagodbe,
sastavljen je referentni genom na razini kromosoma, a zatim su sve jedinke iz odabranih populacija
genotipizirane pomo¢u ddRAD sekvenciranja. Ovi genomski podaci omogucili su provodenje
cjelogenomske studije povezanosti (engl. genome-wide association study, GWAS), analize
povezanosti genoma i okoliSa (engl. genome-envirionment association, GEA) te populacijsko-
genetickih analiza. GWAS analiza pokazala je visoke vrijednosti nasljednosti za vise fenoloskih 1
reproduktivnih svojstava, $to upucuje na njihovu snaznu genetsku osnovu. GEA analizom
izdvojena je koli¢ina oborina tijekom najhladnijeg tromjese¢ja kao klimatska varijabla s
najznacajnijim utjecajem na genetsku varijaciju. Usporedno s time, fenoloski obrasci uoceni
tijekom vrtnog pokusa pokazali su znatno preklapanje u vremenu cvatnje i vegetativnog rasta medu
razliitim tipovima stanista, $to ukazuje na izostanak konzistentnih razlika medu populacijama.
Morfometrijske analize dodatno su pokazale smanjeni udio klonalnog razmnoZavanja u
populacijama s dolomitnih staniSta. Populacijsko-geneticke analize pokazale su da populacije s
dolomitnih staniSta tvore zaseban genetski klaster, $to se moze objasniti dugotrajnom izolacijom,
ekoloskim stresom 1 ograni¢enim protokom gena, dok su priobalne i livadne populacije genetski
ne razlikuju, vjerojatno zbog zajedni¢kog porijekla ili kontinuiranog protoka gena. Umjesto jasno
definiranih ekotipova, pokazuju specificne odgovore na lokalne selekcijske pritiske. Ovo
istraZivanje pruza temeljne uvide u procese biljne adaptacije u kompleksnim mediteranskim
staniStima te osigurava vrijedne genomske resurse za buduca evolucijska istrazivanja.
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Thesis summary

Local adaptation plays a crucial role in shaping genetic and phenotypic diversity within
species, particularly in ecologically heterogeneous regions such as the Balkan Peninsula.
Environmental elements, such as temperature, precipitation, and soil composition, impose
divergent selective pressures that drive the evolution of locally advantageous traits. In sessile
organisms like plants, these pressures often lead to differentiation in phenological or morphological
traits, setting the stage for adaptive divergence and speciation. The Balkan Peninsula, one of
Europe’s most topographically and climatically complex regions, offers a unique setting to
investigate how fine-scale environmental heterogeneity influences genomic variation and adaptive
trait evolution. While numerous phylogeographic studies of local taxa were conducted, integrative
research combining population genomics, ecological data, and phenotypic analyses remains scarce.

This thesis focuses on Chouardia litardierei (Asparagaceae), a geophytic perennial of the
western Balkans. The species is notable for its pronounced ecological plasticity and occupies three
ecologically distinct habitats: (1) seasonally flooded karst poljes, characterized by deep, fertile
soils; (2) arid dolomite slopes, marked by shallow, rocky substrates, nutrient-poor soils, and
extreme thermal fluctuations; and (3) low-lying coastal seashore meadows and salt marshes
influenced by salinity, periodic tidal flooding, and low oxygen availability. These sharply
contrasting environments impose divergent selective pressures on survival, reproduction, and
phenology, offering a natural experimental framework for studying local adaptation. This
combination of habitat heterogeneity and pronounced phenotypic plasticity makes C. litardierei an
excellent model for studying local adaptation to contrasting environments. Its occurrence across
ecologically contrasting yet logistically accessible areas makes the species exceptionally well-
suited for field sampling. Moreover, as a small, bulbous perennial, it is readily cultivated, allowing
for common garden experiments that minimize variations of environmental conditions and reveal
heritable trait differences. Together, these features provide an ideal system for investigating how
selective pressures shape morphological and genomic variation in natural plant populations.

Despite its ecological distinctiveness, C. litardierei has not been genomically characterized
prior to this work. Earlier studies were limited to karyology or morphology analyses with some
questionable conclusions (e.g., classification of dolomite populations as a distinct species). This
thesis addresses the existing knowledge gap by investigating the genomic foundations of local

adaptation, with a particular focus on phenology and reproduction-related morphological traits.



This research was guided by objectives spanning genome assembly, population structure of studied
populations, and genotype—phenotype—environment associations, with a central goal of
understanding the genomic basis of local adaptation in a previously uncharacterized species.

The research is presented across three publications. In Publication I, a high-quality,
chromosome-level genome of C. litardierei was assembled with a total size of 3.7 Gbp, consisting
of 13 pseudochromosomes, which is consistent with previous cytogenetic analyses. Comparative
analyses confirmed its phylogenetic relationship to some other sequenced representatives of the
Asparagales, underscoring the value of this resource for monocot evolutionary studies. Importantly,
this reference genome served as a critical foundation for all subsequent genomic and population-
level analyses in this thesis, enabling detailed investigations of genetic variation, trait architecture,
and genome-environmental associations.

Subsequent genome-wide association study (GWAS) analyses required two complementary
datasets: genotyping and phenological and morphological traits results obtained from the common
garden experiment. The common garden experiment was established by transplanting a total of 214
individuals from selected populations.

Publication II employed a common garden experiment to investigate phenological
divergence among nine selected populations, three originating from each of three distinct habitat
types. Although dolomite populations flowered somewhat earlier and had shorter vegetative
periods when compared to some other tested populations, the observed pattern was not exclusive
to the dolomite populations, as non-dolomite populations overlapped in flowering time, suggesting
incomplete phenological divergence. GWAS revealed numerous significant loci for key
phenological traits such as the beginning of sprouting (BOS), beginning of flowering (BOF), and
vegetative period duration (VPD). Narrow-sense heritability (h?) was high for all traits, particularly
VPD (86.95%), suggesting that much of the observed phenological variation among populations is
genetically determined.

Building on this, Publication III integrated GEA analyses with GWAS to investigate links
between genomic variation, environmental gradients, and morphological reproductive traits.
Through RDA analysis, GEA identified winter precipitation (BIO19) as the climatic element with
the strongest influence on genetic variation, pointing to moisture availability as a major driver of
local adaptation. GWAS uncovered loci associated with tested reproductive traits, including bulb

count (BC), total flower count (TFC), and average inflorescence height (AHI), all of which showed



high narrow-sense heritability (e.g., 71.95% for AHI). Genomic regions affecting nitrogen
metabolism, hormone signaling, and flowering regulation were identified. Morphometric analysis
also revealed variation in reproductive traits, such as bulb number, across populations, with
dolomite populations typically producing fewer bulbs. This pattern suggested adaptive trade-ofts
favoring sexual over clonal reproduction in these drought-prone environments where flooding is
absent. In contrast, populations from karst poljes and seashore meadows experience regular and
prolonged flooding, which can hinder successful sexual reproduction and likely favors clonal
reproduction, contributing to observed differences in reproductive strategies across habitats.

Population-genetic analyses revealed that dolomite populations of C. litardierei form a
distinct genetic cluster, likely shaped by long-term isolation and absence of gene flow with other
populations due to the patchiness of the specific habitat it inhabits. This pattern of partial genetic
divergence, first hinted at in Publication I through whole-genome comparisons of single
representatives, was confirmed in Publication III using broader population-level data. In contrast,
groups of populations from seashore meadows and inland wet grasslands exhibited little to no
genetic structuring and were indistinguishable from each other, likely due to either recent shared
ancestry or contemporary gene flow among populations. Despite the long-standing informal
designation of ecotypes based on habitat, the lack of consistent genetic and morphological
differentiation among most of the studied groups suggests that divergence is incomplete. The only
signals of genetic differentiation were observed in the dolomite group, suggesting that local
adaptation in C. litardierei is not strictly tied to broad habitat types. Consequently, we adopted a
conservative interpretation and refer to these population groups as specific habitat-associated
groups, rather than clearly defined ecotypes.

Together, these studies provide a comprehensive view of the genetics underlying local
adaptation in C. litardierei. This thesis presents the first GWAS and GEA conducted in this species
and represents one of the earliest integrative genomic studies of a native South-European monocot.
The identification of polygenic variation underlying both phenological and reproductive
divergence highlights the complex interplay of natural selection, gene flow, and trait evolution.
More broadly, this work contributes to our understanding of how plants adapt across heterogeneous
landscapes and offers a valuable genomic and ecological framework for future research on

adaptation and diversification in various South-European plant lineages.






ProSireni sazetak

Lokalna prilagodba ima klju¢nu ulogu u oblikovanju genetske i fenotipske raznolikosti
unutar vrsta, osobito u ekoloski heterogenim regijama poput Sredozemlja. Ekoloski ¢imbenici
poput temperature, koli¢ine oborina i sastava tla stvaraju selekcijske pritiske koji oblikuju svojstva
prilagodena lokalnim uvjetima. U sesilnih organizama, poput biljaka, takvi pritisci Cesto rezultiraju
diferencijacijom fenoloskih i morfoloskih osobina, ¢ime nerijetko zapoc€inje divergencija, a zatim
1 specijacija. Balkanski poluotok, kao jedna od topografski i1 klimatski najslozenijih regija Europe,
pruza iznimnu priliku za istrazivanje utjecaja heterogenog okolisa na genetsku varijabilnost i
evoluciju adaptivnih svojstava. Bez obzira na porast broja filogeografskih istrazivanja lokalnih
vrsta, istrazivanja koja povezuju populacijsku genetiku, ekoloske podatke i fenotipske analize 1
dalje su rijetka.

Predmet istraZivanja ove disertacije je livadni procjepak (Chouardia litardierei,
Asparagaceae), viSegodiSnja geofitna vrsta s prirodnim arealom na zapadnom Balkanu. Vrsta se
odlikuje izrazenom ekoloSkom plasticnoscu, a naseljava tri ekoloSki kontrastna stanista: (1)
sezonski poplavljena krska polja s dubokim i plodnim tlima; (2) suSne dolomitne padine s plitkim,
kamenitim tlima, niskim udjelom hranjivih tvari 1 znaCajnim toplinskim oscilacijama; te (3)
povremeno plavljenim priobalnim livadama s niskom koncentracijom kisika i slanim moc¢varama.
Raznolikost staniSta koja C. litardierei nastanjuje stvara izraZzene selekcijske pritiske koji utjecu na
uspjeSnost opstanka, razmnoZavanja 1 fenoloSkih obrazaca biljaka, pruzajuci pritom prirodan
model za istraZivanje lokalne prilagodbe. Zbog rasprostranjenosti u ekoloski kontrastnim, ali
terenski pristupacnim podrucjima, vrsta je prikladna za uzorkovanje. Dodatno, kao mala
lukovicasta viSegodisnja biljka, lako se uzgaja u kontroliranim uvjetima, §to omogucuje provedbu
vrtnih pokusa 1 razlu¢ivanje genetskih od okoliSnih utjecaja.

Unato¢ svojoj ekoloSkoj specificnosti, C. litardierei prije ovog istrazivanja nije bila
genomski okarakterizirana. Dosada$nja saznanja uglavnom su se temeljila na karioloskim
analizama 1 morfoloSkim pretpostavkama, ukljucujuéi raniji prijedlog o taksonomskom izdvajanju
dolomitnih populacija kao zasebne vrste, no takvi su zakljuCci ostali nepotkrijepljeni. Ova
disertacija ima za cilj razjasniti nedostatno istrazene aspekte genomske osnove lokalne prilagodbe,
s posebnim naglaskom na fenologiju i morfoloske osobine povezane s razmnozavanjem.
Istrazivanje je usmjereno na ostvarivanje niza znanstvenih ciljeva, ukljucujuéi sastavljanje

referentnog genoma, filogenetsku analizu, analizu populacijske strukture te ispitivanje povezanosti



genetske varijabilnosti, fenotipskih obiljezja i okoliSnih ¢imbenika, s krajnjim ciljem dubljeg
razumijevanja genomske osnove lokalne prilagodbe u dosad nedovoljno istrazenoj biljnoj vrsti.

Rezultati istrazivanja predstavljeni su kroz tri znanstvene publikacije. U okviru prve
publikacije izraden je visokokvalitetan referentni genom vrste, ukupne veli¢ine 3,7 Gbp, koji se
sastoji od 13 pseudokromosoma, $to je u skladu s prethodnim citogenetskim analizama.
Komparativne analize potvrdile su filogenetsku vezu vrste s drugim do sada sekvenciranim
predstavnicima reda Asparagales, Cime je dodatno naglaSena znanstvena vrijednost ovog genoma
za buduca evolucijska istrazivanja. Referentni genom posluzio je kao temeljna infrastrukturna
osnova za sve naknadne analize populacijske strukture, identifikaciju genetskih varijanti povezanih
s kvantitativnim fenotipskim osobinama te ispitivanje povezanosti genetskih obiljezja s okolisnim
¢imbenicima.

U drugoj publikaciji proveden je vrtni pokus radi procjene fenoloSke divergencije medu
devet odabranih populacija, pri ¢emu su po tri populacije pripadale svakom od triju razli¢itih tipova
staniSta. Populacije s dolomitnih staniSta imale su raniji pocetak cvatnje 1 krace trajanje
vegetacijskog razdoblja, $to je u skladu s prilagodbom na su$ne uvjete, medutim, ne-dolomitne
populacije pokazivale su preklapanje u analiziranim svojstvima, $to upucuje na nepotpunu
fenolosku divergenciju. Cjelogenomskom studijom povezanosti (engl. genome-wide association
study, GWAS) identificirani su znacajni lokusi povezanim s kljuénim fenoloskim svojstvima,
ukljucujuéi pocetak nicanja (engl. beginning of sprouting, BOS), pocetak cvatnje (engl. beginning
of flowering, BOF) 1 trajanje vegetacijskog perioda (engl. vegetative period duration, VPD).
Procjene nasljednosti (engl. narrow-sense heritability, h’) pokazale su visoke vrijednosti za sve
analizirane osobine, pri ¢emu je VPD imao najvi$u vrijednost h? (86,95 %), $to ukazuje na snaznu
genetsku osnovu opaZenih fenoloskih varijacija. Funkcionalna anotacija genomskih prozora koji
okruzuju znacajne polimorfizme jednog nukleotida (engl. single nucleotide polymorphism, SNP)
otkrila je regije koje kodiraju klju¢ne proteinske obitelji ukljucene u regulaciju vremena cvatnje,
vegetativnog rasta i odgovora na stres. Dobiveni nalazi sugeriraju da se fenoloske razlike kod C.
litardierei najbolje objasnjavaju kao populacijski specifi¢ne prilagodbe na lokalne uvjete.

U okviru trece publikacije predstavljeni su rezultati pracenja morfoloskih reproduktivnih
svojstava vrste te su provedene integrirane analize povezanosti genoma i okoliSa (engl. genome-
environment association, GEA) te cjelogenomska analiza povezanosti, s ciljem istrazivanja odnosa

izmedu genetske varijabilnosti, okoliSnih gradijenata i1 reproduktivnih svojstava. Pomo¢u RDA



analize, GEA analizom izdvojena je koli¢ina oborina tijekom najhladnijeg tromjesecja (BIO19)
kao najznacajnija klimatska varijabla povezana s genetskom strukturom populacija, §to ukazuje na
potencijalno klju¢nu ulogu vlage u procesu lokalne prilagodbe. Paralelno, cjelogenomskom
analizom povezanosti otkrivena je znaCajna povezanost izmedu pojedinih genetskih lokusa 1
reproduktivnih svojstava poput broja lukovica (engl. bulb count, BC), ukupnog broja cvjetova
(engl. total flower count, TFC) i prosjecne visine cvatova (engl. average height of inflorescence,
AHI), s visokom nasljednoS¢u svih osobina (npr. 71,95 % za AHI). Funkcionalnom anotacijom
otkrivene su genomske regije ukljucene u bioloSke procese poput metabolizma dusika, hormonske
signalizacije i regulacije cvatnje, §to dodatno podupire njihovu ulogu u prilagodbi na heterogene
ekoloske uvjete. Morfometrijska analiza takoder je pokazala varijabilnost reproduktivnih svojstava
medu populacijama, osobito u broju lukovica, pri ¢emu su dolomitne populacije u pravilu
proizvodile manji broj lukovica. Ovakav obrazac upucuje na prisutnost adaptivnih kompromisa
koji pogoduju spolnom razmnozavanju naustrb klonalnog u suSnim staniStima. Suprotno tome,
populacije koje nastanjuju krska polja i priobalne livade izlozene su redovitim i dugotrajnim
poplavama, Sto moze oteZati uspje$no spolno razmnozavanje te vjerojatno potice oslanjanje na
klonalne strategije, pridonose¢i tako uocenim razlikama u reproduktivnim strategijama izmedu
razlicitih stanista.

Populacijsko-geneticke analize pokazale su da populacije s dolomitnih staniSta tvore
zaseban genetski klaster, §to se moZe objasniti njihovom izolirano$¢u i odsutnosc¢u protoka gena s
ostalim populacijama, uvjetovanom fragmentiranoS¢u specifi¢nih staniSta koja vrsta nastanjuje.
Ovaj obrazac djelomicne genetske divergencije, koji je prvi put uocen u prvoj publikaciji
usporedbom pojedinacnih genoma, potvrden je Sirim analizama u tre¢oj publikaciji. Nasuprot
tome, populacije s poplavljenih krskih polja i1 priobalnih livada nisu pokazivale jasnu genetsku
diferencijaciju, Sto vjerojatno odrazava njihovo nedavno zajedni¢ko podrijetlo ili kontinuirani
protok gena. Unato¢ dugogodiSnjoj neformalnoj uporabi pojma ekotip za opisivanje razlicitih
stani$nih skupina iste vrste, nedostatak konzistentne genetske i morfoloske diferencijacije izmedu
vecine proucavanih grupa, sugerira da divergencija nije potpuna. Jedini obrasci genetske izolacije
1 morfoloske diferencijacije zabiljeZeni su kod populacija s dolomitnih staniSta, §to podupire
interpretaciju da lokalna prilagodba nije povezana s odredenim tipovima stanista kao $to je to bilo
ocekivano. Stoga primjenjujemo konzervativniji pristup u interpretaciji te ove skupine opisujemo

kao populacije povezane sa specifi¢nim staniStima, a ne kao jasno definirane ekotipove. Za razliku



od Sirokih filogeografskih istrazivanja koja obuhvacaju velika geografska podrucja, ova je
disertacija usmjerena na proucavanje divergencije unutar jedne vrste, istrazujudi razlicita stanista
unutar relativno uskog geografskog prostora te pruzajuc¢i uvid u mehanizme lokalne prilagodbe na
prostornim i genetskim razinama.

Ova disertacija predstavlja prvi korak u razumijevanju genetske osnove lokalne prilagodbe
kod C. litardierei. Predstavljena su prva GWAS i GEA istrazivanja provedena na ovoj vrsti, kao i
jedno od prvih genetsko-ekoloskih istrazivanja na nativnoj jednosupnici juzne Europe.
Identifikacija poligenske kontrole 1 visoke nasljednosti fenoloSkih i morfoloskih reproduktivnih
osobina istice slozenost interakcija izmedu prirodne selekcije, protoka gena i evolucije adaptivnih
svojstava. U Sirem kontekstu, ova disertacija doprinosi boljem razumijevanju nacina na koje se
biljne vrste prilagodavaju heterogenim okoliSima te pruza vrijednu genetsku i ekolosku osnovu za
buduca istrazivanja adaptacije i diferencijacije u razli¢itim razvojnim linijjama juZnoeuropskih

biljnih vrsta.
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1 Introduction

1.1 Genomic basis of adaptation

One of the central aims of evolutionary biology is to elucidate the genomic basis of
adaptation, particularly how genetic variation enables organisms to cope with environmental
challenges (Flood and Hancock, 2017; Campbell et al., 2018). Environmental heterogeneity
imposes selective pressures that shape the genetic architecture of traits, enhancing survival and
reproduction (Gregory, 2009; Hoban et al., 2016; Paschoa et al., 2023). These pressures drive
changes in allele frequencies, promoting local adaptation by favoring variants that enhance fitness
under specific environmental conditions (Hu et al., 2020; Walter et al., 2022; Lee et al., 2023).
Over time, successive rounds of selection stabilize these adaptive responses, allowing populations
to persist under heterogeneous environments (Savolainen et al., 2013; McKown et al., 2014). As
populations inhabit different environments, such as coastal, mountainous, or inland regions, they
often evolve distinct phenological or morphological traits that enhance their survival and
reproduction. This divergence is frequently shaped by environmental gradients, including
temperature, precipitation, and soil composition (Turesson, 1922; Todesco et al., 2020).

Over evolutionary timescales, local adaptation can set the stage for speciation, during which
a group of individuals diverges into two or more distinct phylogenetic lineages (Clausen, 1951). In
populations that are initially indistinguishable, whether genetically or morphologically, progressive
genetic differentiation can gradually lead to new species (Rundle and Nosil, 2005; Tittes and Kane,
2014; Cortés et al., 2018). When gene flow across habitat boundaries is limited, local adaptation to
contrasting environments can drive genetic divergence and form reproductive barriers—key steps
in the process of ecological speciation (Rundle and Nosil, 2005; Lowry, 2012). At intermediate
stages of divergence, ecological differentiation becomes more apparent, often culminating in the
formation of ecotypes, genetically and morphologically distinct groups adapted to specific
ecological niches rather than to specific geographic areas (Rundle and Nosil, 2005; Cortés et al.,
2018). Although the role of ecotypes in speciation continues to be questioned (Lowry, 2012;
Fernandez-Meirama et al., 2022), many studies highlight their contribution in promoting genetic
divergence along ecological gradients (Lowry et al., 2008a; Brandrud et al., 2017; Cortés et al.,
2018; Bakhtiari et al., 2019). Because gene flow typically homogenizes genetic differences among
populations, adaptive divergence is generally expected to arise between geographically isolated

populations. As a result, most studies of local adaptation have focused on populations separated by



tens to hundreds of kilometers, leaving microgeographic divergence relatively understudied
(Bamba et al., 2019). Detecting adaptive divergence at such fine spatial scales is further
complicated by phenotypic plasticity, the ability of a single genotype to express different
phenotypes under varying environmental conditions, which can mask underlying genetic
differences (De Villemereuil et al., 2015). To mitigate this issue, common garden experiments are
often employed to minimize the influence of environmental variation (McKay et al., 2001;
Kawakami et al., 2011; Brachi et al., 2013; Tordng et al., 2015). By growing individuals from
contrasting environments under uniform conditions, common garden experiments remove
environmental confounding, thereby isolating genetic effects on complex, polygenic traits and
providing a robust test for signals of local adaptation (De Villemereuil et al., 2015). Among the
many genetically based traits shaped by local adaptation, reproductive strategies represent a key
axis of divergence, particularly in heterogeneous environments where the costs and benefits of

different types of sexual and asexual reproduction may vary.

1.2 Reproductive strategies as mechanisms of divergence

The development of different reproductive strategies, encompassing both sexual and
asexual modes, plays a pivotal role in plant adaptation and divergence. In particular, clonal
reproduction, or vegetative propagation, may arise under biotic or abiotic stresses that constrain
sexual reproduction and provide numerous ecological advantages (Silvertown, 2008; Barrett,
2015). By enabling plants to forage for water and nutrients in patchy environments and to produce
larger propagules capable of rapid establishment in new sites, clonality enhances survival and
supports the successful establishment of populations after colonization (Klimes et al., 1997; Stuefer
et al., 2002; Orive, 2020). It is estimated that up to 80% of angiosperms utilize asexual
reproduction, and its prevalence may vary among populations, especially in heterogeneous
landscapes shaped by variations in climate, soil composition, hydrology, and biotic interactions
(Price and Marshall, 1999). In such contexts, flexible reproductive systems allow plants to navigate
diverse selective pressures and promote genetic differentiation across habitats.

However, the ecological flexibility afforded by clonality comes with important trade-offs.
Investment in clonal growth may restrict the resources available for flowering and seed production
(Van Drunen and Dorken, 2012). Additionally, high levels of clonality can elevate geitonogamous

self-pollination, potentially accelerating reproductive isolation and speciation (Gong et al., 2010;



Vallejo-Marin et al., 2010). Over time, if sexual reproduction becomes extremely limited or absent,
the accumulation of somatic mutations may further erode fertility, possibly resulting in the
complete loss of sexual function (Barrett, 2015).

Beyond direct impacts on fertility, clonality profoundly alters spatial genetic structure by
concentrating identical genotypes locally, which limits gene flow and promotes divergence
(Vekemans and Hardy, 2004). These effects are further shaped by associated life-history traits such
as bulb formation, which serve as critical adaptations. Bulbs act as critical storage organs, enabling
plants to endure periods of dormancy and buffer against adverse conditions; this function is
essential for maintaining reproductive capacity in habitats characterized by fluctuating conditions
(Kleijn et al., 2005; Atif et al., 2020; Ma et al., 2020). The number of bulbs produced and the
morphology of inflorescences can influence pollination success and seed output, directly affecting
fitness and local adaptation (Ohashi and Yahara, 2009; Suetsugu et al., 2015).

Taken together, clonal and sexual reproduction represent complementary strategies that
enable plants to cope with habitat variability, shaping both the genetic structure and adaptive

potential of populations.
1.3 The evolutionary significance of phenological adaptation

Phenology, the seasonal timing of key life cycle events such as sprouting and flowering, is
both a sensitive indicator of climate change and a fundamental mechanism through which plants
adapt to environmental variability (CaraDonna et al., 2014; Schwartz, 2024). As sessile organisms,
plants depend on phenological timing to synchronize growth and reproduction with favorable
seasonal windows, thereby optimizing fitness (Mertens et al., 2021).

Among phenological traits, flowering time is particularly critical, as it integrates plant
responses to both abiotic (e.g., temperature and moisture) and biotic (e.g., pollinator availability)
cues, serving as a key expression of adaptive strategy (Pau et al., 2011; Wolkovich et al., 2014). It
directly influences reproductive success by mediating trade-offs between fecundity and survival,
shaping interactions with pollinators, regulating seed output, and aiding in stress avoidance
(Anderson et al., 2012; Collins et al., 2025).

The diversity of factors influencing flowering time reflects the complex environmental
landscape that plants must navigate. While temperature is often the primary driver, affecting
development rates, metabolism, and water loss (Kdrner, 2006; Linder, 2020), other cues such as

photoperiod (Adole et al., 2019; Wang et al., 2020), water availability (Zhou et al., 2024), salinity



(Li et al., 2007; Lee et al., 2023), and pollinator-mediated selection (Sandring and Agren, 2009)
also shape phenological timing (Cook et al., 2012; Schwartz, 2024). Importantly, moisture
availability can be shaped not only by rainfall but by local soil characteristics and rooting depth
(Cortés-Flores et al., 2017); in wetlands, hydrological regimes (e.g., groundwater levels or seasonal
flooding) often outweigh precipitation as drivers of phenological timing (Mihevc et al., 2010).

From an evolutionary perspective, phenological traits such as flowering time can evolve
rapidly under selection, particularly in seasonally variable or environmentally heterogeneous
habitats (Gaudinier and Blackman, 2020). In such contexts, divergent flowering schedules may
facilitate ecological speciation by enabling populations to exploit distinct pollinator communities,
climatic niches, or microhabitat (Heslop-Harrison, 1964; Levin, 2006). However, not all species
can adjust their phenology at a rate sufficient to match environmental change. When plasticity fails
to buffer against altered pollinator availability, resource availability, or interspecific competition,
reproductive success may decline, imposing selective pressures that favor genetic shifts in timing
traits (Visser et al., 2003; Pau et al., 2011). While many phenological shifts begin as plastic
responses, the presence of heritable variation is crucial for long-term evolutionary adaptation
(Visser and Both, 2005).

Given the strong link between phenological timing and local adaptation (Rathcke and
Lacey, 1985), investigating the genomic basis of these traits within ecologically dynamic contexts
provides a powerful lens for understanding adaptive divergence (Bernatchez et al., 2023).
Expanding this research beyond classical model systems such as Arabidopsis thaliana (Engelmann
and Purugganan, 2006; Kinmonth-Schultz et al., 2021) to encompass a broader diversity of taxa is
essential for capturing the complex genetic architectures that underlie phenological variation across

contrasting environments (Molla, 2022; Song et al., 2023; Vicentini et al., 2023).

1.4 Study system: Chouardia litardierei (Asparagaceae)

Chouardia litardierei (Breist.) Speta, commonly known as the amethyst meadow squill, is
a perennial bulbous plant species currently placed in the family Asparagaceae, following the APG
IIT system (Bremer et al., 2009), but was formerly classified within Hyacinthaceae. C. litardierei is
distributed across the Dinaric Alps in the western Balkan Peninsula, ranging from Slovenia in the

northwest to Montenegro in the southeast (Gazi-Baskova, 1962; Petkovsek and Seliskar, 1978).



It is a rare example of a plant thriving across markedly different habitat types, with three major population groups identifiable based on habitat type,

reflecting its notable ecological plasticity (Figure 1).
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Figure 1. Sampling locations of Chouardia litardierei populations across habitat types. Blue, green, and red circles indicate populations from seashore,
meadow, and dolomite habitats, respectively.



The largest group occupies karst poljes’ (Figure 2), geomorphologically and hydrologically
distinctive depressions within the Dinaric landscape (Prohic et al., 1998). These depressions are
characterized by deep, fertile soils, temperature inversion, and seasonal flooding in early spring,
driven by rapid snowmelt in surrounding mountains, together with their geomorphology and
limited internal drainage (Mihevc, 2010; Bonacci, 2014; Marcin et al., 2021). In contrast with the
surrounding karst terrain, typically rocky, shallow-soiled, and drought-prone, poljes serve as
localized ecological refugia. The formation and ecological role of poljes is closely tied to the
broader Dinaric karst system, the carbonate region of the Dinaric Mountains (Dinarides), marked
by exceptional geological and climatic diversity (Mihevc, 2010). Spanning the western Balkan
Peninsula and the entire Adriatic littoral zone, the Dinaric karst is recognized as one of the most
ecologically diverse landscapes (Day and Chenoweth, 2013; Zupan Hajna, 2019). The dissolution
of limestone and dolomite has produced sinkholes, caves, plateaus, and complex underground
drainage, creating rugged topography and sharp ecological contrasts over small areas (Prohic et al.,
1998). This topographic and hydrological complexity underpins the pronounced ecological

heterogeneity characteristic of the region.

Figure 2. Chouardia litardierei in its natural karst polje habitat (Budoske Bare, Montenegro). Photo taken
by Ivan Radosavljevic.

! Polje is the Slavic word for “field”, still commonly used in South Slavic languages without necessarily implying
karst terrain (Ford and Williams, 2013). In geomorphology, however, the term refers internationally to large, flat-
floored, closed depressions with karstic drainage, typically bordered by steep slopes (Gams, 1978; Jennings, 1985).
These basins often provide the only arable land in karst regions.



In contrast, the second group of populations occupies exposed dolomite slopes and dry
mountainous grasslands at altitudes of up to 2000 m (Figure 3), characterized by a thin layer of
stony, nutrient-poor soils, prone to strong seasonal and daily temperature fluctuations and limited
water availability, all of which impose intense ecological stress and demand physiological and

phenological resilience (Mota et al., 2021).

Figure 3. Chouardia litardierei in its natural dolomite habitat (Mt. Lovéen, Montenegro). Photo taken by
Ivan Radosavijevic.

These habitats exemplify the so-called "dolomite phenomenon" or dolomitophily, a set of
ecological and floristic traits associated with dolomitic substrates (Merlo et al., 2021; Mota et al.,
2021). Dolomite-derived soils have poor water retention, high pH, low concentrations of Fe, P, and
K, and are rich in Ca and Mg elements (Fekete et al., 1989; Pignatti and Pignatti, 2014; Markoski
et al., 2016). The substrate’s high thermal conductivity, intense solar radiation, and elevated
summer temperatures create drought-prone microhabitats that limit the establishment of
competitive vegetation such as forests (Thomas et al., 1973; Waples and Waples, 2004; Parker et
al., 2024). The resulting open glades are further shaped by a short growing season, typically
restricted to 3—4 months due to prolonged snow cover in higher elevations, which coincides with
extreme daily microclimatic fluctuations: intense heating and low humidity during the day,

followed by sharp nighttime cooling, with temperatures occasionally dropping below freezing



(Pignatti and Pignatti, 2014). Plants inhabiting these areas must cope with intense edaphic stress?,
and the vegetation is typically composed of drought-tolerant, stress-adapted perennials, some of
which may exhibit relictual or endemic distributions (Merlo et al., 2021). As such, dolomite slopes
challenge survival and act as ecological filters, promoting distinctive plant communities that
contribute disproportionately to regional biodiversity.

A third, much smaller group of C. litardierei populations occurs in the salt marshes of
northern Dalmatia, along the eastern Adriatic coast. In this region, low-lying coastal wetlands are
rare due to steep, rocky shorelines, making these geographically limited marshes especially
valuable for their specialized vegetation adapted to periodic tidal flooding and elevated soil salinity
(Bui, 2013). These intertidal areas, shaped by dynamic sedimentation and erosion, are characterized
by fine-scale topography, waterlogged soils with low oxygen availability, and species-poor
ecosystems dominated by halophytes adapted to salinity fluctuations (Beeftink, 1977; Silvestri et
al., 2005; Pedersen et al., 2017). Unlike the broader, more continuous salt marshes of the western
and northern Adriatic, eastern Adriatic marshes are both spatially restricted and increasingly
vulnerable to anthropogenic pressures such as agriculture and coastal tourism (Pandza et al., 2007).
According to Croatia’s national protection strategy, marshy coasts rank among the most critically
endangered coastal habitats, making their preservation a top conservation priority (Martini¢, 2000).

Reflecting the broader conservation concerns, C. litardierei has been classified as Near
Threatened (NT) in Croatia (Nikoli¢ and Topi¢, 2005). This status is attributed to habitat
degradation driven by alterations in hydrological regimes, vegetation succession, and land-use
changes. Socio-economic shifts in recent decades have led to the abandonment of hay meadows
and pastures, accelerating succession and reducing habitat suitability. Additional pressures include
drainage and reclamation of wetlands and infrastructure development (e.g., roads, highways),
which collectively represent ongoing and future threats to the species’ survival (Alegro, 2013).
Despite these pronounced environmental differences, previous studies have documented no clear
phenotypic differentiation among populations (Sili¢, 1990).

However, as a geophyte, C. litardierei follows a marked seasonal cycle, remaining dormant

from mid-summer through early spring. With the onset of spring, it produces leaves, soon followed

2 Edaphic stress refers to adverse soil conditions that hinder plant growth, including limited availability of essential
resources such as water, nutrients, and oxygen; the presence of toxic elements like excess salts, aluminum, heavy
metals, or boron; and physical constraints on root function caused by factors such as mechanical impedance and
extreme soil temperatures (Lynch, 2022).



by a racemose inflorescence bearing numerous radially symmetrical flowers. Flowering typically
occurs between late April and early June, depending on population and habitat conditions, and is
followed by fruit development and complete senescence by mid-July or August. During this phase,
the plant reallocates resources to an underground bulb for overwintering. Although no specialized
morphological adaptations for pollination have been documented, field observations suggest the
species is open-pollinated. In addition to sexual reproduction, C. litardierei also reproduces
clonally by forming multiple bulbs surrounding the central bulb, enabling persistence and
expansion in suitable habitats. This dual reproductive strategy, combined with its ecological
plasticity across sharply contrasting environments (Figure 1), makes it a robust model for
investigating the genetic and phenotypic bases of local adaptation and adaptive divergence. Its
small, bulbous perennial form allows easy transplantation and cultivation in common garden
experiments, minimizing confounding effects of phenotypic plasticity. Finally, the species’ broad
yet accessible distribution across the Dinaric Alps in the western Balkan Peninsula (Ritter-
Studnitka, 1954; Gazi-Baskova, 1962; Sili¢, 1990) facilitates comprehensive field sampling.
Together, these attributes make C. litardierei a powerful system for exploring the evolutionary

processes driving ecological specialization and divergence.






2 Theoretical Framework

2.1 Advances in plant genomics

In recent years, advances in plant genomics have fundamentally reshaped the approaches
available for studying ecological and evolutionary processes. The release of the A. thaliana genome
in 2000 marked a major milestone in plant biology (Kaul et al., 2000). Since then, rapid
improvements in sequencing technologies have overcome the historical challenges posed by large
genome sizes, their repetitive content, and variable ploidy levels (Marks et al., 2021; Schley et al.,
2021). The emergence of third-generation sequencing (TGS) platforms such as PacBio HiFi and
Oxford Nanopore has enabled fast, accurate, long-read sequencing without PCR amplification,
reducing technical biases and assembly fragmentation, and making chromosome-scale assemblies
feasible even for complex plant genomes (Zmienko et al., 2023; Scarano et al., 2024). Over the
past decade, these advances have greatly expanded the number of de novo plant genome assemblies
in public databases, opening the door to high-resolution genomic studies of wild and non-model
taxa (Zmienko et al., 2023).

Although whole-genome sequencing (WGS) offers unparalleled resolution and the highest
marker density, its cost and computational demands remain limiting factors for studies involving
large numbers of individuals, especially in species with large and complex genomes (Ray and
Satya, 2014; Huang et al., 2025). In such cases, reduced-representation methods such as double-
digest restriction site—associated DNA sequencing (ddRAD-seq) provide a cost-effective
alternative for genotyping of non-model species at a population scale (Harvey et al., 2016). By
using a pair of restriction enzymes to cut DNA at consistent recognition sites, ddRAD-seq targets
a reproducible subset of the genome, which is then barcoded, amplified, and sequenced (Peterson
et al., 2012). However, the accuracy and consistency of this representation are critical, as biases in
restriction site presence or amplification efficiency can affect genomic coverage (Magbanua et al.,
2023). By sequencing a targeted subset of the genome, ddRAD-seq yields thousands of single-
nucleotide polymorphisms (SNPs) that serve as genetic markers for assessing diversity, population
structure, and enabling downstream analyses such as evolutionary inference and genotype—
phenotype associations (Esposito et al., 2020).

Taken together, integrating ddRAD-seq with reference genome assemblies greatly
improves resolution in detecting genetic variation and linking it to adaptive, ecological, and

evolutionary processes.



Prior to recent genomic efforts, research on Chouardia litardierei focused mainly on
cytogenetic characterization and preliminary taxonomic assessments. Only two individuals from
contrasting habitats were analyzed karyologically (Siljak-Yakovlev, 2010), and there was an early
proposal to classify the dolomite group as a distinct taxon (Sili¢, 1990). However, these efforts
offered a very limited view of the species' genetic and ecological differentiation, thus leaving the

underlying mechanisms of local adaptation unexplored.

2.2 Genome-wide association study (GWAS)

Since Darwin, one of the central challenges in evolutionary biology has been to uncover
the genetic basis of adaptation and speciation—a pursuit that has become increasingly tractable
with the advent of genome-wide association study (GWAS) (Bamba et al., 2019). Approaches for
detecting adaptive evolution generally fall into two categories: phenotype-first (top-down) and
genotype-first (bottom-up) approaches (Ross-Ibarra et al., 2007). In the top-down approach, an
adaptive phenotype is first identified, and then genetic association methods, such as GWAS, are
used to pinpoint the underlying genetic factors, particularly when variation is linked to
environmental differences. In contrast, bottom-up approaches examine genome-wide patterns of
genetic variation to detect regions potentially under selection, without prior knowledge of specific
adaptive traits. While this method is not restricted to predefined phenotypes, further analyses are
required to interpret their functional significance (Flood and Hancock, 2017).

As a key top-down method, GWAS leverages naturally occurring genetic variation,
typically in the form of SNPs, to detect loci statistically associated with observable traits (Groen
and Whiteman, 2016). First developed in human genetics (Hirschhorn and Daly, 2005), GWAS is
now widely applied, from model species like Arabidopsis to diverse non-model taxa (Korte and
Farlow, 2013). The first step in such analyses involves defining clear, consistently measurable
phenotypes and selecting a study population with sufficient genetic and phenotypic variation to
enable robust associations (Alseekh et al., 2021). After genome-wide genotyping of selected
individuals, the resulting sequences are aligned to a reference genome, followed by SNP calling to
identify genetic variants. Downstream association testing then examines the relationship between
SNPs and traits across many individuals, facilitating the discovery of genomic regions linked to
adaptive variation (Korte and Farlow, 2013; Uffelmann et al., 2021). This framework is particularly

valuable in ecological genomics, as linking phenotypic variation to underlying genotypes can



clarify the genetic architecture of traits influenced by natural selection, while allowing the reuse of
the same genotyping data across multiple traits in the same populations (Berhe et al., 2021).

To translate genotypic and phenotypic variation into meaningful biological insights, GWAS
relies on robust statistical models capable of capturing the complex relationships between genetic
markers and traits (Visscher et al., 2017). Both frequentist and Bayesian approaches have been
widely adopted, often used in tandem, and while each offers distinct methodological advantages,
the question of their relative superiority remains a topic of ongoing debate (Bayarri and Berger,
2004; Huisman, 2023; Phylactou, 2023). Typically, frequentist methods apply a single-locus
framework, while Bayesian approaches often employ multi-locus models (Berhe et al., 2021).
However, these approaches are often viewed as complementary, with their combined application
enhancing the robustness and interpretability of association findings.

Within the frequentist single-locus framework, association testing typically involves
evaluating each genetic marker independently using models tailored to the distributional properties
of the trait. For traits approximating a normal distribution, linear mixed models (LMMs), such as
those implemented in the GEMMA software package (Zhou and Stephens, 2012), are commonly
employed (Onifade et al., 2022; John et al., 2024). These models account for confounding due to
population structure and relatedness through a kinship matrix and are well-suited to continuous
traits (Kang et al., 2010). However, for traits that deviate from normality, particularly count-based
phenotypes, generalized linear mixed models (GLMMs) offer a more appropriate alternative
(Onifade et al., 2022). In such cases, tools like the GMMAT software package (Chen et al., 2019)
allow for the specification of Poisson error structures, thereby accommodating the discrete nature
of the data. Although the computational complexity of LMMs traditionally scales cubically with
the number of individuals, the development of optimized software such as GEMMA has
significantly improved computational efficiency, enabling their application in large-scale GWAS
(Onifade et al., 2022). The complementary use of LMMs and Poisson GLMMSs enables a more
accurate modeling of diverse trait distributions within the frequentist paradigm, enhancing the
reliability of single-locus association findings. Linear mixed models have become a cornerstone of
GWAS due to their computational efficiency, straightforward interpretability, and broad software
support. However, achieving sufficient statistical power with LMMs generally necessitates large
sample sizes, which may pose practical limitations, particularly in studies of non-model organisms

(Onifade et al., 2022). Despite advances in software that have improved scalability, large-scale



analyses still require access to high-performance computing infrastructure with substantial memory
capacity (Runcie and Crawford, 2019; Schonherr et al., 2024). Methodologically, the univariate
nature of LMMs restricts their capacity to capture the shared effects of loci on multiple traits,
limiting their utility in the context of highly pleiotropic variants.

In contrast, Bayesian multi-locus approaches, such as the Bayesian Sparse Linear Mixed
Model (BSLMM) proposed by Zhou et al. (2013), offer a probabilistic framework that allows for
the simultaneous estimation of all marker effects, rather than testing each SNP independently. This
enables the modeling of both sparse, large-effect variants and the cumulative influence of many
small-effect loci, making Bayesian approaches particularly well-suited for traits with complex or
polygenic architectures. Rather than relying on p-values, these models generate posterior inclusion
probabilities (PIPs), which quantify the likelihood that a given SNP is truly associated with the
trait. This facilitates the ranking of variants based on biological relevance and statistical
confidence, offering a more informative and interpretable alternative to traditional significance
thresholds (Plei¢ et al., 2022). Additionally, BSLMM addresses population structure and
relatedness using a kinship matrix, and it accounts for linkage disequilibrium (LD) by estimating
SNP effect sizes while controlling for other SNPs in the model. In addition, BSLMM makes it
possible to estimate how much of the variation in a trait can be explained by genetic factors, a
concept known as narrow-sense heritability. This includes both the overall contribution of all
genotyped SNPs, known as the proportion of variance explained by all available genotypes (PVE)
or narrow-sense heritability, as well as an additional measure provided by BSLMM, referred to as
the proportion of genetic variance explained by variants with major effect (PGE) (Alamin et al.,
2022). This helps distinguish between traits influenced by many small-effect variants and those
driven by a few major ones. Despite their interpretability and robustness, Bayesian models remain
computationally intensive, which can pose practical challenges in resource-limited settings (Zhao
etal., 2019; Sun et al., 2021).

In parallel, multi-locus genome-wide association analyses (mGWAS) using multivariate
linear mixed models (mvLMMs), such as those implemented in GEMMA, offer an extension that
enables the simultaneous analysis of multiple correlated traits. This approach facilitates the
identification of shared genetic variants that influence several traits at once, enhancing power and
biological insight. While LMMs yield p-values to assess statistical significance, they do not provide

information about the strength of associations (effect sizes) or the likelihood that a specific genetic



variant is truly causal and thus offer limited insight into biological relevance or credibility of effect
(Yoon et al., 2021). This limits their utility in interpreting complex, polygenic traits.

Combining frequentist and Bayesian approaches within the same framework enables cross-
validation of associations, mitigates method-specific limitations, and supports more accurate
characterization of genetic architectures underlying adaptation. As a final step in many plant GWA
studies, functional annotation of genomic regions surrounding loci under selection frequently
reveals genomic regions associated with key protein families involved in essential biological

pathways.

2.3 Genome-environment association (GEA) analyses

In a letter to Karl Freiesleben in June 1799, the renowned naturalist and explorer Alexander
von Humboldt wrote: “I shall endeavor to find out how nature's forces act upon one another, and
in what manner the geographic environment exerts its influence on animals and plants. In short, |
must find out about the harmony in nature.” Humboldt’s pioneering work laid the groundwork for
the modern study of organism—environment interactions and continues to inspire contemporary
methods such as genome—environment association (GEA) analysis.

GEA has become a key approach for identifying genetic variation underlying adaptation to
natural environments (Halpin-McCormick et al., 2025). It builds on the principle that populations
distributed across contrasting climates and habitats experience spatially varying selection
pressures, including variations in temperature, precipitation, altitude, and soil composition, which
shape allele frequencies (Kawecki and Ebert, 2004; Hoban et al., 2016). Extending the GWAS
framework introduced in the previous chapter, GEA analyses operate similarly, but instead of
associating genetic variation with phenotypic traits, they model the relationship between genetic
markers and environmental variables across populations (Cortés et al., 2022). This allows the
identification of genomic regions potentially involved in local adaptation, even in the absence of
phenotypic data, making GEA particularly valuable for studying non-model organisms (Hancock
et al., 2011; Forester et al., 2018). Moreover, by capturing subtle allele frequency shifts across
ecological gradients, GEA provides critical insight into the evolutionary processes shaping genetic
diversity within species (Pritchard and Di Rienzo, 2010; Via, 2012).

GEA analysis is typically preceded by assessing population genetic structure through

approaches such as principal component analysis (PCA), ancestry inference (e.g., SNMF), and



phylogenetic reconstructions (e.g., Nei’s distance) (Nei, 1972; McVean, 2009; Frichot et al., 2014),
respectively. These steps are essential to account for background genetic variation and to minimize
confounding effects in subsequent analyses (Dauphin et al., 2023). Once population structure is
characterized, multivariate statistical frameworks, most notably redundancy analysis (RDA), are
employed to examine the relationship between genetic variation and environmental gradients (Ter
Braak, 1987; Capblancq and Forester, 2021). RDA is particularly effective for detecting subtle
shifts in allele frequencies across ecological conditions while simultaneously controlling for
population structure. To maximize the accuracy and interpretability of this method, environmental
variables, often sourced from global bioclimatic datasets such as WorldClim, must be carefully
screened for multicollinearity, retaining only uncorrelated predictors in the model (Legendre and
Legendre, 1998).

Similar to the concluding phase of GWAS, loci showing strong associations with
environmental variables in GEA are identified as outliers, and their functional context can be
explored through functional annotation against several available databases (e.g., EggNog, NCBI,
SwissProt, etc.). This analytical framework allows for a robust investigation of how genetic

variation is shaped by environmental heterogeneity across landscapes.






3 Thesis Outline

This PhD thesis investigated the genomic basis of local adaptation and ecological
divergence in Chouardia litardierei, a non-model perennial with exceptional ecological plasticity
across heterogeneous karst habitats. The primary aim was to identify the genetic determinants of
variation in phenological and reproduction-related morphological traits under contrasting
environmental conditions. To achieve this, the study integrated high-quality genomic sequencing,
extensive sampling, common garden experiment phenotyping, and statistical modelling. Genotypic
data were integrated with phenotypic measurements for genome-wide association studies and with
bioclimatic variables for genome—environment association analyses. This integrative framework
enabled genome-scale characterization and fine-scale genotype—phenotype—environment
interaction mapping, offering novel insights into the evolutionary processes shaping this

understudied lineage.

3.1 Research objectives and hypotheses

This study is guided by overarching objectives and hypotheses that shaped its design,
methodology, and interpretation, forming a cohesive framework for investigating evolutionary

dynamics in C. litardierei. The following objectives define the scope of this research:
1. Assemble and annotate the genome

Generate a high-quality, chromosome-level reference genome for C. litardierei, including
annotation of gene content to provide a foundation for population and functional genomic analyses.

2. Identify genotype-phenotype associations (GWAS)

Conduct univariate GWAS using both single-locus and multi-locus approaches, as well as
multivariate GWAS to identify SNPs associated with phenological and reproductive trait
variations, followed by functional annotation of significant genomic regions to identify candidate
genes involved in trait regulation.

3. Detect genome—environment associations (GEA)

Conduct genome—environment association analyses to identify genomic regions associated with
tested environmental variables, and functionally annotate them to uncover candidate genes
involved in local adaptation.



Based on these objectives, the research was guided by the following hypotheses:

1. C. litardierei comprises three ecologically distinct groups of populations, each genetically
and morphologically differentiated according to the habitats they inhabit (karst poljes,
dolomite slopes, and coastal marshes).

2. Phenological and reproductive traits exhibit high heritability and are associated with
specific genetic variants, suggesting a strong genetic basis for adaptive trait variation.

3. As a consequence of highly contrasting environmental conditions they inhabit, the trade-
off between sexual and asexual reproduction differs substantially among groups of
populations.

3.2 Overview of research publications

In order to test the hypotheses, a complex analysis was carried out using different
molecular-ecological tools and approaches, such as phenotyping and phenological characterization
based on a common garden experiment, genotyping, and complex statistical data processing. The
results are presented in three standalone yet thematically integrated publications, each addressing

specific objectives and hypotheses.

3.2.1 Publication I overview

This publication presented a chromosome-level genome assembly of C. litardierei,
providing a foundational genomic resource for investigating ecological divergence and local
adaptation in this non-model species. Using PacBio long-read sequencing combined with Hi-C
scaffolding, a highly contiguous 3.7 Gbp genome was assembled, anchored to 13 chromosome-
scale scaffolds, consistent with previously reported karyotypes. Genome annotation revealed that
over 80% of the assembly is composed of repetitive elements, with LTR retrotransposons
particularly abundant. This supports the assumption that genome size in C. litardierei is largely
driven by repetitive content and that its chromosomal architecture aligns with previous cytogenetic
observations. Beyond genome characterization, genome-scale data confirmed that C. litardierei is
phylogenetically distinct from Asparagus and other Asparagales species with available draft
genome assemblies.

Although comprehensive genotype—phenotype and genotype—environment analyses are
presented in later chapters, it must be emphasized that this genome assembly established the

essential platform for all downstream genomic analyses, including ddRAD-seq data generation and



processing, population structure analysis, GWAS, GEA analysis, and functional annotation of

candidate genomic regions.

3.2.2 Publication II overview

This publication investigated the genetic basis of variation in phenological traits of C.
litardierei, with particular attention to their ecological importance and potential role in local
adaptation. A common garden experiment was established with 214 individuals from nine
populations, three from each of the three presumed habitat groups. This setup allowed for the
isolation of genetically based phenotypic differences and the assessment of four key phenological
traits: Beginning of Sprouting (BOS), Beginning of Flowering (BOF), Flowering Period Duration
(FPD), and Vegetation Period Duration (VPD). To investigate the genetic underpinnings of these
traits, genome-wide SNP data were generated using ddRAD-seq across multiple populations
included in the common garden experiment, and a GWAS was conducted using both single-locus
and multi-locus models.

Phenological traits data did not reveal grouping of the studied populations following their
habitat types. This analysis revealed numerous significant genotype—phenotype associations,
supporting the hypothesis that phenological traits in C. /itardierei are heritable and influenced by
specific genetic variants. Narrow-sense heritability was high across all traits, with VPD reaching
86.95%, highlighting its potential role in adaptation and fitness. To assess the functional relevance
of associated loci, genomic regions surrounding significant SNPs were annotated. This revealed
variants in genes encoding protein families central to phenological regulation. Several SNPs were
identified in genomic regions encoding proteins with key roles in phenological regulation,
including LHP1 (chromatin-mediated flowering control), pentatricopeptide repeat proteins, PPR
(flowering onset), PIF1 (sprouting and development), and cytokinin-related genes (flowering

responses to nutrients and drought).

3.2.3 Publication III overview

This publication investigates the genomic basis of local adaptation and reproductive trait
variation in C. litardierei, integrating environmental and phenotypic data to identify candidate loci
underlying adaptive divergence. Building on genomic resources developed in previous work, the

study combines GEA analyses and GWAS to address multiple research objectives.
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To explore how genomic variation reflects ecological divergence, GEA analysis based on
RDA was conducted on the same set of studied populations. Precipitation of the coldest quarter
(winter precipitation) emerged as the strongest predictor, with numerous SNPs being significantly
associated with the climatic gradients. Recognized genomic regions of significant importance were
functionally annotated, revealing candidate genes involved in abiotic stress responses, including
pathways related to drought and cold tolerance. Key examples include kinase domains linked to
salt tolerance and ion homeostasis, MYB transcription factors enhancing water stress tolerance,
START domain proteins involved in drought signaling, Rubisco-related genes associated with heat
sensitivity, and PPR genes related to developmental regulation.

Population-genetic analyses revealed partial genetic clustering, with the dolomite group
from dry, drought-prone habitats forming a distinct genetic cluster. In contrast, populations from
seashore and meadow habitats showed weak or no genetic structuring, likely reflecting recent
shared ancestry or ongoing gene flow. This pattern only partially supported the hypotheses,
indicating that while the dolomite group forms a distinct group, the lack of consistent divergence
across all habitat types points to incomplete habitat type-based genetic differentiation in C.
litardierei.

To investigate the genetic basis of reproductive trait development, phenotypic data from
214 individuals from a common garden experiment, relocated from nine populations across three
habitat groups, were paired with ddRAD-seq genotyping. The study focused on three reproductive
traits: two related to sexual reproduction, Average Height of Inflorescences (AHI) and Total Flower
Count (TFC), and one asexual trait, Bulb Count (BC). Using both single-locus and multi-locus
GWAS models, multiple significant associations were identified across the genome. All traits
showed high narrow-sense heritability (>55%), with AHI reaching 71.95%, suggesting a key role
in reproductive fitness and adaptive differentiation. Similar to phenological traits, recognized
variations in reproduction-related traits were, for the most part, unrelated to the three assumed
groups of populations, but were mostly population-specific. However, results showed that clonal
reproduction (reflected in BC) was substantially more prevalent in flood-prone habitats, pointing
to adaptive shifts in reproductive strategy under certain environmental constraints.

Functional annotation of candidate loci associated with reproduction-related morphological
traits identified key genes involved in nitrogen metabolism, phytohormone signaling, and floral

organ development, including cytochrome P450 enzymes (gibberellin biosynthesis, plant stature),
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sugar transporters (bulb formation and starch accumulation), sterol biosynthesis genes (tissue
morphogenesis and reproductive structures), as well as arginase genes, CCHC-ZFPs, aspartic
proteases, Complex I genes, receptor-like kinases, and C2 domain proteins—highlighting pathways
central to growth, reproduction, and adaptation in diverse habitats.

A schematic summary of the methodological workflow for all three publications is provided

in Figure 4, offering a visual guide to the overall study design.

3.3 Scientific contribution

This thesis presents the first high-quality, chromosome-scale genome assembly of C.
litardierei, providing a foundational resource for genomic research on this ecologically distinctive
and previously understudied species. By integrating this genomic resource with extensive
ecological, phenotypic, and population-genomic data, the study delivers a comprehensive insight
into the genetic architecture underlying local adaptation and reproductive strategies in a non-model
species.

This work pioneers the application of GWAS and GEA approaches in C. litardierei,
identifying significant associations between genetic variants and key phenological and
reproductive traits, as well as some of the tested climatic drivers. The research also includes the
first large-scale common garden experiment in this species, enabling robust heritability estimates
under standardized conditions—a critical step in disentangling genetic effects from environmental
influences.

The results reveal a complex pattern of incipient divergence, with only dolomite
populations showing clear signs of genetic differentiation. Interestingly, virtually all tested traits
were not specifically linked to any of the population groups, but rather to a specific population.
These findings not only shed light on local adaptation in C. /itardierei but also establish a powerful
framework for investigating evolutionary processes in other South-European taxa inhabiting
fragmented and heterogeneous environments. By linking highly heritable traits to genomic regions
involved in stress response and developmental regulation, the study establishes a reference point
for future work on adaptation, speciation, and trait evolution in geophytes and other plant species
from contrasting habitats.

Together, these findings establish C. litardierei as one of the few Balkan endemics

thoroughly characterized across genomic, ecological, and phenotypic dimensions, using GWAS

22



and GEA analyses based on a common garden experiment. The genomic resources and analytical
framework developed here will support future evolutionary and ecological research, not only
within Chouardia or the Asparagaceae, but more broadly across other biodiversity hotspots where

adaptive processes remain poorly understood.
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4 Discussion

This thesis presents an integrative investigation of the genetic basis of local adaptation
in Chouardia litardierei, a geophytic wild species native to the Balkan Peninsula. Through three
original publications, it addresses key questions related to genome structure, population-genetic
patterns, genotype-environment, and genotype-phenotype relationships. Collectively, these
studies form a coherent framework for understanding early-stage divergence in species that

occupy environmentally heterogeneous habitats.

4.1 Broader evolutionary context and implications

Despite limited prior research, C. litardierei presents a valuable system for investigating
the early stages of ecological divergence in non-model species. Its distribution spans across
highly heterogeneous environments, ranging from coastal marshes and wet meadows to high-
elevation dolomite slopes (Gazi-Baskova, 1962; Sili¢, 1990), making it a suitable model for
examining how local selection pressures shape the genetics underlying reproductive strategies,
phenology, and population structure (Lowry et al., 2008b; Cortés et al., 2018; Bakhtiari et al.,
2019).

The results presented in this thesis point to early-stage ecological divergence in C.
litardierei, particularly of the southern dolomite populations. Although the dolomite
populations are genetically differentiated and uniform in terms of the geological substrate on
which they grow, it should be noted that they also occur over a wide range of altitudes, thus
experiencing different climatic conditions. This could easily have led to the development of
variations that are specific to a particular population and not common across the entire group.
These environmental differences render this genetically homogeneous dolomite group
heterogeneous in terms of phenology and reproductive morphology. While divergence remains
incomplete, the combination of environmental isolation and trait shifts suggests that these
populations may be on an evolutionary trajectory toward ecological speciation. Such patterns
are consistent with theoretical expectations under limited gene flow and strong local selection
(Hoban et al., 2016; Rahbek et al., 2019).

The results underscore the value of integrating genomics, trait analysis, and
environmental data to uncover cryptic evolutionary processes not yet reflected in morphological
differentiation (Theissinger et al., 2023; Peng et al., 2025). In this context, C. litardierei
contributes to a broader understanding of how adaptation unfolds in fragmented landscapes,
where gene flow, environmental heterogeneity, and reproductive strategy interact in complex

ways.
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4.2 Building genomic infrastructure for ecological and evolutionary inference

As a wild species without economic value and no prior genomic resources, C. litardierei
exemplifies the challenges and growing potential of applying modern genomic tools to
ecologically important but understudied taxa. Its distribution across diverse habitats made it an
ideal candidate for studying local adaptation, yet until recently, the absence of a reference
genome limited deeper evolutionary and functional insights.

The development of a chromosome-scale reference genome (Publication I) addressed
this limitation, providing the foundational resource needed to link genotypes to ecological and
phenotypic variation. Using PacBio HiFi long-read sequencing combined with Hi-C
scaffolding, we assembled a high-quality and complete genome of ~3.7 Gb, anchored to 13
pseudochromosomes, thus supporting previous cytogenetic data (Siljak-Yakovlev, 2010).
Additionally, genome annotation revealed that over 80% of the assembly consists of repetitive
elements, explaining the species’ large genome size.

This reference genome enabled key downstream analyses, including assessments of
population structure, trait heritability, GWAS, and GEA (Publications II and III). It has thus
established the genomic framework necessary for linking adaptive traits to specific loci and for
interpreting local adaptation at both the genetic and ecological levels.

Importantly, the successful assembly of a large, repetitive genome from a non-model
species underscores the feasibility of generating high-quality genomic resources for other
Balkan endemics, many of which remain poorly characterized despite their ecological
significance (Quaresma et al., 2024). Beyond its immediate application in this thesis, the C.
litardierei genome provides a springboard for future research on gene regulation, structural
variation, and responses to environmental stress, offering a broader insight into plant adaptation

in fragmented and climatically variable landscapes.

4.3 Ecotypic differentiation and genetic structure in C. litardierei

Publication I laid the foundation for further research by revealing preliminary evidence
of divergence, suggesting an isolated lineage, and motivating broader analyses.

Publications II and I1I tested the genetic structuring of the studied populations to reveal
that dolomite populations form a distinct lineage. In addition, as a prerequisite for the GWAS
analysis that followed, the common garden experiment was set up, and the results obtained
provided additional insight into the phenotypic structure of the studied populations. Population
genetic analyses revealed that dolomite populations form a well-differentiated genetic cluster,

whereas meadow and seashore populations were genetically indistinct from each other,
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suggesting either a recent shared origin or substantial ongoing gene flow that prevents
differentiation.

While these results clarify broad patterns of population structure, they do not support
the idea that C. litardierei consists of three fully distinct ecotypes aligned with the major habitat
types these groups inhabit. Although some divergence was evident, most notably for the
dolomite group of populations, this variation was not consistent across all habitat groups.
Instead, genetic structure and trait differentiation were more strongly associated with local
environmental conditions and population-specific responses than with broad habitat categories.
According to Lowry's (2012) definition, ecotypes require both genetic and phenotypic
distinctiveness. Based on this criterion, C. litardierei does not qualify as a species with fully
developed ecotypes. We therefore adopt a more conservative interpretation, referring to these
as habitat-associated population groups, which acknowledges the presence of partial divergence
without overstating its evolutionary significance. Morphologically and phenologically,
dolomite and non-dolomite populations are largely indistinguishable, with the only notable
difference being a substantially greater prevalence of clonal reproduction (reflected in BC trait)
in flood-prone habitats—Ilikely representing an adaptive shift in reproductive strategy under a
set of specific environmental constraints.

In summary, population-genetic and phenotypic analyses revealed only partial
divergence in C. litardierei, with clear genetic separation of dolomite populations but overall
morphological similarity across habitats, apart from greater clonal reproduction in flood-prone
sites. This mismatch between genetic structure and phenotypic expression can probably be
explained by individual differences in the microclimatic and other environmental conditions to
which individual populations are exposed, thus providing the evolutionary backdrop for
interpreting the heritable basis and adaptive potential of phenological and reproductive traits in

C. litardierei.

4.4 Trait variation and genetic architecture of adaptation

Patterns of phenological and reproductive trait variation in C. litardierei suggest that
environmental pressures are shaping population-level divergence, as demonstrated through
common garden experiment, heritability estimates, and genome-wide association studies
(Publications II and III). By minimizing environmental noise in a controlled setting (De
Villemereuil et al., 2015), we identified genetically based variation, though its alignment with

ecological differences was not consistent across all traits or habitat types.
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GWAS results revealed associations between both phenological and reproductive traits
and numerous loci in genomic regions involved in flowering regulation, hormone signaling,
stress response, and developmental pathways mechanisms broadly implicated in plant
adaptation. Several SNPs were identified in genomic regions encoding protein families with
key roles in phenological regulation. These included LHP1, a chromo domain protein
controlling flowering time through chromatin-based regulation; pentatricopeptide repeat (PPR)
proteins, which affect flowering onset via post-transcriptional processes; phytochrome-
interacting factor 1 (PIF1), regulating sprouting and developmental transitions; and cytokinin-
related genes mediating nutrient- and drought-linked flowering responses. Additional
associations were detected with histidine phosphatases, which regulate hormone signaling and
vegetative growth, and stress-related genes linked to drought and cold responses. Others were
linked to reproduction-related morphological traits, including cytochrome P450 enzymes
regulating gibberellin biosynthesis and plant stature, sugar transporters influencing bulb
formation and starch accumulation, and sterol biosynthesis genes affecting tissue
morphogenesis and reproductive structure development. Additional associations involved
arginase genes central to nitrogen metabolism and growth, CCHC-ZFPs regulating
development and stress adaptation, aspartic proteases driving rapid organ development,
Complex I genes essential for growth at all life stages, receptor-like kinases mediating
brassinosteroid signaling, and C2 domain proteins (e.g., QUIRKY, STRUBBELIG) crucial for
intercellular communication in reproductive tissues.

These associations were reinforced by high narrow-sense heritability (h?) estimates,
which describe the degree of variation in a phenotypic trait that is due to genetic variation. For
phenology, vegetative period duration (VPD) showed the highest h? (86.95%), suggesting
strong genetic control and possible adaptive significance in environments with limited growing
seasons. In contrast, flowering period duration (FPD) showed lower heritability (20.26%),
implying greater plasticity or environmental sensitivity. Moreover, the BSLMM analysis
revealed that 66.03% of the phenotypic variation in BOF (beginning of flowering) and 76.05%
in BOS (beginning of sprouting) was explained by all genotypes. These findings demonstrate
that both early-season sprouting and flowering onset are strongly shaped by genetic factors,
underscoring the significant genetic control of key phenological transitions. This genetic
regulation may play a critical role in enabling populations to synchronize their life cycle with
the environmental constraints of their specific habitats.

These genomic findings partially align with patterns observed in the common garden

experiment. On average, dolomite populations sprouted later, flowered earlier, and had shorter
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vegetation periods than meadow and seashore populations, but notable exceptions were present.
For example, the seashore population from Pag flowered at the same time as dolomite
populations and significantly earlier than the nearby Vrana Lake population from the same
habitat. Such variation indicated that phenological differences are not strictly determined by
habitat group, suggesting additional influences from population-specific factors or
microenvironmental variation. Together, these results suggest that phenological variation in C.
litardierei occurs along a continuum of local adaptation rather than as discrete, habitat-specific
shifts.

Reproductive traits exhibited complex patterns that varied more among populations than
across broad habitat types, suggesting that localized selective pressures, such as pollinator
communities or microhabitat variability, may exert stronger influence than overarching abiotic
effects. This interpretation is supported by morphometric analyses, which revealed substantial
population-level variation, and by heritability estimates showing that the average height of
inflorescence (AHI) had the highest narrow-sense heritability (71.95%), followed by bulb count
(BC, 69.87%) and total flower count (TFC, 55.89%). Although AHI showed high heritability
and may be linked to pollination efficiency, its similar expression across habitat groups suggests
that any potential selection acting on this trait is not strongly habitat-specific, making it difficult
to draw firm conclusions about directional selection. In contrast, variation in TFC and BC
appears more tightly linked to environmental conditions. For instance, dolomite populations
tended to produce fewer bulbs, possibly reflecting a shift toward sexual reproduction in more
hydrologically stable, drought-prone environments. Conversely, increased clonal reproduction
in flood-prone habitats like karst poljes and coastal meadows may represent an adaptive
response to unpredictable opportunities for sexual reproduction. This pattern is consistent with
the hypothesis that clonal reproduction is more prevalent in flood-prone environments as a
strategy to ensure persistence under unstable reproductive conditions.

Despite environmental contrasts, considerable overlap in trait values among habitat
groups indicates that adaptive divergence in C. litardierei is not uniformly shaped by broad
habitat categories. Instead, it reflects a mosaic of localized selection, genetic background, and
the lasting effects of past evolutionary events. These findings support the hypothesis, which
proposes that phenological and reproductive traits in C. litardierei exhibit high heritability and
are associated with specific genetic variants. This nuanced pattern highlights how both trait
types contribute to early-stage adaptation in complex and variable environments, reinforcing
the importance of integrating ecological, genetic, and trait-based data when investigating

evolutionary processes in non-model systems.
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4.5 Genome—environment associations and local adaptation

To further understand the environmental factors driving genetic differentiation in C.
litardierei, we explored GEA to identify loci potentially involved in local adaptation
(Publication III). This approach complements trait-based and population genetic analyses by
linking specific climatic variables to patterns of genetic variation (Faske et al., 2021; Dauphin
et al., 2023). While GEA results can be affected by environmental collinearity and population
structure, they can nonetheless reveal broad signals of climate-mediated selection.

Among the tested climatic predictors, precipitation during the coldest quarter (BIO19)
was recognized as the most profound driver of the detected variation. BIO19 was linked to 131
of 256 SNP outliers, indicating that among the tested variables, winter moisture availability
may be a key selective force shaping genomic divergence in C. litardierei. This pattern is
consistent with the species’ fragmented distribution across environments that differ strongly in
seasonal water availability—from karst fields, where early-spring flooding results from rapid
snowmelt in surrounding mountains combined with basin-like geomorphology and limited
permeability of the substrate, to arid, drought-prone dolomite slopes (Horvati¢, 1934; Bonacci,
2014). This aligns with the hypothesis, which proposes that genetic variation among
populations is associated with environmental factors, indicating potential signatures of local
adaptation.

To further explore the functional relevance of these associations, we annotated
significant loci and identified over 80 genomic regions linked to abiotic stress responses and
regulatory pathways, including salt and drought resistance, ion homeostasis, temperature
resilience, photosynthesis, and developmental control. Key examples include C2 domains and
protein kinase domains involved in salt tolerance and Na*/K* homeostasis, MYB transcription
factors enhancing salt and water stress tolerance, and START domain proteins linked to drought
signaling. The presence of Rubisco-related genes, sensitive to heat stress, points to potential
photosynthetic constraints in warmer environments, while DEAD-box and RRMI1 genes
indicate capacity for cold tolerance. Genes such as PPR and OBERON further highlight roles
in developmental regulation. The alignment between these functional roles and contrasting
ecological conditions suggests that local adaptation in C. litardierei is supported by a diverse
physiological toolkit.

The diversity of detected genes indicates a polygenic basis of adaptation, with many
small-effect loci collectively shaping population responses rather than a few large-effect genes

(H&dmala et al., 2020). This polygenic pattern is common in species adapting to complex and
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variable environments (Yeaman, 2015; Ehrlich et al., 2020). While these associations cannot
confirm causal relationships, they provide a valuable starting point for future studies aiming to
validate candidate gene functions and deepen our understanding of the molecular basis of local

adaptation in C. litardierei.

4.6 Limitations and future objectives

While this thesis offers novel insights into the genomic and ecological landscape of C.
litardierei, several limitations in study design, data quality, and analytical scope affect the
certainty and generalizability of some conclusions. Addressing these gaps in future research
will be essential for a more comprehensive understanding of the species’ evolutionary
dynamics.

Perhaps the major limitation lies in the genome assembly and the very limited
accessibility of genome assemblies from other closely related species. Although the assembled
genome was highly complete, only 44.5% of predicted genes were matched across all selected
databases, indicating that more than half still lacked full functional annotation. This gap likely
reflects the scarcity of genomic references for non-model monocots and the absence of closely
related species for comparison. The large genome size and high repeat content (nearly 70%)
also posed challenges for accurate annotation.

Sampling design and data limitations influenced both population- and trait-level
analyses. Although the study spanned a wide ecological gradient, the number of populations
and individuals per habitat type remained somewhat modest, possibly limiting the ability to
detect rare variants, fine-scale genetic structure, and subtle patterns of divergence. The common
garden experiment helped control for environmental effects, but focused primarily on
phenological and reproductive traits, leaving other potentially adaptive morphological and
physiological traits unexplored.

For the genotyping, the use of ddRAD-seq further constrained resolution. Because only
a fraction of the genome was analyzed, this approach limited our ability to detect rare variants
and selection signals that may lie outside the captured loci. These constraints had downstream
effects, particularly for GWAS, where the combination of limited genomic coverage and small
sample sizes reduced statistical power and increased the risk of confounding due to population
structure. Despite efforts to control for multicollinearity, the potential influence of population
structure and limited gene annotation constrained the interpretation of these results, especially

regarding the functional significance of candidate loci recognized by GEA.
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Several opportunities for future research were identified throughout this study. Based
on the limitations outlined above, future work could further improve, extend, and validate the

findings presented here. These directions include:

e Instead of the reduced-representation sequencing, implement whole-genome
resequencing (WGS) of individuals across populations to detect rare variants.
Individual-level WGS offers higher resolution of genetic diversity, gene flow, and
demographic history.

e Expand sampling across the species’ full ecological and geographic range. A broader
sample set will better capture environmental gradients and potential ecotypic variation,
improving inferences about adaptation.

e Analyze a broader set of traits beyond these tested ones, such as leaf morphology (size
and number), root architecture, and bulb size. These traits may reveal additional axes of
adaptation related to environmental stress.

e Include the analysis of the RNA through the implementation of various RNAseq
approaches, to directly assess the gene expression in populations from different habitats.

o Establish reciprocal transplant experiments across habitats to test the fitness
consequences of trait variation in contrasting environments. Such experiments can help
distinguish phenotypic plasticity from genetic adaptation and provide direct evidence
for local adaptation, which is crucial for confirming whether the observed habitat-
associated groups represent true ecotypes.

e Incorporate soil variables into genome—environment association analyses to evaluate
how contrasting edaphic conditions, from deep soils to exposed rocky substrates, shape
genetic divergence.
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5 Conclusion

The results of this thesis support most proposed hypotheses, revealing a complex
interplay of genetic structure, trait variation, and early-stage ecological divergence in
Chouardia litardierei. By integrating genomic, phenotypic, and environmental data, this work

clarifies how selection and local adaptation interact in this ecologically diverse Balkan endemic.

The key findings of this PhD thesis can be summarized as follows:

1. First chromosome-scale genome reveals evolutionary distinctiveness of C.
litardierei

A high-quality ~3.7 Gb genome was assembled, confirming the expected chromosome
number and structure, and marking the first such resource for this species. Phylogenomic
analyses placed C. litardierei as evolutionarily distant from Asparagus and other previously

sequenced Asparagales, underscoring its phylogenetic uniqueness.

2. Genetic structure separates dolomite populations as a distinct group

Population genomic analyses revealed two broad genetic clusters: one confined to dolomite
habitats, and another spanning meadow and seashore sites. This pattern supports describing

populations as habitat-associated groups rather than distinct ecotypes.

3. Heritable trait variation is underpinned by specific genetic loci

GWAS revealed high heritability in phenological and reproductive traits and identified
SNPs in genomic regions related to hormone signaling, stress response, and developmental
timing. These findings suggested a strong genetic basis for variation in the tested adaptive
traits and supported fine-scale natural selection across heterogeneous environments.

4. Genetic differentiation is shaped by environmental factors, especially winter

precipitation

GEA analyses identified winter precipitation as the environmental element with the
strongest influence on genomic variations, indicating that water availability is a major

selective force shaping local adaptation across the species’ range.

5. Clonal reproduction is more common in flood-prone habitats

Populations from flood-prone habitats, such as karst poljes and coastal meadows, showed a
stronger tendency toward clonal reproduction. This supports a habitat-specific life-history
trade-off, as clonality is often favoured in environments where, for some reason, sexual

reproduction is threatened or unreliable.
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6. Adaptive divergence is ongoing, partial, and shaped by local ecological conditions
Despite pronounced environmental contrasts, both genetic structure and trait differentiation
remain incomplete, particularly among non-dolomite populations. This suggests that local
adaptation in C. litardierei proceeds along a continuum shaped by different evolutionary

forces, microhabitat variability, and historical demographic processes.

7. Adaptive traits appear to be governed by a polygenic basis
Environment- and trait-associated SNPs mapped to genes involved in drought tolerance,
flowering regulation, and stress responses, indicating that adaptation in C. litardierei is

shaped by shifts across multiple biological pathways rather than by single large-effect

mutations.
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Abstract: One of the central goals of evolutionary biology is to understand the genomic basis
of adaptive divergence. Different aspects of evolutionary processes should be studied through
genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth
genome-scale analyses often are restricted to a model or economically important species and their
closely related wild congeners with available reference genomes. Here, we present the high-quality
chromosome-level genome assembly of Chouardia litardierei, a plant species with exceptional ecological
plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome
with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among
which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were
functionally annotated using public databases. For the comparative analysis of different ecotypes’
genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was
performed. The detected above-average SNP density within coding regions suggests increased
adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes
within the group. The constructed genome presents an invaluable resource for future research
activities oriented toward the investigation of the genetics underlying the adaptive divergence that is
likely unfolding among the studied species” ecotypes.

Keywords: Chouardia litardierei; PacBio; Hi-C; chromosome-level genome; draft genome; local adaptation

1. Introduction

Amethyst meadow squill (Chouardia litardierei (Breist.) Speta) (Figure 1A) is a bulbous
perennial species of the Hyacinthaceae family. It grows naturally across the western and
central parts of the Dinaric Alps in the Balkan Peninsula, occupying highly contrasting
ecological niches [1,2] and therefore meadow, seashore, and mountainous ecotypes can be
recognized (Figure 1B).

The meadow ecotype, distributed throughout the central and northern parts of the species
distribution area, is found across karst fields at altitudes of up to 1000 m. These flat-floored
and periodically flooded enclosed depressions are characterized by a unique microclimate
and hydrological and geomorphological conditions compared to the surrounding areas [3].
The seashore ecotype occupies the lowlands of northern Dalmatia across the northwestern
part of the species distribution range. These populations grow in salt marshes reaching the
seashore, which experience Mediterranean climate conditions [4,5]. Finally, the mountainous
ecotype is distributed throughout the southern parts of the species’ distribution range and in
comparison to the aforementioned two ecotypes, occupies a highly contrasting habitat. Its
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https:/ /www.mdpi.com/journal/ijms



Int. . Mol. Sci. 2023, 24, 10755

20f 16

populations inhabit arid, rocky slopes of high mountains with very little or virtually no soil in
rock crevices at altitudes of up to 2000 m that are characterized by extreme seasonality of most
climatic elements. Despite occupying contrasting environments, these groups of populations
can hardly be distinguished from each other by any morphological trait. There was an
attempt to describe the mountainous ecotype as a separate taxon based on morphological and
phenological analyses [2], but the research was based on vague and unreliable approaches,
therefore leaving room for justified doubts in the results. C. litardierei undoubtedly is a complex
species characterized by very pronounced ecological plasticity. However, unlike in some other
cases [6], it seems only the specific habitat, and not any morphological trait, can be used for
reliable recognition of the ecotypes. We plan to use this species as a study system for a thorough
investigation of the genetics underlying the ecological divergence and speciation process.

Figure 1. (A) Chouardia litardierei in full bloom, (B) the distribution area of Chouardia litardierei and
contrasting habitat types it occupies. The distribution area of Chouardia litardierei is marked with
a dotted line. In circles, from left to right, meadow, seashore, and mountainous ecotype habitats
are shown.

To date, no significant research that investigated this species’ ecological divergence or
genetics has been performed. Besides the previously mentioned analyses by Sili¢ [2], the
cytogenetic characterization of two individuals representing meadow and mountainous
ecotypes was also performed [7]. Karyograms revealed that both ecotypes share the
same number of chromosomes (2n = 26), with one long, two middle-sized, and ten small
chromosome pairs. In addition, the 1C haploid genome size was estimated at 4.13 pg [8] or
4.039 Gbp according to the conversion by DoleZel et al. [9].

During the process of speciation, a group of individuals diverges into two or more
distinct phylogenetic lineages. In populations initially indistinguishable from each other,
either genetically or morphologically, the accumulation of genetic differences can gradually
lead to the emergence of a new species [10,11]. The type of speciation in which “barriers to
gene flow evolve between populations as a result of ecologically based divergent selection”
is referred to as ecological speciation [12]. As a consequence of organism adaptation to
specific environmental conditions during ecological speciation, new morphologically and
genetically divergent ecotypes found in a specific habitat rather than a specific geographic
area, can emerge [13]. One of the central goals of evolutionary biology is to understand
the genomic basis of adaptive evolution [14,15]. It is widely accepted that different aspects
of evolutionary processes should be studied through genome-wide approaches, therefore
maximizing the investigated genomic space. However, genome-scale analyses are often
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restricted to a model or economically important species (and their closely related wild
congeners) with available high-quality reference genomes [16-18]. In recent years, with the
advancement of different NGS techniques and the inevitable increase in their affordability,
more non-model species’ genomes are being sequenced and assembled de novo [19-21].

Here, we present the high-quality chromosome-scale genome assembly for C. litardierei,
which is also, to the best of our knowledge, the first reported genome assembly within the
Hyacinthaceae family. By implementing PacBio HiFi sequencing and Hi-C scaffolding, a
haploid 3.7 Gb genome organized in 13 pseudochromosomes was revealed. The obtained
results represent the initial step in comprehensive research that will investigate the process
of adaptive divergence and speciation that is likely unfolding among the ecotypes of the
studied species. The availability of the species” genome assembly will enable the study of
the ecotypes’” genome architecture, genome—environment association (GEA), and genome-
wide association studies (GWAS), which will elucidate the genomic mechanisms underlying
the ongoing evolutionary processes in C. litardierei.

2. Results
2.1. Genome Sequencing and Assembly

After sequencing, high-quality PacBio CCS reads were obtained from subreads with
a quality score of Q20 (1% error rate). More than 6.5 M PacBio HiFi reads were available
with a total of 94.54 Gbp (23 x genome coverage, genome size based on the k-mer analysis),
producing an average read length of 14.5 Kbp. In addition, 861 M Hi-C read-pairs were
obtained, resulting in 432 Gbp (105X genome coverage) in total. Based on k-mer analysis,
the genome size of amethyst meadow squill was estimated at 4.085 Gbp. After processing
the hifiasm assembly using Quast, the initial genome assembly of 3.67 Gbp with an average
contig N50 of 12.9 Mbp was produced.

After processing the initial assembly and Hi-C data with 3D-DNA, the assembly
results were moderately improved and the scaffold N50 measure topped 200 Mbp. The N50
measure obtained after the 3D-DNA pipeline should be considered reliable due to misjoins
having been resolved by the pipeline. The rearrangement of scaffolds produced by the 3D-
DNA pipeline with the Juicebox tool resulted in the recognition of 13 pseudochromosomes:
one very long, two middle-sized, and ten small chromosomes (Figures 2 and 3).

Figure 2. Heatmap showing Hi-C interactions for 13 pseudochromosomes of Chouardia litardierei.
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Figure 3. Genome features of 10 Mbp windows across the Chouardia litardierei genome. From
outer to inner circles: chromosomes, GC content, gene density (purple), total repeats (green), DNA
transposons density (light blue), Copia elements density (blue), Gypsy elements density (dark blue),
and intra-genome syntenic blocks where the bandwidth is proportional to the syntenic block size.

The obtained assembly was polished using the HyPo tool, and the results are presented
in Table 1. The N50 value reached more than 210 Mbp, and the largest scaffold was nearly
825 Mbp. The 13 largest scaffolds (representing pseudochromosomes) range from 146 Mbp to
825 Mbp, with a total size of 3.33 Gbp. This value represents 90% of the complete assembly and
81.6% of the predicted genome length. The rest of the assembly consists of numerous smaller
sequences (2.3 Mbp and smaller) that did not successfully merge with the pseudochromosomes.
Finally, the BUSCO completeness score of 97.4% confirmed the high quality of the obtained
genome assembly. The summary statistics are presented in Table 1.

Table 1. Summary results for the final assembly of the Chouardia litardierei genome.

Sequence
Assembly size (bp) 3,698,590,323

GC content (%) 42.90

Number of scaffolds 9916

Number of scaffolds (>50 kbp) 1803
Longest scaffold (bp) 824,692,949
Scaffold N50 size (bp) 210,067,440

Number of contigs 3111

Number of contigs (>50 kbp) 1611
Longest contig (bp) 54,979,118
Contig N50 size (bp) 12,914,002

Pseudochromosome
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Table 1. Cont.

Sequence
Number 13
Size range (Mbp) 145.64-824.69
BUSCO score

Complete BUSCOs (%) 97.4
Complete and single-copy BUSCOs (%) 89.9
Complete and duplicated BUSCOs (%) 7.5
Fragmented BUSCOs (%) 24
Missing BUSCOs (%) 0.2

2.2. Repetitive Elements Annotation

The annotation of repetitive elements revealed 2.99 Gbp of repetitive sequences repre-
senting 80.90% of the C. litardierei genome, with transposable elements (TEs) occupying
69.97% of the genome assembly. In addition, the analysis revealed that LTR retrotrans-
posons were by far the most abundant repeat sequences (63.25% of the genome assembly),
of which Copia and Gypsy, two superfamilies, account for 27.03% and 36.01% of the assem-
bled sequences, respectively. Other detected repeat elements were unclassified elements
(7.81%), DNA transposons (3.67%), long interspersed nuclear elements (LINEs; 2.99%), and
others with lower abundances (Table 2).

Table 2. Classification of the repetitive elements in the Chouardia litardierei genome.

Percent (%) Total Length (Mbp)
Retrotransposons
LINE 2.99 110.72
SINE 0.06 2.14
LTR 63.25 2339.37
DNA Transposons 3.67 135.60
Unclassified 7.81 288.98
Satellites 0.14 5.10
Simple repeats 1.42 52.63
Low complexity 0.31 11.53
Rolling circles 0.58 21.30
Small RNA 0.70 25.88
Total 80.90 2991.99

2.3. RNA Sequencing

The RNA sequencing yielded a total of 99.59 M raw reads. After trimming, 96.75 M
reads with an average length of 135.6 bp were retained. The summary of the RNA sequenc-
ing results from different tissues is given in Table 3.

Table 3. RNA sequencing data from different Chouardia litardierei tissues.

Root Leaf Flower Develqp g

Fruit

No. of raw reads 22,769,326 24,504,881 28,584,130 23,731,351
Total nucleotides [Mbp] 3013.5 3360.2 3918.0 3070.6
GC content [%] 47.90 49.18 49.65 51.26
Average length [bp] 123.0 137.1 137.1 129.4
Min-max length [bp] 8-383 8-381 8-381 8-384

No. of reads after trimming 22,079,991 23,884,368 27,738,059 23,053,022
Total nucleotides after 2957.7 3309.0 3855.2 3018.6

trimming [Mbp]

Average read length after 134.0 138.5 139.0 131.0

trimming [bp]
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2.4. Gene Prediction and Annotation

By combining several approaches, we predicted 27,257 gene models, of which 23,297
were mapped to 13 pseudochromosomes, while the remaining 3960 were mapped to smaller
scaffolds. Their average length, CDS length, and exon number were 3109.9 bp, 764.1 bp, and
4.2 bp, respectively (Table 4). Among the predicted genes, 23,398 were functionally annotated
using the public databases Swiss-Prot, InterPro, NCBI NR, and EggNog (Figure 4A).

SwissProt InterPro

5767

2080

.
B

O. sativa

H. vulgare

Z. mays

A. comosus
M. acuminata
A. officinalis
C. litardierei Copy number
D. alata

A. thaliana

0 5000 10,000 15000 20,000 25000 30,000 35,000
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C. litardierei gpu—— M. acuminata

//
/1598
“ 424
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H. vulgare
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379 /

Figure 4. (A) Venn diagram showing the number of genes with functional annotation using multiple
public databases, (B) number of gene copies among nine studied plant species, (C) Venn diagram of
orthologous groups shared among selected species.
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Table 4. Summary of the gene prediction and annotation results of Chouardia litardierei.

Gene Prediction

Number of predicted genes 27,257
Number of predicted genes in 13 pseudochromosomes 23,297
Chrl 1237
Chr2 1152
Chr3 1477
Chr4 2137
Chr5 1757
Chr6 1309
Chr7 1429
Chr8 1513
Chr9 1435
Chr10 1589
Chrll 1344
Chr12 2373
Chrl3 4545
Mean gene length (bp) 3109.9
Mean CDS length (bp) 764.1
Mean exon length (bp) 181.0
Mean intron length (bp) 728.0
Avg. exons per gene 4.2

Gene annotation

NCBI NR annotated (%) 17,602
EggNog annotated (%) 14,691
InterPro annotated (%) 22,633

Swiss-Prot annotated (%) 12,782
Number of annotated genes 23,398
Proportion of annotated genes (%) 85.8%

2.5. Evolution Analysis

To elucidate the evolutionary history of C. litardierei within monocots, seven species
across the group and one dicot (A. thaliana as an outgroup) were selected for the phylogenetic
analysis. A total of 24,356 orthologous families of genes were identified: 377 single-copy
families, 5189 shared by all studied species, 5486 shared only by monocots representatives,
and 6621 shared by C. litardierei and A. officinalis (Figure 4C). For C. litardierei 1458 private
gene families were recognized. Single-copy ortho-groups were used for the phylogenetic tree
construction. Species formed groups that were in accordance with their already recognized
phylogenetic relationships. C. litardierei paired with A. officinalis within the order Asparagales,
while Z. mays, H. vulgare, and O. sativa grouped as representatives of the Poaceae family. As
representatives of different families, D. rotundata, M. acuminata, and A. comosus were positioned
separately, as was the case with A. thaliana as the sole representative of dicots that served as
the outgroup. The divergence time between C. litardierei and A. officinalis was estimated at
49.9 Mya. The divergence times among the other analyzed species and gene family expansions
and contractions are indicated in Figure 5.

2.6. Ecotypes Genomes Comparison

To perform a basic comparison of the different ecotypes’ genomes, two additional
samples, one representing the meadow, and another the mountainous ecotype, were
sequenced. Illumina PE150 sequencing yielded 364 and 370 M reads for the meadow and
mountainous ecotype individuals, respectively. However, the usability of such a short-
read data set was limited and does not allow detailed comparative analyses of genomes
characterized by very high proportions of repetitive elements. Nonetheless, we were
able to calculate pairwise distances between the constructed genome assembly and the
additional samples based on the total number of detected SNPs (Figure 6) and analyze
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their distribution across the genomes (Figure 7). Additionally, the SNP abundances within
genes and on the genome level were compared and expressed as the average distance
between neighboring SNPs. The results showed that the mountainous ecotype was the
most diverged one, while a substantially higher density of SNPs was detected within genes
compared to the entire genome.

A. thaliana
4971/1418

D. rotundata
1378/2953

152.2 (141.9-163.8)

C. litardierei
848/5787

127.9 (124.4-130.9
» ( )

49.9 (12.6-82.9)

15/236

276/2869 A. officinalis
154711106
121.9 (118.6-124.8) ;
0/32 M. acuminata
3829/1228
113.3 (107.6-121.5) A. comosus
131118 1088/2579
85.6 (70.9-104.1) Z. mays
154/558 4607/832
51.8 (30.7-63.0) H. vulgare
0512 1162/1904
44.3 (28.1-55.5)
a2 O. sativa
1310/1428
I 1 T T T I 1 Mya
150 125 100 75 50 25 0
Figure 5. A phylogenetic tree showing topology, divergence times, and expansions/contractions of
gene families for nine plant species including Chouardia litardierei. Numbers in green, red, and black
represent expansions and contractions of gene families, and divergence times, respectively.
A Assembly Sample 1 Sample 2 B Assembly Sample 1 Sample 2
Assembly 0 0.84 1.7 Assembly 0 100.9 49.9
Sample 1 271 0 2.1 Sample 1 136.5 0 40.4
Sample 2 47.3 65.4 0 Sample 2 78.2 56.5 0
Figure 6. Genetic distances and distribution of SNPs among studied Chouardia litardierei

genomes. Assembly—draft genome assembly of an individual belonging to the seashore ecotype;
Sample 1—individual belonging to the meadow ecotype; Sample 2—individual belonging to the
mountainous ecotype. (A) The total number of SNPs for the given sample pair is shown below
the diagonal, and the number of SNPs detected in genes is shown above the diagonal (in millions).
(B) Mean distance between neighboring SNPs throughout the genome for the given sample pair is
shown below the diagonal, and the mean distance between neighboring SNPs within detected genes
is shown above the diagonal (in base pairs).
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Figure 7. Distribution of meadow and mountainous ecotypes” SNPs in contrast to reference genome
assembly. From outer to inner circles: chromosomes, meadow ecotype’s SNPs, and mountainous
ecotype’s SNPs.

3. Discussion

Here, we present a draft genome assembly for Chouardia litardierei, a non-model
monocot species from the Hyacinthaceae family. By combining long-read sequencing
and the chromosome conformation capture method, we successfully assembled a high-
quality 3.7 Gbp genome of C. litardierei, and the obtained result agrees with the previously
reported genome size for the species [8]. By inspecting the Taxonomy Browser of the
NCBI repository (https:/ /www.ncbi.nlm.nih.gov/data-hub/taxonomy/tree/?taxon=4447
(accessed on 17 April 2023)), it became obvious that, within monocots, most species with
assembled genomes are either of substantial economic importance (maize, wheat, rice,
pineapple, banana, asparagus, jams, onion, garlic, etc.) or their wild relatives. In a lower
taxonomic rank, within the order Asparagales, assembled genomes of well-known groups
of orchids (i.e., Dendrobium, Vanilla, and Phalaenopsis) and Asparagus prevail, once again
showing bias towards species of economic importance. Of less closely related species to
C. litardierei within Asparagales that have available genome assemblies, few can be men-
tioned. The genome assembly of Asparagus setaceus was 720 Mb in size and characterized
by 1393 scaffolds and a 2.19 Mb N50 scaffold value [22]. The 1.19 Gb Dendrobium nobile
genome assembly reached a 64.5 Mb N50 scaffold value [23], while the Cymbidium goeringii
genome, of very similar size to the genome of C. litardierei (3.99 vs. 3.70 Gbp, respectively),
had an N50 scaffold size of 178.2 Mb [24]. Since we reached the N50 scaffold value of more
than 210 Mb, this indicates the high contiguity of the assembled genome. In addition, the
BUSCO score of over 97% additionally supported this conclusion. Additionally, a revealed
chromosome size distribution perfectly matches the only known karyotype for this species
reported by Siljak-Yakovlev et al. [7].

The annotation of repetitive elements revealed that TEs occupy almost 70% of the
genome, with LTR retrotransposons being the most abundant class. Such a result was not
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surprising, as it is well known that genome size in plants greatly depends on these elements’
abundance [25,26]. Our results are mostly consistent with those reported for other monocot
species. For instance, the Hordeum vulgare ssp. vulgare genome (5.1 Gbp in size, Poaceae)
consists of 72.8% TE elements [27], the genome of Areca catechu (2.6 Gbp, Arecaceae) of
80.4% [28], and that of Allium fistulosum (Amaryllidaceae 11.2 Gbp) of 69% [29]. At the
same time, genomes of some other monocots, such as Setaria italica (423 Mbp, Poaceae) [30],
Trichopus zeylanicus (713 Mbp, Dioscoreaceae) [31], and Kobresia myosuroides (400 Mbp,
Cyperaceae) [32] reportedly harbor substantially fewer transposable elements, occupying
41%, 36%, and 44.9% of their genomes, respectively. As mentioned, since the abundance of
TEs strongly influences the genome size, species characterized by smaller genomes usually
have fewer TEs as well.

To reach high accuracy for the genome annotation, we implemented various ap-
proaches to annotate protein-coding genes. Out of the 27,257 predicted genes, most of them
(85.8%) were matched with a functional annotation in at least one public database, while
almost half of them (44.5%) were matched in all selected databases.

The genus Prospero represents a closely related group to C. litardierei. It formerly
belonged to Scilla, and the same is true for the Chouardia studied here. Prospero, especially
the P. autumnale s.1. group, is well known for its structural genome rearrangements and
multiple ploidy levels and was used as the model group for research on the evolutionary
implications of karyotype differentiation [33,34]. In addition, Siljak-Yakovlev et al. [7]
hypothesized that the genome of C. litardierei could have originated through whole-genome
duplication events. To verify whether the C. litardierei genome shares some characteristics
with P. autumnale s.1., or has indeed originated through a whole-genome duplication event,
we performed intra-genome syntenic gene block analysis. However, no clues supporting
any of these assumptions were found, as it became clear that the C. litardierei genome did
not undergo any such structural rearrangements since only a few gene blocks co-occurred
on more than one position across the genome. In contrast to the limited distribution
area of C. litardierei, P. autumnale s.1. stretches across the Mediterranean basin, so we can
assume that the vast distances and subsequent geographical isolation eventually led to the
establishment of groups of populations characterized by specific cytotypes.

The evolutionary analysis confirmed the positioning of C. litardierei and the entire
Hyacinthaceae family within Asparagales. At the same time, it confirmed that the genus
Asparagus, the closest relative to C. litardierei with the available draft genome, can hardly
be treated as a close relative since the divergence time was estimated at around 50 Mya.
This result further emphasizes the importance of our work, as C. litardierei is an obvious
representative of, so far, a neglected phylogenetic group in terms of available genomic
resources. Regarding other phylogenetic relationships and divergence times among the
analyzed representatives of various monocot groups, our results were in high agreement
with other similar studies [32,35,36].

Comparative analyses of the assembled genome and two individuals belonging to
different ecotypes were of limited success. A shotgun-sequencing approach with a 150 bp
read length greatly limited our abilities for in-depth analyses. Nonetheless, we were able to
extract SNPs and analyze their distribution across the genomes. The results supported our
initial assumption that a higher degree of relatedness is present between the seashore and
meadow ecotypes, while the mountainous ecotype is more diverged and possibly represents
a separate lineage. In addition, the analysis of SNP distribution within and outside protein-
coding regions indicated an above-average density of variations within the coding regions.
This result shows that some regions are evolving at a higher pace than others, possibly
as a consequence of yet undetermined selective pressures. However, such a conclusion
based on only three individuals is likely premature, as research that would include a
substantially larger sample set is required for more reliable conclusions. The reasoning
behind performing this analysis was to determine if there are any indications of ongoing
divergence processes among the lineages, which in the end, we successfully identified.
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4. Materials and Methods
4.1. Sample Collection, DNA Extraction, and Sequencing

Fresh leaf material from an individual belonging to the seashore ecotype of the studied
species was collected and immediately placed in a silica gel for rapid desiccation. High-
molecular-weight DNA extraction following the CTAB method [37], DNA quality control,
PacBio HiFi, and Hi-C library preparation and sequencing were performed by Brigham
Young University DNA Sequencing Center (Provo, UT, USA). In short, PacBio circular
consensus sequencing (CCS) libraries were constructed and sequenced on the 8M SMRT
cell of the PacBio Sequel II instrument (Pacific Biosciences of California, Menlo Park, CA,
USA), while Hi-C libraries were constructed using a Dovetail® Omni-C® Kit and sequenced
on an Illumina HiSeq platform (Illumina Inc., San Diego, CA, USA) to generate 2 x 250
paired-ends reads.

4.2. Genome Assembly

Before the assembly process, the genome size of C. litardierei was estimated using a
k-mer counting method and the tool Jellyfish 2.3.0 [38]. PacBio HiFi reads were processed
by Jellyfish to determine their k-mer distribution, and the k-mer size of 19 was selected.
The genome size was estimated as the total number of counted k-mers divided by the
highest frequency of k-mers that occurred. PacBio HiFi reads were assembled into contigs
using hifiasm 0.16.1-r375 [39]. Racon 1.4.17 [40] was used in an attempt to improve read
quality before the assembly process. The contigs obtained by hifiasm were polished using
two rounds of consensus correction with Racon and PacBio HiFi reads.

The generated contigs were scaffolded into pseudochromosomes using Hi-C data.
Hi-C reads were first processed following the Omni-C data analysis and quality control
protocol, recording valid ligation events and removing PCR duplicates. After initial pro-
cessing, the Hi-C reads were mapped to contigs using the Juicer tool [41], producing contact
map information. To detect misjoins in contigs and to join contigs located on the same
chromosomes, 3D-DNA v180922 [42] was used. For the manual rearrangement of obtained
scaffolds into pseudochromosomes, we used the Juicebox tool [43]. The same software was
also used to generate a FASTA file with sequences corresponding to 13 manually assembled
chromosomes, with N filling the gaps between scaffolds within each chromosome. This
final assembly was further polished with PacBio HiFi reads using the HyPo polisher [44].
HiFi reads were mapped to the final assembly using the minimap2 tool 2.23 [45] with the
option “-x map-hifi”.

The initial and the final assemblies’ quality was assessed using Quast [46] and
BUSCO 5.2.2 [47] to compare the assembly to the gene content of Viridiplantae_odb10
“https:/ /busco-archive.ezlab.org/frame_plants.html (accessed on 7 December 2022)”. For
the genome assembly visualization, we used shinyCircos [48]. The GC content of the
assembled genome was calculated using an in-house script. The density of total re-
peats, DNA transposons, Copia repeats, and Gypsy repeats was determined from the
data obtained through the repetitive element annotation, as explained in the next sub-
section. Intra-genomic syntenic analysis was performed using SyMAP 5.4.0 [49] with the
default parameters.

4.3. Repetitive Elements Annotations

First, the known repeat sequences of Viridiplantae were identified based on Dfam [50]
hidden Markov Model (HMM) sequence profiles (release 3.6) using RepeatMasker 4.1.2-p1 [51]
and the NCBI/RMBLAST search engine. Furthermore, the de novo repeat identification
approach was implemented using RepeatModeler2 2.0.2 [52] with Tandem Repeats Finder
4.10 [53], RECON 1.0.8 [54], and RepeatScout 1.0.6 [55] which enabled LTR Structural analysis.
RepeatClassifier (a module of RepeatModeler2) was implemented for further classification
of de novo repeats into unknown and classified classes. All three groups of repeats were
used in a combined masking step to construct the finally masked version of the genome.
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The final BUSCO analysis against Viridiplantae_odb10 was performed on this version of the
masked genome.

4.4. RNA Isolation and Sequencing

For support of the gene prediction, RNA-Seq data were generated. Total RNA was ex-
tracted from roots, leaves, flowers, and unripe fruit using a Monarch® Total RNA Miniprep
Kit (New England BioLabs, Ipswich, MA, USA). The manufacturer’s protocol, with an
on-column DNAse digestion step, was followed. Eluted RNA was quantified utilizing
spectrometry, and integrity was verified by Agilent Bioanalyzer 2100 electrophoresis using
an RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CO, USA). RNA was stored at
—80 °C until processing.

RNA sequencing was performed using the Ion Proton system. Total RNA was enriched
for the poly-A mRNA fraction using a Dynabeads® mRNA DIRECT™ Micro Kit (Thermo
Fisher Scientific, Waltham, MA, USA). The isolated mRNAs were used for RNA-Seq library
preparation using the procedure for low-input RNA from the Ion Total RNA-Seq kit v2
(Thermo Fisher Scientific, Waltham, MA, USA). The RNA was fragmented using RNase
III enzymatic digestion followed by ligation of lon Adapters using four different barcodes
to retain tissue specificity. The samples were reverse transcribed, purified, and cDNA
amplified, and the obtained library was verified using the High Sensitivity DNA Kit
(Agilent Technologies, Santa Clara, CO, USA). The libraries, in equimolar amounts, were
pooled together and amplified by emulsion PCR using an Ion OneTouch™ 2 System and
Ton PI Hi-Q OT2 200 Kit. Template-positive particles were enriched using Dynabeads®
MyOne™ Streptavidin C1 beads (Thermo Fisher Scientific, Waltham, MA, USA) on an Ion
OneTouch™ ES system. The obtained enriched particle samples were sequenced on PI™
Chip v3 using the Ion PI™ Hi-Q™ Sequencing 200 Kit (Thermo Fisher Scientific, Waltham,
MA, USA) following the manufacturer’s protocol. The quality check of trimmed reads after
processing was performed by the FastQC tool [56].

4.5. Gene Prediction and Annotation

To predict protein-coding sequences, we used several approaches implemented using
different tools. First, gene models were developed with the MAKER genome annotation
pipeline (MPI 3.01.04) [57] incorporating: (1) RNA-seq data, (2) protein-based evidence
based on 139,388 Asparagales clade proteins downloaded from the NCBI RefSeq database
“https:/ /www.ncbi.nlm.nih.gov/refseq/ (accessed on 9 January 2023)”, and (3) ab initio
gene predictions obtained using SNAP 2006-07-28 [58] and Augustus 3.2.3 [59]. For SNAP
software training, MAKER models with a max AED threshold of 0.25 and a minimum
length of 50 amino acids were used, and for training Augustus, the BUSCO pipeline was
employed following the method of Card et al. [60]. Three runs of MAKER were run
iteratively to obtain most gene models with an AED score above 0.5.

Additional ab initio gene prediction was obtained using GeneMark-ES [61], followed
by de novo and genome-guided transcriptome assembling using the Trinity 2.14.0 soft-
ware [62] (default parameters). For the construction of the genome-guided transcriptome,
the GMAP tool [63], and SAMtools 1.14 [64] were used to map the reads to the previously
constructed genome assembly and to obtain a coordinate sorted bam file, respectively. The
transcriptomes obtained by Trinity were used as inputs for the PASA alignment assembly
pipeline 2.5.2 [65] (default parameters). The obtained transcriptome was further used
to identify and extract likely coding regions using PASA’s Transdecoder software. For
homology-based gene prediction, the Asparagales protein set was used again. The proteins
were mapped to the previously constructed genome using the miniprot tool [66].

Finally, the MAKER gene annotations together with the PASA transcriptome, PASA
likely coding regions, protein alignments obtained by miniprot, and ab initio predictions
obtained by GeneMark-ES, were analyzed using EVidenceModeler 2.0.0 [67], producing
the final consensus gene set.
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Recognized protein-coding genes were functionally annotated based on entries in
the NCBI NR database [68], Swiss-Prot [69], InterPro [70], and EggNOG [71] databases,
using BLASTP searches with an E-value cut-off of 1.0 x 10~°. For the visualization of the
obtained results, a Venn diagram was constructed.

4.6. Genome Evolution Analysis

Orthologous groups were identified using OrthoFinder 2.5.4 [72] and protein se-
quences from Ananas comosus (L.) Merr., Arabidopsis thaliana (L.) Heynh., Asparagus offic-
inalis L., Dioscorea rotundata Poir., Hordeum vulgare L., Musa acuminata L., Oryza sativa L.,
and Zea mays L. Single-copy ortho-groups were collected and aligned using MUSCLE
3.8.1551 [73]. The alignments were concatenated into a super-alignment and filtered using
Gblocks 0.91.1 [74]. The phylogenetic trees were constructed using RaxML-NG 0.9.0 [75].

Divergence time estimation was performed using the MCMCTree tool in the PAML 4.9j
package [76]. Analyses were run using default settings (200,000 generations with a burn-in
of 2000 iterations). The calibration points for the O. sativa-H. vulgare (42-62 Mya), A. como-
sus—M. acuminata (103-117 Mya), and D. rotundata—A. thaliana (142-164 Mya) were obtained
from the TimeTree database [77] “http:/ /www.timetree.org (accessed on 6 April 2023)”.
Finally, for the identification of gene families” expansions and contractions, CAFES [78]
was implemented.

4.7. Intra-Species Comparison of the Genomes

In addition, to perform a basic comparative analysis of genomes from different eco-
types, two individuals, each from a distinct ecotype (meadow and mountainous ecotypes,
Samples 1 and 2, respectively), were sampled. DNA was extracted from dried leaf material
using the GenElute™ Plant Genomic DNA Miniprep Kit (Sigma—Aldrich, St. Louis, MO,
USA) and sent to Novogene (UK) Company Limited for short-fragment libraries prepa-
ration and PE150 sequencing on an Illumina NovaSeq platform (Illumina Inc., San Diego,
CA, USA). The paired-end reads were mapped to the constructed genome assembly using
the BWA tool 0.7.17 [79], and the variants were called using the FreeBayes tool [80,81].
The obtained data were used to assess the pairwise genetic distances between analyzed
individuals belonging to different ecotypes. In addition, the abundance of the SNPs within
protein-coding regions was analyzed using an in-house script.
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Uncovering the genomic basis of
phenological traits in Chouardia
litardierei (Asparagaceae)
through a genome-wide
association study (GWAS)

Sara Laura Sarancic¢?, Nikolina Plei¢?, KreSimir KriZzanovic?,
Bostjan Surina*®, Damjan Miti¢* and Ivan Radosavljevi¢™
‘Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia, 2Department of
Biology and Human Genetics, School of Medicine, University of Split, Split, Croatia, *Department of
Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia, “Natural History Museum Rijeka, Rijeka, Croatia, °Faculty of

Mathematics, Natural Sciences and Information Technologies, University of Primorska,
Koper, Slovenia

Chouardia litardierei (Asparagaceae) is a non-model, perennial species
characterized by exceptional ecological plasticity. In this research, we studied
the genetic architecture underlying several phenological traits in selected
ecologically diverged populations of this species. We conducted a genome-wide
association study (GWAS) to identify genomic regions linked to the following
populations-specific phenological traits: Beginning of Sprouting (BOS), Beginning
of Flowering (BOF), Flowering Period Duration (FPD), and Vegetation Period
Duration (VPD). Combining phenological data from a common garden
experiment with an SNP dataset obtained through the ddRAD-seq approach, we
identified numerous loci associated with these traits using single- and multi-locus
GWAS models. Narrow-sense heritability estimates were high for all traits, with the
VPD trait showing the highest estimate (86.95%), emphasizing its importance for
local adaptation. Functional annotation of associated genomic regions revealed
key protein families involved in flowering time regulation, vegetative growth
timing, and stress adaptation. These findings provide insights into the molecular
mechanisms of local adaptation in C. litardierei’'s populations from different
habitats, emphasizing the role of genetic factors in phenological trait variation
and ecological divergence across populations.
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Introduction

Understanding the genetic basis of phenotypic variation is
essential for evolutionary biology, as it elucidates mechanisms
underlying speciation, biogeographical distributions, and fitness
in natural populations (Savolainen et al., 2013; Mckown et al,
2014). Natural selection acts on allele frequencies within
populations, shaping their variation and promoting adaptive traits
that enhance survivability and reproductive success (Hu et al., 2020;
Walter et al., 2022; Lee et al., 2023). As populations undergo local
adaptation, ecological speciation may lead to the emergence of new
ecotypes (Turesson, 1922; Todesco et al, 2020) — genetically
distinct populations of the same species well-adapted to specific
ecological niches (Rundle and Nosil, 2005; Cortes et al., 2018).
Although the role of ecotypes in the speciation process remains
debated (Lowry, 2012; Fernandez-Meirama et al., 2022), several
studies highlight their importance in driving genetic divergence
along ecological gradients (Lowry et al., 2008; Brandrud et al., 2017;
Cortes et al,, 2018; Bakhtiari et al., 2019). Rapidly evolving lineages
in heterogeneous environments offer valuable insights into the
genetic mechanisms driving adaptation and speciation (Feder
et al.,, 2011; Cortes et al., 2018).

Phenology is one of the key features of plants as sessile
organisms. It determines the timing of life cycle phases and the
duration of growth and reproduction (Schwartz, 2003). Although
other factors like photoperiod (Adole et al., 2019; Wang et al., 2020),
water availability (Zhou et al., 2024), or selection by pollinators
(Sandring and Agren, 2009) may play an important role as well,
temperature is considered to be the environmental element with the
most substantial impact on various phenological traits (Schwartz,
2003; Cook et al, 2012). Matching the growth and especially
reproduction periods with the optimal environmental conditions
is of exceptional evolutionary importance and is strongly influenced
by natural selection (Duputic et al, 2015). Among phenological
traits, flowering time is particularly sensitive to environmental
factors, marking a critical transition from vegetative growth to
reproduction (Hill and Li, 2016; Gaudinier and Blackman, 2020). In
seasonally variable habitats, where the timing and duration of the
vegetational season differ across landscapes, plants must initiate
sprouting and flowering within a constrained annual timeframe
(Anderson et al,, 2012). Therefore, the regulation of flowering time
emerges as a frequent target of evolutionary processes (Gaudinier
and Blackman, 2020). Ecologically divergent taxa in numerous
lineages often have different flowering times (e.g., Heslop-
Harrison, 1964; Grant, 1981; Levin, 2000) suggesting that some
niche shifts were predicated upon temporal change (Levin, 2006).
Consequently, alterations in flowering schedules may allow
populations to better exploit different groups of pollinators (e.g.,
Waser, 1983; Goldblatt and Manning, 1996; Johnson et al., 1998),
while movements into new pollinator niches are accompanied by
changes in floral attributes (Levin, 2006). Natural selection
generally favours bigger individuals at maturity; however, the
timing of flowering presents a trade-off between maximizing
fecundity and ensuring reproductive completion before adverse
conditions, such as drought or winter, occur (Anderson et al,
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2012). Species facing water limitations often adjust their flowering
phenology to align with peak moisture availability, taking advantage
of optimal conditions (Settele et al., 2016). For example,
Schmalenbach et al. (2014) found that late-flowering Arabidopsis
plants coped better with drought by compensating for early growth
losses with later recovery, while early-flowering plants, which may
flower sooner to exploit available moisture before drought,
exhibited lower fitness under the same conditions. High salinity
also impairs plant growth in Arabidopsis, acting as a suppressive
factor that delays flowering time (Li et al., 2007; Lee et al., 2023).
Coupled with variation in mating opportunity, temporal variation
in sexual phases of individual flowers may have a significant impact
on reproductive success in dichogamous plants (Sargent and
Roitberg, 2000). Since phenological traits display extensive
variations in plants and are often related to local adaptation
(Rathcke and Lacey, 1985), the analysis of their genetic
background presents a great opportunity to study the
mechanisms of the adaptive divergence process.

Investigating the genomic underpinnings of specific traits
within the framework of environmental dynamics is essential for
uncovering the mechanisms driving local adaptation and
elucidating the complex relationship between phenological traits
and adaptive responses (Bernatchez et al., 2023). Although much of
our understanding of flowering regulation and vegetation duration
derives from studies on model organisms such as A. thaliana
(Engelmann and Purugganan, 2006; Kinmonth-Schultz et al.,
2021), significant advancements have also been made in
agriculturally important species (e.g., Molla, 2022; Vicentini et al.,
2023; Flohr et al., 2017; Song et al., 2023). However, broadening this
research beyond model organisms could increase our
understanding of the diverse genetic mechanisms governing
phenological variation in populations of wild, non-model species
facing different ecological pressures in their habitats.

Here, we investigated the genetic basis of selected phenological
traits in the amethyst meadow squill, Chouardia litardierei (Breist.)
Speta; a small, bulbous, perennial species belonging to the
Asparagaceae family [following the APG III system (Bremer et al.,
2009)]. Being a typical geophyte, C. litardierei plants undergo a
dormancy period, which usually stretches from mid-summer to late
autumn or early spring, depending on the individual season’s
properties. During the spring, soon after the development of
young leaves, inflorescence emerges. From late April to early
June, depending on the population’s location, the flowering
phenophase will unfold, shortly followed by fruiting, which marks
the beginning of dying back to an underground perennating organ,
ie,, a bulb. C. litardierei produces a large racemose inflorescence,
typically consisting of several dozen radially symmetrical flowers,
without any apparent morphological adaptations for specific
pollination mechanisms. While this has not been formally
studied, it is expected to be an open-pollinated species (pers.
obs.). In addition to sexual reproduction, it propagates clonally
through the formation of bulbs surrounding the central bulb. C.
litardierei populations are found across the Dinaric Alps in the
western parts of the Balkan Peninsula (Ritter-Studnicka, 1954;
Gazi-Baskova, 1962). Throughout this region, populations inhabit
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highly contrasting habitats, thus indicating a very pronounced
ecological plasticity of the species (Figure 1).

In terms of habitat types, the most substantial contrast can be
observed between southernmost populations, which are found on
patches of exposed dolomite bedrocks or dry mountainous grasslands
with very thin and sparse soil cover, on one side, and populations
occupying lush meadows of karst poljes, enclosed depressions with
deep and fertile soils, abundant in water, on another. These groups of
populations cope with very different types of challenges. For the first

10.3389/fpls.2025.1571608

group of the populations, the most substantial adaptation pressure is
expected to come from limited resource availability accompanied by
pronounced seasonality in water availability and temperature, which
are usual for such a habitat (Mota et al., 2021). At the same time, the
second group faces seasonal flooding that can last up to seven months
each year (Miheve et al., 2010; Bonacci, 2014). In addition to these
two prevailing groups of populations, based on a habitat type, a third
and the smallest group can be recognized, the one inhabiting deep-
soiled marshes along the coastline in western parts of the species

FIGURE 1

Habitat types of the studied Chouardia litardierei populations, shown from top to bottom: (A) Karst poljes meadows (locality of Budoske Bare
population), (B) Dry mountainous grasslands with exposed bedrock (Lovéen), and (C) Saline coastal marshes (Vrana Lake).
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distribution range. These populations situated in proximity to the
seashore are experiencing different climates [i.e., Cfa and Csb climate
types according to Koppen classification (Koppen, 1918)] than other
inland meadow-habitat populations, which, for the most part, are
found in habitats characterized by Cfb type of climate. In addition,
these seashore populations are exposed to periodical sea flooding,
which causes an increase in soil salinity, one of the major factors in
plant ecology (Bui, 2013). Nonetheless, it is essential to note that
although this issue was already addressed by Silic (1990), no clear
differentiation, either phenotypic or genetic, among these groups of
populations has yet been recognized.

To learn as much as possible about the genetic background of
phenological traits of selected C. litardierei populations from across
its distribution range and from different habitats, results from a
common garden experiment and genotyping were processed
through a set of comprehensive single- and multi-locus genome-
wide association (GWA) models. Functional annotation of
recognized candidate loci was further performed, thus enabling us
to deepen our understanding of the complex genetics behind the
phenological aspect of adaptive divergence and to analyze the extent
to which differentiation of the studied populations has advanced.

Methods

Plant material, common garden
experiment, and phenotyping

To establish the common garden experiment, 214 individuals
were relocated from nine chosen populations of C. litardierei. Three
populations were selected to represent each of the three presumed
groups of populations from different habitat types, as illustrated
in Figure 1.

During the sampling expeditions, 22 to 25 individuals were
selected from each population, ensuring a minimum distance of 10
meters between them, following the 1:20 rule (Wagner, 1995). The
geographic coordinates of the sampling locations are listed in
Supplementary File 1. Leaf material from each individual was
collected for DNA extraction and desiccated using silica gel. Each
sampled individual (represented by a single bulb) was transplanted
into a separate two-litre plastic container filled with a mixture of soil,
sand, and perlite. The containers were placed in raised beds outdoors,
creating a common garden setup that exposed the plants to a
temperate continental climate (Cfb climate type) (Képpen, 1918;
Zaninovic et al., 2008). No additional interventions, such as
supplemental watering or pesticide use, were applied, allowing the
plants to grow under natural, undisturbed environmental conditions.

After two vegetative seasons of acclimatization, four phenological
traits were selected for further research (Table 1): (i) Flowering Period
Duration (FPD), calculated as the number of days from the appearance
of the first flower to the last; (ii) Vegetation Period Duration (VPD),
measured as the time from sprouting to the opening of the first capsule
with ripened seeds, also in days; (iii) Beginning of Flowering (BOF),
recorded using the earliest plant flowering dates a reference; and (iv)
Beginning of Sprouting (BOS), noted by referencing the sprouting date
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of the first individual. All traits examined were measured on an
individual genotype level and were considered polygenic.

To assess differences in phenological traits across individual
populations and three groups of populations originating from
different habitat types, Kruskal-Wallis tests were implemented in
the PAST software (Hammer et al., 2001), were performed. We
further performed pairwise comparisons using Mann-Whitney
post-hoc tests with Bonferroni correction to identify significant
trait variations. Since none of the variables followed a normal
distribution, Spearman’s correlation analysis was conducted to
examine the relationships between FPD, VPD, BOF, and BOS
variables using the “stats” package in R (R Core Team, 2016).

Sequencing, genomic data processing, and
population genetic structure

DNA isolation was carried out using the GenElute ™ Plant
Genomic DNA Miniprep Kit (Sigma—Aldrich®). DNA
concentrations were measured with the QubitTM Fluorometer
(Thermo Fisher Scientific, Wilmington, DE, USA), and samples
were subsequently diluted to a concentration of 20 ng/uL.

For genotyping the studied C. litardierei populations, a ddRAD-
seq approach was utilized (Peterson et al., 2012). DNA was initially
digested with two restriction enzymes, Asel and Nsil (NEB
#R0526L and #R0127L, respectively). The resulting fragments
were then ligated with barcoded i5 and i7 adapters, allowing all
samples to be multiplexed. Final amplification was carried out after
nick repair using DNA polymerase I (NEB #M0209L). The resulting
DNA libraries were double-sequenced (150 bp paired-end) on the
Mumina HiSeq X platform.

The initial sequencing data underwent preprocessing for quality
trimming and adapter removal using Trim Galore (Martin, 2011).

TABLE 1 Descriptive statistics of the Chouardia litardierei phenological
traits examined in the study.

Overall

Trait

(days) Min — max

Description

Duration from the date of the
FPD first to the last flower for
each genotype

17 (15 - 18) 9-25

Duration from genotype
VPD sprouting to the opening of the 97 (88 - 107) | 55 - 162

first capsule

Beginning of flowering
considering the flowering date

BOF 11 (10 - 13 1-33
of the first genotype as ( )
a reference
Beginning of sprouting

BOS considering the sprouting date 56 (52 - 63) 1-88

of the first genotype as
a reference

All traits were measured in days. BOF, Beginning of Flowering; BOS, Beginning of Sprouting;
FPD, Flowering Period Duration; max, maximum value; min, minimum value; VPD,
Vegetation Period Duration; QI, first quartile; Q3, third quartile.
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Post-trimming, BAM files were generated by aligning the reads to
the C. litardierei reference genome (Radosavljevic et al.,, 2023) using
the Burrows-Wheeler Aligner (Li and Durbin, 2009).
SNP identification was performed with the Stacks software
package v1.48 (Catchen et al., 2013). The ref_map.pl wrapper
module was utilized, following Paris et al. (2017)
recommendations, the pstacks module was executed to extract loci
previously aligned to the reference genome, with a minimum
coverage depth of three reads to ensure a reliable representation
of loci across samples and reduce low-confidence genotype calls.
The cstacks module then constructed a comprehensive catalogue of
loci across populations, allowing a maximum of four mismatches
among sample loci to minimize alignment errors. Subsequently, the
populations module calculated population-level summary statistics.
To ensure high data quality, loci were retained only if present in all
nine populations and at least 70% of individuals within each
population, with a maximum observed heterozygosity of 0.70.
Additional filtering criteria included retaining only one SNP per
locus and excluding loci with minor allele frequencies (MAF) below
1%. This stringent filtering approach focused on common and well-
represented genetic variants, reducing the risk of inaccuracies due to
sequencing or sampling errors. The resulting dataset, comprising
high-quality genetic markers, was exported in .vcf format for
downstream analysis.

To assess the neutral population genetic structure of the studied
populations, we used a model-based clustering method
implemented in ParallelStructure (Pritchard et al,, 2000; Besnier
and Glover, 2013). To overcome the issue of this analysis’s high
computational demands and lengthy processing time for such a
large number of SNPs, we constructed a subset of 5,000 randomly
selected SNPs. The analysis comprised ten runs for each of the ten
clusters (K). Each run consisted of a burn-in period of 50,000 steps,
followed by 500,000 Monte Carlo Markov Chain (MCMC)
replicates. We used the StructureSelector online software (Li and
Liu, 2018) to obtain the most likely number of clusters (K) following
Evanno’s method (Evanno et al., 2005) as well as to retrieve the final
data through the clustering and averaging of the runs following the
Clumpak algorithm (Kopelman et al., 2015). The obtained results
were processed using CorelDRAW X7 v.17.1.0.572 software (Corel
Corp., Ottawa, Canada) for improved visualization.

Genome-wide association analyses

Figure 2 illustrates a schematic representation of the
methodological approach used in this study. All traits were treated
as polygenic and GWAS analyses were carried out assuming an
additive genetic model. Variants with a minor allele frequency (MAF)
below 1% were excluded using the BCFtools software (Danecek et al.,
2021). Two distinct statistical approaches were employed for each
association analysis: the frequentist single-locus approach and the
Bayesian multi-locus approach. In the frequentist single-locus
approach, two distinct models were applied. A standard linear

Frontiers in Plant Science

10.3389/fpls.2025.1571608

mixed model (LMM) was fitted using GEMMA 0.98.5 (Zhou and
Stephens, 2012) for all four traits, keeping in mind that this approach
assumes a normal trait distribution. Additionally, all traits were
analyzed using GMMAT 1.4.2 (Chen et al., 2019), applying a
Poisson generalized linear mixed model (GLMM), to account for
their count-based distributions. The Poisson GLMM in GMMAT was
selected because it effectively accounts for the non-normal
distribution of count data, providing a complementary approach to
the LMM analysis performed in GEMMA.

In the Bayesian multi-locus approach, a Bayesian sparse linear
mixed model (BSLMM) (Zhou et al, 2013) was simultaneously fitted
for all traits under analysis. Significant SNPs for each trait were identified
by first intersecting the sets of significant SNPs obtained from GLMM
and LMM, and then further intersecting the resulting set with those
identified by BSLMM, ensuring consistency across both the frequentist
and Bayesian approaches (Figure 2). Additionally, a multivariate linear
mixed model (mvLMM) was performed in GEMMA to simultaneously
analyze significantly correlated traits (FPD and VPD, as well as BOF and
VPD) to identify shared association signals between them.

The results were visualized using Manhattan plots generated
with the R package “qqman” (Turner, 2018) and “CM plot” (Yin
et al,, 2021). An ad hoc threshold of 1x107* was used for the
frequentist GWAS analyses (GLMM, LMM, and mvLMM).

Generalized linear mixed model using a
poisson distribution

The generalized linear mixed model (GLMM) with a Poisson
distribution was applied using GMMAT, and the model is expressed
as follows (Equations 1-3):

log(u;) = Wi +x;8 + u; (1)
u ~ MVN, (0, AK) 2
y; ~ Poisson(L;) (3)

In this model, y; represents the observed count for the i-th
individual, while u; denotes the mean count, modeled as the
exponential of the linear predictor. Wj is the i-th row of an n x ¢
matrix of covariates (fixed effects), & is the corresponding vector of
coefficients for these covariates, x; represents the genotype of the i-
th individual, and 8 denotes the effect size of the genetic marker.
The random effects u are assumed to follow a multivariate normal
distribution MVN,, (0,AK), where K is the relatedness matrix of size
n x n, and A represents the ratio of variance components. The
observed data y; is assumed to follow a Poisson distribution with ;.
This model incorporates individual-level random effects and a
genetic relationship matrix K to account for population structure
and relatedness. When assuming a normal distribution and an
identity link function for continuous traits, GMMAT conducts
association tests using linear mixed models (LMMs).
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214 individuals transplanted in the
common garden experiment

A 4

Measuring traits:

o flowering period duration
o vegetation period duration
o beginning of flowering
e beginning of sprouting

Genotyping using ddRAD-seq

Genome-wide association analysis

Frequentist approach Bayesian approach
A4 A A4
. . . . Bayesian sparse linear .
A Linear mixed model Poisson model in . Heritability
Multivariate GWAS (LMM) in GEMMA GMMAT m”‘Edinmg‘gﬁﬁiLMM) estimation

Overlap of the frequentist methods

|

Overlap of the frequentist and Bayesian
methods

l

FIGURE 2

Overlap of the univariate and multivariate
methods

|

Candidate genes identification

A schematic outline of the methodological approach employed to study the genetic basis of phenological traits in Chouardia litardierei.

Linear mixed model

&£~ MVN,(0, 77'1,) (6)

The standard LMM was applied using GEMMA 0.98.5. in the

following form:

y=Wa+xf+u+ e

u ~ MVN, (0, A7 'K)
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Here, y represents a vector of trait values for 214 individuals,

and W is an n x ¢ matrix of covariates (fixed effects), which, in this

(4)  case, consists of a column of 1s. Let o represent a c-vector of the
intercept, x be an n-vector of marker genotypes, and 3 denote the

(5)  effect size of the marker. Additionally, u is an n-vector of random
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effects, € is an n-vector of errors, 7' denotes the variance of the
residual errors, and A is the ratio between the two variance
components. K is the known n x n relatedness matrix, and I, is
an n x n identity matrix. MVN,, refers to the n-dimensional
multivariate normal distribution. The effect sizes indicate the
change in trait values associated with each additional effect allele
in the genotypes of individuals.

Bayesian framework

The LMM (Equations 4-6) implemented in GEMMA evaluates
the alternative hypothesis H;: § # 0 against the null hypothesis Hy: 8
= 0 for each SNP individually. Extensions of the LMM that account
for the effects of variants across multiple loci simultaneously could
improve the power to identify causal variants. Bayesian LMMs can
model all markers simultaneously by assigning different prior
distributions to the marker effects and sampling from their
posterior distribution. These Bayesian models, designed for
estimating SNP effect sizes, start with a basic linear model that
links genotypes X to phenotypes y:

y=1,u+XB+e (7)

€~ MVN,(0, 7 - 11,) (8)

we let y be a vector of phenotypes observed on # individuals,
and X be an n x p matrix of genotypes for these same » individuals
at p genetic markers. The vector f3 represents the effects of genetic
markers, 1,, is an n-vector of 1s, y is a scalar representing the mean
phenotype, and €is an n-vector of error terms with variance 7. Our
aim was to estimate the parameter [, which corresponds to the
effects of the genetic markers. However, because the number of
genetic markers in our study (p = 23,315) far exceeds the number of
individuals (n = 214), certain modeling assumptions regarding SNP
effect sizes 3 had to be made. These assumptions range from the
infinitesimal (or polygenic) model, which posits that all SNPs have
non-zero effects, to the sparse model, which assumes that only a
small subset of SNPs affect the phenotype. The success of the model
relies on the true genetic architecture of the trait being studied,
although this is typically unknown. The most widely used polygenic
model assumes that all SNPs impact the phenotype (i.e., have non-
zero effects) with normally distributed effect sizes:

B ~ N(0, ap) )

When Equations 7-8 are combined with the normality
assumption (Equation 9) for effect sizes b, they result in the
previously described LMM, as it incorporates a random effect
term that represents the combined genetic effects.

Bayesian sparse linear mixed model

A more general assumption, which includes both polygenic and
sparse modeling scenarios, suggests that effect sizes come from a
mixture of two normal distributions.
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2 2 2
M)Jr(l_ﬂ)N(o’ﬁ) (10)
pt pt

B; ~ nN(0,
In this model,  represents the proportion of SNPs with large
effects, while (52[3 and Gza correspond to the variances of small and
large effects, respectively. The resulting BSLMM model combines
polygenic and sparse effects in the prior distribution of effect sizes,
allowing it to adapt to various genetic architectures of the traits
being studied. BSLMM addresses population structure and
relatedness by incorporating a genomic kinship matrix as a
random effect term, and it accounts for linkage disequilibrium
(LD) by estimating SNP effect sizes 8 while controlling for other
SNPs in the model. The model uses a Markov chain Monte Carlo
algorithm to sample from the posterior distribution and estimate
SNP effect sizes. Unlike LMM, which provides p-values, BSLMM
outputs a posterior inclusion probability (PIP) for each SNP,
reflecting the likelihood that a marker is associated with the
trait based on the data. This PIP is calculated as the proportion
of chain iterations in which the SNP exhibits a large effect. SNPs
with high PIPs are considered the most likely functional variants
influencing the analyzed traits. We applied BSLMM to the same
dataset (214 individuals and 23,315 variants) used in our primary
frequentist association analysis to compare single-SNP and multi-
SNP approaches and reduce false positives. The BSLMM chain
was run with 1,000,000 sampling steps and 100,000 burn-in
iterations. We used the estimated PIPs from BSLMM for
additional fine-mapping of genomic regions identified in the
frequentist analysis.

SNP heritability estimation

The proportion of variance in phenotypes accounted for by all
available genotypes (PVE), also referred to as narrow-sense
heritability (h®), along with the proportion of genetic variance
explained by variants with large effects (PGE), was estimated for
the traits shown in Table 1. This estimation was based on the
assumption that SNP effect sizes follow a mixture of two normal
distributions (Equation 10), as implemented in GEMMA BSLMM.

Multivariate genome-wide association
analyses

To identify common variants associated with the trait pairs
showing the strongest statistically significant correlations,
multivariate genome-wide association analyses were performed
using a multivariate linear mixed model (mvLMM) in GEMMA.
Specifically, multivariate GWAS was conducted for the VPD and
BOS traits, as well as for the VPD and BOF traits, which exhibited
the strongest statisticaly significant correlations. This approach
enabled the simultaneous analysis of genetic effects on both trait
pairs of traits by treating them as dependent variables. The mvLMM
method accounts for population structure and relatedness among
individuals, ensuring accurate identification of genetic variants
contributing to the observed phenotypic variation in these traits.
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Candidate genes prediction

After identifying phenotypic evidence for local adaptation in
distinct C. litardierei populations and conducting GWAS analysis,
efforts focused on pinpointing associated candidate genes. Using the
reference genome, sequences were extracted spanning a total of 50
kilobases — including 25 kilobases upstream and downstream of
each significant SNP identified through both statistical models,
using SAMtools (Danecek et al, 2021). Functional annotations
for these sequences were then obtained through the eggNOG-
mapper v2 database, applying an e-value threshold of < 1 x 1072
(Huerta-Cepas et al., 2019).

Results
Phenotyping

Figure 3 illustrates the phenological variations observed among
C. litardierei populations in the common garden experiment.

Out of the 214 individuals sampled across nine populations, 204
flowered successfully. Consequently, all traits related to flowering
[FPD, VPD (since its ending is related to the start of the fruiting
phenophase), and BOF] were measured and subsequent analyses
were performed on the set of 204 individuals, while the remaining
10 were discarded. At the same time, the BOS trait was analyzed
across all 214 individuals. The FPD and the VPD ranged from 9 to

Skadar Lake f=—}
Pandurica E—]
Lovéen =——J
Pag e
§
= @+
3 Nin —
% VPD
o
Vrana Lake -
Budo3ke Bare -—
Cetina _—
Bjelopolje =
& & & S &
Days of the Year
FIGURE 3

The horizontal bar plot illustrates the durations of Vegetation period
Duration (VPD) and Flowering Period (FPD) across populations of the
Chouardia litardierei during one vegetational season. The x-axis
represents the days of the year, while the y-axis lists the populations
being compared. The dark magenta bars indicate the FPD, which
represents the duration from the date of the first to the last flower
for each genotype. In contrast, the grey bars represent the VPD,
denoting the duration from the genotype sprouting to the opening
of the first capsule. Additionally, the figure provides a visual
reference for the Beginning of Flowering (BOF) and the Beginning of
Sprouting (BOS), where BOF and BOS are calculated relative to the
individual that flowered or sprouted first, respectively.
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25 days, with a median of 17 days (Q1 - Q3: 15 - 18), and 55 to 162
days, with a median of 97 days (Q1 - Q3: 88 - 107), respectively.
The BOF and BOS traits ranged from 1 to 33 days, with a median of
11 days (Q1 - Q3: 10 - 13), and 1 to 88 days, with a median of 56
days (Ql - Q3: 52 - 63), respectively. All the obtained data are
summarised in Table 1. Supplementary File 2 contains the results of
Kruskal-Wallis and Mann-Whitney post-hoc tests for the studied
phenological traits, showing significant differences at the population
level and between the assumed population groups. The distribution
of these phenological traits is visually represented using box plots
in Figure 4.

A correlation analysis revealed several significant associations
among the studied traits (Table 2). A weak positive correlation was
observed between FPD and VPD, while a strong positive correlation
was found between VPD and BOF.

Sequencing, genomic data processing, and
population genetic structure

The sequencing process generated a total of 1,284,680,304 reads.
After filtering the raw sequences and mapping them to the reference
genome, 1,278,409,966 reads were retained. SNP identification and
filtration were performed using the Stacks software, resulting in the
detection of 24,660 SNPs. Following the application of the BCFtools
MAF filter with a 1% threshold, 23,315 SNPs were kept for
subsequent analysis.

The cluster analysis based on the Bayesian model implemented in
the ParallelStructure software revealed that the most likely number of
genetic clusters was two (Supplementary File 3). One cluster
corresponded to the group of populations from the dolomite
bedrock habitat, while the remaining populations formed the other
cluster (Supplementary File 4). Such structuring reflects the
environmental preferences of the studied populations only to some
extent, as populations from seashore and meadow habitats remained
grouped without any differentiation among them.

Genome-wide association analyses

The analysis of the FPD trait using LMM identified 48
significant SNPs, while GLMM detected 8. An overlap of these
results revealed 8 SNPs that were significant across both methods.
Further validation using BSLMM confirmed 3 of these SNPs as
significant, with one located on each of chromosomes 10, 7, and 11.
For the VPD trait, LMM identified 26 significant SNPs, while
GLMM detected 54. Fourteen SNPs were found to overlap
between the two methods. Subsequent analysis with BSLMM
confirmed 2 of these SNPs as significant, located on
chromosomes 4 and 12. In the case of the BOF trait, LMM and
GLMM identified 17 and 29 SNPs, respectively, with 8 overlapping
SNPs. BSLMM analysis confirmed 1 significant SNP located on
chromosome 2. For the BOS trait, LMM identified 34 significant
SNPs, while GLMM detected 162. Seven SNPs overlapped between
the two methods, and BSLMM analysis confirmed 1 significant SNP
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Box plots illustrate the obtained phenological results from a common garden experiment, depicting four phenological traits: (A) Flowering Period
Duration (FPD) (top left), (B) Vegetation Period Duration (VPD) (top right), (C) Beginning of Flowering (BOF) (bottom left), and (D) Beginning of
Sprouting (BOS) (bottom right) per genotype. Each box represents the interquartile range (IQR), with the horizontal line inside the box indicating the
median. Whiskers extend to data points within 1.5 times the IQR, while dots represent outliers.

on chromosome 12. All SNPs passing the genome-wide significance
threshold (1 x 107) in both LMM and GLMM single-SNP LMM
analysis are listed in Table 3. The results from the single-SNP
association analysis conducted in GMMAT and GEMMA are
presented together in Manhattan plots in Figure 5.

In the Bayesian association analysis, two SNPs were identified as
having a major sparse effect on the FPD trait. These SNPs were
estimated to have a sparse effect in at least 10% of the BSLMM chain
iterations (posterior inclusion probability, PIP > 0.099).
Additionally, both SNPs showed a sparse effect in over 16% of the
iterations (PIP > 0.165), further highlighting their significance. In

TABLE 2 Spearman'’s correlation coefficients and p-values for the four
C. litardierei phenological traits: FPD, VPD, BOF, and BOS.

Trait 1 Trait 2 Spearman’s p p-value
FPD VPD 0.025 0.725
FPD BOF -0.241 0.0005
FPD BOS -0.069 0.324
VPD BOF 0.430 1.33¢1°
VPD BOS -0.948 <22e'°
BOF BOS -0.241 0.0005

BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration;
VPD, Vegetation Period Duration.

Frontiers in Plant Science 09

contrast, for the VPD trait, 75 SNPs displayed a major sparse effect
in 210% of BSLMM chain iterations (PIP > 0.095). In addition, the
top four SNPs displayed a major sparse effect in more than 44% of
iterations (PIP > 0.447). Concerning the BOF trait, three SNPs were
identified with a major sparse effect in >10% of iterations (PIP >
0.098) and the top SNP had a major sparse effect in over 17% of
iterations (PIP > 0.172). Similarly, for the BOS trait, 26 SNPs
exhibited a sparse effect in >10% of BSLMM chain iterations (PIP
>0.095), with the top two SNPs showing a strong effect in over 82%
of iterations (PIP > 0.829). The data outlined above is reported in
Supplementary File 5.

A total of 7 SNPs passed the genome-wide significance threshold
(1 x 107%) in the single-SNP LMM analyses and the posterior
inclusion probability threshold (PIP > 10%) in the Bayesian multi-
SNP BSLMM analysis and are listed in Table 4. Manhattan plots from
the BSLMM analysis are provided in Supplementary File 6.

SNP heritability estimation

The BSLMM analysis, performed using 23,315 SNPs, provided
estimates of narrow-sense heritability (PVE) for the phenological
traits studied, along with the proportion of genetic effect (PGE) and
the count of variants with a major effect (n.gamma), as detailed in
Table 5. The PVE estimate for the FPD revealed that 20.26% of the
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TABLE 3 SNPs passing the genome-wide significance threshold (1 x 107%) in both GMMAT and GEMMA single-SNP LMM analyses for Chouardia
litardierei traits: FPD, VPD, BOF, and BOS.

Effect = Referent

Chr  Position MAF Single-SNP LMM Analysis B = Single-SNP LMM Analysis

(p-value) in GMMAT B (p-value) in GEMMA

Allele Allele

FPD  275195_16 13 197688818 C T 0.14 0.12 (2.41 x 107%) -0.52 (5.68 x 10°)
FPD  131957_13 10 97222552 T G 0.02 0.30 (2.79 x 107 -1.13 (8.22 x 10°)
FPD  750129_37 7 113120650 G A 0.06 0.18 (3.24 x 107 -0.76 (9.69 x 10°°)
FPD 688820 29 5 89511430 T C 0.03 0.33 (3.68 x 10™%) -1.39 (1.02 x 10°)
FPD 134834 42 11 108997955 G C 0.02 0.38 (3.69 x 107%) -1.49 (1.89 x 10°)
FPD 445498 105 1 133595095 T G 0.07 0.16 (5.24 x 107%) -0.66 (2.29 x 10°)
FPD 53032 22 9 14725086 A G 0.06 0.16 (6.05 x 107*) -0.68 (2.98 x 10°)
FPD  380447_37 13 615321041 T A 0.06 0.18 (8.73 x 107 -0.77 (5.91 x 10°)
VPD  565532_39 4 14626431 C A 0.13 0.10 (5.23 x 10°°) -0.46 (1.01 x 10°)
VPD  65720_38 9 26233589 A G 0.03 -0.14 (1.52 x 10°) 0.60 (1.28 x 107°)
VPD | 305761_25 13 320423026 T G 0.13 -0.08 (6.14 x 107) 0.33 (1.58 x 107°)
VPD  167223_27 11 64125165 T G 0.09 0.11 (1.62 x 107%) -0.46 (7.95 x 107°)
VPD | 221833_73 12 284678317 C G 035 0.05 (6.52 x 107 2022 (1.02 x 1074
VPD  210123_39 12 239066297 T G 0.03 -0.13 (8.71 x 107) 0.51 (1.37 x 107%)
VPD  618657_20 4 345766799 A G 0.01 -0.23 (2.46 x 10°7°) 0.93 (1.75 x 107%)
VPD | 334377_114 = 13 | 437172692 C A 0.01 -0.14 (5.03 x 107 0.75 (1.75 x 107%)
VPD | 76416_37 9 | 64503815 A G 0.06 -0.08 (1.09 x 107) 0.35 (2.34 x 107%)
VPD 57078 21 9 163441584 A C 0.28 -0.06 (3.76 x 10°) 0.23 (2.43 x 107%)
VPD  774777_66 7 206933711 C T 0.03 -0.14 (1.07 x 10™%) 0.56 (2.83 x 107%)
VPD  635043_17 4 | 93373391 T C 0.08 -0.09 (8.57x 10) 0.37 (3.38 x 1074
VPD  790473_18 7 8052404 A T 0.02 -0.20 (2.39 x 10°%) 0.81 (4.63 x 1074
VPD | 272420_33 13| 186297710 T G 0.08 -0.10 (8.13 x 107) 0.33 (9.05 x 107%)
BOF 445520_34 1 133744238 A G 0.23 -0.19 (2.16 x 10'6) 0.41 (1.74 x 10’4)
BOF 504422 54 2 95535920 T G 0.34 -0.18 (9.52 x 10°) 0.49 (9.17 x 107°)
BOF  623094_18 4 39016369 A G 0.43 -0.14 (3.29 x 10°) 0.30 (4.02 x 1074
BOF  477240_15 2 115724781 A G 0.25 -0.15 (6.87 x 10°) 0.34 (9.49 x 107%)
BOF  768498_16 7 186900792 G C 0.02 -0.33 (1.86 x 10™) 0.89 (3.07 x 1074
BOF  252813_22 13 104630774 C G 0.03 0.60 (4.04 x 10™) -1.26 (3.79 x 107°)
BOF 455458 35 1 37036194 G T 0.36 -0.28 (4.08 x 107%) 0.59 (7.76 x 107%)
BOF  186978_19 12 148693882 A C 0.03 -0.30 (6.69 x 107) 0.81 (1.99 x 107%)
BOS  210123_39 12 239066297 T G 0.03 0.95 (5.88 x 10°%2) -0.64 (5.95 x 10°)
BOS 65720 38 9 | 26233589 A G 0.03 0.71 (2.04 x 1071 -0.64 (5.95 x 107°)
BOS | 57078_21 9 163441584 A C 0.28 0.20 (1.19 x 107'%) -0.61 (4.60 x 1074
BOS  774777_66 7 206933711 C T 0.03 0.36 (6.64 x10°) 1027 (3.39 x 107%)
BOS  221833_73 12 284678317 C G 035 -0.12 (1.85 x 10°) -0.66 (5.88 x 107%)
BOS 38821 38 8 94422071 G A 0.27 0.12 (4.12 x 107%) 0.27 (1.34 x 1074
BOS 333922 26 13 435879200 T G 0.43 0.12 (4.58 x 107°) -0.24 (6.68 x 1074

Statistical analyses were performed with GEMMA and GMMAT LMM. p-values < 1 x 10~ are considered genome-wide significant. BOS, Beginning of Sprouting; BOF, Beginning of Flowering;
Chr, Chromosome; FPD, Flowering Period Duration; LMM, Linear Mixed Model; MAF, Minor Allele Frequency; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration.
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FIGURE 5

Manhattan plots of single-SNP association mapping of FPD, VPD, BOF, and BOS traits. Single-SNP analysis was conducted using (A) GMMAT (top
row) and (B) GEMMA (bottom row) for each trait, where the x-axis represents the chromosomal positions of SNPs and the y-axis shows the —log10
(p-values) from the LMM analysis. The red horizontal line denotes the genome-wide significance threshold (p = 1 x 107%). Each point on the
Manhattan plot corresponds to a SNP, with stronger associations appearing higher due to lower p-values. Green dots indicate SNPs identified in

both analyses.

phenotypic variation was explained by all available genotypes, with
47.22% attributed to 60 SNPs exhibiting significant phenotypic
effects. Similarly, the PVE estimate for the VPD indicated that
86.95% of the phenotypic variation was explained by all genotypes,
with 65.72% attributed to 111 SNPs exhibiting notable phenotypic
effects. Moreover, the BSLMM analysis revealed that 66.03% of the
phenotypic variation in BOF was explained by all genotypes, with

~10g10(p)
~10g10(p)

13 4 56 78 10 12 13 1.3 4 586 78 10 12 13

Chromosome

Chromosome

25.86% of this variation accounted for by 47 SNPs with significant
effects. The PVE estimate for the BOS revealed that 76.05% of the
phenotypic variation was explained by all available genotypes, with
63.19% attributed to 52 SNPs exhibiting significant phenotypic
effects. Supplementary File 7 contains the means, medians, and 95%
equal tail posterior probability intervals (95% ETPPIs) of the
hyperparameters derived from the BSLMM.

TABLE 4 SNPs passing the genome-wide significance threshold (1 x 107%) in the single-SNP LMM analyses and the posterior inclusion probability

treshold (PIP > 10%) in the Bayesian multi-SNP BSLMM analysis.

Effect
Allele

Referent
Allele

SNP Position

Multi-SNP
BSLMM
Analysis

B (PIP)

Single-SNP LMM
Analysis 3 (p-value)
in GMMAT

Single-SNP LMM
Analysis 8 (p-value)
in GEMMA

FPD 131957_13 10 97222552 T G 0.02 0.30 (2.79 x 107 -1.13 (8.22 x 10°) -0.70 (0.17)
FPD 750129_37 7 113120650 G A 0.06 0.18 (3.24 x 107 -0.76 (9.69 x 10°°) -0.48 (0.17)
FPD 134834 42 | 11 108997955 G C 0.02 0.38 (3.69 x 107*) -1.49 (1.89 x 10°°) -0.70 (0.06)
VPD 56553239 @ 4 14626431 C A 0.13 0.10 (5.23 x 10°°) -0.46 (1.01 x 10°) -0.33 (0.91)
VPD 21012339 12 | 239066297 T G 0.03 -0.13 (8.71 x 107) 0.51 (1.37 x 107 0.33 (0.75)
BOF 504422 54 2 95535920 T G 0.34 -0.18 (9.52 x 10°) 0.49 (9.17 x 107°) 0.32 (0.17)
BOS 21012339 | 12 239066297 T G 0.03 0.95 (5.88 x 1072 -0.64 (5.95 x 10°) -0.48 (0.83)

Statistical analyses were performed with GEMMA and GMMAT LMM and BSLMM. p-values< 1 x 10" are considered genome-wide significant. BOS, Beginning of Sprouting; BOF, Beginning of
Flowering; BSLMM, Bayesian Sparse Linear Mixed Model; Chr, Chromosome; FPD, Flowering Period Duration; LMM, Linear Mixed Model; MAF, Minor Allele Frequency; PIP; Posterior
Inclusion Probability; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. The table presents the single-SNP LMM p-values along with their corresponding posterior
inclusion probabilities from the BSLMM analysis for Chouardia litardierei traits FPD, VPD, BOF, and BOS.
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TABLE 5 Genetic architectures of Chouardia litardierei phenological
traits identified using a BSLMM.

Trait PVE/% PGE/% n.gamma
FPD 20.26 47.22 60
VPD 86.95 65.72 111
BOF 66.03 25.86 47
BOS 76.05 63.19 52

BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration;
n.gamma, number of variants with major effect; PGE, Proportion of Variance Explained by
major effect variants; PVE, Proportion of Variance Explained by genetic data; VPD,
Vegetation Period Duration.

Multivariate GWAS analysis

In the multivariate GWAS analysis, 113 SNPs surpassed the
genome-wide significance threshold (p = 1 x 10) for the model with
BOS and VPD traits as dependent variables (Supplementary File 8).
This indicates shared genetic factors influencing these phenological
traits across multivariate and univariate analyses. Five SNPs were
significant in both LMM and GLMM univariate analyses for the BOS
trait, and these same five were also significant for the VPD trait, along
with an additional eight SNPs that were significant only for VPD,
bringing the total to 13 (Table 6). In the multivariate GWAS analysis for
the model with VPD and BOF traits as dependent variables, 36 SNPs
exceeded the same threshold (Supplementary File 9). Among these, 10
SNPs were significant in LMM and GLMM univariate analyses for the
VPD trait, while 4 showed significance for the BOF trait (Table 6). The
multivariate GWAS findings for BOS and VPD, and BOF and VPD are
plotted in Manhattan plots in Figure 6. The frequencies of effect alleles
across populations for the significant SNPs (shown in Tables 4, 6) are
depicted in a plot provided in Supplementary File 10.

GWAS candidate genes identification

The eggNOG tool provided detailed data clarifying the
connection between individual SNPs/sequences and specific
protein families (PFAM). To identify candidate genes potentially
influencing phenological traits, we conducted eggNOG analysis on
7 SNPs that passed the genome-wide significance threshold (1 x
107%) in both the single-SNP LMM and multi-SNP BSLMM
analyses of C. litardierei traits, including FPD, VPD, BOF, and
BOS. This analysis identified 59 queries corresponding to sequences
matched to the eggNOG database for functional annotation
(Supplementary File 11). Using eggNOG, we further analyzed 13
SNPs that met the same significance threshold in the multivariate
GWAS analysis of BOS and VPD, uncovering 114 additional
queries (Supplementary File 12). Similarly, 14 SNPs passed the
same significance threshold in the multivariate GWAS analysis of
VPD and BOF, resulting in 173 additional queries (Supplementary
File 13). The eggNOG analysis connected sequences to protein
families, which we further explored through manual inspection and
a literature review to identify specific genes and PFAM domains
related to the traits being studied. Some domains were common to
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both the univariate and multivariate GWAS results, resulting in
overlaps. The most significant findings, along with their biological

functions and relevant references, are summarized in Table 7.

Discussion

This study aimed to advance our understanding of the genetic
foundations of phenological adaptive traits in C. litardierei’s
populations occupying contrasting habitats and shaped by distinct
ecological pressures. To minimize the effects of phenotypic plasticity
and identify heritable local adaptation traits as accurately as possible,
individuals from divergent environments were grown under uniform
conditions (Liu and El-Kassaby, 2019; Schwinning et al., 2022). This
approach allowed the separation of genetic influences from
environmental effects, revealing the heritable components driving
local adaptation, where populations evolve toward optimal
phenotypic and genetic configurations in response to local selective
pressures (Montejo-Kovacevich et al., 2021).

Basic statistical analyses on the common garden experiment data
were first performed to characterize the variations within the tested
phenological traits and their potential importance for the local
adaptation of studied populations in their natural habitats. Except
for the duration of flowering (FPD), substantial variations in tested
traits among the studied populations were revealed, highlighting their
importance for adaptation to contrasting environmental pressures.
However, although significant differences in phenological traits
among studied groups and individual populations were present,
there were many exceptions in the general pattern. For instance,
although the dolomite-habitat population group began with
flowering (BOF) before the remaining two groups, the Pag
population from the seashore habitat was an exception, as it
overlaped with all the dolomite-habitat populations. At the same
time, the Pag population came into flowering significantly earlier
than the Vrana Lake population, which is found in the same habitat
and is even geographically closely positioned to the Pag population.
Similarly, VPD was significantly shorter in the dolomite-habitat
group of populations in contrast to other groups; however, the
Budoske Bare population from karst poljes’ meadow habitat joined
this group due to having VPD also significantly shorter than any of
the remaining populations from this and the seashore habitat. Such a
result supports the earlier assumption that although groups of C.
litardierei population thrive in highly contrasting habitats, their
differentiation into well-differentiated ecotypes remains poorly
supported. This was also partially confirmed by the obtained
population genetic results (Supplementary Files 3, 4). Here, only
the group of populations from the dolomite habitat was substantially
differentiated and formed a well-defined genetic cluster, while all the
remaining populations remained clustered together, without signs of
differentiation between the seashore and meadow-habitat groups.
Since the ecotypes are defined as groups of populations whose
differentiation is supported both genetically and phenotypically
(Lowry, 2012), the studied groups do not meet these criteria.
Nonetheless, some trends can be observed in the obtained results
that point to certain conclusions. The dolomite-habitat population
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TABLE 6 SNPs passing genome-wide significance threshold (1 x 1073) in the multivariate GWAS mvLMM analysis of Chouardia litardierei phenological
traits BOS and VPD, and BOF and VPD.

Position Effect Ref. MAF Betal Beta2 mvLMM in GEMMA

Allele Allele (VPD) (BOS) (p-value)
BOS +VPD | 305761 _25 13 320423026 T G 0.13 035 -0.37 7.85 x 107
BOS +VPD | 65720_38 9 | 26233589 A G 0.03 0.61 -0.59 125 x 107°
BOS +VPD | 565532_39 4 | 14626431 C A 0.13 -0.45 0.55 173 x 107°
BOS +VPD | 221833_73 12| 284678317 C G 035 -0.23 030 320 x 107°
BOS +VPD  334377_114 = 13 | 437172692 C A 0.01 0.75 -0.62 9.93 x 107°
BOS +VPD | 167223 27 11 64125165 T G 0.09 -0.46 0.49 214 x 1074
BOS +VPD | 790473_18 7 8052404 A T 0.02 0.85 -1.13 334 x 107
BOS +VPD | 210123_39 12 239066297 T G 0.03 051 -0.58 428 x 107
BOS +VPD | 774777_66 7 206933711 C T 0.03 0.57 -0.72 5.10 x 107
BOS +VPD | 618657_20 4 | 345766799 A G 0.01 0.93 -1.05 6.71 x 107
BOS +VPD | 57078 21 9 163441584 A C 0.28 0.22 -0.21 6.98 x 107
BOS +VPD | 76416_37 9 | 64503815 A G 0.06 035 -0.38 7.19 x 107
BOS +VPD | 635043_17 4 | 93373391 T C 0.08 0.37 -0.44 8.20 x 1074

Betal Beta2
(VPD) (BOF)

BOF +VPD | 65720_38 9 | 26233589 A G 0.03 0.59 0.25 8.71 x 107°
BOF +VPD | 305761_25 13 320423026 T G 0.13 0.34 0.01 2.04 x 107°
BOF +VPD | 565532_39 4 | 14626431 C A 0.13 -0.45 0.15 326 x 107°
BOF +VPD | 334377_114 = 13 437172692 C A 0.10 073 0.49 739 x 107°
BOF +VPD  774777_66 7 | 206933711 C T 0.03 0.61 027 241 x 1074
BOF +VPD | 167223 27 11 64125165 T G 0.09 -0.46 0.16 274 x 107
BOF +VPD | 221833_73 12 284678317 C G 035 -0.22 0.11 3.14x 107
BOF +VPD | 618657_20 4 345766799 A G 0.01 0.95 -0.28 452 %107
BOF +VPD | 76416_37 9 | 64503815 A G 0.06 0.35 0.06 6.51 x 1074
BOF +VPD | 210123_39 12 239066297 T G 0.03 0.50 -0.01 6.84 x 107
BOF +VPD | 504422_54 2 95535920 T G 034 0.23 0.49 2.16 x 107°
BOF +VPD | 252813 22 13 104630774 ¢ G 0.03 0.10 -1.27 1.03 x 107
BOF +VPD | 186978_19 12 148693882 A C 0.03 -0.22 0.82 417 x 107
BOF +VPD | 445520_34 1 133744238 A G 023 0.06 0.39 572 x 107

Statistical analyses were performed with GEMMA mvLMM. p-values< 1 x 10~ are considered genome-wide significant. BOF, Beginning of Flowering; BOS, Beginning of Sprouting; Chr,
Chromosome; FPD, MAF, Minor Allele Frequency; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. Listed SNPs were

found to be significant in both GEMMA and GMMAT univariate analyses.

group sprouted later (BOS) and flowered earlier (BOF) but had a
shorter vegetation period (VPD) than the remaining two groups.
Such a shift in phenophases is likely to be significantly influenced by
habitat properties. To understand how this specific habitat may affect
this phenomenon, two aspects must be considered: the dolomite
substrate properties and the influence of the local climate dynamics
on the vegetation season. These southernmost populations of C.
litardierei are usually found on bare dolomite bedrock or less
frequently in dry, exposed mountainous grassland habitats
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developed on very shallow rendzina soils (Figure 1). Due to
reduced water and nutrient capacity, accompanied by high levels of
thermal conductivity and thermal capacity of the dolomite substrate
(Thomas et al., 1973; Waples and Waples, 2004; Mota et al., 2021),
these drought-prone habitats are known to induce heat stress in
adjacent organisms and thus present a hostile environment for plant
species (Mota et al., 2021). In addition, due to very sparse vegetation
cover in such habitats, the substrate temperature can be expected to
reach far greater values when compared to habitats covered with
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Manhattan plot of multivariate genome-wide association study (multi-GWAS) of (A) BOS and VPD (left) and (B) BOF and VPD traits (right). The red
horizontal line indicates the genome-wide significance threshold (p = 1 x 10°%). Each dot on the Manhattan plot signifies a SNP. The strongest
associations have the smallest p-values, so their negative logarithms will be the greatest, appearing higher on the plot. Green dots indicate SNPs
identified as significant in the multivariate GWAS analysis as well as in both GEMMA and GMMAT univariate analyses for each of the two plots.

canopies or meadows (Oliver et al,, 1987), thus further worsening
already inhospitable conditions. Regarding the influence of regional
climatic patterns on local vegetation, two peaks of ecosystem
productivity have been observed in Mediterranean climate
conditions across southern Europe - the larger one during spring
and the less pronounced one during autumn. Such a modality has
developed because of ecological constraints imposed by low winter
temperatures on one side and summer droughts on another (Spano
et al,, 2013; Camarero et al,, 2021), thus leaving relatively short time
frames in spring and autumn suitable for development and
reproduction. Consequently, it seems plausible that populations
experiencing such climatic patterns, in combination with drought-
and heat-stress-prone habitats, have developed short development-
and reproduction-related phenophases. At the same time, the
remaining C. litardierei populations inhabiting deep, moisture-
retaining soils protected by dense vegetation layer which
additionally reduces the increase of substrate temperature (Oliver
etal., 1987), experience a less limited time frame for closing the sexual
reproduction cycle. This is reflected in significant shifts in related
phenophases toward later sprouting and the beginning of flowering,
as well as a more extended vegetation period.

By emphasizing their heritable nature, the high PVE values
observed in our study were suggested to indicate the great
evolutionary importance of detected candidate loci in shaping the
phenological adaptation of populations to local climatic conditions.
The highest PVE value (86.95%) was exhibited by the trait VPD,
suggesting that the length of the growing season in this species is
predominantly determined by genetic factors. The high genetic
variance observed in VPD could be reflective of adaptive
mechanisms that allow C. litardierei to optimize its growth and
reproductive success in response to environmental cues, such as
climate and soil conditions, with strong natural selection acting on
traits critical for survival in fluctuating environments. While a PVE
for flowering time exceeding 95% has been reported for Arabidopsis
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from Cape Verde and Morocco (Neto and Hancock, 2023),
highlighting the predominant genetic influence, the PVE for C.
litardierei flowering period duration (FPD) was found to be
20.26%, indicating a more significant role of environmental or
non-genetic factors. PVE values of 66.03% and 76.05% were
exhibited by the BOF and BOS traits, respectively, indicating that
genetic elements were exerting a greater influence than local
environmental factors in shaping these traits. This was reinforced
by the PGE values, with the highest PGE (65.72%) being observed in
VPD, driven by a few major variants. In contrast, lower PGE values
(25.86% and 63.19%) were found for BOF and BOS, respectively,
reflecting the influence of numerous small-effect variants and a
greater environmental impact. Overall, these heritability estimates
and genetic findings provided evidence of the significant role played
by genetic factors in shaping phenological traits in C. litardierei,
emphasizing the complex interaction between genetics and
environment and offering a strong foundation for future genetic,
evolutionary, and adaptation studies.

In this study, multiple loci linked to phenological traits in C.
litardierei were identified through univariate and multivariate GWAS
approaches. The relatively low overlap of significant SNPs detected
across the different GWAS models likely reflects inherent differences
in their statistical assumptions and approaches to modelling genetic
effects. While both frequentist methods (GLMM and LMM) applied a
consistent significance threshold of < 1 x 107>, the BSLMM relies on
posterior inclusion probabilities, which are generally more
conservative and not directly comparable to p-values. Importantly,
each model is optimized for different data characteristics: LMM
assumes normally distributed traits, whereas GLMM, using a
Poisson distribution, is more appropriate for count-based traits
with non-normal distributions. Applying trait-appropriate models
increases the reliability and power of association detection, even if it
results in a lower number of shared SNPs. Functional annotation of
the genomic windows surrounding significant SNP loci revealed
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TABLE 7 List of candidate genes for regions of strong association with FPD, VPD, BOF and BOS identified by the eggNOG-mapper v2 database.

Candidate Relevant
Method e-value Chr Species biological References
Genes :
functions
H 9:113095650-113145650_6 GWAS 4.55¢71 7 Arabidopsis | Chromatin Gaudin et al.
thaliana ulati d 2001
H 9:206908711-206958711_54  mGWASI 6.8¢11 13 Chromo domain | LHPI regufation an (200D),
flowering Adrian
H 2:95510920-95560920_36 mGWAS2 3.82¢71%2 2 time control etal. (2010)
Histidine s Ort)'/za I(;Iorrlnone sifna;lling, o
> a, , stress
H 9:113095650-113145650_4 | GWAS 3,116 7 phosphatase 2 sanv evelopment, stre °
i . ZCN8 Zea mays response, et al. (2022)
protein family .
and flowering
Phaseolus Drought stress
Asparti Contour-Ansel
H 9:113095650-113145650_44  GWAS 2312 7 Spartic PvAP1 vulgaris adaptation and ontourAnse
Proteases (APs) i i et al. (2010)
osmotic resistance
H 4:14601431-14651431_21 GWAS 2.19¢% 4 Arabidopsis
CCHC-type zinc thaliana Growth, Yane and
H 15:284653317-284703317_45 = mGWASI 1.77¢73% 12 finger proteins AtCSP4 development, and &
Karlson (2011)
(CCHC-ZFPs) stress responses
H 15:284653317-284703317_50 = mGWAS2 1.77¢73% 12
H 4:14601431-14651431_5 GWAS 1.14e% 4 Pentatricopeptide i . . Emami and
Arabidopsis | Flowering
repeat AT1G15480 thali . lati Kempken
H 4:14601431-14651431_4 MGWAS2 9.61e2° 4 (PPR) proteins atiana time regulation (2019)
H 14:108972955-109022955_19 = GWAS 2.14¢7%° 11 ) Yadav (2024),
Sprouting control, .
Soy et al.
Phytochrome- . .| growth, stress ‘
. . Arabidopsis . (2014),
interacting Factor | PIF1 thal adaptation, and Li et al. (2024)
H 14:108972955-109022955_22 = mGWASI 1.00e73%8 11 1(PIF1) atiana photosynthesis Clhc 4 »
en
ulati
reguiation et al. (2013)
H 16:320398026-320448026_57 = mGWASI1 3.11e* 13 OsMATE2, Early salt stress
MATEA4, d
MATE domain gsMATFAz Oryza zleSp Or}llse an Du et al. (2021)
H 16:320398026-320448026_58 = mGWAS2 311e? 13 s g sativa rought
OsMATE46 stress resistance
H 15:284653317-284703317_6 GWASI 1.08¢’ 2 12 Salt st
- m ¢ Protein Arabidopsis 1L SUESS TESPONSES | Chen
Kinase domai SOS82/CIPK24 i and | s
H 4:345741799-345791799_9 mGWAS2 2,092 4 nase domain thaliana hormonal signaling etal. (2023)
OsMLO1-4,
MLO O Heat and 1d Nguy
H 1:133719238-133769238_38 = mGWAS2 1.33¢ 1 o 0sMLOY, vzl eat and/or co guyen
protein family sativa stress response et al. (2016)
OsMLO11
Promotes
intercellular
: . QUIRKY, Arabidopsis L Vaddepalli
H 15:148668882-148718882_58 GWAS2 5.59¢”'% 12 C2d t d
- m ¢ omain STRUBBELIG  thaliana communication and - .1 (2014)
tissue
morphogenesis

BOF, Beginning of Flowering; Chr, chromosome; BOS, Beginning of Sprouting; flowering period duration; GWAS, genome-wide association study; H, HiC scaffold; mGWASI, multivariate
Genome-Wide Association Study of BOS and VPD; mGWAS2, multivariate Genome-Wide Association Study of BOF and VPD; PFAM, protein family; VPD, Vegetation Period Duration. (e-
value< 1 x 1072) in Chouardia litardierei based on the 7 recognized SNPs passing genome-wide significance threshold (1 x 10~) in the single-SNP LMM and multi-SNP BSLMM analysis as well
as 13 SNPs passing the same threshold in the multivariate GWAS mvLMM analysis of BOS and VPD (mGWAS]1), and 14 SNPs in BOF and VPD (mGWAS2). The names of the identified
candidate genes associated with the SNPs, PFAMs, their relevant biological functions, and corresponding references are provided.

regions encoding key protein families involved in essential biological
pathways related to phenological events. Among others, SNP loci
were identified in regions encoding the chromo domain, which is
crucial to plant chromatin-based gene regulation. In Arabidopsis,
mutations in LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a
gene encoding a chromo domain, have been shown to cause early
flowering and reduced plant size (Gaudin et al., 2001).
Overexpression of CONSTANS (CO), which activates
FLOWERING LOCUS T (FT) in long-day conditions, has been

Frontiers in Plant Science

15

found to alter chromatin at the FT locus by reducing LHP1
binding and increasing histone acetylation, suggesting LHP1
represses flowering through chromatin regulation (Adrian et al,
2010). SNP loci were also identified in regions encoding histidine
phosphatase proteins, which are known to regulate plant
development and stress responses, particularly through hormone
signaling pathways like cytokinins that influence flowering and
vegetative growth (Werner et al, 2001; Hai et al, 2020). For
instance, it has been demonstrated that exogenous cytokinin
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application extends the vegetative phase in rice and maize by
inhibiting the expression of florigen genes, such as Hd3a and
ZCNS8, thus delaying flowering time (Cho et al.,, 2022).
Additionally, cytokinins have been found to interact with
environmental signals like nutrient sensing (Argueso et al,, 2009;
Prasad, 2022), potentially aiding plant adaptation to nutrient-poor
and drought-prone habitats, like those inhabited by the southern
group of C. litardierei populations. Similarly, cytokinin-deficient
mutants have been observed to exhibit delayed flowering on
nutrient-poor substrates, underscoring cytokinin’s role in
adaptation to nutrient-limited environments (Miyawaki et al,
2006). SNP loci within the genomic regions encoding aspartic
proteases (APs) and CCHC-type zinc finger proteins (CCHC-
ZFPs) were recognized as well. In drought-susceptible common
bean cultivars, the PvAP1 gene exhibited significant upregulation
under mild water stress, supporting the role of APs in drought
responses (Contour-Ansel et al., 2010). CCHC-ZFPs are considered
essential for growth and development, as demonstrated in
Arabidopsis, where AtCSP4 has been identified as a key factor
(Yang and Karlson, 2011). Additionally, SNP loci within the
genomic region encoding pentatricopeptide repeat (PPR) proteins
were identified. It has been reported that mutations in the Arabidopsis
gene AT1G15480, encoding a P-class PPR protein, result in early
flowering (Emami and Kempken, 2019). Furthermore, mutations
were detected in genetic regions responsible for encoding
phytochrome-interacting factor 1 (PIF1). In Arabidopsis, PIF1 has
been found to play a major role in sprouting inhibition (Oh et al,
2004; Yadav, 2024), plant growth and development regulation (Soy
et al, 2014), stress adaptation (Li et al., 2024), and regulation of
photosynthesis initiation (Chen et al., 2013). In addition, SNP loci
were identified within regions encoding the MATE domain, the
protein kinase domain, and loci associated with the MLO protein
family. Several MATE domain genes in O. sativa (OsMATE2,
OsMATE4, OsMATE42, and OsMATE46) have been shown to
regulate plant responses to abiotic stresses, such as salt and
drought, through differential expression patterns (Du et al., 2021),
while the protein kinase SOS2/CIPK24 has been recognized as a
central regulator of salt stress response and hormonal signaling in
Arabidopsis (Chen et al., 2023). Finally, the MLO protein family is
considered crucial for temperature stress adaptation, as exemplified
by several OsMLO proteins in O. sativa (Nguyen et al., 2016).
Here, we investigated the genetic background of phenological
traits in C. litardierei, revealing significant associations between them
and specific genetic variations across the genome. Our findings
indicate that certain genomic regions may be instrumental in the
adaptive responses of populations to contrasting environmental
conditions. The genetic architecture of these phenological traits is
complex, with multiple candidate loci contributing to phenotypic
diversity across habitats. Using the ddRAD-seq approach and
comprehensive GWAS analyses, we identified key candidate genes
and multiple loci associated with phenological traits. However, the
limited genome scan resolution of ddRAD-seq, particularly in large
genomes like C. litardierei (3.7 Gb), leaves much genomic information
unexplored. The relatively small sample size is a limitation of our
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study, particularly given that GWAS typically include larger cohorts to
detect robust and reproducible associations. Nevertheless, our analysis
revealed several biologically plausible signals, which, while requiring
validation, provide a valuable foundation for future studies. These
findings should be interpreted with caution, but they offer meaningful
insights that can be further explored and confirmed in larger,
independent populations. Functional annotation of the associated
genomic regions revealed key protein families involved in vital
biological pathways related to flowering time, vegetative growth, and
stress adaptation. These protein families are crucial regulators of plant
development, environmental responses, and abiotic stress adaptation.
High narrow-sense heritability estimates indicated that genetic factors
accounted for a significant portion of the phenotypic variance, with
PVE ranging from 20.26% for flowering period duration (FPD) to
86.95% for vegetation period duration (VPD). This study underscores
the complexity of the genetic architecture driving phenotypic diversity
in plants, highlighting the critical role of genomic approaches in
examining adaptive traits in non-model species exposed to diverse
ecological pressures. Despite challenges in studying a wild, non-model
species, this research advances our understanding of the genomic basis
of adaptive divergence and ecological differentiation in C. litardierei.
Expanding this research through a comprehensive Genome-
Environment Association (GEA) study, incorporating more
populations across the species’ distribution range, could provide
deeper insights into the genomic drivers of local adaptation and
phenological divergence.
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BAM

BOF

BOS
BSLMM
CCHC-ZFPs
Chr
ddRAD-seq

EGGNog

FPD
GEA
GEMMA

GMMAT

Aspartic Proteases

Binary Alignment Map

Beginning of flowering

Beginning of sprouting

Bayesian Sparse Linear Mixed Model

CCHC-type zinc finger proteins

Chromosome

Double Digest Restriction Site-Associated DNA Sequencing

Evolutionary Genealogy of Genes: Non-supervised
Orthologous Groups

Flowering period duration
Genome-Environment Association
Genome-wide Efficient Mixed Model Association
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GWAS
LMM
MAF
mGWAS
PGE
PPR proteins
PFAM
PIF1

PIP

PVE
SNP

VPD

10.3389/fpls.2025.1571608

Genome-Wide Association Study
Linear Mixed Model

Minor Allele Frequency
Multivariate genome-wide association study
Proportion of Genetic Effect
Pentatricopeptide repeat proteins
Protein Family
Phytochrome-interacting Factor 1
Posterior Inclusion Probability
Proportion of Variance Explained
Single Nucleotide Polymorphism

Vegetation period duration
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Supplementary File 1

Table 1. The locations of sampled Chouardia litardierei populations and their corresponding habitat

types.

Population/Location Country Latitude (N) Longitude (E) Habitat Type
Bjelopolje Croatia 44.693754°  15.773682° Meadow — karst poljes
Cetina (Pasko polje)  Croatia 43.940922°  16.436367° Meadow — karst poljes
Budoske Bare Montenegro 42.743747°  18.926361° Meadow — karst poljes
Pag (Kolansko blato)  Croatia 44.514886°  14.919922° Seashore - grassland
Nin Croatia 44.249564°  15.172015° Seashore - grassland
Vrana Lake Croatia 43.937292°  15.514689° Seashore - grassland
Lov¢éen Montenegro 42.377169°  18.843117° Dolomite - bedrock
Skadar Lake Montenegro 42.326486°  19.069464° Dolomite - bedrock
Pandurica Montenegro 42.721628°  18.962442° Dolomite - bedrock
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Supplementary File 2

Table 1. Mann-Whitney post-hoc test for four phenological traits of
Chouardia litardierei.

trait | continental-litorarl continental-dolomitic litoral-dolomitic
BOF | 0.5425 1.48E-06 7.32E-09

BOS |1 4.13E-12 1.04E-18

FPD | NA NA NA

VPD | 0.918 1.34E-15 3.09E-23

Table 2. Kruskal-Wallis test for equal medians for four phenological traits of
Chouardia litardierei.

trait | H (chi2) Hc (tie corrected) p (same)
BOF | 41.69 42.4 6.22E-10
BOS | 86.83 87.4 1.048E-16
FPD | 0.1727 0.1746 0.9164
VPD | 113.8 113.9 1.845E-25
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Figure 1. Box ﬁlots showing the distribution of four phenological traits (BOF, BOS, FPD, and VPD) in Chouardia litardierei populations
across different habitat types. Each box plot represents the median, interquartile range (IQR), and variability of trait values across different

populations. Whiskers indicate data within 1.5 times the IQR, while dots represent outliers.
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Table 3. Kruskal-Wallis test for equal medians for four phenological traits in nine Chouardia litardierei populations.

trait | H (chi2) Hc (tie corrected) p (same)
BOF | 104 105.8 2.762E-19
BOS | 1415 142.5 7.243E-27
FPD | 21.44 21.68 0.005543
VPD | 168.2 168.3 2.961E-32

Table 4. Mann-Whitney post-hoc test for VPD trait in nine Chouardia litardierei populations.

BJELOPOLJE CETINA BUDOSKE BARE | VRANA LAKE | NIN PAG SKADAR LAKE | PANDURICA | LOVCEN
BJELOPOLJE 5.72E-05 2.79E-06 0.003915 2.23E-05 | 2.74E-06 | 1.15E-06 3.84E-06 1.16E-06
CETINA 5.72E-05 1.18E-05 0.03173 1 0.4125 2.31E-07 1.73E-06 1.82E-07
BUDOSKE BARE | 2.79E-06 1.18E-05 2.88E-07 2.07E-06 | 0.00124 0.1842 1 0.0003949
VRANA LAKE 0.003915 0.03173 2.88E-07 0.5151 3.51E-06 | 7.26E-08 3.62E-07 7.28E-08
NIN 2.23E-05 1 2.07E-06 0.5151 0.00987 7.83E-08 3.93E-07 7.85E-08
PAG 2.74E-06 0.4125 0.00124 3.51E-06 0.00987 1.16E-06 1.91E-05 5.55E-07
SKADAR LAKE 1.15E-06 2.31E-07 0.1842 7.26E-08 7.83E-08 | 1.16E-06 1 0.2871
PANDURICA 3.84E-06 1.73E-06 1 3.62E-07 3.93E-07 | 1.91E-05 | 1 0.002412
LOVCEN 1.16E-06 1.82E-07 0.0003949 7.28E-08 7.85E-08 | 5.55E-07 | 0.2871 0.002412
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Table 5. Mann-Whitney post-hoc test for FPD trait in nine Chouardia litardierei populations.

Supplementary File 2

BJELOPOLJE | CETINA | BUDOSKE BARE | VRANA LAKE | NIN PAG SKADAR LAKE | PANDURICA | LOVCEN
BJELOPOLJE 0.052 0.02663 0.2822 0.2316 | 0.2235 | 1 0.05792 0.03659
CETINA 0.052 1 1 1 1 0.6153 1 1
BUDOSKE BARE | 0.02663 1 1 1 1 0.3502 1 1
VRANA LAKE 0.2822 1 1 1 1 1 1 1
NIN 0.2316 1 1 1 1 1 1 1
PAG 0.2235 1 1 1 1 1 1 1
SKADAR LAKE 1 0.6153 0.3502 1 1 1 1 1
PANDURICA 0.05792 1 1 1 1 1 1 1
LOVCEN 0.03659 1 1 1 1 1 1 1

Table 6. Mann-Whitney post-hoc test for BOS trait in nine Chouardia litardierei populations.

BJELOPOLJE | CETINA | BUDOSKE BARE | VRANA LAKE | NIN PAG SKADAR LAKE | PANDURICA | LOVCEN
BJELOPOLIJE 0.0014 1.37E-06 0.03928 0.00014 | 2.82E-06 | 2.21E-07 1.704E-07 2.2E-07
CETINA 0.0014 0.000529 1 1 0.4914 8.21E-06 0.0000121 1.1E-06
BUDOSKE BARE | 1.4E-06 0.00053 5E-06 0.0012 | 0.04781 1 1 0.2271
VRANA LAKE 0.03928 | 5E-06 1 0.000133 | 2.89E-07 2.661E-07 1.9E-07
NIN 0.00014 | 0.001198 1 1 2.71E-05 6.456E-05 2.2E-06
PAG 2.8E-06 0.4914 0.04781 0.00013 1 0.000483 0.0009476 1.4E-05
SKADAR LAKE | 2.2E-07 8.2E-06 |1 2.9E-07 2.7E-05 | 0.000483 1 0.2374
PANDURICA 1.7E-07 1.2E-05 |1 2.7E-07 6.5E-05 | 0.000948 | 1 0.04234
LOVCEN 2.2E-07 1.1E-06 | 0.2271 1.9E-07 2.2E-06 | 1.41E-05 | 0.2374 0.04234
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Table 7. Mann-Whitney post-hoc test for BOF trait in nine Chouardia litardierei populations.
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VRANA

BIELOPOLIE | CETINA | BUDOSKE BARE | /X2 NIN PAG SKADAR LAKE | PANDURICA | LOVCEN
BIELOPOLJE 0.004181 | 0.7619 1 1 235605 | 1E-05 0.00142 0.002
CETINA 0.004181 1 3.701E-05 0.001553 | 1 0.01413 1 1
BUDOSKE 0.7619 ! 0.01927 0.7324 | 0.009554 | 0.00026 0.6021 !
BARE
VRANALAKE | 1 (3)'5701E' 0.01927 1 478B-07 | 2.1E-07 1E-05 9E-06
NIN I 0.001553 | 0.7324 1 373606 | 9.16-07 0.00027 0.0003
PAG 2.35E-05 | 0.009554 4.775E-07 (7)'20600003 0.9649 | |
SKADAR LAKE | 1E-05 0.01413 | 0.000261 2.089E-07 3'7085E' 0.9649 0.7455 0.0772
PANDURICA 0.001416 ! 0.6021 1.006E-05 2‘000274 ! 0.7455 !
LOVCEN 0.002024 ! ! 8.607E-06 3'0003 14 0.07717 !
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Figure 1. Delta K values as obtained by the STRUCTURE software.
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Figure 1. Population-genetic structure of studied Chouardia litardierei populations as revealed by the STRUCTURE software. Each stacked
column represents a single individual. Individuals belonging to the meadow and the seashore groups of populations are marked with blue, and
individuals from the dolomite habitat populations are marked with red.
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Table 1. SNPs identified as having a major sparse effect (PIP > 0.1) on FPD, VPD, BPF and BOS
traits in the multi-SNP Bayesian sparse linear mixed model (BSLMM) analysis.

Trait
FPD

VPD

SNP

131957 13
750129 37
565532 39
210123 39
64746 61

608473 26
169192 99
165641 27
22755 41

392671 80
345151 44
68440 39

114136 23
131957 13
158923 36
651864 26
16906 26

274011 25
203695 51
562222 42
206941 26
431951 18
518753 26
404599 18
264719 36
345740 18
169723 49
455977 31
779448 31
453245 41
175156 81
732487 30
236070 45
794077 90
713226 25
167443 28
628242 25
708419 55
108954 31
56223 19

168723 26
321566 29
571637 57
63780 22

144881 40
196140 32
41769 13

243670 21
446954 131
625480 18
293282 20
760751 41

13
7

Chr

Position

97222552
113120650
14626431
239066297
23100056
312243109
71192707
59678762
27370914
668483795
477215139
3481745
203465059
97222552
31022405
14713180
164769480
193652215
214471601
133794937
227677762
86851653
131097306
718065214
154558733
478800231
73174727
38506814
37409277
28792186
97958069
50042305
39684927
99621809
119601819
6497513
62348852
102061527
185953028
159032132
69545761
384493611
172299280
20268889
149677564
183140101
100304229
66893770
137876700
5030882
27101492
159527948

Multi-SNP BSLMM
Analysis g (PIP)

0.699 (0.167)
-0.476 (0.165)
-0.327 (0.912)
0.328 (0.748)
0.222 (0.579)
-0.228 (0.447)
-0.212 (0.393)
-0.224 (0.308)
-0.229 (0.286)
0.188 (0.277)
0.159 (0.236)
-0.295 (0.232)
-0.244 (0.225)
0.181 (0.224)
-0.174 (0.224)
-0.161 (0.192)
-0.213 (0.188)
-0.183 (0.184)
-0.161 (0.180)
-0.135 (0.175)
-0.206 (0.175)
0.173 (0.167)
-0.206 (0.164)
0.176 (0.158)
0.211 (0.152)
-0.186 (0.152)
0.177 (0.148)
-0.187 (0.146)
-0.127 (0.141)
0.184 (0.141)
-0.176 (0.139)
-0.172 (0.137)
-0.245 (0.136)
0.159 (0.135)
0.135 (0.131)
0.177 (0.129)
0.144 (0.122)
-0.147 (0.122)
-0.140 (0.119)
0.169 (0.119)
0.165 (0.117)
0.190 (0.115)
-0.166 (0.115)
0.150 (0.115)
0.149 (0.115)
-0.194 (0.114)
0.123 (0.114)
-0.094 (0.114)
0.195 (0.111)
-0.155 (0.111)
-0.144 (0.109)
-0.123 (0.109)
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338697 27 13 45325469 -0.148 (0.108)
597865 16 4 273124373 -0.140 (0.107)
633475 14 4 84524636 0.130 (0.107)
790359 35 7 80015952 -0.128 (0.107)
584545 89 4 22256369 0.115 (0.106)
76972 41 9 66872924 0.164 (0.106)
278704 14 13 212393830 | 0.127 (0.104)
723031 44 6 159155591 -0.119 (0.103)
207532 23 12 229820496 | 0.106 (0.102)
173326 23 11 91514076 -0.124 (0.102)
577335 20 4 194281453 -0.129 (0.101)
513067 18 3 110714483 0.098 (0.100)
296028 31 13 282176585 | 0.169 (0.100)
346507 22 13 481318344 | 0.092 (0.100)
321869 23 13 385455641 0.131 (0.099)
318805 22 13 374121017 | -0.189 (0.099)
541757 17 3 63012003 0.113 (0.099)
373292 20 13 588262669 | 0.133 (0.099)
541107 21 3 59731100 -0.211 (0.098)
369203 29 13 572629490 | 0.096 (0.098)
642210 29 5 103184092 | -0.132(0.097)
486980 18 2 22661955 0.116 (0.096)
162069 19 11 45040054 0.135 (0.096)
634062 21 4 8802327 0.098 (0.096)
171198 _47 11 79969607 -0.140 (0.095)

BOF | 504422 54 2 95535920 0.321 (0.172)
337862 27 13 450832737 | 0.281 (0.156)
633306 _18 4 83549086 -0.378 (0.098)

BOS | 565532 39 4 14626431 0.437 (0.959)
210123 39 12 239066297 | -0.482 (0.829)
723031 44 6 159155591 0.307 (0.356)
175156 81 11 97958069 0.342 (0.277)
114136 _23 10 203465059 | 0.376 (0.241)
64746 61 9 23100056 0.229 (0.222)
203695 51 12 214471601 0.279 (0.221)
165641 27 11 59678762 0.310 (0.219)
206941 26 12 227677762 | 0.391 (0.208)
571637 57 4 172299280 | 0.353 (0.202)
169192 99 11 71192707 0.245 (0.177)
131957 13 10 97222552 -0.286 (0.172)
121534 19 10 48645623 0.326 (0.169)
455977 31 1 38506814 0.358 (0.156)
252718 24 13 10389007 0.208 (0.143)
441735 22 1 121138696 | -0.292 (0.138)
345740 18 13 478800231 0.284 (0.133)
391526 58 13 661633656 | 0.300 (0.126)
708419 55 6 102061527 | 0.239 (0.123)
651208 30 5 143900923 -0.177 (0.123)
732487 30 6 50042305 0.358 (0.121)
392671 _80 13 668483795 | -0.236(0.117)
657278 42 5 171253039 | 0.193 (0.103)
518753 26 3 131097306 | 0.264 (0.100)
437888 20 1 105737657 | 0.228 (0.096)
496686 _32 2 61419316 -0.311 (0.095)
565532 39 4 14626431 0.437 (0.959)
210123 39 12 239066297 | -0.482 (0.829)
723031 44 6 159155591 0.307 (0.356)
175156_81 11 97958069 0.342 (0.277)
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114136 23
64746 61

203695 51

165641 27
206941 26
571637 57
169192 99
131957 13
121534 19
455977 31

252718 24
441735 22
345740 18
391526 58
708419 55
651208 30
732487 30
392671 80
657278 42
518753 26
437888 20
496686 _32

N — | W | —

203465059
23100056
214471601
59678762
227677762
172299280
71192707
97222552
48645623
38506814
10389007
121138696
478800231
661633656
102061527
143900923
50042305
668483795
171253039
131097306
105737657
61419316

Supplementary File 5

0.376 (0.241)
0.229 (0.222)
0.279 (0.221)
0.310 (0.219)
0.391 (0.208)
0.353 (0.202)
0.245 (0.177)
-0.286 (0.172)
0.326 (0.169)
0.358 (0.156)
0.208 (0.143)
-0.292 (0.138)
0.284 (0.133)
0.300 (0.126)
0.239 (0.123)
-0.177 (0.123)
0.358 (0.121)
-0.236 (0.117)
0.193 (0.103)
0.264 (0.100)
0.228 (0.096)
-0.311 (0.095)

BSLMM was fitted on 23,315 SNPs.; BSLMM, Bayesian sparse linear mixed model; BOF, Beginning of Flowering; BOS,
Beginning of Sprouting; Chr, Chromosome; FPD, Flowering Period Duration; PIP, Posterior Inclusion Probability; SNP,
Single Nucleotide Polymorphism; VPD, Vegetation Period Duration.
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Figure 1. Manhattan plots of the BSLMM analysis for the FPD, VPD, BOF, and BOS traits of the Chouardia litardierei. The x-axis represents
the chromosomal position of SNPs, and the y-axis represents their posterior inclusion probabilities (PIPs).

FPD VPD BOF BOS

e

Posterior inclmio; probability (PIP)
Posterior inclusion pmb-ablllty (PIP)
Posterior |I'|I:|Ill|:l’| probability (PIP)
Posterior inclusion probability (PIP)

BSLMM; Bayesian Sparse Linear Mixed Model, BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration; VPD, Vegetation
Period Duration.
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Table 1. Means, medians, and 95% equal tail posterior probability intervals (95% ETPPIs) of
hyperparameters estimated from the Bayesian sparse linear mixed model (BSLMM) in phenological
trait FPD, VPD, BOF and BOS.

Trait

FPD

VPD

BOF

BOS

Hyperparameter

h

PVE

rho

PGE

pi
n.gamma
h

PVE

rho

PGE

pi
n.gamma
h

PVE

rho

PGE

pi
n.gamma
h

PVE

rho

PGE

pi

n.gamma

Mean

0.3244
0.2026
0.5220
0.4722
3.23 x 102
60.67
0.8224
0.8695
0.6511
0.6572
5.86 x 1072
111.28
0.7046
0.6603
0.3267
0.2586
2.52 x 102
47.29
0.7319
0.7605
0.6346
0.6319
3.05 x 102
52.58

Median

0.3128
0.1798
0.5315
0.4776
1.06 x 1072
20.00
0.8305
0.8717
0.6902
0.7720
4.62 x 102
88.00
0.7164
0.6622
0.2735
0.1556
1.07 x 1072
20.00
0.7414
0.7616
0.6475
0.6870
2.25 %102
39.00

2.5%

0.0316
0.0171
0.0275

6.40 x 104
0.6667
0.7803
0.1185
0.0553
2.18 x 1073
4.00
0.4483
0.4659
0.0118
6.14 x 104
0.00
0.5371
0.6332
0.2029
0.1598
2.87 x 1073
5.00

97.5%

0.6830
0.5215
0.9799
0.9671
1.42 x 107!
267.00
0.9312
0.9451
0.9872
0.9947
1.55 x 107!
290.00
0.8934
0.8455
0.8882
0.9121
1.11 x 10!
207.00
0.8738
0.8829
0.9796
0.9888
1.09 x 10!
189.00

BSLMM was fitted on 23,315 SNPs. BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period
Duration; h, approximation to the proportion of phenotypic variance explained by variants; n.gamma, number of variants
with major effect; PGE, Proportion of Genetic variance explained by variants with major effect; pi, proportion of variants
with non-zero effects; PVE, proportion of phenotypic variance explained by variants; rho, approximation to the proportion
of genetic variance explained by variants with major effect; VPD, Vegetation Period Duration.
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Table 1. SNPs passing the genome-wide significance threshold (p < 1 x 107%) in the multivariate linear
mixed model (mvLMM) analysis for VPD and BOS traits of Chouardia litardierei in GEMMA

multivariate GWAS.
SNP Chr
475214 20 2
654470 57 5
689821 13 5
83332 22 9
558534 14 4
145174 73 11
522007 32 3
179782 120 12
248115 31 12
28256 68 8
187632 54 12
268970 17 13
307326 19 13
550061 33 3
26676 33 8
187238 23 12
227369 31 12
305761 25 13
467066 106 1
770850 26 7
65720 38 9
565532 39 4
674245 25 5
67781 20 9
221833 73 12
214650 53 12
651220 77 5
365394 49 13
723031 44 6
202818 127 12
622051 16 4
592384 37 4
537684 52 3
310101 18 13
681559 42 5
334377 114 13
600093 25 4
261183 91 13
328618 13 13
422540 18 13
607415_46 4
32158 19 8
177171_18 12
475216 _15 2
657020 14 5
104384 _40 10
771754 39 7
301480 19 13

Position

10692011
159590069
93776308
9096582
116336173
15061603
141694985
117670370
8479581
50959986
151393801
171155860
326551046
97695604
4513527
149770349
307596886
320423026
91683912
195082174
26233589
14626431
2834749
32778369
284678317
255323079
143922570
555889659
159155591
210719984
357265730
253302099
44057957
337885640
58303261
437172692
281363631
142406888
414580639
792932133
308484921
64100022
105568874
10692219
169994000
170660529
197927864
302007580

Effect
allele

bdiolialiall il ingh il s dioliallo il i i giolaliolizlrdioli-lollolraolloliloli- ol drdrdilrgkaiHeo ol la gl

Reference
allele

lielrghginlialbgialialbginlialbgi-Hellallolialilrgislnlalialkdinlbgializ i lnlbgielialislalialinliali- el lalkgpaioltdle!

Betal (VPD)

0.01

-0.81
-0.77
0.18

-0.92
-0.54
-0.32
-0.49
-0.51
-0.38
-0.40
-0.49
-0.66
-0.46
-0.23
-0.34
-0.16
0.35

-0.55
-0.61
0.61

-0.45
-0.30
-0.16
-0.23
-0.74
-0.32
-0.28
-0.27
-0.57
-0.31
-0.16
-0.16
-0.33
-0.39
0.75

-0.63
0.22
-0.16
-0.87
0.22
-0.05
-0.73
-0.01
-0.27
-0.25
0.03

-0.35

Beta2 (BOS)

-0.16
0.23

0.22
-0.31
0.48

-0.01
-0.07
0.02
-0.06
0.67
-0.01
-0.03
0.06
0.88
-0.11
-0.08
-0.03
-0.37
0.07
0.26
-0.59
0.55

0.03

-0.19
0.30
0.46
-0.10
0.14
0.52
0.30
0.81

-0.43
-0.06
-0.05
0.19
-0.62
0.19
-0.48
-0.18
0.44
-0.36
-0.21
0.60
-0.18
0.02
0.04
-0.20
0.06

mvLMM Analysis
in GEMMA
(p-value)
6.68 x 1071°
9.18 x 107
1.66 x 107*
4.37 x 108
6.36 x10°®
1.02 x 1077
2.72 x 1077
3.20 x 1077
3.46 x 1077
4.19 x 1077
5.14 x 1077
7.85 %1077
1.17 x10°¢
1.24 x 10
2.32x10°
329 x10°
4.09 x 10
7.85x10°
9.29 x 10
9.98 x 10°¢
1.24 x 10
1.73 x 10
1.75 x 10
2.65%x10°°
3.20x%x10°°
4.01 x 103
4.46 x 105
4.51 x 10
4.78 x 103
5.72x 10
6.32x10°°
6.73 x10°°
8.02x 10
9.55x10°®
9.72 x10°%
9.93 x10°®
1.42 x 10
1.43 x 10
1.53 x 10
1.55x 10
1.56 x 10
1.74 x 10
1.87 x 10
1.91 x 10
1.93 x 10
1.97 x 10
2.00 x 10
2.07x10*
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167223 27
688909 13
858479 18
143076 28
548241 67
583 81
196140 32
540381 39
614876 51
790473 18
740200 _45
71327 30
612469 18
364317 22
210123 39
419317 22
202068 _64
60130 20
478635 49
170834 35
381580 38
154168 43
774777 _66
548930 13
170124_137
711345 25
207337 22
439975 31
212201 44
631869 38
767107 28
55253 106
322826 18
165592 49
529999 34
264780 28
234677 87
201405 32
618657 20
76756 18
71567 24
765142 28
57078 21
484023 15
78404 13
76416 37
545555 90
512981 36
684715 22
170122 38
200956 103
528481 19
180221 31
635043 17
581314 17
371940 27
76460_82
560706_36
792151 44
772653 20
775046_20
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74451579
112404079
229211403
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18271185
155581032
390026768
59562398
1714447
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204415035
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-0.62
0.42
-0.07
-1.05
0.19
-0.02
1.17
-0.21
0.11

0.29
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4.58 x 10
4.73 x10™*
4.82x10*
4.97 x10*
5.07 x10™
5.10x10™
5.11 x10™*
5.17x10™
5.20x10™
5.22x10™
5.30x10™
5.46 x 10
5.65x10™
5.72x10™*
5.81 x10™*
5.86 10
5.94 10
597 x10™*
6.07 x 10
6.15x10*
6.26 x 10
6.71 x 10
6.81 x10*
6.89 x 10
6.90 x 10
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-0.05
-0.06
-0.26
0.80

9.58 x 10~
9.68 x 10~
9.75 x 10~
9.94 x 10~

mvLMM in GEMMA was fitted on 23,315 SNPs. BOS, Beginning Sprouting; Chr, Chromosome; VPD, Vegetation Period

Duration; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism.

107



l\' frontiers

Supplementary File 9

Table 1. SNPs passing the genome-wide significance threshold (p < 1 x 107%) in the multivariate linear
mixed model (mvLMM) analysis for VPD and BOF traits of Chouardia litardierei in GEMMA

multivariate GWAS.

SNP

65720 38
305761 25
504422 54
565532 39
334377 114
28256 _68

104625 19
622077 29
252813 22
528481 19
757985 15
321869 23
207869 16
631869 38
774777 _66
431930 95
167223 27
221833 73
186978 19
226324 53
86910 49

618657 20
445520 34
723279 19
623516 _30
207870 38
558534 14
76416 37

65785 19

210123 39
41769 13

144881 40
177171_18
708427 23
422713 13
171277 71
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7683248
206933711
86813045
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284678317
148693882
303921633
104918258
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80221934
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Betal (VPD)

0.59
0.34
0.23
-0.45
0.73
-0.39
0.55
0.32
0.10
0.73
0.47
0.36
0.23
0.70
0.61
0.21
-0.46
-0.22
-0.22
0.55
0.15
0.95
0.06
0.62
0.31
0.21
-0.92
0.35
-0.18
0.50
0.28
0.42
-0.73
-0.24
-0.32
0.12

Beta2 (BOF)

0.25

0.01

0.49
0.15

0.49
0.44
0.71

-0.62
-1.27
0.80
-0.77
0.79
0.60
0.80
-0.27
0.37
0.16
0.11

0.82
-0.66
-0.50
-0.28
0.39
-0.54
-0.33
0.53

0.30
0.06
-0.13
-0.01
0.53

-0.81
0.13

-0.43
-0.53
-0.63

mvLMM Analysis
in GEMMA
(p-value)
8.71 x 10
2.04 x 10~
2.16 x 10~
3.26 x 10~
7.39 x 10
8.58 x 103
8.73 x 107
9.61 x 10~
1.03 x 10
1.03 x 10
1.40 x 10
1.51 x 10
1.57 x 10
1.87 x 10
2.41 x 10+
2.68 x 10
2.74 x 10
3.14 x 10
4.17 x 10
4.24 x 10
433 x10*
4.52 x 10
5.72 x10*
595 x 10+
6.08 x 10
6.11 x 10
6.51 x 10
6.51 x 10
6.61 x 10
6.84 x 10
7.44 x 10+
8.05 x 10
8.30x 10
838 x 10+
845 x 10+
9.85 x 10

mvLMM in GEMMA was fitted on 23,315 SNPs. BOF, Beginning of Flowering; Chr, Chromosome; FPD, Flowering Period
Duration; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism.
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Figure 1. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and
GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 x 1073) for the
Vegetation Period Duration (VPD) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The
corresponding SNPs are detailed in Table 3 and Table 5 of the manuscript.
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Figure 2. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and
GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 x 107%) for the
Beginning of Flowering (BOF) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The corresponding
SNPs are detailed in Table 3 and Table 5 of the manuscript.
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Figure 3. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and
GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 x 107%) for the
Beginning of Sprouting (BOS) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The corresponding

SNPs are detailed in Table 3 and Table 5 of the manuscript.
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Figure 4. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and
GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 x 107%) for the
Flowering Period Duration (FPD) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The
corresponding SNPs are detailed in Table 3 of the manuscript.
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Due to size constraints, the following supplementary files are not reproduced in this thesis but can be accessed at the journal’s website
(Erontiers in Plant Science, DOI: 10.3389/fpls.2025.1571608):

Supplementary File 11: EggNOG output file for 7 SNP loci that exceeded the genome-wide significance threshold (1 x 107%) in the
multivariate GWAS analysis of the Chouardia litardierei traits: FPD, VPD, BOF, and BOS.

Supplementary File 12: EggNOG output file for 13 SNP loci that exceeded the genome-wide significance threshold (1 x 1073) in the
multivariate GWAS analysis of the Chouardia litardierei traits: BOS and VPD.

Supplementary File 13: EggNOG output file for 14 SNP loci that exceeded the genome-wide significance threshold (1 x 1073) in the
multivariate GWAS analysis of the Chouardia litardierei traits: BOF and VPD.
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of reproduction-related traits in Chouardia
litardierei (Asparagaceae)
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lvan Radosavljevi¢!”

Abstract

Background Chouardia litardierei, commonly known as amethyst meadow squill, is a plant species characterized

by profound ecological plasti vcity. As a wild, non-model species, it represents a suitable system for gaining insights

into the genomic background of the local adaptation process. By implementing a genome-environment and genome-
wide association studies, we sought to investigate the genomic regions related to the local adaptation and the develop-
ment of several reproduction-related traits in C. litardierei: for sexual reproduction, Average Height of Inflorescences (AHI)
and Total Flower Count (TFC) per genotype, and for asexual reproduction, Bulb Count (BC) per genotype.

Results A genome-environment association (GEA) study of selected C litardierei populations revealed the precipi-

tation of the coldest quarter as the bioclimatic variable with the most substantial influence on detected variability,

with numerous candidate genes detected and functionally characterized. To evaluate the genetic basis of selected
reproduction-related traits we combined phenotypic data of 214 individuals raised as a part of a common garden experi-
ment with ddRADseq genotyping results. After implementing various single- and multi-locus GWAS models for all traits,
multiple candidate loci affecting their development were recognized. In addition, high, narrow-sense heritability estimates
indicated that genetic factors accounted for over 55% of the phenotypic variance in each trait. Notably, the highest herit-
ability estimate was observed for the Average Height of Inflorescences (71.95%), suggesting its crucial role in reproductive
success. Functional annotation of the associated genomic regions identified key protein families involved in reproduction-
related biological pathways, including nitrogen metabolism, phytohormone regulation, and floral organs development.

Conclusion By implementing GEA and GWAS, we revealed a list of candidate loci significantly associated with adap-
tation to specific environmental variables and morphological traits related to sexual and asexual reproduction in C.
litardierei. These findings provide a foundation for a deeper understanding of the molecular mechanisms driving

the local adaptation processes occurring among C. litardierei populations from different habitat types. At the same
time, the high heritability estimates of morphological traits further underscore the significance of genetic factors

in the local adaptation process.

Keywords GWAS, GEA, Local adaptation, Adaptive traits, Reproduction, Chouardia litardierei
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Background

The intricate interplay between contrasting environmen-
tal conditions shapes the genetic architecture of various
traits favored by natural selection [1, 2]. Natural selection
acts on allele frequencies, driving populations toward
local adaptation [3] through the development of distinct
phenotypic variations within populations [4]. To cope
with the highly contrasting environmental conditions,
populations must adapt rapidly to survive and ultimately
ensure reproductive success [5, 6]. Such changes not only
enhance the species’ adaptation to specific ecological
niches but also play a pivotal role in the broader context
of speciation, contributing to the emergence of unique
populations with reproductive isolation potential [2].

The development of reproductive barriers presents
a crucial point in the lineages’ divergence and specia-
tion. However, besides sexual reproduction, which is
usually the focus of evolutionary biologists, as much as
80% of angiosperms reproduce asexually through veg-
etative propagation [7], also referred to as clonal growth.
The clonal type of reproduction is considered to emerge
in situations where different types of biotic or abiotic
stress threaten the success of sexual reproduction [8, 9].
The balance between sexual and asexual reproduction
may vary significantly among populations of the same
species, strongly influencing the evolution of life his-
tory traits [10]. In addition, a trade-off between these
reproduction types occurs since both require substantial
resources, and different allocation patterns may develop
[11, 12]. The impact of clonality on sexual reproduction
is severe, as it can strongly influence its spatial patterns
by causing the non-random distribution of genotypes
and the development of a spatial genetic structure in
affected populations [13]. In addition, since clonality
positively influences levels of geitonogamy and, con-
sequently, inbreeding, it can also directly influence the
lineages’ divergence process [14, 15]. Facing challeng-
ing environmental conditions, many plant species rely
on bulbs as vital storage organs, which enable them to
endure dormant periods, mitigate the effects of adverse
environmental conditions [16], and maintain repro-
ductive capacity across heterogeneous habitats [17], as
reflected in the number of bulbs produced. Bulb forma-
tion is further regulated by internal signaling pathways
that respond to the surrounding ecological conditions
[18]. The number of flowers per inflorescence has been
shown to affect pollination success and subsequent seed
production [19]. Suetsugu et al. [20] demonstrated that
inflorescence size influences pollinator behavior in the
deceptive orchid Cephalanthera falcata, serving as both
a visual attractant and a mechanism for enhancing pollen
accumulation and deposition. Similarly, subtle variations
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in inflorescence height can influence pollinator accessi-
bility and optimize pollen dispersal [21].

Among other evolutionary phenomena (e.g., genetic
drift, complex genetic architecture, or demographic his-
tory of studied species), phenotypic plasticity presents
one of the severe challenges when studying the genetic
background of complex polygenic traits. One of the more
efficient tools to overcome this challenge is the common
garden experiment. By growing individuals originating
from populations experiencing contrasting environmen-
tal conditions in a common environment, the idea is to
control and restrain the expression of phenotypic plas-
ticity, thus obtaining more reliable results [22]. Since
it enables overcoming the hampering effect of differ-
ent environmental conditions to the characterization of
complex phenotypes’ genetic basis, the common garden
experiments were often used in various local adaptation
studies (e.g., [23-26]. Extreme caution is also needed
when performing genome-wide association studies in
non-model species due to the confounding effect of
phenotypic plasticity. However, common garden experi-
ments can greatly help address this problem and are con-
sequently being implemented in such studies [27-29].

Chouardia litardierei (Breist.) Speta (Asparagaceae)
is a bulbous perrenial. It develops a sizeable racemose
inflorescence, usually comprising several dozen radially
symmetrical flowers with no specific pollination-related
morphological adaptations. Although this has never
been studied, it is presumingly an open-pollinated spe-
cies. In addition to sexual reproduction, it reproduces
clonally by producing numerous bulbs surrounding
the central one. This species distribution area stretches
across the Dinaric Alps karst environment in the western
Balkans, from Slovenia in the north-west to Montenegro
in the south-east [30, 31], a region known for its excep-
tional environmental heterogeneity and consequently,
diverse spectrum of available ecological niches [32, 33].
Three groups of populations can be distinguished based
on their habitat types. The largest group predominantly
occupies karst poljes, flat-bottomed basins character-
ized by karstic drainage systems. These fields, typically
enclosed by rugged dolomite and limestone mountains
and characterized by deep and nutrient-reach soils,
experience periodic floodings typically lasting for sev-
eral months each year [34], thus presenting a hydro-
logically and geomorphologically unique environment
[35, 36]. The fewest populations are found in the coastal
salt marshes of northern Dalmatia, a habitat subjected
to tidal flooding and dominated by salt-tolerant vegeta-
tion [37]. Finally, the southernmost group of populations
inhabits highly contrasting habitat types: drought-prone
dolomite slopes characterized by minimal amounts of
soil typically present only in rock crevices. This hostile

118



Saranci¢ et al. BMC Plant Biology ~ (2025) 25:577

environment is known for its reduced water and nutri-
ent capacity, and pronounced seasonality in temperature
and water availability [38]. While a previous attempt was
made to characterize the dolomite group of populations
as a distinct taxon [39], the reliability of the results was
compromised due to indistinct approaches employed in
the research, raising justified doubts about the validity
of the results [40]. Despite the apparent ecological dif-
ferences between these habitats, identifying consistent
morphological distinctions among the assumed ecotypes
remains challenging [39], highlighting the need for a
deeper investigation into the genetic foundations under-
lying these specific morphological traits. This species
presents a valuable study system for investigating local
adaptation and speciation for several reasons. First, it
exhibits marked ecological plasticity, with three groups
of populations (Fig. 1) adapted to contrasting environ-
mental conditions [40]. Second, being a small bulbous
perennial makes it suitable for cultivation under con-
trolled conditions, thus reducing phenotypic plastic-
ity oscillations as a confounding factor in trait analysis
[41]. Third, C. litardierei populations are, for the most
part, distributed across easily accessible locations in the
Dinaric Alps of the Balkan Peninsula [30, 39, 42], ena-
bling comprehensive sampling.
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Understanding the genomic basis of specific traits in
the context of environmental dynamics is essential for
uncovering the mechanisms underlying local adaptation
and response to contrasting ecological pressures [43,
44]. As a foundational step in investigating the genomic
basis of local adaptation in C. litardierei, we have already
introduced a high-quality, chromosome-scale assembly
of the C. litardierei genome [40]. Beyond a prior attempt
to categorize the dolomite group of populations as a dis-
tinct taxon [39], limited research has been conducted on
the ecological divergence or genetics of this species, aside
from the cytogenetic characterization of two individuals
presumed to belong to the meadow and dolomite groups
of populations [45], and the chromosome-scale genome
assembly mentioned above [40]. To advance our under-
standing of the genetic architecture underlying local
adaptation, we have implemented both a genome-envi-
ronment association (GEA) study based on available bio-
climatic variables and a genome-wide association study
(GWAS), which integrated morphometric data from a
common garden experiment with ddRADseq genotyp-
ing. These analyses aimed to elucidate the genetic basis
of local adaptation and the reproduction-related traits
in selected populations of the wild, non-model monocot
species C. litardierei.

populations; B Seashore grassland developed on deep soils, prone to occasional tidal floodings and salinization, experiencing the Mediterranean
climate; C Inland karst poljes'meadows on deep and rich soils, exposed to seasonal floodings that can last up to several months, and D
Drought- and heat-stress prone dolomite bedrocks habitat with very little available soil, characterized by highly unhospitable environmental

elements
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Methods

Plant material, common garden experiment,
and phenotyping

To set up the common garden experiment, 214 individu-
als were transplanted from nine selected populations of
C. litardierei, with three populations representing each of
the three presumed habitat types (Fig. 1).

During the sampling expeditions, 22—25 individu-
als per population, situated no closer than 10 m from
each other, were selected following the 1:20 rule [46].
The geographic coordinates of the sampling locations
are provided in the Additional File 1. Simultaneously,
leaf material from each individual required for DNA
extraction was gathered and desiccated using silica gel.
Sampled individuals (represented as a single bulb) were
transplanted into a separate two-litre plastic container
filled with soil, sand, and perlite. The containers were
placed in raised beds outdoors as part of a common gar-
den setup, allowing the plants to grow under temperate
continental climate conditions (Cfb climate type accord-
ing to Koppen classification) [47, 48]. No additional
interventions, such as supplemental watering or pesticide
application, were practiced, thus allowing plants to grow
under undisturbed environmental conditions.

All voucher specimens were deposited in a publicly
accessible herbarium at the Natural History Museum
Rijeka (Index Herbariorum: NHMR), under the acces-
sion numbers NHMR 3306 (Budoske bare population),
NHMR 3189 (Lovéen population), NHMR 2097 (Ska-
dar lake population), NHMR 3151 (Pandurica popula-
tion), NHMR 3247 (Cetina population), NHMR 3125
(Bjelopolje population), NHMR 3255 (Nin population),
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NHMR 3304 (Pag population), and NHMR 3305 (Vrana
lake population). Voucher specimens were collected and
identified by Ivan Radosavljevi¢ and Bostjan Surina.

To study the genetic background of selected repro-
duction-related traits in C. litardierei, we conducted
a common garden experiment using nine populations
from different habitat types across its distribution
range. To test the ecological relatedness among studied
populations in terms of prevailing climatic conditions
they experience in their natural habitat and the relative
positioning of the common garden experiment site, we
ran the PC analysis based on 19 WorldClim bioclimatic
variables for the 1950-2000 period in the 30 s resolu-
tion [49] using the basic prcomp R function. For the
visualization of PCA results, R package “ggfortify” [50]
was used. Measurements were carried out after two
vegetational seasons of acclimatization to minimize
carry-over effects from the original environment. Three
distinct reproduction-related morphological traits
(Table 1) were measured: (i) Total Flower Count (TFC),
and (ii) the Average Height of Inflorescences (AHI) as
pollination-related traits of great importance for sex-
ual reproduction, and (iii) the Bulb Count per geno-
type (BC) as an indicator of asexual reproduction rate.
TFC was determined as the number of flowers across
all inflorescences per genotype. At the same time, AHI
was measured using a graduated ruler with a precision
of 0.1 cm, with the heights of individuals’ inflorescences
averaged. All of the studied traits were considered
polygenic.

Pearson correlation analysis was conducted to examine
the relationships between AHI and TFC variables with a

Table 1 Descriptive statistics of the Chouardia litardierei reproduction-related morphological traits examined in the study

Overall

Trait Description Mean =SD
TFC (number) Count of flowers across all inflorescences per genotype 90.59 +£45.59
AHI (cm) Average height of inflorescences per genotype 18.00 +4.80
BC (number) Count of bulbs per genotype 2.78 +3.06

By location

Location BC (Mean +SD) AHI (Mean £SD) TFC (Mean +SD)
Bjelopolje 191 +1.54 14.68 +2.48 39.50+21.33
Budoske Bare 214+1.39 15.00 £3.20 82.00 £42.14
Cetina 467 +£2.71 1849 £3.09 81.17+£33.33
Lovcen 0.00 £0.00 1581 £2.96 102.72 +44.22
Nin 483 +£2.75 2040 +3.54 97.00 £32.50
Pag 4.52+291 15.78 £3.04 64.45 +38.68
Pandurica 0.36+0.99 2470 +4.43 11590 £52.41
Skadar 0.56 £0.92 14.31£2.94 109.24 £51.56
Vrana Lake 6.29 +3.57 2263 +3.56 109.12 £36.30

AHI Average Height of Inflorescences, BC Bulb Count, SD Standard Deviation, TFC Total Flower Count
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normal distribution using the “stats” package in R [51].
For BC, which does not follow a normal distribution,
Spearman’s correlation was performed using the same
package.

Sequencing and genomic data processing

DNA isolation was performed using the GenElute™ Plant
Genomic DNA Miniprep Kit (Sigma—Aldrich®). Con-
centrations were assessed using the Qubit" Fluorometer
(Thermo Fisher Scientific, Wilmington, DE, USA), and
samples were diluted to a concentration of 20 ng/pL.

To perform genotyping of the studied C. litardierei
populations, a ddRADseq approach was employed
[52]. In short, DNA was first digested using restric-
tion enzymes Asel and Nsil (NEB # R0526L and #
RO127L, respectively). The resulting fragments were
ligated with barcoded i5 and i7 adapters, after which
all the samples were multiplexed. Final amplification
was performed after nick repair using DNA polymer-
ase I (NEB # MO0209L). Obtained DNA libraries were
double-sequenced (150 bp PE) on the Illumina HiSeq X
platform.

The initial sequencing data was preprocessed with
quality trimming and adapter removal using Trim Galore
[53]. After trimming, BAM files were created by align-
ing the reads to the C. litardierei reference genome [40]
through the Burrow-Wheelers Aligner [54]. SNP identifi-
cation was done using the Stacks software package v1.48
[55]. The ref_map.pl wrapper module was employed, and
in line with the suggestions of Paris et al. [56], the pstacks
module was executed to extract loci previously aligned to
the reference genome, with a minimum depth of cover-
age set at three. This ensures a reliable representation of
loci across samples, reducing the risk of low-confidence
genotype calls. Subsequently, the cstacks module gener-
ated a comprehensive catalogue of loci across popula-
tions, permitting a maximum of four mismatches among
sample loci during its construction, further minimiz-
ing potential alignment errors. Finally, the populations
module computed population-level summary statistics,
requiring loci to be present in all nine populations and
at least 70% of individuals within each population, with a
maximum observed heterozygosity of 0.70. Further con-
straints were applied to retain only one SNP per locus
and discard loci with minor allele frequencies (MAF)
below 1%, ensuring the inclusion of high-quality, well-
represented genetic markers. By focusing on common
and stable genetic variants, this approach minimized the
risk of inaccuracies arising from sequencing or sampling
errors. The final dataset was generated in.vcf format for
downstream analysis.
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Population-genetic and genome-environment association
analysis

Several methods were implemented to assess the genetic
structure of the studied populations and deepen our
understanding of phylogenetic relationships among
them. First, the VCF file was converted into a genlight
object using the gl.read.vcf function from the “dartR”
v2.9.7. package [57]. We performed PCA using the
prcomp R function, and the R package “plotly” v4.10.4
(https://plotly.com/r/, accessed on 9 Dec 2024) was
used to construct the PCA plot. We used the hierarchi-
cal clustering method implemented in the R package
FactoMineR v2.11 [58] to assess the optimal number of
clusters of PCA data. The results were visualized with a
dendrogram using the factoextra v1.0.7 package [59].

For the assessment of the genetic structuring of studied
populations, we transformed genlight into a geno object
using the gl2geno function in the “dartR” package. The
sparse non-negative matrix factorization (SNMF) method
was implemented using the “LEA” R package [60], with
100,000 iterations, 50% burnin, and 20 repetitions for
K-values from 1 to 10. From the results, a cross-entropy
values graph was constructed using a basic R function
plot to select the optimum K-value. Furthermore, we
constructed the phylogenetic tree based on Nei’s genetic
distance matrix to better appreciate phylogenetic rela-
tionships among studied populations. VcfR2genind func-
tion from the “vcfR” v1.15.0. package [61] was used to
create a genind object, which was further transformed
into a genpop object by using the genind2genpop func-
tion from “adegenet” package [62]. To generate Nei’s
genetic distance matrix, dist.genpop function from “ade-
genet” was used. We used the obtained matrix to create
a bootstrapped phylogenetic tree (1,000 replicates) using
the aboot function from the “poppr” v2.9.6 package [63].
“Ape” package [64] was used to convert the obtained tree
to the “Newick” format that was used for the final visu-
alization of the phylogenetic tree in the MEGA7 software
[65].

To gain a more profound knowledge of the adaptation
of the populations studied to local environmental condi-
tions, we performed the RDA (linear model redundancy
analysis) [66, 67]. Compared to other approaches often
used for similar purposes of detecting the genetic signa-
tures of local adaptation like generalized linear models
(GLM) or latent factor mixed models (LFMM), the RDA
was recognized as a superior method, as it is character-
ized by high true positive and low false positive rates [68,
69]. We started the procedure by downloading 19 available
WorldClim bioclimatic variables for the 1950-2000 period
in the 30 s resolution [49]. For the location of each sam-
pled population, we used Qgis v3.16.0 (https://qgis.org/) to
extract the data. We treated temperature and precipitation
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variables (BIO1-11 and BIO 12-19, respectively) as sepa-
rate datasets to test multicollinearity among variables.
We used the vifstep function from the “usdm” package
[70] to calculate variance inflation factors (VIF) for each
variable, and only variables with a VIF <10 were retained
for further analysis. RDA implemented in the R package
“vegan”  (https://cran.r-project.org/web/packages/vegan/
index.html Accessed 3 Dec 2024.) [71] was used for the
characterization of the retained variables’ influence on the
genetic variations among studied populations. The optimal
model was determined using the ordiR2 step function for a
forward selection procedure with 10,000 permutations. To
test the significance of the RDA model, we ran the anova.
cca function with 10,000 permutations. We used the SNPs’
loadings (i.e. coordinates) in the ordination space obtained
through the RDA analysis to identify which loci are under
selection. We considered loci as outliers if their loadings
were more than 3 standard deviations away from the mean
loading on either of the first two RDA axes (two-tailed
p-value =0.0027), following the recommendations of For-
ester et al. [69]. To assess the potential biological function
of the genes positioned near the outliers, we extracted sur-
rounding 50 kb DNA windows (25 kb upstream and down-
stream of the loci) using a custom Python script and the
available draft genome assembly [40]. Finally, the obtained.
fasta files were compared against the eggNOG data-
base [72, 73]. Recognized candidate genes were manually
inspected, and ones with functions seemingly of biological
importance for the local adaptation to tested environmen-
tal variables were retained.

Genome-Wide Association Analyses (GWAS)

The schematic representation of the methodological
approach we employed in GWAS analysis is presented in
Fig. 2.

All traits were considered polygenic, and GWAS analy-
ses were conducted assuming an additive genetic model.
Imputed variants with MAF <0.01 were excluded using
the BCFtools program [74]. For each association analy-
sis, two different statistical approaches were considered:
the frequentist single-locus approach and the Bayesian
multi-locus approach. Within the frequentist single-locus
approach, different models were employed based on the
distribution of the traits. For the trait AHI, which has
an approximately normal distribution, a standard linear
mixed model (LMM) was fitted using GEMMA 0.98.5
[75]. For the count-based traits BC and TFC, LMMs
in GEMMA were also applied, recognizing that this
approach assumes a normal trait distribution. Addition-
ally, all three traits were analyzed using GMMAT 1.4.2
[76] with a GMMAT LMM fitted for AHI and a Poisson
generalized linear mixed model (GLMM) applied for BC
and TFC to account for their count-based distributions.
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The Poisson GLMM in GMMAT was specifically chosen
for BC and TFC because it accurately models the non-
normal distribution of count data, complementing the
LMM analysis conducted in GEMMA.

In the Bayesian multi-locus approach, a Bayesian
sparse linear mixed model (BSLMM) [77] was fitted in
parallel for all analyzed traits. By intersecting the result-
ing sets of significant SNPs from the frequentists and
Bayesian approaches, significant SNPs for each trait were
consistently identified. In addition, a multivariate linear
mixed model (mvLMM) was fitted to simultaneously
analyze significantly correlated traits (AHI and TFC, as
well as AHI and BC) to detect shared association signals
between these traits.

To visualize the results, Manhattan plots were generated
using the R package “qgman” [78] and “CM plot” [79].

Generalized Linear Mixed Model (GLMM) for count data
using a Poisson distribution

The generalized linear mixed model (GLMM) with a
Poisson distribution was fitted using GMMAT. The
model can be expressed in the following form (Egs. (1-3)):

log(;) = Wia + xip + u; (1)
u ~ MVN,(, /K) (2)
y; ~ Poisson(i;) (3)

Here, y; denotes the observed count for the i-th individual,
and y; represents the mean count, which is modeled as the
exponential of the linear predictor. W/ is the i-th row of an
nX ¢ matrix of covariates (fixed effects), a is the correspond-
ing vector of coefficients for these covariates, X; represents
the genotype of the i-th individual, and S is the effect size
of the genetic marker. The random effects u are assumed
to follow a multivariate normal distribution MVN,, (0,AK),
where K is the n X # relatedness matrix, and A represents the
variance component ratio. The observed data y; is assumed
to follow a Poisson distribution with 4, This model allows
for integrating individual-level random effects and a genetic
relationship matrix K to account for population structure
and relatedness while analyzing count-based traits. If a nor-
mal distribution and an identity link function are assumed
for continuous traits, GMMAT performs association tests
based on linear mixed models (LMMs).

Linear Mixed Model (LMM)
The standard LMM was fitted using GEMMA 0.98.5. in the
following form:
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=W, +x8 + u + ¢

~ MVN, (0, /lr_lK)

~ MVN, (0, r*lln)

(4)

where we let y be a vector of trait values for 214 indi-
viduals and W be an #n X ¢ matrix of covariates (fixed
effects), which in our case is a column of 1 s. Let a
represent a c-vector of the intercept, x be an n-vector
of marker genotypes, and S denotes the effect size
of the marker. Additionally, u is an n-vector of ran-
dom effects, € is an n-vector of errors, T~ represents
the variance of the residual errors, and X\ is the ratio
between the two variance components. K is a known
nXn relatedness matrix, and I, is an nXxn identity
matrix. MVN,, denotes the n-dimensional multivariate
normal distribution. Effect sizes represent the change
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in trait levels for each additional effect allele in the
genotypes of individuals.

Bayesian framework

The LMM (Egs. (4-6)) implemented in GEMMA tests the
alternative hypothesis H;: 8# 0 against the null hypoth-
esis Hy: = 0 for each SNP individually. Extensions of the
LMM that simultaneously consider the effects of variants
across multiple loci could enhance the power to detect
causal variants. Bayesian LMMs can model all markers
together by assuming different prior distributions on the
marker effects and sampling from their posterior distri-
bution. Bayesian models developed for estimating SNP
effect sizes begin with a simple linear model that relates
genotypes X to phenotypes y:

Yy =lapu + xB +¢ (7)

& ~ MVN,(0, T — 1I,) ®)

we let y be a vector of phenotypes measured on # indi-
viduals and X be an nXp matrix of genotypes measured
on these same # individuals at p genetic markers. The
vector [ represents the effects of genetic markers, 1, is an
n-vector of 1 s, p is a scalar representing the mean phe-
notype, and € is an #n-vector of error terms with variance
1%, Our goal was to estimate the parameter S, represent-
ing the effects of the genetic markers. However, since the
number of genetic markers p in our study (23,315) greatly
exceeds the number of individuals # (214), we needed
to make certain modelling assumptions for SNP effect
sizes 5. These assumptions range from the infinitesimal
(or polygenic) model, which assumes that all SNPs have
non-zero effects, to the sparse model, which assumes that
only a small proportion of SNPs affect the phenotype.
The model’s performance depends on the true underlying
genetic architecture of the trait being studied. However,
this genetic architecture is generally unknown. The most
commonly used polygenic modeling approach assumes
that all SNPs influence the phenotype (i.e., have non-zero
effects) with normally distributed effect sizes:

B ~N(o, og) 9)

When Egs. (7 and 8) are combined with the normality
assumption (Eq. (9)) for effect sizes f5, results in the previ-
ously mentioned LMM due to the inclusion of a random
effect term representing the combined genetic effects.
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Bayesian Sparse Linear Mixed Model (BSLMM)

A broader assumption, encompassing both polygenic and
sparse modeling scenarios, posits that effect sizes origi-
nate from a combination of two normal distributions.

2 2 2
0+%> - N (O, %)
pT pT
(10)
In this model, it represents the proportion of SNPs with
large effects, while U/g/ pt and 02/pt represent the small
and large effects variances, respectively. The resulting
model, BSLMM, incorporates a combination of polygenic
and sparse effects for the prior distribution of effect sizes,
enabling adaptation to various genetic architectures of
the studied traits. BSLMM accounts for relatedness and
population stratification by including a genomic kin-
ship matrix as a random effect term, and it handles link-
age disequilibrium (LD) by estimating SNP effect sizes
while controlling for other SNPs in the model. The model
uses a Markov chain Monte Carlo algorithm to sample
from the posterior distribution and obtain SNP effect
sizes. Unlike LMM, which provides p-values, BSLMM
outputs a posterior inclusion probability (PIP) for each
SNP, indicating the probability that a marker is associ-
ated with the trait, given the data, calculated as the pro-
portion of chain iterations in which the SNP has a large
effect. SNPs with high PIPs are the most likely candidates
for functional variants affecting the analysed traits. We
applied BSLMM to the same dataset (214 individuals and
23,315 variants) used in our primary frequentist asso-
ciation analysis to compare single-SNP and multi-SNP
approaches and to reduce false positives. The BSLMM
chain was run with 1,000,000 sampling steps and 100,000
burn-in iterations. We used the estimated PIPs from
BSLMM for additional fine-mapping of genomic regions
identified in the frequentist analysis.

Bi ~ ﬂN(O,

SNP heritability estimation

The proportion of variance in phenotypes explained by
all available genotypes (PVE), also known as narrow-
sense heritability (h?), as well as the proportion of genetic
variance explained by variants with major effect (PGE),
was estimated for traits listed in Table 1. This estimation
was conducted assuming that the SNP effect sizes follow
a mixture of two normal distributions (Eq. 10), as imple-
mented in GEMMA BSLMM.

Multivariate genome-wide association analyses

To identify common variants associated with the AHI
and the TFC traits, multivariate genome-wide associa-
tion analyses were conducted using a multivariate lin-
ear mixed model (mvLMM) in GEMMA. Similarly,
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multivariate GWAS was conducted using the same
model for AHI and BC traits. This approach allowed for
the simultaneous examination of genetic influences on
both pairs of traits by considering them as dependent
variables. The mvLMM method accounts for population
structure and relatedness among individuals, ensuring
robust identification of genetic variants contributing to
the observed phenotypic variation in these traits.

Candidate genes prediction

Following identifying phenotypic evidence for local adap-
tation to diverse conditions in distinct C. litardierei pop-
ulations and subsequent GWAS analysis, further efforts
were directed toward identifying associated candidate
genes. Utilizing the reference genome, sequences were
generated encompassing a total of 50 kilobases, includ-
ing 25 kilobases upstream and downstream of each sig-
nificant SNP identified through both statistical models,
using SAMtools [74]. Finally, functional annotations were
obtained using the eggNOG-mapper v2 database (e-value
<1x107?).

Results

Phenotyping

PCA based on the bioclimatic conditions studied popu-
lations are experiencing in their natural habitats showed
exceptional diversity among sites. In addition, the com-
mon garden experiment site was equally environmentally
differentiated from the sampling sites of studied popula-
tions, making it suitable for the purpose. The PCA results
are provided in Additional File 2.

Phenotypic variations among C. litardierei popula-
tions in the common garden experiment are illustrated in
Fig. 3.

For TFC per genotype, out of 214 individuals across
nine populations, 204 flowered. Overall, the mean count
of flowers across all inflorescences per genotype was
90.59 +45.59. The AHI per genotype was assessed across
a cohort of 204 flowering individuals. Overall, the mean
height of inflorescences per genotype was 18.00 +4.80
cm. The number of bulbs developed (BC), considered a
very important indicator of asexual reproduction, had
a mean count of 2.78 +3.06 bulbs per genotype. All the
data mentioned above are summarized in Table 1.

A positive Pearson’s correlation coefficient was
observed between the TFC and the AHI traits (r= 0.445,
p-value <0.001, 95% CI [0.327, 0.549]). Similarly, a posi-
tive correlation was observed between the BC and the
AHI traits (Spearman’s p= 0.172, p-value =0.014). At
the same time, a weak negative correlation was observed
between the BC and the TFC traits. However, this cor-
relation was not statistically significant (Spearman’s
p=-0.102, p-value =0.146).
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Sequencing and genomic data processing

A total of 1,284,680,304 reads were obtained from the
sequencing. After filtering the raw sequences and anno-
tating against the reference genome, 1,278,409,966 reads
were retained. SNP calling and filtration were performed
using Stacks software, resulting in the identification of
24,660 SNP loci, which were subsequently processed.
After applying the BCFtools MAF filter with a threshold
of 0.01, 23,315 SNPs remained for further analysis.

Population-genetic and genome-environment association
analysis

Results obtained using different approaches were highly
congruent, thus supporting their high reliability. PC
analysis revealed that populations from meadow and sea-
shore habitats were genetically indistinguishable, forming
a compact genetic cluster. At the same time, populations
from rocky habitats were strongly differentiated, both
from the populations from other habitats and each other
(Fig. 4).

As in the sNMF analysis the selection of the final K
number is somewhat arbitrary, we present results for
both K= 2 and K= 3 as the two most reliable numbers of
ancestral populations (Additional File 3). In both cases,
populations from the meadow and seashore habitats were
grouped together, forming a separate cluster without sub-
stantial admixture levels among populations, as shown in
Fig. 5. For K= 2, dry-habitat populations form an individ-
ual cluster. However, this cluster was further structured
at the K= 3 level, with the Pandurica population being
differentiated from the remaining two populations.

We assessed Nei’s inter-populations genetic distances
to investigate the phylogenetic relationships among the
studied populations, and we constructed the unrooted
tree to visualize the results (Additional File 4). Once
again, populations from the dry, rocky habitats have
shown very strong differentiation from others charac-
terized by substantially weaker differentiation levels. All
nodes on the phylogenetic tree were statistically well
supported.

After the variance inflation factors analysis, four tem-
perature-related (BIO2—mean diurnal range, BIO4—
temperature seasonality, BIO8—mean temperature of
wettest quarter, and BIO9—mean temperature of dri-
est quarter) and two precipitation-related variables
(BIO17—precipitation of driest quarter and BIO19—
precipitation of coldest quarter) were retained for fur-
ther analysis. The RDA model was globally significant
(p< 0,001) and explained as much as 52.26% of the
total variance (adjusted R2 =0.509). The first RDA axis
explained the majority (40.49%) of this variation, while
the second explained a substantially smaller portion
of just 4.94%. Consequently, most tested bioclimatic
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Fig. 3 Box plots illustrate the obtained morphometric results from a common garden experiment, depicting three reproduction-related
morphological traits: A Total Flower Count (TFC), B Average Height of Inflorescences (AHI), and € Bulb Count (BC) per genotype. Each box
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times the IQR, while dots represent outliers
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variables were significantly associated with the RDA
axis 1, with BIO19 being recognized as the variable
with the most profound influence. Following such a
result, most loci (131 out of 256) being recognized as
outliers were linked to the BIO19 variable (precipita-
tion of coldest quarter). In contrast, substantially fewer
were linked to the remaining variables: two to BIO2, 65
to BIO4, six to BIOS, and 52 to BIO9, while none was
linked to BIO17. The results of this analysis are visually
represented in Fig. 6.

To assess the potential biological functions of genes
surrounding 83 recognized loci, we compared the
obtained 50 kb DNA windows to the eggNOG database.
Querying of annotations revealed 324 genes linked to a
specific metabolic function. After manually inspecting
individual genes, we retained 82 with recognized bio-
logical functions seemingly associated with adaptation to
tested bioclimatic variables (Additional File 5).

Genome-wide association analyses

GEMMA detected 26 significant SNPs for the AHI
trait, while GMMAT identified 34. Overlapping these
results revealed 26 common genome-wide significant
SNPs. Subsequent analysis with BSLMM confirmed
four of these SNPs as significant, one on chromosome
3 and three on chromosome 13. Similarly, for the TFC
trait, GEMMA and GMMAT identified 18 and 43 SNPs,
respectively, with nine overlapping SNPs. BSLMM analy-
sis confirmed only one significant SNP on chromosome
1. In the case of the BC trait, GEMMA and GMMAT
identified 86 and 96 SNPs, respectively, with 85 overlap-
ping SNPs. BSLMM analysis confirmed seven signifi-
cant SNPs, with three located on chromosome 13 and
one SNP on each of chromosomes 1, 6, 9, and 12. All
SNPs passing the genome-wide significance threshold (1
%x107%) in the single-SNP LMM analysis are reported in
Additional File 6.
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Fig. 5 Genetic structure of the studied Chouardia litardierei populations as determined by sSNMF analysis at K= 2 and K= 3. Each stacked column
represents an individual's ancestry coefficient, with populations separated by lines. Population names are labeled along the x-axis

In the Bayesian association analysis, 21 SNPs were
identified as having a major sparse effect on the AHI
trait, and these variants were estimated to have a sparse
effect in >10% of BSLMM chain iterations (i.e., posterior
inclusion probability, PIP >0.099). Moreover, the top five
SNPs were identified as having a sparse effect on AHI in
more than 20% of chain iterations (PIP >0.21). Similarly,
for the TFC trait, nine SNPs displayed a major sparse
effect in >10% of BSLMM chain iterations (PIP >0.095).
In addition, the top three SNPs displayed a major sparse
effect in more than 12% of iterations (PIP >0.12). Con-
cerning the BC trait, 14 SNPs were identified with a
major sparse effect in >10% of iterations (PIP >0.097),
and the top six SNPs had a major sparse effect in over
55% of iterations (PIP >0.55). The data outlined above is
reported in Additional File 7.

Results from the single-SNP association analysis in
GMMAT and GEMMA, alongside the multi-SNP asso-
ciation analysis (BSLMM) for all of the studied traits, are
plotted in parallel in Manhattan plots in Fig. 7. Twelve
SNPs reached genome-wide significance (p= 1x 107%) in

the LMM analysis, mirroring their major sparse effects
identified in the BSLMM analysis (Table 2).

Heritability estimation

The BSLMM analysis, conducted with 23,315 SNPs,
yielded estimates of narrow-sense heritability (PVE)
for the examined reproduction-related morphological
traits, along with the PGE and the number of variants
with major effect (n.gamma), as summarised in Table 3.
The PVE estimate for the TFC revealed that 55.89% of
the phenotypic variation in TFC was explained by all
available genotypes, with 28.78% attributed to 78 SNPs
exhibiting significant phenotypic effects. Similarly, the
PVE estimate for the AHI indicated that 71.95% of the
phenotypic variation in AHI was explained by all geno-
types, with 37.47% attributed to 47 SNPs exhibiting nota-
ble phenotypic effects. Moreover, the BSLMM analysis
revealed that 69.87% of the phenotypic variation in BC
was explained by all genotypes, with 89.15% of this vari-
ation accounted for by 18 SNPs with significant effects.
Additional File 8 contains the means, medians, and 95%
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Fig. 6 A triplot based on six bioclimatic variables included in the optimal RDA model illustrating the relative contribution of bioclimatic variables
in shaping the genetic structure of nine C. litardierei populations. Colored dots represent samples, while empty dots around the centre represent
SNPs. Temperature-related variables (BIO2, BIO4, BIO8, and BIO9) are shown as red vectors, and precipitation-related variables (BIO17 and BIO19)

as blue vectors

equal tail posterior probability intervals (95% ETPPIs) of
the hyperparameters derived from the BSLMM.

Multivariate GWAS analysis

In the multivariate GWAS analysis, 42 SNPs surpassed
the genome-wide significance threshold (p= 1x 107)
for AHI and TFC traits (Additional File 9). Among these,
10 SNPs were significant in GEMMA and GMMAT uni-
variate analyses for the AHI trait, while only three SNPs
showed significance for the TFC trait (Table 4). In the
multivariate GWAS analysis for AHI and BC traits, 64
SNPs exceeded the same threshold (Additional File 10).
Among these, two SNPs were significant in GEMMA
and GMMAT univariate analyses for the BC trait, while
none showed significance for the AHI trait (Table 4). This
indicates shared genetic factors influencing these repro-
ductive traits across multivariate and univariate analyses.
The multivariate GWAS findings for the AHI and TFC, as
well as AHI and BC traits, are plotted in Manhattan plots
in Fig. 8. The frequencies of effect alleles across popula-
tions for the significant SNPs (shown in Tables 2 and 4)
are depicted in a plot provided in Additional File 11.

GWAS candidate genes identification

The eggNOG tool provided comprehensive data elucidat-
ing the relationship between individual SNPs/sequences
and distinct protein families (PFAM). To identify candi-
date genes potentially influencing reproduction-related
morphological traits, we conducted eggNOG analysis

on 12 SNPs that exceeded the genome-wide significance
threshold (1 x107%) in both the single-SNP LMM and
multi-SNP BSLMM analyses of C. litardierei traits: TFC,
AHI, and BC. This analysis identified 130 queries cor-
responding to sequences matched to the eggNOG data-
base for functional annotation (Additional File 12). We
utilized eggNOG to analyze 13 SNP loci that met the
significance threshold in the multivariate GWAS analy-
sis for AHI and TFC. This analysis identified 134 queries
(Additional File 13) corresponding to sequences associ-
ated with functional roles in reproduction-related mor-
phological traits. Similarly, eggNOG was employed to
analyze 2 SNP loci meeting the same threshold in the
multivariate GWAS analysis for AHI and BC, uncovering
18 additional queries (Additional File 14). The eggNOG
analysis linked identified sequences to protein families,
which we then further examined through manual inspec-
tion and a literature review to identify specific genes and
PFAM domains associated with the traits under study.
Some domains were shared between the univariate and
multivariate GWAS results, leading to overlaps across the
sets. The most relevant findings, along with their relevant
biological functions and references, are summarized in
Table 5.

Discussion

In our research, we took several approaches to gain
insight into the genetic background of local adapta-
tion of C. litardierei populations inhabiting contrasting
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Fig. 7 Manhattan plots of single-SNP and multi-SNP association mapping of TFC, AHI and BC traits. A Manhattan plots of single-SNP analysis

in GMMAT and B in GEMMA for each trait. The x-axis represents the chromosomal position of SNPs, and the y-axis represents their —log;, (p-values)
obtained by the LMM analysis. The red horizontal line indicates the genome-wide significance threshold (p= 1x 107%). Fach dot on the Manhattan
plot signifies a SNP. Because the strongest associations have the smallest p-values, their negative logarithms will be the greatest, appearing higher

on the plot. € Manhattan plots of multi-SNP BSLMM analysis for each trait. The x-axis represents the chromosomal position of SNPs, and the y-axis

represents their posterior inclusion probabilities (PIPs) obtained by the BSLMM analysis. Green dots signify SNPs that are recognized in all three
models

types of habitats. First, we coupled population-genetic
analysis with the GEA study to characterize the genetic
structure of studied populations, identify the bioclimatic
variables predominantly influencing detected variability,
and finally gather knowledge regarding the molecular

mechanisms underlying populations’ ability to cope with
contrasting ecological conditions. Then, based on the
common garden experiment, a comprehensive GWAS
analysis was performed to elucidate the genetic back-
ground of heritable reproduction-related traits. This
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Table 2 SNPs passing genome-wide significance threshold (1 x 1073) in the single-SNP LMM analysis and their corresponding PIPs
from the multi-SNP BSLMM analysis of Chouardia litardierei traits TFC, AHI and BC

Trait SNP Chr Position Effect Allele Referent MAF Single-SNP GLMM Single-SNP LMM Multi-SNP
Allele Analysis B (p-value) in Analysis B (p-value) in BSLMM Analysis
GMMAT GEMMA B (PIP)
TFC  439681_33 1 113,066,723 G A 035 -089(650x107) 9(1.69x 107 —0.53(0.14)
AHI 536624_21 3 40433867 G T 002 —1.02(198x107% (2 57 x107) -041(0.21)
AHI 299462_80 13  294,757456 T C 004 —067(3.02x107% —-067 (3.81x107% -0.43(0.36)
AHI 383241_14 13 626/409,144 A G 003 -073(7.01x107 —0.73 (843 %107 —-042(0.22)
AHI - 377817_17 13 604,813,128 A G 013 —062(7.09x107% —-062 (8511079 -043(0.35)
BC  241986_29 12 6,101,088 G A 001 1.28(3.19x107) 128 (563 %107 0.94 (0.91)
BC 713226_25 6 119,601,819 T A 006 0.50(1.38x107) 0.50 (2.15x107) 0.45 (0.96)
BC 29177518 13 26477605 T C 002 072(139%x107 072 (1.82x107% 0.57 (0.70)
BC 260150_22 13 138,653,995 G A 035 —093(1.75%x107% —093 (226 X107 —0.65 (0.55)
BC 64746_61 9 23,100,056 T A 050 033(251x107 033(3.17x107% 0.26 (0.23)
BC 44171855 1 21120631 G A 004 048 (4.50x107 048 (549 %107 043 (063)
BC 293695_19 13 272369031 A G 003 066 (6.08x107 066 (7.30 x 107%) 042 (0.11)

Statistical analyses were performed with GEMMA and GMMAT LMM, GLMM and BSLMM. p-values < 1 x 103 are considered genome-wide significant

AHI Average Height of Inflorescences, BC Bulb Count, BSLMM Bayesian Sparse Linear Mixed Model, Chr Chromosome, GLMM Generalized linear Mixed Model, LMM
Linear Mixed Model, MAF Minor Allele Frequency, PIP Posterior Inclusion Probability, SNP Single Nucleotide Polymorphism, TFC Total Flower Count

Table 3 Genetic architectures of Chouardia litardierei
reproduction-related morphological traits obtained using the
BSLMM

Trait PVE/% PGE/% n.gamma
TFC 55.98 2878 78
AHI 71.95 3747 47
BC 69.87 89.15 18

AHI Average Height of Inflorescences, BC Bulb Count, n.gamma number of
variants with major effect, PGE Proportion of Variance Explained by major effect
variants, PVE Proportion of Variance Explained by genetic data, TFC Total Flower
Count

way, we provided comprehensive coverage of molecular
mechanisms involved in the ecology-driven differentia-
tion process observed among C. litardierei populations.

Population genetic structure

Population-genetic analyses only partially confirmed
the assumed genetic structuring of the studied popula-
tions, where we anticipated that ecological differentiation
would be coupled with the genetic one. While the pop-
ulations from the dry, drought-prone habitats formed a
separate, well-differentiated group, the same was not the
case with the remaining two groups of populations, the
one from the inland meadow habitats and the other from
the seashore habitats. These populations were genetically
indistinguishable on the level of presumed ecotypes and
the individual population level as well (Figs. 4 and 5).
Such results suggest they either recently originated from
a common ancestral population or are experiencing pro-
found contemporary inter-population gene flow, which

acts against any substantial differentiation [80, 81]. In
contrast, dolomite-habitat populations were character-
ized by high inter-population differentiation levels, which
can likely be explained by strong fragmentation and
patchiness of their habitat and subsequent lack of gene
flow among them. However, although these robust results
undoubtedly point to the general genetic structure and
phylogenetic relationships among studied populations
from different habitats, substantially more populations
from across the entire species’ distribution range should
be included for more reliable and comprehensive results.

Genome-environment association analysis

We performed RDA to understand better the genetic
mechanisms enabling the local adaptation of C. litardierei
populations to specific bioclimatic conditions across the
species distribution range. Due to the ubiquitous nature
of environmental correlations, interpreting the obtained
RDA result can easily lead to misleading conclusions
[82]. Therefore, we observe the obtained results only as
general patterns of local adaptation-related mechanisms
and focus more on the genetic aspect of the obtained
results rather than on details regarding specific biocli-
matic variables. Of the tested variables, BIO19 (precipita-
tion of the coldest quarter) was recognized as the most
profound driver of the detected variation. Consequently,
it is unsurprising that most outliers were linked to this
variable. The functional annotation of genomic regions
surrounding outliers identified numerous candidate
genes potentially involved in local adaptations, includ-
ing PFAM domains linked to stress responses and key
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Table 4 SNPs passing genome-wide significance threshold (1 x 1073) in the multivariate GWAS mvLMM analysis of Chouardia
litardierei reproduction-related morphological traits AHI and TFC, and AHI and BC. Listed SNPs were significant in both GEMMA and

GMMAT univariate analyses
Trait SNP Chr Position Effect Allele Ref. Allele MAF Beta1 (AHI) Beta2 (TFC) mvLMM in
GEMMA (p-
value)
AHI +TFC 62254_22 9 181,728,136 C A 0.04 -1.02 —0.65 517x107°
AHI+TFC 423028_13 13 795,057,155 A C 0.03 —-0.80 —0.31 390107
AHI +TFC 230454_16 12 319,053,038 A T 0.14 -0.53 -0.51 153%107
AHI+TFC 423027_44 13 795,056,910 T A 0.03 -0.76 —-0.35 156 %107
AHI +TFC 730317_18 6 4,133,503 C A 036 -0.72 0.04 1.76 X107
AHI+TFC 356033_30 13 518,039,464 A C 035 -0.25 -0.74 198 x107*
AHI+TFC 357122_13 13 523,783,140 C G 027 038 0.31 277 %107
AHI+TFC 45968_38 9 118,116,906 @ G 0.06 -0.02 0.56 349%x107
AHI+TFC 275195_16 13 197,688,818 C T 0.14 -0.22 -049 377 %107
AHI +TFC 593460_76 4 257,849,493 A C 0.04 —0.64 —0.10 460x107
AHI+TFC 669910_120 5 218,775,782 A G 0.14 -041 -0.11 588 %107
AHI +TFC 679100_46 5 47,723,772 G A 0.03 -0.82 —047 956 x 107
AHI+TFC 299462_80 13 294,757,456 T C 0.04 -0.68 —043 992x10™*
Beta1 (AHI) Beta2 (BC)

AHI +BC 178892_42 12 113,762,962 A G 0.29 0.40 0.22 392x10™
AHI +BC 22031_53 8 25,314,160 A G 0.29 0.14 1.07 988 %107

Statistical analyses were performed with GEMMA mvLMM. p-values < 1 x 1073 are considered genome-wide significant

AHI Average Height of Inflorescences, BC Bulb Count, Chr Chromosome, MAF Minor Allele Frequency, mvLMM multivariate Linear Mixed Model, SNP Single Nucleotide
Polymorphism, TFC Total Flower Count
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Fig. 8 Manhattan plot of multivariate genome-wide association study of (A) AHI and TFC traits and (B) AHI and BC traits. The red horizontal

line indicates the genome-wide significance threshold (p= 1x 107%). Each dot on the Manhattan plot signifies a SNP. The strongest associations
have the smallest p-values, so their negative logarithms will be the greatest, appearing higher on the plot. Green dots represent SNPs identified
as significant in the multivariate GWAS analysis and in both GEMMA and GMMAT univariate analyses for each of the two plots
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Table 5 List of genes and PFAM domains for regions of strong association with AHI, TFC, and BC identified by the eggNOG-mapper
v2 database (e-value < 1 x 107%) in Chouardia litardierei, based on the 12 recognized SNPs passing the genome-wide significance
threshold (p=1x 1073) in the single-SNP LMM and multi-SNP BSLMM analysis, 13 SNPs passing the same threshold in the multivariate
GWAS mvLMM analysis of AHI and TFC (MGWAST), and two SNPs passing the threshold in the multivariate GWAS mvLMM analysis of
AHI and BC (MGWAS?2). Names of identified candidate genes associated with the SNPs and PFAMs, along with their relevant biological

functions and references, are provided

Query Method e-value Chr EGGNog PFAM Candidate Genes  Species Relevant References
biological
functions
H 16:294,732,456- GWAS 13470 13 Arginase family OsARG, Oryza sativa, Integral to nitrogen  [102]
294782456_3 (ARG) ARGHT1, Arabidopsis thaliana  metabolism, amino
H 16294732456~ mGWAST 1.85 ARGH2 acid metabolism, 04
294782456_5 and photosynthesis
H 16:604,788,128- GWAS 188¢7'0 13 Cytochrome P450 CYP701 A8, Oryza sativa, Regulates [112-114]
604838128_3 (CYP450) MdCYP716B1, Malus domestica, biosynthesis
CYP88 Hordeum vulgare and catabolism
and Zea mays of phytohormones
and metabolites,
impacts plant
stature, height,
and bulb growth
H 16:294,732,456- GWAS 407e7?" 13 Complex 1 NDUFV1 Arabidopsis thaliana  Essential for growth  [119]
294782456_13 and development
H16:294,732456-  mGWAST 4.07¢ 2 atall stages
294782456_14
H 16:26,452,605- GWAS 1.01e7?'? 13 CCHC-ZFP genes TaCCHC-ZFP Triticum aestivum Regulates (1171
26502605_43 phytohormones
H16:795032,155-  mGWAST 4.28e 273 and metabolites
795082155_54
H 10:25,289,160- mGWAS2 245¢™% 8
25339160_2
H 3:40,408,867- GWAS 206079 3 Aspartic proteases  PhAP Phyllostachys edulis  Supports rapid [118]
40458867_73 (APs) growth and organ
H 5:47,698,772- MGWAST 7.25¢™% 5 development
47748772_17
H 12:23,075,056- GWAS 211 9 Protein tyrosine OsPTK2, OsPTKS, Oryza sativa Involved in abiotic  [123]
23125056_50 kinase (PTK) OsPTK13, OsPTK14, stress tolerance,
H15319,028038-  mGWAST 272¢™ 12 OsPTK18 including cold, heat,
319078038_55 and submergence
H 8:119,576,819- GWAS 2167 6 C2domain QUIRKY, STRUB- Arabidopsis thaliana  Promotes intercel-  [124]
119626819_36 BELIG lular communica-
H16518014464-  mMGWAST 148 13 tion and tissue
518064464_15 morphogenesis
H 16:294,732,456-  GWAS 14873 13 Receptor-like pro- BRI Arabidopsis thaliana  Regulate numerous  [120-122]
294782456_44 tein kinases (RLK) aspects of plant
growth and devel-
opment
H 10:25,289,160- MGWAS2 143e™" 8 Sterol synthase FACKEL (FK) Arabidopsis thaliana  Regulates mem- [125]
25339160_15 brane integrity, cell
division, and tissue
patterning dur-
ing plant develop-
ment
H 10:25,289,160- mGWAS2 957e?! 8 Sugar transporters  LohSTP8, LohSTP12,  Lilium spp. Essential for bulb [126]

25339160_17

LfIERD6.3

formation

AHI Average Height of Inflorescences, BC Bulb Count, Chr Chromosome, GWAS Genome-Wide Association Study, H HiC scaffold, nGWAST multivariate Genome-Wide
Association Study of AHI and TFC, mGWAS2 multivariate Genome-Wide Association Study of AHI and BC, PFAM Protein Family, TFC Total Flower Count
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physiological processes. For example, we recognized the
C2 domain has been shown to boost salt stress tolerance
in soybean [83], the protein kinase domain that regulates
Na */K Thomeostasis under salt stress in Arabidopsis
[84], and the MYB transcription factor that enhances
stress tolerance under salt and water stress in sugarcane
[85]. We also identified TPR16, which has been found to
regulate stress responses and enhance drought tolerance
in Arabidopsis [86] and START domain proteins that aid
in drought stress signaling in chickpeas [87]. Addition-
ally, we identified Rubisco, an enzyme whose activity is
affected by heat stress, thereby limiting photosynthesis
[88], while the recognized DEAD-box gene family and the
RRM1 gene family in wheat and Brassica rapa enhance
cold stress tolerance [89, 90]. PPR, OBERON, and ZF-
C2H2 proteins were also identified as critical regulators
of gene expression in growth and development, influenc-
ing RNA editing [91], interacting with WRKY factors
[92], and modulating transcriptional networks [93].

Heritability and evolutionary significance of reproductive
traits

Studying the genetic basis of adaptive traits presents
significant challenges, mainly due to the complex inter-
actions among polygenic backgrounds and diverse envi-
ronmental factors [22]. Traits observed in natural settings
may exhibit variability influenced by environmental con-
ditions, rendering them less reliable for identifying local
adaptation [44]. To mitigate the effects of phenotypic
plasticity among the groups of studied populations of C.
litardierei, we employed a common-garden experiment
in which individuals from contrasting environments
were cultivated under uniform conditions. This approach
enabled us to differentiate genetic influences from envi-
ronmental effects on trait expression [94], thereby eluci-
dating aspects of the genetic background underlying the
local adaptation process in the studied species.

Our morphometry analysis revealed substantial vari-
ations in reproduction-related traits among the studied
populations but not the groups of populations from dif-
ferent habitats. Such results suggest these populations
experience specific selection pressures in their surround-
ings, unrelated to the habitat types they originated from
(i.e., seashore grasslands, karst poljes’ meadows, and
dolomite bedrocks). These findings are consistent with
Exposito-Alonso et al. [95], who investigated Arabidopsis
populations and found that the fitness heritability traits
varied significantly between experimental sites due to
contrasting natural selection pressures. Such variations
across diverse environments contribute to developing the
populations’ adaptive potential and evolutionary trajec-
tories, further reflected in our study’s high PVE values.
The substantial genetic contribution these values indicate
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underscores the heritable nature of reproductive traits
in C. litardierei, emphasizing the solid genetic founda-
tion critical for understanding evolutionary processes
and local adaptation mechanisms. In contrast to moder-
ate heritabilities previously reported for complex traits in
some other taxa (e.g., Pinus albicaulis [96] and Populus
[97]), our GWAS study identified a notably higher herita-
bility for the average height of inflorescences (AHI). With
PVE and PGE values of 71.95% and 37.47%, respectively,
the high heritability of AHI suggests that inflorescence
height, a trait important for pollination efficiency and
reproductive success [98], holds significant evolutionary
importance. Furthermore, the high PGE value for total
flower count (TFC) emphasizes the critical role of major
effect variants in shaping reproductive traits. This finding
is consistent with studies in other species, such as Silene
dioica and Silene latifolia [99], where high PGE values
underscore the significant contribution of major effect
loci to phenotypic variation in cumulative flowering.
Although discussing our findings in the context of their
biological meaning and importance for evolution and the
local adaptation process in studied species is specula-
tive, some assumptions can still be made. The trade-off
between sexual and asexual reproduction is of major evo-
lutionary importance and develops in response to various
biotic and abiotic elements in different environments.
It is considered that on the evolutionary scale, species
orientation towards clonal reproduction will occur as a
response to various pressures endangering the success
of sexual reproduction [100]. In the case of C. litardierei,
among many others, the habitats occupied by the stud-
ied population groups differ in a way that has signifi-
cant ecological importance. Although coping with many
challenges, populations growing on dolomite slopes will
never experience floods of any intensity. On the other
hand, populations from karst poljes or seashore mead-
ows are flooded regularly for prolonged periods [34, 37],
which puts their sexual reproduction at risk and makes
it irregular. Consequently, the genetics underlying a bias
toward clonal reproduction observed in populations
from karst poljes and areas near the sea can be linked
with the evolutionary shift favoring clonal reproduction.
At the same time, the results obtained for the inflores-
cence height and the total number of flowers were even
more population-specific, as their values overlapped sub-
stantially among all three studied groups of populations
(Fig. 3). Such results suggested that genetic mechanisms
underlying these pollination success-related variations
have developed independently of perceived ecological
pressures in different habitats. They are likely unrelated
to abiotic variables we considered important when clas-
sifying these habitats (e.g., water and nutrients availabil-
ity or drought and temperature stress). Instead, they are
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possibly linked to biotic elements outside this research’s
scope, such as local pollinator assemblage or predomi-
nant vegetation type [101-103].

Genetic loci and functional pathways associated

with reproductive traits in C. litardierei

Using univariate and multivariate GWAS approaches,
we identified several loci associated with reproduction-
related traits in C. litardierei. Functional annotation of
the genomic regions surrounding these SNP loci revealed
their association with genomic regions responsible for
coding key protein families involved in crucial biological
pathways related to reproduction. We observed the piv-
otal role of nitrogen metabolism mediated by arginase
(ARG), which in O. sativa is encoded by OsARG, influ-
encing plant height, growth, and development through
its impact on amino acid metabolism and photosynthe-
sis [104, 105]. The silencing of arginase genes ARGAH1
and ARGAH?2 in Arabidopsis increased nitric oxide (NO)
synthase activity, reducing nitrogen levels [106]. Given
that nitrogen is essential for almost all plant metabolic
processes, including the formation of macromolecules
necessary for growth [107, 108], its deficiency can sig-
nificantly impede plant productivity by inhibiting photo-
synthesis [109, 110], growth potential [111], CO, uptake,
and carbohydrate synthesis [112]. We also identified SNP
loci in regions encoding enzymes from the cytochrome
P450 family involved in the biosynthesis and catabolism
of phytohormones and metabolites [113]. For example, in
O. sativa, CYP701 A8, a member of the cytochrome P450
family, regulates gibberellin (GA) phytohormone biosyn-
thesis [114], while in Malus domestica, MdCYP716B1
influences plant height by modulating GA levels [115].
Similarly, mutations in CYP88 disrupt gibberellin bio-
synthesis, resulting in altered plant stature in barley and
maize [116]. Our findings suggest that GAs could stimu-
late bulb growth by enhancing cell division and regulating
processes such as sugar accumulation, which is essen-
tial for dormancy release and growth initiation in bulbs
[117]. We identified significant SNP loci within genomic
regions associated with CCHC-ZFP genes, which are
known to play critical roles in plant growth, develop-
ment, and responses to biotic and abiotic stresses [118].
Sun et al. [119] have further demonstrated that TaCCHC-
ZFP genes in Triticum aestivum regulate plant growth
and stress adaptation. Furthermore, we identified signifi-
cant SNP loci within the genomic region associated with
aspartic proteases (APs), crucial for rapid growth and
organ development, as demonstrated in Phyllostachys
edulis (Moso bamboo) and its associated PhAPs [120].
SNP loci within the genomic region encoding Complex I
were also discovered; deficiencies in Complex I, specifi-
cally due to the absence of the NDUFV1 gene, are known
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to slow down growth and development at all life stages,
as observed in A. thaliana mutants [121]. Additionally,
we detected mutations in genetic regions encoding recep-
tor-like kinases (RLKs), which are crucial for perceiving
brassinosteroids (BR) and regulating essential growth
processes, as exemplified by the BRI1 receptor in A. thali-
ana [122-124]. Regions encoding protein tyrosine kinases
(PTKs) were also recorded in the functional annotation of
C. litardierei sequences. In O. sativa, OsPTK2, OsPTKS,
OsPTK13, OsPTK14, and OsPTK18 were identified as
stress-responsive PTKs involved in abiotic stress toler-
ance, including cold, heat, and submergence [125]. In the
context of flower development, we identified variations
within the regions encoding the C2 domain, including
the proteins QUIRKY and STRUBBELIG, which are cru-
cial for intercellular communication and tissue morpho-
genesis in A. thaliana, processes vital for reproductive
structure development [126]. We identified significant
SNP loci within genomic regions associated with sterol
synthase, and in A. thaliana, mutations in the FACKEL
(FK) gene, which encodes a sterol C-14 reductase involved
in sterol biosynthesis, disrupt cell division and tissue pat-
terning, leading to stunted growth and abnormal devel-
opment of key structures like cotyledons, hypocotyl, and
meristem [127]. Also, we detected mutations in genetic
regions encoding sugar transporters. Huang et al. [128]
found that the expression of key sugar transporter genes,
such as LohSTP8, LohSTP12, and LfIERD6.3, was upregu-
lated during critical stages of bulb formation, including
bulblet initiation, suggesting these genes play vital roles in
sucrose metabolism and starch accumulation during bulb
development in lilies (Lilium spp.).

Study limitations and considerations for future research
Despite giving valuable insight into molecular mecha-
nisms underlying local adaptation in studied C. litardierei
populations, this research also has limitations worth
mentioning, and perhaps the most important one is the
selection of the ddRADseq approach for the DNA library
preparation. As one of the most popular reduced rep-
resentation sequencing approaches, known for its high
robustness, flexibility, and cost-efficiency, ddRADseq has
often been used in similar research [129-131]. However,
ddRADseq, like other members of a RADseq family, has a
significant limitation regarding the genome scan resolu-
tion [132]. When implementing any of the RADseqs for
the DNA library preparation, a substantial portion of the
genomic information remains unexplored, particularly as
the size of the studied genome increases. Consequently,
given the relatively large genome size of C. litardierei (3.7
Gb) [40], the complexity of our results is also influenced
by this factor.
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Conclusion

This study provides valuable insights into the genetic
basis of local adaptation and reproduction-related traits
in selected Chouardia litardierei populations across
contrasting environments. Population-genetic analy-
ses revealed partial genetic structuring, with popu-
lations from dry, drought-prone habitats forming a
distinct, well-differentiated group. In contrast, those
from inland meadows and seashore habitats showed
no clear genetic structuring, likely due to recent com-
mon ancestry or contemporary gene flow. Precipitation
in the coldest quarter was recognized as a key driver of
adaptive genetic variation. Furthermore, the GEA study
identified numerous genes linked mostly to various abi-
otic stress responses and key physiological processes,
improving our understanding of molecular mechanisms
enabling local adaptation of natural populations coping
with contrasting environmental conditions. By imple-
menting comprehensive GWAS approaches, we identi-
fied numerous loci significant for reproduction-related
traits’ development in studied populations. Functional
annotation of the associated genomic regions revealed
key protein families involved in vital biological pathways
related to reproduction, including nitrogen metabolism,
phytohormone regulation, and floral organ development.
High narrow-sense heritability estimates indicated that
genetic factors accounted for over 55% of the phenotypic
variance in each trait. Among these, the average height
of inflorescences (AHI) showed the highest heritability of
71.95%, underscoring its significant role in reproductive
success. These findings enhance our understanding of the
genetic mechanisms driving local adaptation in C. litar-
dierei and establish a foundation for future plant adap-
tation and speciation studies. This research emphasizes
the complexity of the genetic architecture driving phe-
notypic diversity in plants. It highlights the importance
of genomic approaches in investigating adaptive traits in
non-model species facing various ecological pressures.
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Additional file 1. Locations of sampled Chouardia litardierei populations
with their associated habitat types. Locations of sampled C. litardierei
populations and their associated habitat types. This file provides the
geographic coordinates (latitude and longitude) for each population site,
along with the habitat type for each location. Populations were sampled
from three distinct habitat types: meadow-karst poljes, seashore-grass-
land, and dolomite-bedrock. The table includes populations from both
Croatia and Montenegro.

Additional file 2. PCA result based on 19 bioclimatic variables for the
localities of the studied populations and the common garden experiment
site. The principal component analysis (PCA) was conducted based on

19 bioclimatic variables to assess the environmental conditions of the
localities of the studied populations and the common garden experiment
site. These variables represent a comprehensive suite of climatic factors,
including temperature and precipitation metrics, which are critical for
understanding ecological and environmental diversity. The temperature-
related variables analyzed include Annual Mean Temperature (BIO1),
Mean Diurnal Range (BIO2), Isothermality (BIO3), Temperature Seasonality
(BIO4), Maximum Temperature of the Warmest Month (BIO5), Minimum
Temperature of the Coldest Month (BIO6), Temperature Annual Range
(BIO7), and the mean temperatures for specific seasonal periods: Wettest
Quarter (BIO8), Driest Quarter (BIO9), Warmest Quarter (BIO10), and Cold-
est Quarter (BIO11). The precipitation-related variables encompass Annual
Precipitation (BIO12), Precipitation of the Wettest Month (BIO13), Precipita-
tion of the Driest Month (BIO14), Precipitation Seasonality (BIO15), and
the precipitation levels during the Wettest Quarter (BIO16), Driest Quarter
(BIO17), Warmest Quarter (BIO18), and Coldest Quarter (BIO19).

Additional file 3. Cross-entropy vs. number of ancestral populations in
sNMF analysis on Chouardia litardirei. Description of Data: This figure
shows the relationship between the number of ancestral populations
(K) and the cross-entropy values from an sSNMF analysis. Cross-entropy
decreases as the number of ancestral populations increases, eventually
stabilizing, indicating an optimal K where the model best explains the
genetic structure.

Additional file 4. Phylogenetic relationships among Chouardia litardierei
populations based on Nei's genetic distances. The unrooted phylogenetic
tree illustrates the relationships among Chouardia litardierei populations
based on Nei's genetic distances, highlighting genetic divergence across
habitats. The tree was constructed by calculating Nei’s genetic distances
using the "adegenet” package in R, followed by bootstrapping (1,000 rep-
licates) with the “poppr” package. The final tree was visualized in MEGA7
after conversion to Newick format using the “ape” package.

Additional file 5. EggNOG output file for the 83 most significant SNP loci
associated with four distinct bioclimatic variables, identified as being most
relevant to the traits under investigation. The EggNOG output file provides
functional annotations for the 83 most significant SNP loci associated

with four key bioclimatic variables, identified as crucial to the traits under
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investigation. These variables include bio4 (Temperature Seasonality),
bio8 (Mean Temperature of Wettest Quarter), bio9 (Mean Temperature
of Driest Quarter), and bio19 (Precipitation of Coldest Quarter). Using
the reference genome, sequences were generated for each significant
SNP, covering a 50-kilobase region, with 25 kilobases upstream and
downstream of each SNP.

Additional file 6. SNPs passing the genome-wide significance threshold
in the single-SNP linear mixed model (LMM) analysis in both GEMMA
and GMMAT analyses for each reproduction-related morphological trait
of Chouardia litardierei: TFC, AHI and BC. This file details the results of the
single-SNP linear mixed model (LMM) analyses performed using both
GEMMA and GMMAT for C. litardierei. It specifically presents the single
nucleotide polymorphisms (SNPs) that passed the genome-wide sig-
nificance threshold (p-values < 1x 10°) for each reproduction-related
morphological trait, including Average Height of Inflorescences (AHI),
Total Flower Count (TFC), and Bulb Count (BC) per genotype. The LMM
was fitted on a dataset comprising 23,315 SNPs and 214 individuals.

Additional file 7. SNPs identified as having a major sparse effect
(PIP>0.1) on the AHI, TFC and BC traits of Chouardia litardierei in the
multi-SNP Bayesian sparse linear mixed model (BSLMM) analysis. This
file presents the results of the Bayesian sparse linear mixed model
(BSLMM) analysis conducted on 23,315 single nucleotide polymor-
phisms (SNPs) across 214 individuals of C. litardierei. It highlights SNPs
identified as having a major sparse effect (posterior inclusion prob-
ability, PIP>0.1) on three key reproductive traits: Average Height of
Inflorescences (AHI), Total Flower Count (TFC), and Bulb Count (BC) per
genotype.

Additional file 8. Means, medians, and 95% equal tail posterior prob-
ability intervals (95% ETPPIs) of hyperparameters estimated from the
Bayesian sparse linear mixed model (BSLMM) in reproduction-related
morphological traits AHI, TFC and BC of Chouardia litardierei. This file
presents the means, medians, and 95% equal tail posterior probability
intervals (95% ETPPIs) of hyperparameters estimated from the Bayesian
sparse linear mixed model (BSLMM) analysis focused on reproduction-
related morphological traits in C. litardierei, specifically Average Height
of Inflorescences (AHI), Total Flower Count (TFC), and Bulb Count (BC).
The BSLMM was fitted using a dataset of 23,315 single nucleotide
polymorphisms (SNPs) across 214 individuals. The file includes detailed
estimates of hyperparameters such as h (the proportion of phenotypic
variance explained by variants), n.gamma (the number of variants with
major effect), pi (the proportion of variants with non-zero effects), PGE
(the proportion of genetic variance explained by variants with major
effect), PVE (the proportion of phenotypic variance explained by vari-
ants), and rho (the proportion of genetic variance explained by variants
with major effect).

Additional file 9. SNPs passing the genome-wide significance threshold
(p<1x 10°3) in the multivariate linear mixed model (mvLMM) analysis
for AHI and TFC traits of Chouardia litardierei in GEMMA multivariate
GWAS. This file lists the single nucleotide polymorphisms (SNPs) that
passed the genome-wide significance threshold (p < 1x10 ) in the
multivariate linear mixed model (mvLMM) analysis for the Average
Height of Inflorescences (AHI) and Total Flower Count (TFC) traits of C.
litardierei, using multivariate genome-wide association studies (GWAS)
conducted with GEMMA. The mvLMM in GEMMA was fitted on a data-
set comprising 23,315 SNPs from 214 individuals.

Additional file 10. SNPs passing the genome-wide significance
threshold (p < 1x 10 3) in the multivariate linear mixed model (mvLMM)
analysis for AHI and BC traits of Chouardia litardierei in GEMMA multi-
variate GWAS. This file lists the single nucleotide polymorphisms (SNPs)
that passed the genome-wide significance threshold (p<1x107) in
the multivariate linear mixed model (mvLMM) analysis for the Average
Height of Inflorescences (AHI) and Bulb Count (BC) traits of C. litardierei,
using multivariate genome-wide association studies (GWAS) conducted
with GEMMA. The mvLMM in GEMMA was fitted on a dataset compris-
ing 23,315 SNPs from 214 individuals.

Additional file 11. Frequency of effect alleles across populations for
significant SNPs identified in the single-SNP LMM analysis (GEMMA and

GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed
the genome-wide significance threshold (1 10 3). The analysis also
includes SNPs meeting the same threshold in the multivariate GWAS. The
corresponding SNPs are detailed in Table 2 and Table 4 of the manuscript.
Overlapping points of different colors represent SNPs associated with dif-
ferent traits, with each color corresponding to a specific trait. The overlap
occurs because some SNPs are shared across traits, leading to their place-
ment one in front of the other. AHI, Average Height of Inflorescences; BC,
Bulb Count; TFC, Total Flower Count. The data represents the frequency

of effect alleles for significant SNPs identified through different GWAS
approaches, including single-SNP LMM analyses (GEMMA and GMMAT),
multi-SNP BSLMM analysis, and multivariate GWAS. All SNPs included
surpassed the genome-wide significance threshold of 1x 10 >. The dataset
also captures overlaps of SNPs associated with different traits—AHI
(Average Height of Inflorescences), BC (Bulb Count), and TFC (Total Flower
Count)—with overlapping points indicating shared SNPs across traits.
Frequencies are stratified by population, allowing for comparative analysis
of allele distributions.

Additional file 12. EggNOG output file for 12 SNPs that exceeded the
genome-wide significance threshold (1x 1073) in both the single-SNP
LMM and multi-SNP BSLMM analyses of the Chouardia litardierei traits:
TFC, AHI, and BC. This file lists the results of eggNOG-mapper v2 analysis
for regions associated with 12 SNPs that exceeded the genome-wide sig-
nificance threshold (1x 1073) in both the single-SNP LMM and multi-SNP
BSLMM analyses of TFC, AHI, and BC traits in C. litardierei.

Additional file 13. EggNOG output file for 13 SNP loci that exceeded the
genome-wide significance threshold (1x 107%) in the multivariate GWAS
analysis of the Chouardia litardierei traits: AHI and TFC. This file lists the
results of eggNOG-mapper v2 analysis for regions associated with 13 SNPs
that exceeded the genome-wide significance threshold (1 x 1 073 in the
multivariate GWAS BSLMM analysis of the C. litardierei traits: AHI and TFC.

Additional file 14: Table 1. EggNOG output file for 2 SNP loci that exceeded
the genome-wide significance threshold (1 x 10~3) in the multivariate
GWAS analysis of the Chouardia litardierei traits: AHI and BC. This file lists
the results of eggNOG-mapper v2 analysis for regions associated with 13
SNPs that exceeded the genome-wide significance threshold (1 x 1073) in
the multivariate GWAS BSLMM analysis of the C. litardierei traits: AHI and
BC.
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Additional File 1

Table 1. Locations of sampled Chouardia litardierei populations with their associated habitat

types.
Population/Location Country Latitude (N) Longitude (E) Habitat Type
Bjelopolje Croatia 44.693754° 15.773682° Meadow — karst poljes
Cetina (Pasko polje) Croatia 43.940922° 16.436367° Meadow — karst poljes
Budoske Bare Montenegro  42.743747° 18.926361° Meadow — karst poljes
Pag (Kolansko blato)  Croatia 44.514886° 14.919922° Seashore - grassland
Nin Croatia 44.249564° 15.172015° Seashore - grassland
Vrana Lake Croatia 43.937292° 15.514689° Seashore - grassland
Lovéen Montenegro  42.377169° 18.843117° Dolomite - bedrock
Skadar Lake Montenegro  42.326486° 19.069464° Dolomite - bedrock
Pandurica Montenegro  42.721628° 18.962442° Dolomite - bedrock
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Figure 1. PCA result based on 19 bioclimatic variables for the localities of the studied
populations and the common garden experiment site. BIO1 - Annual Mean Temperature; BIO2
- Mean Diurnal Range; BIO3 - Isothermality; BIO4 - Temperature Seasonality; BIO5 - Max
Temperature of Warmest Month; BIO6 - Min Temperature of Coldest Month; BIO7 -
Temperature Annual Range; BIO8 - Mean Temperature of Wettest Quarter; BIO9 - Mean
Temperature of Driest Quarter; BIO10 - Mean Temperature of Warmest Quarter; BIO11 -
Mean Temperature of Coldest Quarter; BIO12 - Annual Precipitation; BIO13 - Precipitation of
Wettest Month; BIO14 - Precipitation of Driest Month; BIO15 - Precipitation Seasonality;
BIO16 - Precipitation of Wettest Quarter; BIO17 - Precipitation of Driest Quarter; BIO18 -
Precipitation of Warmest Quarter; BIO19 - Precipitation of Coldest Quarter
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Figure 1. Cross-entropy vs. number of ancestral populations in SNMF analysis on Chouardia litardierei. Description of Data: This figure shows
the relationship between the number of ancestral populations (K) and the cross-entropy values from an SNMF analysis. Cross-entropy decreases
as the number of ancestral populations increases, eventually stabilizing, indicating an optimal K where the model best explains the genetic structure.
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Figure 1. Phylogenetic relationships among Chouardia litardierei populations based on Nei’s genetic distances. The unrooted phylogenetic tree
illustrates the relationships among C. litardierei populations based on Nei’s genetic distances, highlighting genetic divergence across habitats. The
tree was constructed by calculating Nei’s genetic distances using the “adegenet” package in R, followed by bootstrapping (1,000 replicates) with
the “poppr” package. The final tree was visualized in MEGA7 after conversion to Newick format using the “ape” package.
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Table 1. SNPs passing the genome-wide significance threshold in the single-SNP linear mixed model (LMM) analysis in both GEMMA and GMMAT analyses
for each reproduction-related morphological trait of Chouardia litardierei: TFC, AHI, and BC.

Trait

TFC

AHI

BC

SNP

15052 36
475181 57
682731 21
356033 30
439681 33
380447 37
45968 38
62254 22
423028 13
423027 44
357122 13
230454 16
536624 21
593460 76
659179 34
534889 25
679100 46
669910 120
167406 45
299462 80
137109 19
228909 34
218952 18
631549 20
96271 20
53067 33
730317 18
403881 18
383241 14
377817 17
360081 66
794075 23
104294 72
253435 30
642566 _22

Chr

Position

158551682
1067391
63843877
518039464
113066723
615321041
118116906
181728136
795057155
795056910
523783140
319053038
40433867
257849493
178097173
32961390
47723772
218775782
6489057
294757456
119021216
313636308
27381126
75595465
142377502
147851683
4133503
716013518
626409144
604813128
534790629
99621462
170303215
107335971
104574563

olinllelrgisibgabdinlieldisliolinlbgilialallgiali libghdinibgiolisibdiololilalbginlkdie!

Reference allele

sdidalialigialialkgbginlinlililllollolrgialtdiolialiolisli=lnlbgiolrdinlbgrgieltdiola!

Effect allele

Single-SNP LMM Analysis £ (p-
value) in GMMAT

5.76 x 10 (0.6915)
1.83 x 105 (0.4512)
3.12 x 10 (0.5882)
4.45 x 105 (0.4788)
6.50 x 105 (0.8912)
8.28 x 107 (0.4479)
9.07 x 105 (-0.3201)
1.14 x 10 (1.0287)
1.04 x 10 (0.7959)
3.69 x 107 (0.7564)
7.10 x 107 (-0.3847)
7.47 x 10° (0.5503)
1.98 x 10 (1.0158)
2.08 x 10 (0.6376)
2.29 x 10 (-0.6336)
2.37 x 10 (-0.4168)
2.64 x 10 (0.8166)
2.64 x 10 (0.4081)
2.89 x 10 (0.6809)
3.02 x 10% (0.6737)
3.21 x 10 (-0.6327)
3.77 x 10 (-0.3962)
4.60 x 10* (0.5300)
5.10 x 10 (0.5409)
5.60 x 10 (0.9148)
5.85 x 10 (0.3589)
6.20 x 10 (0.7198)
6.29 x 10 (0.5012)
7.01 x 10% (0.7275)
7.09 x 10 (0.6227)
7.37 x 10* (0.5730)
7.69 x 10 (1.2110)
8.39 x 10 (-0.5422)
6.87 x 108 (-0.4151)
3.05 x 10 (1.0706)

Additional File 6

Single-SNP LMM Analysis £ (p-

value) in GEMMA

2.77 x 10 (~0.9771)
8.85 x 10 (—0.5857)
6.59 x 10 (~0.8690)
1.25 x 10~ (—0.7181)
1.69 x 10~ (—1.2873)
3.06 x 107 (~0.7120)
7.32 % 10* (0.5426)

2.29 x 10 (~1.0287)
1.69 x 10~ (~0.7959)
5.39 x 10°5 (=0.7564)
9.88 x 10 (0.3847)

1.03 x 10 (~0.5503)
2.57 x 10 (~1.0158)
2.69 x 10 (~0.6376)
2.94 x 10 (0.6336)

3.03 x 10 (0.4168)

3.36 x 10 (~0.8166)
3.36 x 10 (~0.4081)
3.66 x 10 (~0.6809)
3.81 x 10 (~0.6737)
4.03 x 10*(0.6327)

4.70 x 10* (0.3962)

5.66 x 10 (=0.5300)
6.24 x 10 (=0.5409)
6.82 x 10 (~0.9148)
7.11 x 10* (—0.3589)
7.50 x 10 (=0.7198)
7.61 x 10 (~0.5012)
8.43 x 10 (~0.7275)
8.51 x 10 (~0.6227)
8.84 x 10 (0.5730)
9.20 x 10 (~1.2110)
9.99 x 10 (0.5422)

1.83x 107 (0.4151)
1.98 x 107 (1.0706)
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241986 29 12 6101088 G A 3.19 x 10 (—1.2847) 1.62x 107 (1.2847)
649437 15 5 13468654 A G 3.36 x 107 (—0.8847) 231 %107 (0.8847)
656817 53 5 169059242 T A 5.16 x 107 (—0.6242) 2.63x107 (0.6242)
154558 21 11 18248593 T C 7.21 x 1076 (—0.5456) 1.92x 107 (0.5456)
203263 28 12 212399118 T C 7.24 % 10°° (—1.1158) 1.07 x 10 (1.1158)
326909 111 13 408253490 T C 8.22 x 10°°(0.4218) 3.92x107 (0.4218)
713226 25 6 119601819 T A 1.38 x 10°* (~0.5002) 466 x 107 (0.5002)
76595 24 9 65171073 C A 1.39 x 10°* (-0.5538) 117 x 107 (0.5538)
22031 53 8 25314160 A G 1.42 x 10 (0.3055) 2.05x 107 (0.3055)
449864 18 1 146668342 G T 1.57 x 10°* (-0.6531) 3.10 x 107 (0.6531)
177168 43 12 105567044 T G 1.98 x 10°* (~1.2990) 2.65x 10 (1.2990)
491467 27 2 39704043 T G 2.17 x 10 (~0.3640) 476 x 107 (0.3640)
362848 15 13 546154157 T C 2.92 x 107 (0.5494) 6.82x 107 (0.5494)
188007 17 12 152850324 A T 3.03 x 10 (—1.0653) 1.25x 10 (1.0653)
154104 24 11 180657987 A G 3.97 x 107 (~0.4466) 2.81x 107 (0.4466)
163618_59 11 68980362 A C 4.11 x 107 (0.4063) 231x107 (0.4063)
178892 42 12 113762962 A G 4.19 x 10°° (—0.3068) 178 x 107 (0.3068)
688782 16 5 89357080 A G 4.50 x 10°°(0.2832) 2.35x 107 (0.2833)
5022 15 8 122022233 A C 5.14 x 10 (~0.3252) 251107 (0.3252)
14652 22 8 157168515 A G 5.39 x 10 (~0.5751) 320x 107 (0.5751)
571070 26 4 17043373 T C 6.74 x 10°* (0.3067) 2.14x 107 (0.3067)
661577 27 5 185906413 C G 7.33 x 10°* (0.8340) 1.29x 10°° (0.8341)
824846 131 12 205849898 G C 8.13 x 105 (—0.4234) 5.42x107 (0.4234)
309278 17 13 33471278 A C 8.52 x 105 (—0.5773) 751107 (0.5773)
775464 44 7 208947973 A G 9.47 x 10 (0.3681) 4.56x 107 (0.3681)
236426 14 12 40747253 G T 9.54 x 10 (~0.6723) 8.01x 107 (0.6723)
426598 87 13 810283382 A T 9.55 x 10°* (0.2838) 2.15x 107 (0.2838)
2730 51 8 110403271 A C 9.68 x 10 (~0.2893) 224x107 (0.2893)
323413 32 13 39372258 A G 9.92 x 105 (~1.1485) 1.21 % 10°° (1.1485)
202604 47 12 210026545 G A 1.02 x 10°* (—0.4234) 5.42 %107 (0.4234)
101366 35 10 160674132 G A 1.14 x 10 * (—0.7825) 1.13x10°° (0.7825)
208646 19 12 234004964 C T 1.18 x 10°* (~0.3534) 371x 107 (0.3534)
717130 26 6 136955413 A G 1.37 x 10°* (—0.3974) 3.83x 107 (0.3974)
291775 18 13 26477605 T C 1.39 x 10°* (<0.7174) 9.13x 107 (0.7174)
201641 32 12 205775063 A C 1.40 x 10°* (—0.7385) 8.95x 107 (0.7385)
275195 16 13 197688818 C T 1.53 x 10+ (0.3184) 2.93x107 (0.3184)
90763 61 10 121305153 G T 1.57 x 10* (—0.2903) 2.45x107 (0.2903)
261805 25 13 144317310 T C 1.73 x 10* (—0.4124) 490 x 107 (0.4124)
260150 22 13 138653995 G A 1.75 x 10 (0.9271) 1.01 x 10° (0.9271)
206213 23 12 225086121 A T 1.76 x 10* (—0.6725) 781 x 107 (0.6725)
726003 42 6 24894175 G T 1.88 x 10+ (0.2737) 1.91 x 107 (0.2737)
572458 29 4 175624353 T C 1.96 x 10* (—0.6042) 6.72x 107 (0.6042)
179046_40 12 114292861 C T 2.01 x 10°*(0.5540) 5.90 x 107 (0.5540)
680794 16 5 55125312 A C 2.27 x 10 (~0.5969) 8.73x 107 (0.5969)
226322 15 12 303921342 T C 2.46 x 10 (~0.9300) 9.18 x 107 (0.9300)
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64746 61 9 23100056 T A 2.51 x 10 (—0.3266) 3.06 x 107 (0.3266)
430075 45 13 822183802 T C 2.72 % 10 (—0.2848) 2.46 x 107 (0.2848)
598489 119 4 275215624 C G 2.84 x 10 (0.2950) 3.41 %107 (0.2950)
360276 31 13 535270309 T A 3.01 x 10 (0.5274) 581 x 107 (0.5274)
380447 37 13 615321041 T A 3.16 x 10*(0.4729) 6.48 x 107 (0.4729)
651099 28 5 143602840 A T 3.17 x 10* (~0.4787) 736 x 107 (0.4787)
445961 30 1 135087176 C T 3.24 x 10 (~0.2652) 3.67 %107 (0.2652)
44175 36 9 110634998 T C 3.44 x 10 (0.2755) 275 %107 (0.2755)
331309 70 13 425001652 G C 3.53 x 10 (~0.9734) 129 x 10 (0.9734)
252444 137 13 102435018 A G 3.92 x 107 (~0.2657) 3.72x 107 (0.2657)
648614 50 5 130563585 T C 3.97 x 10 (~0.3560) 4.01 x 107 (0.3560)
89984 62 10 118298581 A C 421 % 107 (—0.3812) 4.66 x 107 (0.3812)
531929 17 3 21899113 T C 4.32 x 107 (0.2056) 291 x 107 (0.2056)
325231 32 13 401796448 T A 4.45 x 107 (—0.2695) 311 x 107 (0.2695)
441718 55 1 121120631 G A 4.50 x 10~ (~0.4841) 4.88 % 107 (0.4841)
3438 34 8 113956553 A G 4.66 x 10~ (~0.4134) 514 x 107 (0.4134)
591772 23 4 250745030 C T 4.80 x 10~ (~0.9506) 1.12 % 10 (0.9506)
201876 77 12 206762918 T C 4.92 x 10 (~0.6514) 8.24 x 107 (0.6514)
554483 14 4 101633733 G T 5.13 x 10 (0.5548) 5.94 % 107 (0.5548)
447402 22 1 139232915 C T 5.15 x 10 (~0.5579) 6.07x 107 (0.5579)
228909 34 12 313636308 A T 5.37 x 10 (~0.3041) 3.42x107 (0.3041)
769726 28 7 191343469 A T 5.41 x 10 (0.3239) 2.34%107 (0.3239)
66901 34 9 30152315 T €] 5.43 x 10 (~0.4763) 581 %107 (0.4763)
272420 33 13 186297710 T G 5.44 x 10 (0.3702) 422 %107 (0.3702)
80554 31 9 7962018 A €] 5.69 x 10 (0.6022) 6.55x 107 (0.6022)
339452 85 13 455653812 A C 5.71 x 10 (~0.2736) 2.35% 107 (0.2736)
560733 51 4 127515444 T C 5.82 x 10 (0.5123) 517x107 (0.5123)
546891 140 3 82875693 A C 5.88 x 10 (=0.5194) 526 %107 (0.5194)
71435 14 9 44021754 G T 5.98 x 10 (~0.2466) 3.77x 107 (0.2466)
293695 19 13 272369031 A G 6.08 x 10 (~0.6642) 8.83x 107 (0.6642)
392720 57 13 668772912 €] T 6.32 x 10 (0.3679) 4.62 %107 (0.3679)
466588 35 1 89484395 A C 6.72 x 10 (0.4678) 6.56 x 107 (0.4678)
48910 53 9 12893230 T G 7.13 x 10 (0.4002) 450 x 107 (0.4002)
763026 20 7 1681982 T G 7.41 x 10 (0.2608) 3.48x 107 (0.2608)
445498 105 1 133595095 T G 7.64 x 10 (0.3789) 4.90 x 107 (0.3789)
672852 31 5 23571109 A C 7.82 x 10 (=0.7870) 9.53x 107 (0.7870)
659179 34 5 178097173 A G 7.97 x 10 (~0.4594) 6.72x 107 (0.4594)
793910 83 7 98929040 C T 8.09 x 10~ (0.6528) 8.19x 107 (0.6528)

Statistical analyses were performed with GEMMA and GMMAT. LMM was fitted on 23,315 SNPs. p-values < 1 x 107 are genome-wide significant. AHI, Average Height of Inflorescences per
genotype; BC, Bulbs Count per genotype; Chr, Chromosome; LMM, Linear Mixed Model; SNP, Single Nucleotide Polymorphism; TFC, Total Flower Count per genotype.
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Table 1. SNPs identified as having a major sparse effect (PIP > 0.1) on the AHI, TFC, and BC traits of

Additional File 7

Chouardia litardierei in the multi-SNP Bayesian sparse linear mixed model (BSLMM) analysis.

Trait SNP

TFC 750129 37
750129 37
750129 37
750129 37
750129 37
750129 37
750129 37
750129 37
750129 37

AHI 299462 80
377817 17
752051 37
383241 14
536624 21
447236 67
487582 35
272531 23
643010 44
175155_40
565532 39
626164 80
51325 24
708355 18
206941 26
634062 21
131957 13
543242 19
728823 24
210123 39
155402 49

BC 713226 25
241986 29
291775 18
441718 55
381378 15
260150 22
26230 86
64746 61
755807 21
444730 73
296029 34
293695 19
108823 24
490848 21

Chr

Position

113120650
113066723
105055239
74279195
144638725
13072555
123155593
156375740
793523075
294757456
604813128
123155593
626409144
40433867
138736826
25023093
186930464
106406258
97957904
14626431
52896152
138708252
101851366
227677762
8802327
97222552
69802074
35185140
239066297
18495521
119601819
6101088
26477605
121120631
619145251
138653995
4273979
23100056
139325995
13072555
282177106
272369031
185496013
37042132

Multi-SNP BSLMM

Analysis g (PIP)
-0.324 (0.150)
-0.527 (0.142)
0.295 (0.116)
0.211 (0.112)
-0.226 (0.110)
-0.225 (0.110)
0.175 (0.104)
0.176 (0.104)
-0.306 (0.095)
-0.429 (0.361)
-0.429 (0.345)
0.327 (0.329)
-0.422 (0.222)
-0.512 (0.206)
-0.307 (0.174)
0.249 (0.170)
-0.455 (0.152)
0.401 (0.150)
-0.387 (0.136)
-0.287 (0.134)
0.287 (0.126)
-0.357 (0.115)
0.398 (0.114)
-0.417 (0.110)
-0.252 (0.109)
-0.341 (0.108)
0.362 (0.106)
0.334 (0.104)
-0.321 (0.103)
-0.217 (0.099)
0.448 (0.955)
0.942 (0.909)
0.571 (0.698)
0.425 (0.627)
-0.510 (0.594)
-0.653 (0.547)
0.299 (0.316)
0.256 (0.233)
-0.447 (0.182)
-0.351 (0.130)
0.469 (0.115)
0.418 (0.108)
-0.504 (0.100)
0.294 (0.097)

BSLMM was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; BC, Bulb Count per genotype; BSLMM,
Bayesian Sparse Linear Mixed Model; Chr, Chromosome; PIP, Posterior Inclusion Probability; SNP, Single Nucleotide

Polymorphism; TFC, Total Flower Count per genotype.
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Additional File 8

Table 1. Means, medians, and 95% equal tail posterior probability intervals (95% ETPPIs) of hyperparameters
estimated from the Bayesian sparse linear mixed model (BSLMM) in reproduction-related morphological

traits AHI, TFC, and BC of Chouardia litardierei.

Trait Hyperparameter
AHI h

PVE

rho

PGE

pi

n.gamma
TFC h

PVE

rho

PGE

pi

n.gamma
BC h

PVE

rho

PGE

pi

n.gamma

Mean

0.7850
0.7195
0.4134
0.3747
2.51 x 102
47.40
0.6909
0.5598
0.3299
0.2878
4.13 x 102
71.57
0.6409
0.6987
0.8856
0.8915
9.96 x 1073
18.09

Median

0.7944
0.7206
0.3846
0.3489
1.75 x 1072
33

0.7119
0.5561
0.2767
0.2415
2.15x 102
40

0.6537
0.7019
0.9281
0.9596
8.23 x 107
15

2.5%

0.5869
0.5226
0.0227
0.0012
8.53 x 10+
1

0.3569
0.2571
0.0115
0.0000
6.31 x 10*
0

0.3717
0.5546
0.5359
0.2568
1.96 x 103
5

97.5%

0.9278
0.9037
0.9378
0.9317
8.40 x 10
159
0.9104
0.8861
0.8950
0.8627
1.46 x 107!
274
0.8404
0.8277
0.9976
0.9986
2.65 x 10
44

BSLMM was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; BC, Bulb Count per genotype; h,
approximation to the proportion of phenotypic variance explained by variants (PVE); n.gamma, number of variants with major
effect; PGE, Proportion of Genetic Variance explained by variants with major effect; pi, proportion of variants with non-zero effects;
PVE, Proportion of Phenotypic Variance explained by variants; rho, approximation to the proportion of genetic variance explained
by variants with major effect; TFC, Total Flower Count per genotype.
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Additional File 9

Table 1. SNPs passing the genome-wide significance threshold (p <1 x 107%) in the multivariate linear mixed
model (mvLMM) analysis for AHI and TFC traits of Chouardia litardierei in GEMMA multivariate GWAS.

SNP Chr
62254 22 9
423028 13 13
500624 24 2
588341 19 10
230454 16 12
423027 44 13
730317 18 6
356033 30 13
463223 64 1
561279 13 10
208200 70 12
357122 13 13
666088 105 11
45968 38 9
81506 26 9
275195 16 13
341030 70 13
144029 28 5
593460 76 10
750129 37 7
197966_30 12
445498 105 1
285797 40 13
205633 17 12
669910 120 11
20739 90 8
48553 26 9
774988 31 7
518385 24 9
48552 21 9
58193 25 12
203254 20 12
186978 19 12
206941 26 5
135671 24 9
536624 21 13
423033 32 3
64618 14 11
100510 16 6
679100 46 7
723260 21 9
299462 80 13
mvLMM

Position

181728136
795057155
7834046
236169480
319053038
795056910
4133503
518039464
73180436
130303684
23218154
523783140
204738976
118116906
82807440
197688818
460998239
146787421
257849493
113120650
18977810
133595095
241129049
222557156
218775782
20177276
127546435
207552004
129492878
127546136
167644306
212353432
148693882
227677762
112993797
40433867
795167985
22823004
157555197
47723772
159782442
294757456

Reference
allele

eli=lrgdinlialeliloltdielinlialializlrgielilalialialialkgigioli-lali lellaliallali laliolelrar gl lrglol g

Effect allele

=itdiallC il Hall iR ghgisisgielo el izl o lialkgioli- el ol dio ol IRl dieola ik ale!

Betal (AHI)

-1.0233
-0.8016
-0.3194
-0.2150
-0.5337
-0.7603
-0.7169
-0.2531
0.3163

0.4456

-0.0628
0.3769

-0.2455
-0.0231
-0.3177
-0.2214
-0.1489
-0.2007
-0.6385
-0.5378
-0.2716
-0.4377
0.0988

0.0332
-0.4145
-0.2182
-0.6902
-0.2538
-0.5431
-0.6851
-0.2927
1.0385

-0.6745
-0.9359
0.8214
-0.9858
0.2732
-0.1080
-0.6082
-0.8230
-0.4675
-0.6833

Beta2 (TFC)

-0.6464
-0.3108
0.7410
0.4102
-0.5133
-0.3483
0.0446
-0.7405
-0.2853
1.4653
0.5553
0.3095
0.3554
0.5586
0.5778
-0.4944
1.0188
-0.4054
-0.1012
-0.6841
0.1541
-0.6521
-0.4041
0.6208
-0.1086
0.3899
0.0702
0.1140
0.1163
0.0752
0.4614
1.9815
-0.8306
-0.9880
0.9700
-0.8117
0.3570
0.2438
0.0212
-0.4745
0.1541
-0.4259

mvLMM Analysis in
GEMMA (p-value)

5.17x10°¢
3.90 x 10~
6.34 x 10~
6.42 x 10~
1.53 x10™*
1.56 x10™
1.76 x 10
1.98 x10™
242 x10*
2.56 x10™*
2.71 x10™*
2.77x10*
3.11 x10*
349 x10*
3.69 x10*
3.77x10*
3.77x10*
4.56 x 10
4.60 <10
4.68 x10™*
4.71 x 10
4.79 x10*
5.20x10™*
5.55x10™*
5.88 x10™
6.14 x10*
6.37x10*
6.54 <10
6.73 x10*
6.88 10
6.94 x 10
7.13 10
7.23 x 10
7.32x10*
8.33 x10™*
8.35x10™*
8.80 x 10
8.86 x 10
9.29 x10*
9.56 x 10
9.79 x 10
9.92 x10*

in GEMMA was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; Chr, Chromosome;
mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism; TFC, Total Flower Count per genotype.
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Table 1. SNPs passing the genome-wide significance threshold (p <1 x 107%) in the multivariate linear mixed
model (mvLMM) analysis for AHI and BC traits of Chouardia litardierei in GEMMA multivariate GWAS.

SNP

736175 27
364607 20
176612 27
773973 55
733886 34
524058 56
264616 23
18006 76
224704 28
538105 25
677181 33
108764 25
524057 35
92521 57
769653 97
77194 22
766497 33
674817 56
643010 44
368751 23
668508 28
468248 25
630601 22
274513 23
529123 19
167780 52
195619 17
772778 13
529321 19
211566 37
585482 58
442856 30
112990 33
775883 28
178892 42
265427 20
708607 31
146609 18
229378 26
70626 _65
322 26
149663 69
365305 47
360080 19
20248 53
9058 15
170461 26
13864 52

Chr

— — — —
OLIIUJNOOUJUJO\\]N

—_—
ob.)

N A S RS INCIEN

NS =AG W RGIDw s

P k| k| ek k| ek Pt |
Sl aniC -l i lan -CAIN-Yiwq fan = N Iye I

Position

67903776
552521276
102085689
204445848
5721001
148761312
154205990
168175276
297710995
45117962
3870016
185320554
148761135
128449310
191131828
6766688
180578950
30528207
106406258
570896987
213959178
96988857
7135974
195179209
168860131
66195928
181011473
200837811
16953884
243839810
226159268
124869628
199377871
21276111
113762962
157460474
102551803
156264743
315229318
41503693
101414222
166136268
555442390
534790477
18385940
137969173
7610629
154615308

Reference
allele

olrgigakdiolibaiHeoll-Helkdinibangigieibdigiaic ol gl Heoll-Igrgisibgiolit gl ik dio ool loll- ol gl o)

Effect allele

sdnlalinli ool el lnlrginlinlinlkrgiollll lelrdl ol gloli_leolrdislalinlinlinlielkrdinlrgrginltieo el lalala]

Betal (AHI)

0.5979
-15.809
0.2323
-12.131
0.2418
-0.4348
0.5185
0.5963
0.5639
0.8985
-0.1287
-0.3746
0.4288
0.1445
0.6619
-0.4583
-0.02
0.4579
0.4711
0.8173
-0.5816
-0.7511
-0.2828
0.6461
0.8623
0.3489
-0.3514
-0.6746
-0.8858
0.4811
0.1996
-0.3202
0.3393
0.9731
0.3957
0.4658
0.6296
0.3416
0.2088
-0.3768
0.8316
0.8973
0.6108
0.6631
0.3844
0.7381
-0.3711
0.5852

Beta2 (BC)

1.415
0.2513
0.5946
0.3277
0.7287
-0.3413
0.8123
0.7048
0.7713
13.156
-0.739
0.443
0.3377
0.4099
0.7687
-0.1688
0.3902
0.7237
-0.4387
12.086
0.1643
0.6573
-0.4859
-0.2094
-0.0234
0.8378
0.9959
0.1614
-0.7266
0.0241
0.7592
-0.4025
-0.217
0.6984
0.2169
-0.4725
-0.3405
0.0919
0.3259
-10.127
-0.4206
-0.1638
11.891
13.626
0.5787
0.8322
-0.1396
0.2518

Additional File 10

mvLMM Analysis in
GEMMA (p-value)

1.03 x 107
4.56 x 10°¢
9.45 x10°¢
1.17 x 10°°
1.35 x10°°
1.38 x 10°°
1.44 x 10°°
1.67 x 10°°
1.92 x10°°
1.95 x10°°
3.65x10°
4.14x10°°
6.14 x 10°°
1.03 x 10
1.05 x 10
1.18 x 10
1.34 x 10
1.36 x 10
1.43 x 10
1.78 x 10
1.97 x 10
1.97 x 10
2.04 x 10
2.07 x 10
245 %10
2.54 x 10
2.63 x 10
2.90 x 10
3.09 x 10
3.20 x 10
3.21 x 10
3.25x10™
3.54 x 10
3.65x 10
3.92 x 10
4.12x 10
4.36x 10
4.37x10*
4.50x 10
4.54 <10
5.01 x 10
5.09 x 10
5.10x 10
5.24 x 10
530 x 10
547 x 10"
5.70 x 10
5.73 x 10
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427675 39
774577 45
650985 26
771180 71
68322 22

667179 22
238115 20
738313 35
718968 54
715340 33
473972 18
240119 70
157538 21
38147 41

22031 53

634131 58

mvLMM in GEMMA was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; Chr, Chromosome; BC,

—
W

e inyl SHEo NN E- N Ia IV IN-IEN RV RN

8
4

814235512
206386106
143049003
196132350
34484978
208973401
46592935
8070864
14451537
128544256
102121380
54071168
25491070
90743188
25314160
885019

> Q11 QHa a0 >

sl el ginlbgiali i lnlgh gl I gl

0.2918
0.0031
0.4261
-0.5368
-0.4129
-0.6511
0.2443
0.2117
0.677
-0.5495
0.1559
-10.754
-0.1713
0.1764
-0.0928
0.1445

0.6833
0.636
12.124
-0.3073
-0.225
0.0569
10.283
-0.3262
0.8042
0.35
0.6482
-0.0847
0.9383
0.4746
0.2756
1.074

Bulb count; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism.
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5.73 x 10
6.18 x 10
6.46 x 10
6.71 x 10
6.85 %10
7.68 x 10
7.86 x 10
8.41 x 10
8.45x 10
8.51x10™"
8.90 x 10
8.97x 10"
9.30x 10"
942 x 10
9.69 x 10
9.88 x 10
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Figure 1. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and GMMAT),
as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 x 107%). The analysis also includes
SNPs meeting the same threshold in the multivariate GWAS. The corresponding SNPs are detailed in Table 2 and Table 4 of the manuscript.
Overlapping points of different colors represent SNPs associated with different traits, with each color corresponding to a specific trait. The overlap
occurs because some SNPs are shared across traits, leading to their placement one in front of the other. AHI, Average Height of Inflorescences;
BC, Bulb Count; TFC, Total Flower Count.
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Due to size constraints, the following additional files are not reproduced in this thesis but can be accessed at the journal’s website (BMC Plant
Biology, DOI: 10.1186/s12870-025-06617-4):

Additional File 5: EggNOG output file for the 83 most significant SNP loci associated with four distinct bioclimatic variables, identified as being
most relevant to the traits under investigation.

Additional File 12: EggNOG output file for 12 SNPs that exceeded the genome-wide significance threshold (1 x 1073) in both the single-SNP
LMM and multi-SNP BSLMM analyses of the Chouardia litardierei traits: TFC, AHI, and BC.

Additional File 13: EggNOG output file for 13 SNP loci that exceeded the genome-wide significance threshold (1 x 107°) in the multivariate
GWAS analysis of the Chouardia litardierei traits: AHI and TFC.

Additional File 14: EggNOG output file for 2 SNP loci that exceeded the genome-wide significance threshold (1 x 107%) in the multivariate GWAS
analysis of the Chouardia litardierei traits: AHI and BC.
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