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Local adaptation in Chouardia litardierei (Asparagaceae), a geophytic perennial endemic to the 

western Balkans, demonstrates how sharp ecological contrasts drive genomic and phenotypic 

divergence. The species inhabits three ecologically distinct environments: flooded karst poljes, arid 

dolomite slopes, and coastal salt marshes, providing a natural system to study how environmental 

heterogeneity influences adaptive differentiation. As an initial step towards understanding the 

genomic basis of local adaptation, a chromosome-level reference genome was assembled. 

Subsequently, ddRAD sequencing was employed to genotype individuals from selected 

populations, enabling genome-wide association studies (GWAS), genome–environment 

association analyses (GEA), and population genetic analyses. GWAS revealed high heritability for 

several phenological and reproductive traits, underscoring their strong genetic basis, while GEA 

identified precipitation during the coldest quarter as a key climatic driver with the strongest 

influence on genetic variation. Phenological patterns in the common garden experiment showed 

substantial overlap in flowering time and vegetative growth across habitat types, indicating no 

consistent differences among populations. Morphometric analyses additionally indicated reduced 

clonal investment in dolomite populations. Population genetic analyses revealed partial genetic 

structuring, with dolomite populations forming a distinct cluster, while seashore and meadow 

populations remained genetically undistinguished, likely due to shared ancestry or gene flow. 

Rather than constituting discrete ecotypes, populations seem to diverge through trait-specific, 

localised responses to environmental pressures. Overall, these findings illustrate how contrasts in 

ecological conditions influence fine-scale patterns of genomic and phenotypic divergence in C. 

litardierei, providing valuable genomic resources and a framework for future investigations of 

plant adaptation in heterogeneous South-European landscapes. 
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(CHOUARDIA LITARDIEREI, HYACINTHACEAE) 

SARA LAURA ŠARANČIĆ 

Prirodoslovno-matematički fakultet, Biološki odsjek 

Lokalna prilagodba livadnog procjepka (Chouardia litardierei, Asparagaceae), geofitne 

višegodišnje biljke endemične za zapadni Balkan, oblikovana je djelovanjem izraženih ekoloških 

kontrasta koji utječu na njegovu genetsku i fenotipsku divergenciju. Vrsta nastanjuje tri ekološki 

izrazito kontrastna staništa: poplavljena krška polja, sušne dolomitne padine i slane priobalne 

močvare, čime predstavlja pogodan model za istraživanje utjecaja okolišne heterogenosti na 

adaptivnu divergenciju. Kao prvi korak prema razumijevanju genetske osnove lokalne prilagodbe, 

sastavljen je referentni genom na razini kromosoma, a zatim su sve jedinke iz odabranih populacija 

genotipizirane pomoću ddRAD sekvenciranja. Ovi genomski podaci omogućili su provođenje 

cjelogenomske studije povezanosti (engl. genome-wide association study, GWAS), analize 

povezanosti genoma i okoliša (engl. genome-envirionment association, GEA) te populacijsko-

genetičkih analiza. GWAS analiza pokazala je visoke vrijednosti nasljednosti za više fenoloških i 

reproduktivnih svojstava, što upućuje na njihovu snažnu genetsku osnovu. GEA analizom 

izdvojena je količina oborina tijekom najhladnijeg tromjesečja kao klimatska varijabla s 

najznačajnijim utjecajem na genetsku varijaciju. Usporedno s time, fenološki obrasci uočeni 

tijekom vrtnog pokusa pokazali su znatno preklapanje u vremenu cvatnje i vegetativnog rasta među 

različitim tipovima staništa, što ukazuje na izostanak konzistentnih razlika među populacijama. 

Morfometrijske analize dodatno su pokazale smanjeni udio klonalnog razmnožavanja u 

populacijama s dolomitnih staništa. Populacijsko-genetičke analize pokazale su da populacije s 

dolomitnih staništa tvore zaseban genetski klaster, što se može objasniti dugotrajnom izolacijom, 

ekološkim stresom i ograničenim protokom gena, dok su priobalne i livadne populacije genetski 

ne razlikuju, vjerojatno zbog zajedničkog porijekla ili kontinuiranog protoka gena. Umjesto jasno 

definiranih ekotipova, pokazuju specifične odgovore na lokalne selekcijske pritiske. Ovo 

istraživanje pruža temeljne uvide u procese biljne adaptacije u kompleksnim mediteranskim 

staništima te osigurava vrijedne genomske resurse za buduća evolucijska istraživanja. 

(159 stranica, 4 slike, 164 literaturnih navoda, jezik izvornika: engleski) 
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Thesis summary 

 Local adaptation plays a crucial role in shaping genetic and phenotypic diversity within 

species, particularly in ecologically heterogeneous regions such as the Balkan Peninsula. 

Environmental elements, such as temperature, precipitation, and soil composition, impose 

divergent selective pressures that drive the evolution of locally advantageous traits. In sessile 

organisms like plants, these pressures often lead to differentiation in phenological or morphological 

traits, setting the stage for adaptive divergence and speciation. The Balkan Peninsula, one of 

Europe’s most topographically and climatically complex regions, offers a unique setting to 

investigate how fine-scale environmental heterogeneity influences genomic variation and adaptive 

trait evolution. While numerous phylogeographic studies of local taxa were conducted, integrative 

research combining population genomics, ecological data, and phenotypic analyses remains scarce. 

This thesis focuses on Chouardia litardierei (Asparagaceae), a geophytic perennial of the 

western Balkans. The species is notable for its pronounced ecological plasticity and occupies three 

ecologically distinct habitats: (1) seasonally flooded karst poljes, characterized by deep, fertile 

soils; (2) arid dolomite slopes, marked by shallow, rocky substrates, nutrient-poor soils, and 

extreme thermal fluctuations; and (3) low-lying coastal seashore meadows and salt marshes 

influenced by salinity, periodic tidal flooding, and low oxygen availability. These sharply 

contrasting environments impose divergent selective pressures on survival, reproduction, and 

phenology, offering a natural experimental framework for studying local adaptation. This 

combination of habitat heterogeneity and pronounced phenotypic plasticity makes C. litardierei an 

excellent model for studying local adaptation to contrasting environments. Its occurrence across 

ecologically contrasting yet logistically accessible areas makes the species exceptionally well-

suited for field sampling. Moreover, as a small, bulbous perennial, it is readily cultivated, allowing 

for common garden experiments that minimize variations of environmental conditions and reveal 

heritable trait differences. Together, these features provide an ideal system for investigating how 

selective pressures shape morphological and genomic variation in natural plant populations. 

Despite its ecological distinctiveness, C. litardierei has not been genomically characterized 

prior to this work. Earlier studies were limited to karyology or morphology analyses with some 

questionable conclusions (e.g., classification of dolomite populations as a distinct species). This 

thesis addresses the existing knowledge gap by investigating the genomic foundations of local 

adaptation, with a particular focus on phenology and reproduction-related morphological traits. 



 

This research was guided by objectives spanning genome assembly, population structure of studied 

populations, and genotype–phenotype–environment associations, with a central goal of 

understanding the genomic basis of local adaptation in a previously uncharacterized species. 

The research is presented across three publications. In Publication I, a high-quality, 

chromosome-level genome of C. litardierei was assembled with a total size of 3.7 Gbp, consisting 

of 13 pseudochromosomes, which is consistent with previous cytogenetic analyses. Comparative 

analyses confirmed its phylogenetic relationship to some other sequenced representatives of the 

Asparagales, underscoring the value of this resource for monocot evolutionary studies. Importantly, 

this reference genome served as a critical foundation for all subsequent genomic and population-

level analyses in this thesis, enabling detailed investigations of genetic variation, trait architecture, 

and genome-environmental associations. 

Subsequent genome-wide association study (GWAS) analyses required two complementary 

datasets: genotyping and phenological and morphological traits results obtained from the common 

garden experiment. The common garden experiment was established by transplanting a total of 214 

individuals from selected populations. 

Publication II employed a common garden experiment to investigate phenological 

divergence among nine selected populations, three originating from each of three distinct habitat 

types. Although dolomite populations flowered somewhat earlier and had shorter vegetative 

periods when compared to some other tested populations, the observed pattern was not exclusive 

to the dolomite populations, as non-dolomite populations overlapped in flowering time, suggesting 

incomplete phenological divergence. GWAS revealed numerous significant loci for key 

phenological traits such as the beginning of sprouting (BOS), beginning of flowering (BOF), and 

vegetative period duration (VPD). Narrow-sense heritability (h2) was high for all traits, particularly 

VPD (86.95%), suggesting that much of the observed phenological variation among populations is 

genetically determined. 

Building on this, Publication III integrated GEA analyses with GWAS to investigate links 

between genomic variation, environmental gradients, and morphological reproductive traits. 

Through RDA analysis, GEA identified winter precipitation (BIO19) as the climatic element with 

the strongest influence on genetic variation, pointing to moisture availability as a major driver of 

local adaptation. GWAS uncovered loci associated with tested reproductive traits, including bulb 

count (BC), total flower count (TFC), and average inflorescence height (AHI), all of which showed 



 

high narrow-sense heritability (e.g., 71.95% for AHI). Genomic regions affecting nitrogen 

metabolism, hormone signaling, and flowering regulation were identified. Morphometric analysis 

also revealed variation in reproductive traits, such as bulb number, across populations, with 

dolomite populations typically producing fewer bulbs. This pattern suggested adaptive trade-offs 

favoring sexual over clonal reproduction in these drought-prone environments where flooding is 

absent. In contrast, populations from karst poljes and seashore meadows experience regular and 

prolonged flooding, which can hinder successful sexual reproduction and likely favors clonal 

reproduction, contributing to observed differences in reproductive strategies across habitats. 

Population-genetic analyses revealed that dolomite populations of C. litardierei form a 

distinct genetic cluster, likely shaped by long-term isolation and absence of gene flow with other 

populations due to the patchiness of the specific habitat it inhabits. This pattern of partial genetic 

divergence, first hinted at in Publication I through whole-genome comparisons of single 

representatives, was confirmed in Publication III using broader population-level data. In contrast, 

groups of populations from seashore meadows and inland wet grasslands exhibited little to no 

genetic structuring and were indistinguishable from each other, likely due to either recent shared 

ancestry or contemporary gene flow among populations. Despite the long-standing informal 

designation of ecotypes based on habitat, the lack of consistent genetic and morphological 

differentiation among most of the studied groups suggests that divergence is incomplete. The only 

signals of genetic differentiation were observed in the dolomite group, suggesting that local 

adaptation in C. litardierei is not strictly tied to broad habitat types. Consequently, we adopted a 

conservative interpretation and refer to these population groups as specific habitat-associated 

groups, rather than clearly defined ecotypes. 

Together, these studies provide a comprehensive view of the genetics underlying local 

adaptation in C. litardierei. This thesis presents the first GWAS and GEA conducted in this species 

and represents one of the earliest integrative genomic studies of a native South-European monocot. 

The identification of polygenic variation underlying both phenological and reproductive 

divergence highlights the complex interplay of natural selection, gene flow, and trait evolution. 

More broadly, this work contributes to our understanding of how plants adapt across heterogeneous 

landscapes and offers a valuable genomic and ecological framework for future research on 

adaptation and diversification in various South-European plant lineages. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Prošireni sažetak 

Lokalna prilagodba ima ključnu ulogu u oblikovanju genetske i fenotipske raznolikosti 

unutar vrsta, osobito u ekološki heterogenim regijama poput Sredozemlja. Ekološki čimbenici 

poput temperature, količine oborina i sastava tla stvaraju selekcijske pritiske koji oblikuju svojstva 

prilagođena lokalnim uvjetima. U sesilnih organizama, poput biljaka, takvi pritisci često rezultiraju 

diferencijacijom fenoloških i morfoloških osobina, čime nerijetko započinje divergencija, a zatim 

i specijacija. Balkanski poluotok, kao jedna od topografski i klimatski najsloženijih regija Europe, 

pruža iznimnu priliku za istraživanje utjecaja heterogenog okoliša na genetsku varijabilnost i 

evoluciju adaptivnih svojstava. Bez obzira na porast broja filogeografskih istraživanja lokalnih 

vrsta, istraživanja koja povezuju populacijsku genetiku, ekološke podatke i fenotipske analize i 

dalje su rijetka. 

Predmet istraživanja ove disertacije je livadni procjepak (Chouardia litardierei, 

Asparagaceae), višegodišnja geofitna vrsta s prirodnim arealom na zapadnom Balkanu. Vrsta se 

odlikuje izraženom ekološkom plastičnošću, a naseljava tri ekološki kontrastna staništa: (1) 

sezonski poplavljena krška polja s dubokim i plodnim tlima; (2) sušne dolomitne padine s plitkim, 

kamenitim tlima, niskim udjelom hranjivih tvari i značajnim toplinskim oscilacijama; te (3) 

povremeno plavljenim priobalnim livadama s niskom koncentracijom kisika i slanim močvarama. 

Raznolikost staništa koja C. litardierei nastanjuje stvara izražene selekcijske pritiske koji utječu na 

uspješnost opstanka, razmnožavanja i fenoloških obrazaca biljaka, pružajući pritom prirodan 

model za istraživanje lokalne prilagodbe. Zbog rasprostranjenosti u ekološki kontrastnim, ali 

terenski pristupačnim područjima, vrsta je prikladna za uzorkovanje. Dodatno, kao mala 

lukovičasta višegodišnja biljka, lako se uzgaja u kontroliranim uvjetima, što omogućuje provedbu 

vrtnih pokusa i razlučivanje genetskih od okolišnih utjecaja. 

Unatoč svojoj ekološkoj specifičnosti, C. litardierei prije ovog istraživanja nije bila 

genomski okarakterizirana. Dosadašnja saznanja uglavnom su se temeljila na kariološkim 

analizama i morfološkim pretpostavkama, uključujući raniji prijedlog o taksonomskom izdvajanju 

dolomitnih populacija kao zasebne vrste, no takvi su zaključci ostali nepotkrijepljeni. Ova 

disertacija ima za cilj razjasniti nedostatno istražene aspekte genomske osnove lokalne prilagodbe, 

s posebnim naglaskom na fenologiju i morfološke osobine povezane s razmnožavanjem. 

Istraživanje je usmjereno na ostvarivanje niza znanstvenih ciljeva, uključujući sastavljanje 

referentnog genoma, filogenetsku analizu, analizu populacijske strukture te ispitivanje povezanosti 



 

genetske varijabilnosti, fenotipskih obilježja i okolišnih čimbenika, s krajnjim ciljem dubljeg 

razumijevanja genomske osnove lokalne prilagodbe u dosad nedovoljno istraženoj biljnoj vrsti. 

Rezultati istraživanja predstavljeni su kroz tri znanstvene publikacije. U okviru prve 

publikacije izrađen je visokokvalitetan referentni genom vrste, ukupne veličine 3,7 Gbp, koji se 

sastoji od 13 pseudokromosoma, što je u skladu s prethodnim citogenetskim analizama. 

Komparativne analize potvrdile su filogenetsku vezu vrste s drugim do sada sekvenciranim 

predstavnicima reda Asparagales, čime je dodatno naglašena znanstvena vrijednost ovog genoma 

za buduća evolucijska istraživanja. Referentni genom poslužio je kao temeljna infrastrukturna 

osnova za sve naknadne analize populacijske strukture, identifikaciju genetskih varijanti povezanih 

s kvantitativnim fenotipskim osobinama te ispitivanje povezanosti genetskih obilježja s okolišnim 

čimbenicima. 

U drugoj publikaciji proveden je vrtni pokus radi procjene fenološke divergencije među 

devet odabranih populacija, pri čemu su po tri populacije pripadale svakom od triju različitih tipova 

staništa. Populacije s dolomitnih staništa imale su raniji početak cvatnje i kraće trajanje 

vegetacijskog razdoblja, što je u skladu s prilagodbom na sušne uvjete, međutim, ne-dolomitne 

populacije pokazivale su preklapanje u analiziranim svojstvima, što upućuje na nepotpunu 

fenološku divergenciju. Cjelogenomskom studijom povezanosti (engl. genome-wide association 

study, GWAS) identificirani su značajni lokusi povezanim s ključnim fenološkim svojstvima, 

uključujući početak nicanja (engl. beginning of sprouting, BOS), početak cvatnje (engl. beginning 

of flowering, BOF) i trajanje vegetacijskog perioda (engl. vegetative period duration, VPD). 

Procjene nasljednosti (engl. narrow-sense heritability, h2) pokazale su visoke vrijednosti za sve 

analizirane osobine, pri čemu je VPD imao najvišu vrijednost h2 (86,95 %), što ukazuje na snažnu 

genetsku osnovu opaženih fenoloških varijacija. Funkcionalna anotacija genomskih prozora koji 

okružuju značajne polimorfizme jednog nukleotida (engl. single nucleotide polymorphism, SNP) 

otkrila je regije koje kodiraju ključne proteinske obitelji uključene u regulaciju vremena cvatnje, 

vegetativnog rasta i odgovora na stres. Dobiveni nalazi sugeriraju da se fenološke razlike kod  C. 

litardierei najbolje objašnjavaju kao populacijski specifične prilagodbe na lokalne uvjete. 

U okviru treće publikacije predstavljeni su rezultati praćenja morfoloških reproduktivnih 

svojstava vrste te su provedene integrirane analize povezanosti genoma i okoliša (engl. genome-

environment association, GEA) te cjelogenomska analiza povezanosti, s ciljem istraživanja odnosa 

između genetske varijabilnosti, okolišnih gradijenata i reproduktivnih svojstava. Pomoću RDA 



 

analize, GEA analizom izdvojena je količina oborina tijekom najhladnijeg tromjesečja (BIO19) 

kao najznačajnija klimatska varijabla povezana s genetskom strukturom populacija, što ukazuje na 

potencijalno ključnu ulogu vlage u procesu lokalne prilagodbe. Paralelno, cjelogenomskom 

analizom povezanosti otkrivena je značajna povezanost između pojedinih genetskih lokusa i 

reproduktivnih svojstava poput broja lukovica (engl. bulb count, BC), ukupnog broja cvjetova 

(engl. total flower count, TFC) i prosječne visine cvatova (engl. average height of inflorescence, 

AHI), s visokom nasljednošću svih osobina (npr. 71,95 % za AHI). Funkcionalnom anotacijom 

otkrivene su genomske regije uključene u biološke procese poput metabolizma dušika, hormonske 

signalizacije i regulacije cvatnje, što dodatno podupire njihovu ulogu u prilagodbi na heterogene 

ekološke uvjete. Morfometrijska analiza također je pokazala varijabilnost reproduktivnih svojstava 

među populacijama, osobito u broju lukovica, pri čemu su dolomitne populacije u pravilu 

proizvodile manji broj lukovica. Ovakav obrazac upućuje na prisutnost adaptivnih kompromisa 

koji pogoduju spolnom razmnožavanju nauštrb klonalnog u sušnim staništima. Suprotno tome, 

populacije koje nastanjuju krška polja i priobalne livade izložene su redovitim i dugotrajnim 

poplavama, što može otežati uspješno spolno razmnožavanje te vjerojatno potiče oslanjanje na 

klonalne strategije, pridonoseći tako uočenim razlikama u reproduktivnim strategijama između 

različitih staništa. 

Populacijsko-genetičke analize pokazale su da populacije s dolomitnih staništa tvore 

zaseban genetski klaster, što se može objasniti njihovom izoliranošću i odsutnošću protoka gena s 

ostalim populacijama, uvjetovanom fragmentiranošću specifičnih staništa koja vrsta nastanjuje. 

Ovaj obrazac djelomične genetske divergencije, koji je prvi put uočen u prvoj publikaciji 

usporedbom pojedinačnih genoma, potvrđen je širim analizama u trećoj publikaciji. Nasuprot 

tome, populacije s poplavljenih krških polja i priobalnih livada nisu pokazivale jasnu genetsku 

diferencijaciju, što vjerojatno odražava njihovo nedavno zajedničko podrijetlo ili kontinuirani 

protok gena. Unatoč dugogodišnjoj neformalnoj uporabi pojma ekotip za opisivanje različitih 

stanišnih skupina iste vrste, nedostatak konzistentne genetske i morfološke diferencijacije između 

većine proučavanih grupa, sugerira da divergencija nije potpuna. Jedini obrasci genetske izolacije 

i morfološke diferencijacije zabilježeni su kod populacija s dolomitnih staništa, što podupire 

interpretaciju da lokalna prilagodba nije povezana s određenim tipovima staništa kao što je to bilo 

očekivano. Stoga primjenjujemo konzervativniji pristup u interpretaciji te ove skupine opisujemo 

kao populacije povezane sa specifičnim staništima, a ne kao jasno definirane ekotipove. Za razliku 



 

od širokih filogeografskih istraživanja koja obuhvaćaju velika geografska područja, ova je 

disertacija usmjerena na proučavanje divergencije unutar jedne vrste, istražujući različita staništa 

unutar relativno uskog geografskog prostora te pružajući uvid u mehanizme lokalne prilagodbe na 

prostornim i genetskim razinama. 

Ova disertacija predstavlja prvi korak u razumijevanju genetske osnove lokalne prilagodbe 

kod C. litardierei. Predstavljena su prva GWAS i GEA istraživanja provedena na ovoj vrsti, kao i 

jedno od prvih genetsko-ekoloških istraživanja na nativnoj jednosupnici južne Europe. 

Identifikacija poligenske kontrole i visoke nasljednosti fenoloških i morfoloških reproduktivnih 

osobina ističe složenost interakcija između prirodne selekcije, protoka gena i evolucije adaptivnih 

svojstava. U širem kontekstu, ova disertacija doprinosi boljem razumijevanju načina na koje se 

biljne vrste prilagođavaju heterogenim okolišima te pruža vrijednu genetsku i ekološku osnovu za 

buduća istraživanja adaptacije i diferencijacije u različitim razvojnim linijama južnoeuropskih 

biljnih vrsta. 
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1 Introduction 

1.1 Genomic basis of adaptation 

One of the central aims of evolutionary biology is to elucidate the genomic basis of 

adaptation, particularly how genetic variation enables organisms to cope with environmental 

challenges (Flood and Hancock, 2017; Campbell et al., 2018). Environmental heterogeneity 

imposes selective pressures that shape the genetic architecture of traits, enhancing survival and 

reproduction (Gregory, 2009; Hoban et al., 2016; Paschoa et al., 2023). These pressures drive 

changes in allele frequencies, promoting local adaptation by favoring variants that enhance fitness 

under specific environmental conditions (Hu et al., 2020; Walter et al., 2022; Lee et al., 2023). 

Over time, successive rounds of selection stabilize these adaptive responses, allowing populations 

to persist under heterogeneous environments (Savolainen et al., 2013; McKown et al., 2014). As 

populations inhabit different environments, such as coastal, mountainous, or inland regions, they 

often evolve distinct phenological or morphological traits that enhance their survival and 

reproduction. This divergence is frequently shaped by environmental gradients, including 

temperature, precipitation, and soil composition (Turesson, 1922; Todesco et al., 2020). 

Over evolutionary timescales, local adaptation can set the stage for speciation, during which 

a group of individuals diverges into two or more distinct phylogenetic lineages (Clausen, 1951). In 

populations that are initially indistinguishable, whether genetically or morphologically, progressive 

genetic differentiation can gradually lead to new species (Rundle and Nosil, 2005; Tittes and Kane, 

2014; Cortés et al., 2018). When gene flow across habitat boundaries is limited, local adaptation to 

contrasting environments can drive genetic divergence and form reproductive barriers—key steps 

in the process of ecological speciation (Rundle and Nosil, 2005; Lowry, 2012). At intermediate 

stages of divergence, ecological differentiation becomes more apparent, often culminating in the 

formation of ecotypes, genetically and morphologically distinct groups adapted to specific 

ecological niches rather than to specific geographic areas (Rundle and Nosil, 2005; Cortés et al., 

2018). Although the role of ecotypes in speciation continues to be questioned (Lowry, 2012; 

Fernández-Meirama et al., 2022), many studies highlight their contribution in promoting genetic 

divergence along ecological gradients (Lowry et al., 2008a; Brandrud et al., 2017; Cortés et al., 

2018; Bakhtiari et al., 2019). Because gene flow typically homogenizes genetic differences among 

populations, adaptive divergence is generally expected to arise between geographically isolated 

populations. As a result, most studies of local adaptation have focused on populations separated by 
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tens to hundreds of kilometers, leaving microgeographic divergence relatively understudied 

(Bamba et al., 2019). Detecting adaptive divergence at such fine spatial scales is further 

complicated by phenotypic plasticity, the ability of a single genotype to express different 

phenotypes under varying environmental conditions, which can mask underlying genetic 

differences (De Villemereuil et al., 2015). To mitigate this issue, common garden experiments are 

often employed to minimize the influence of environmental variation (McKay et al., 2001; 

Kawakami et al., 2011; Brachi et al., 2013; Toräng et al., 2015). By growing individuals from 

contrasting environments under uniform conditions, common garden experiments remove 

environmental confounding, thereby isolating genetic effects on complex, polygenic traits and 

providing a robust test for signals of local adaptation (De Villemereuil et al., 2015). Among the 

many genetically based traits shaped by local adaptation, reproductive strategies represent a key 

axis of divergence, particularly in heterogeneous environments where the costs and benefits of 

different types of sexual and asexual reproduction may vary. 

1.2 Reproductive strategies as mechanisms of divergence 

The development of different reproductive strategies, encompassing both sexual and 

asexual modes, plays a pivotal role in plant adaptation and divergence. In particular, clonal 

reproduction, or vegetative propagation, may arise under biotic or abiotic stresses that constrain 

sexual reproduction and provide numerous ecological advantages (Silvertown, 2008; Barrett, 

2015). By enabling plants to forage for water and nutrients in patchy environments and to produce 

larger propagules capable of rapid establishment in new sites, clonality enhances survival and 

supports the successful establishment of populations after colonization (Klimeš et al., 1997; Stuefer 

et al., 2002; Orive, 2020). It is estimated that up to 80% of angiosperms utilize asexual 

reproduction, and its prevalence may vary among populations, especially in heterogeneous 

landscapes shaped by variations in climate, soil composition, hydrology, and biotic interactions 

(Price and Marshall, 1999). In such contexts, flexible reproductive systems allow plants to navigate 

diverse selective pressures and promote genetic differentiation across habitats. 

However, the ecological flexibility afforded by clonality comes with important trade-offs. 

Investment in clonal growth may restrict the resources available for flowering and seed production 

(Van Drunen and Dorken, 2012). Additionally, high levels of clonality can elevate geitonogamous 

self-pollination, potentially accelerating reproductive isolation and speciation (Gong et al., 2010; 
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Vallejo-Marín et al., 2010). Over time, if sexual reproduction becomes extremely limited or absent, 

the accumulation of somatic mutations may further erode fertility, possibly resulting in the 

complete loss of sexual function (Barrett, 2015). 

Beyond direct impacts on fertility, clonality profoundly alters spatial genetic structure by 

concentrating identical genotypes locally, which limits gene flow and promotes divergence 

(Vekemans and Hardy, 2004). These effects are further shaped by associated life-history traits such 

as bulb formation, which serve as critical adaptations. Bulbs act as critical storage organs, enabling 

plants to endure periods of dormancy and buffer against adverse conditions; this function is 

essential for maintaining reproductive capacity in habitats characterized by fluctuating conditions 

(Kleijn et al., 2005; Atif et al., 2020; Ma et al., 2020). The number of bulbs produced and the 

morphology of inflorescences can influence pollination success and seed output, directly affecting 

fitness and local adaptation (Ohashi and Yahara, 2009; Suetsugu et al., 2015). 

Taken together, clonal and sexual reproduction represent complementary strategies that 

enable plants to cope with habitat variability, shaping both the genetic structure and adaptive 

potential of populations. 

1.3 The evolutionary significance of phenological adaptation 

Phenology, the seasonal timing of key life cycle events such as sprouting and flowering, is 

both a sensitive indicator of climate change and a fundamental mechanism through which plants 

adapt to environmental variability (CaraDonna et al., 2014; Schwartz, 2024). As sessile organisms, 

plants depend on phenological timing to synchronize growth and reproduction with favorable 

seasonal windows, thereby optimizing fitness (Mertens et al., 2021). 

Among phenological traits, flowering time is particularly critical, as it integrates plant 

responses to both abiotic (e.g., temperature and moisture) and biotic (e.g., pollinator availability) 

cues, serving as a key expression of adaptive strategy (Pau et al., 2011; Wolkovich et al., 2014). It 

directly influences reproductive success by mediating trade-offs between fecundity and survival, 

shaping interactions with pollinators, regulating seed output, and aiding in stress avoidance 

(Anderson et al., 2012; Collins et al., 2025).  

The diversity of factors influencing flowering time reflects the complex environmental 

landscape that plants must navigate. While temperature is often the primary driver, affecting 

development rates, metabolism, and water loss (Körner, 2006; Linder, 2020), other cues such as 

photoperiod (Adole et al., 2019; Wang et al., 2020), water availability (Zhou et al., 2024), salinity 
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(Li et al., 2007; Lee et al., 2023), and pollinator-mediated selection (Sandring and Ågren, 2009) 

also shape phenological timing (Cook et al., 2012; Schwartz, 2024). Importantly, moisture 

availability can be shaped not only by rainfall but by local soil characteristics and rooting depth 

(Cortés-Flores et al., 2017); in wetlands, hydrological regimes (e.g., groundwater levels or seasonal 

flooding) often outweigh precipitation as drivers of phenological timing (Mihevc et al., 2010). 

From an evolutionary perspective, phenological traits such as flowering time can evolve 

rapidly under selection, particularly in seasonally variable or environmentally heterogeneous 

habitats (Gaudinier and Blackman, 2020). In such contexts, divergent flowering schedules may 

facilitate ecological speciation by enabling populations to exploit distinct pollinator communities, 

climatic niches, or microhabitat (Heslop-Harrison, 1964; Levin, 2006). However, not all species 

can adjust their phenology at a rate sufficient to match environmental change. When plasticity fails 

to buffer against altered pollinator availability, resource availability, or interspecific competition, 

reproductive success may decline, imposing selective pressures that favor genetic shifts in timing 

traits (Visser et al., 2003; Pau et al., 2011). While many phenological shifts begin as plastic 

responses, the presence of heritable variation is crucial for long-term evolutionary adaptation 

(Visser and Both, 2005). 

Given the strong link between phenological timing and local adaptation (Rathcke and 

Lacey, 1985), investigating the genomic basis of these traits within ecologically dynamic contexts 

provides a powerful lens for understanding adaptive divergence (Bernatchez et al., 2023). 

Expanding this research beyond classical model systems such as Arabidopsis thaliana (Engelmann 

and Purugganan, 2006; Kinmonth-Schultz et al., 2021) to encompass a broader diversity of taxa is 

essential for capturing the complex genetic architectures that underlie phenological variation across 

contrasting environments (Molla, 2022; Song et al., 2023; Vicentini et al., 2023). 

1.4 Study system: Chouardia litardierei (Asparagaceae) 

Chouardia litardierei (Breist.) Speta, commonly known as the amethyst meadow squill, is 

a perennial bulbous plant species currently placed in the family Asparagaceae, following the APG 

III system (Bremer et al., 2009), but was formerly classified within Hyacinthaceae. C. litardierei is 

distributed across the Dinaric Alps in the western Balkan Peninsula, ranging from Slovenia in the 

northwest to Montenegro in the southeast (Gaži-Baskova, 1962; Petkovšek and Seliškar, 1978).
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It is a rare example of a plant thriving across markedly different habitat types, with three major population groups identifiable based on habitat type, 

reflecting its notable ecological plasticity (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sampling locations of Chouardia litardierei populations across habitat types. Blue, green, and red circles indicate populations from seashore, 

meadow, and dolomite habitats, respectively. 
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The largest group occupies karst poljes1 (Figure 2), geomorphologically and hydrologically 

distinctive depressions within the Dinaric landscape (Prohic et al., 1998). These depressions are 

characterized by deep, fertile soils, temperature inversion, and seasonal flooding in early spring, 

driven by rapid snowmelt in surrounding mountains, together with their geomorphology and 

limited internal drainage (Mihevc, 2010; Bonacci, 2014; Marcin et al., 2021). In contrast with the 

surrounding karst terrain, typically rocky, shallow-soiled, and drought-prone, poljes serve as 

localized ecological refugia. The formation and ecological role of poljes is closely tied to the 

broader Dinaric karst system, the carbonate region of the Dinaric Mountains (Dinarides), marked 

by exceptional geological and climatic diversity (Mihevc, 2010). Spanning the western Balkan 

Peninsula and the entire Adriatic littoral zone, the Dinaric karst is recognized as one of the most 

ecologically diverse landscapes (Day and Chenoweth, 2013; Zupan Hajna, 2019). The dissolution 

of limestone and dolomite has produced sinkholes, caves, plateaus, and complex underground 

drainage, creating rugged topography and sharp ecological contrasts over small areas (Prohic et al., 

1998). This topographic and hydrological complexity underpins the pronounced ecological 

heterogeneity characteristic of the region. 

Figure 2. Chouardia litardierei in its natural karst polje habitat (Budoške Bare, Montenegro). Photo taken 

by Ivan Radosavljević. 

 
1 Polje is the Slavic word for “field”, still commonly used in South Slavic languages without necessarily implying 

karst terrain (Ford and Williams, 2013). In geomorphology, however, the term refers internationally to large, flat-

floored, closed depressions with karstic drainage, typically bordered by steep slopes (Gams, 1978; Jennings, 1985). 

These basins often provide the only arable land in karst regions. 
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In contrast, the second group of populations occupies exposed dolomite slopes and dry 

mountainous grasslands at altitudes of up to 2000 m (Figure 3), characterized by a thin layer of 

stony, nutrient-poor soils, prone to strong seasonal and daily temperature fluctuations and limited 

water availability, all of which impose intense ecological stress and demand physiological and 

phenological resilience (Mota et al., 2021).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Chouardia litardierei in its natural dolomite habitat (Mt. Lovćen, Montenegro). Photo taken by 

Ivan Radosavljević. 

These habitats exemplify the so-called "dolomite phenomenon" or dolomitophily, a set of 

ecological and floristic traits associated with dolomitic substrates (Merlo et al., 2021; Mota et al., 

2021). Dolomite-derived soils have poor water retention, high pH, low concentrations of Fe, P, and 

K, and are rich in Ca and Mg elements (Fekete et al., 1989; Pignatti and Pignatti, 2014; Markoski 

et al., 2016). The substrate’s high thermal conductivity, intense solar radiation, and elevated 

summer temperatures create drought-prone microhabitats that limit the establishment of 

competitive vegetation such as forests (Thomas et al., 1973; Waples and Waples, 2004; Parker et 

al., 2024). The resulting open glades are further shaped by a short growing season, typically 

restricted to 3–4 months due to prolonged snow cover in higher elevations, which coincides with 

extreme daily microclimatic fluctuations: intense heating and low humidity during the day, 

followed by sharp nighttime cooling, with temperatures occasionally dropping below freezing 
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(Pignatti and Pignatti, 2014). Plants inhabiting these areas must cope with intense edaphic stress2, 

and the vegetation is typically composed of drought-tolerant, stress-adapted perennials, some of 

which may exhibit relictual or endemic distributions (Merlo et al., 2021). As such, dolomite slopes 

challenge survival and act as ecological filters, promoting distinctive plant communities that 

contribute disproportionately to regional biodiversity. 

A third, much smaller group of C. litardierei populations occurs in the salt marshes of 

northern Dalmatia, along the eastern Adriatic coast. In this region, low-lying coastal wetlands are 

rare due to steep, rocky shorelines, making these geographically limited marshes especially 

valuable for their specialized vegetation adapted to periodic tidal flooding and elevated soil salinity 

(Bui, 2013). These intertidal areas, shaped by dynamic sedimentation and erosion, are characterized 

by fine-scale topography, waterlogged soils with low oxygen availability, and species-poor 

ecosystems dominated by halophytes adapted to salinity fluctuations (Beeftink, 1977; Silvestri et 

al., 2005; Pedersen et al., 2017). Unlike the broader, more continuous salt marshes of the western 

and northern Adriatic, eastern Adriatic marshes are both spatially restricted and increasingly 

vulnerable to anthropogenic pressures such as agriculture and coastal tourism (Pandža et al., 2007). 

According to Croatia’s national protection strategy, marshy coasts rank among the most critically 

endangered coastal habitats, making their preservation a top conservation priority (Martinić, 2000). 

Reflecting the broader conservation concerns, C. litardierei has been classified as Near 

Threatened (NT) in Croatia (Nikolić and Topić, 2005). This status is attributed to habitat 

degradation driven by alterations in hydrological regimes, vegetation succession, and land-use 

changes. Socio-economic shifts in recent decades have led to the abandonment of hay meadows 

and pastures, accelerating succession and reducing habitat suitability. Additional pressures include 

drainage and reclamation of wetlands and infrastructure development (e.g., roads, highways), 

which collectively represent ongoing and future threats to the species’ survival (Alegro, 2013). 

Despite these pronounced environmental differences, previous studies have documented no clear 

phenotypic differentiation among populations (Šilić, 1990). 

However, as a geophyte, C. litardierei follows a marked seasonal cycle, remaining dormant 

from mid-summer through early spring. With the onset of spring, it produces leaves, soon followed 

 
2 Edaphic stress refers to adverse soil conditions that hinder plant growth, including limited availability of essential 

resources such as water, nutrients, and oxygen; the presence of toxic elements like excess salts, aluminum, heavy 

metals, or boron; and physical constraints on root function caused by factors such as mechanical impedance and 

extreme soil temperatures (Lynch, 2022). 
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by a racemose inflorescence bearing numerous radially symmetrical flowers. Flowering typically 

occurs between late April and early June, depending on population and habitat conditions, and is 

followed by fruit development and complete senescence by mid-July or August. During this phase, 

the plant reallocates resources to an underground bulb for overwintering. Although no specialized 

morphological adaptations for pollination have been documented, field observations suggest the 

species is open-pollinated. In addition to sexual reproduction, C. litardierei also reproduces 

clonally by forming multiple bulbs surrounding the central bulb, enabling persistence and 

expansion in suitable habitats. This dual reproductive strategy, combined with its ecological 

plasticity across sharply contrasting environments (Figure 1), makes it a robust model for 

investigating the genetic and phenotypic bases of local adaptation and adaptive divergence. Its 

small, bulbous perennial form allows easy transplantation and cultivation in common garden 

experiments, minimizing confounding effects of phenotypic plasticity. Finally, the species’ broad 

yet accessible distribution across the Dinaric Alps in the western Balkan Peninsula (Ritter-

Studnička, 1954; Gaži-Baskova, 1962; Šilić, 1990) facilitates comprehensive field sampling. 

Together, these attributes make C. litardierei a powerful system for exploring the evolutionary 

processes driving ecological specialization and divergence. 
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2 Theoretical Framework 

2.1 Advances in plant genomics 

In recent years, advances in plant genomics have fundamentally reshaped the approaches 

available for studying ecological and evolutionary processes. The release of the A. thaliana genome 

in 2000 marked a major milestone in plant biology (Kaul et al., 2000). Since then, rapid 

improvements in sequencing technologies have overcome the historical challenges posed by large 

genome sizes, their repetitive content, and variable ploidy levels  (Marks et al., 2021; Schley et al., 

2021). The emergence of third-generation sequencing (TGS) platforms such as PacBio HiFi and 

Oxford Nanopore has enabled fast, accurate, long-read sequencing without PCR amplification, 

reducing technical biases and assembly fragmentation, and making chromosome-scale assemblies 

feasible even for complex plant genomes (Zmienko et al., 2023; Scarano et al., 2024). Over the 

past decade, these advances have greatly expanded the number of de novo plant genome assemblies 

in public databases, opening the door to high-resolution genomic studies of wild and non-model 

taxa (Zmienko et al., 2023). 

Although whole-genome sequencing (WGS) offers unparalleled resolution and the highest 

marker density, its cost and computational demands remain limiting factors for studies involving 

large numbers of individuals, especially in species with large and complex genomes (Ray and 

Satya, 2014; Huang et al., 2025). In such cases, reduced-representation methods such as double-

digest restriction site–associated DNA sequencing (ddRAD-seq) provide a cost-effective 

alternative for genotyping of non-model species at a population scale (Harvey et al., 2016). By 

using a pair of restriction enzymes to cut DNA at consistent recognition sites, ddRAD-seq targets 

a reproducible subset of the genome, which is then barcoded, amplified, and sequenced (Peterson 

et al., 2012). However, the accuracy and consistency of this representation are critical, as biases in 

restriction site presence or amplification efficiency can affect genomic coverage (Magbanua et al., 

2023). By sequencing a targeted subset of the genome, ddRAD-seq yields thousands of single-

nucleotide polymorphisms (SNPs) that serve as genetic markers for assessing diversity, population 

structure, and enabling downstream analyses such as evolutionary inference and genotype–

phenotype associations (Esposito et al., 2020).  

Taken together, integrating ddRAD-seq with reference genome assemblies greatly 

improves resolution in detecting genetic variation and linking it to adaptive, ecological, and 

evolutionary processes. 
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Prior to recent genomic efforts, research on Chouardia litardierei focused mainly on 

cytogenetic characterization and preliminary taxonomic assessments. Only two individuals from 

contrasting habitats were analyzed karyologically (Siljak-Yakovlev, 2010), and there was an early 

proposal to classify the dolomite group as a distinct taxon (Šilić, 1990). However, these efforts 

offered a very limited view of the species' genetic and ecological differentiation, thus leaving the 

underlying mechanisms of local adaptation unexplored. 

2.2 Genome-wide association study (GWAS) 

Since Darwin, one of the central challenges in evolutionary biology has been to uncover 

the genetic basis of adaptation and speciation—a pursuit that has become increasingly tractable 

with the advent of genome-wide association study (GWAS) (Bamba et al., 2019). Approaches for 

detecting adaptive evolution generally fall into two categories: phenotype-first (top-down) and 

genotype-first (bottom-up) approaches (Ross-Ibarra et al., 2007). In the top-down approach, an 

adaptive phenotype is first identified, and then genetic association methods, such as GWAS, are 

used to pinpoint the underlying genetic factors, particularly when variation is linked to 

environmental differences. In contrast, bottom-up approaches examine genome-wide patterns of 

genetic variation to detect regions potentially under selection, without prior knowledge of specific 

adaptive traits. While this method is not restricted to predefined phenotypes, further analyses are 

required to interpret their functional significance (Flood and Hancock, 2017). 

As a key top-down method, GWAS leverages naturally occurring genetic variation, 

typically in the form of SNPs, to detect loci statistically associated with observable traits (Groen 

and Whiteman, 2016). First developed in human genetics (Hirschhorn and Daly, 2005), GWAS is 

now widely applied, from model species like Arabidopsis to diverse non-model taxa (Korte and 

Farlow, 2013). The first step in such analyses involves defining clear, consistently measurable 

phenotypes and selecting a study population with sufficient genetic and phenotypic variation to 

enable robust associations (Alseekh et al., 2021). After genome-wide genotyping of selected 

individuals, the resulting sequences are aligned to a reference genome, followed by SNP calling to 

identify genetic variants. Downstream association testing then examines the relationship between 

SNPs and traits across many individuals, facilitating the discovery of genomic regions linked to 

adaptive variation (Korte and Farlow, 2013; Uffelmann et al., 2021). This framework is particularly 

valuable in ecological genomics, as linking phenotypic variation to underlying genotypes can 
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clarify the genetic architecture of traits influenced by natural selection, while allowing the reuse of 

the same genotyping data across multiple traits in the same populations (Berhe et al., 2021). 

To translate genotypic and phenotypic variation into meaningful biological insights, GWAS 

relies on robust statistical models capable of capturing the complex relationships between genetic 

markers and traits (Visscher et al., 2017). Both frequentist and Bayesian approaches have been 

widely adopted, often used in tandem, and while each offers distinct methodological advantages, 

the question of their relative superiority remains a topic of ongoing debate (Bayarri and Berger, 

2004; Huisman, 2023; Phylactou, 2023). Typically, frequentist methods apply a single-locus 

framework, while Bayesian approaches often employ multi-locus models (Berhe et al., 2021). 

However, these approaches are often viewed as complementary, with their combined application 

enhancing the robustness and interpretability of association findings. 

Within the frequentist single-locus framework, association testing typically involves 

evaluating each genetic marker independently using models tailored to the distributional properties 

of the trait. For traits approximating a normal distribution, linear mixed models (LMMs), such as 

those implemented in the GEMMA software package (Zhou and Stephens, 2012), are commonly 

employed (Onifade et al., 2022; John et al., 2024). These models account for confounding due to 

population structure and relatedness through a kinship matrix and are well-suited to continuous 

traits (Kang et al., 2010). However, for traits that deviate from normality, particularly count-based 

phenotypes, generalized linear mixed models (GLMMs) offer a more appropriate alternative 

(Onifade et al., 2022). In such cases, tools like the GMMAT software package (Chen et al., 2019) 

allow for the specification of Poisson error structures, thereby accommodating the discrete nature 

of the data. Although the computational complexity of LMMs traditionally scales cubically with 

the number of individuals, the development of optimized software such as GEMMA has 

significantly improved computational efficiency, enabling their application in large-scale GWAS 

(Onifade et al., 2022). The complementary use of LMMs and Poisson GLMMs enables a more 

accurate modeling of diverse trait distributions within the frequentist paradigm, enhancing the 

reliability of single-locus association findings. Linear mixed models have become a cornerstone of 

GWAS due to their computational efficiency, straightforward interpretability, and broad software 

support. However, achieving sufficient statistical power with LMMs generally necessitates large 

sample sizes, which may pose practical limitations, particularly in studies of non-model organisms 

(Onifade et al., 2022). Despite advances in software that have improved scalability, large-scale 
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analyses still require access to high-performance computing infrastructure with substantial memory 

capacity (Runcie and Crawford, 2019; Schönherr et al., 2024). Methodologically, the univariate 

nature of LMMs restricts their capacity to capture the shared effects of loci on multiple traits, 

limiting their utility in the context of highly pleiotropic variants. 

In contrast, Bayesian multi-locus approaches, such as the Bayesian Sparse Linear Mixed 

Model (BSLMM) proposed by Zhou et al. (2013), offer a probabilistic framework that allows for 

the simultaneous estimation of all marker effects, rather than testing each SNP independently. This 

enables the modeling of both sparse, large-effect variants and the cumulative influence of many 

small-effect loci, making Bayesian approaches particularly well-suited for traits with complex or 

polygenic architectures. Rather than relying on p-values, these models generate posterior inclusion 

probabilities (PIPs), which quantify the likelihood that a given SNP is truly associated with the 

trait. This facilitates the ranking of variants based on biological relevance and statistical 

confidence, offering a more informative and interpretable alternative to traditional significance 

thresholds (Pleić et al., 2022). Additionally, BSLMM addresses population structure and 

relatedness using a kinship matrix, and it accounts for linkage disequilibrium (LD) by estimating 

SNP effect sizes while controlling for other SNPs in the model. In addition, BSLMM makes it 

possible to estimate how much of the variation in a trait can be explained by genetic factors, a 

concept known as narrow-sense heritability. This includes both the overall contribution of all 

genotyped SNPs, known as the proportion of variance explained by all available genotypes (PVE) 

or narrow-sense heritability, as well as an additional measure provided by BSLMM, referred to as 

the proportion of genetic variance explained by variants with major effect (PGE) (Alamin et al., 

2022). This helps distinguish between traits influenced by many small-effect variants and those 

driven by a few major ones. Despite their interpretability and robustness, Bayesian models remain 

computationally intensive, which can pose practical challenges in resource-limited settings (Zhao 

et al., 2019; Sun et al., 2021). 

In parallel, multi-locus genome-wide association analyses (mGWAS) using multivariate 

linear mixed models (mvLMMs), such as those implemented in GEMMA, offer an extension that 

enables the simultaneous analysis of multiple correlated traits. This approach facilitates the 

identification of shared genetic variants that influence several traits at once, enhancing power and 

biological insight. While LMMs yield p-values to assess statistical significance, they do not provide 

information about the strength of associations (effect sizes) or the likelihood that a specific genetic 
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variant is truly causal and thus offer limited insight into biological relevance or credibility of effect 

(Yoon et al., 2021). This limits their utility in interpreting complex, polygenic traits. 

Combining frequentist and Bayesian approaches within the same framework enables cross-

validation of associations, mitigates method-specific limitations, and supports more accurate 

characterization of genetic architectures underlying adaptation. As a final step in many plant GWA 

studies, functional annotation of genomic regions surrounding loci under selection frequently 

reveals genomic regions associated with key protein families involved in essential biological 

pathways. 

2.3 Genome-environment association (GEA) analyses 

In a letter to Karl Freiesleben in June 1799, the renowned naturalist and explorer Alexander 

von Humboldt wrote: “I shall endeavor to find out how nature's forces act upon one another, and 

in what manner the geographic environment exerts its influence on animals and plants. In short, I 

must find out about the harmony in nature.” Humboldt’s pioneering work laid the groundwork for 

the modern study of organism–environment interactions and continues to inspire contemporary 

methods such as genome–environment association (GEA) analysis. 

GEA has become a key approach for identifying genetic variation underlying adaptation to 

natural environments (Halpin-McCormick et al., 2025). It builds on the principle that populations 

distributed across contrasting climates and habitats experience spatially varying selection 

pressures, including variations in temperature, precipitation, altitude, and soil composition, which 

shape allele frequencies (Kawecki and Ebert, 2004; Hoban et al., 2016). Extending the GWAS 

framework introduced in the previous chapter, GEA analyses operate similarly, but instead of 

associating genetic variation with phenotypic traits, they model the relationship between genetic 

markers and environmental variables across populations (Cortés et al., 2022). This allows the 

identification of genomic regions potentially involved in local adaptation, even in the absence of 

phenotypic data, making GEA particularly valuable for studying non-model organisms (Hancock 

et al., 2011; Forester et al., 2018). Moreover, by capturing subtle allele frequency shifts across 

ecological gradients, GEA provides critical insight into the evolutionary processes shaping genetic 

diversity within species (Pritchard and Di Rienzo, 2010; Via, 2012). 

GEA analysis is typically preceded by assessing population genetic structure through 

approaches such as principal component analysis (PCA), ancestry inference (e.g., sNMF), and 
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phylogenetic reconstructions (e.g., Nei’s distance) (Nei, 1972; McVean, 2009; Frichot et al., 2014), 

respectively. These steps are essential to account for background genetic variation and to minimize 

confounding effects in subsequent analyses (Dauphin et al., 2023). Once population structure is 

characterized, multivariate statistical frameworks, most notably redundancy analysis (RDA), are 

employed to examine the relationship between genetic variation and environmental gradients (Ter 

Braak, 1987; Capblancq and Forester, 2021). RDA is particularly effective for detecting subtle 

shifts in allele frequencies across ecological conditions while simultaneously controlling for 

population structure. To maximize the accuracy and interpretability of this method, environmental 

variables, often sourced from global bioclimatic datasets such as WorldClim, must be carefully 

screened for multicollinearity, retaining only uncorrelated predictors in the model (Legendre and 

Legendre, 1998). 

Similar to the concluding phase of GWAS, loci showing strong associations with 

environmental variables in GEA are identified as outliers, and their functional context can be 

explored through functional annotation against several available databases (e.g., EggNog, NCBI, 

SwissProt, etc.). This analytical framework allows for a robust investigation of how genetic 

variation is shaped by environmental heterogeneity across landscapes. 
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3 Thesis Outline 

This PhD thesis investigated the genomic basis of local adaptation and ecological 

divergence in Chouardia litardierei, a non-model perennial with exceptional ecological plasticity 

across heterogeneous karst habitats. The primary aim was to identify the genetic determinants of 

variation in phenological and reproduction-related morphological traits under contrasting 

environmental conditions. To achieve this, the study integrated high-quality genomic sequencing, 

extensive sampling, common garden experiment phenotyping, and statistical modelling. Genotypic 

data were integrated with phenotypic measurements for genome-wide association studies and with 

bioclimatic variables for genome–environment association analyses. This integrative framework 

enabled genome-scale characterization and fine-scale genotype–phenotype–environment 

interaction mapping, offering novel insights into the evolutionary processes shaping this 

understudied lineage. 

3.1 Research objectives and hypotheses 

This study is guided by overarching objectives and hypotheses that shaped its design, 

methodology, and interpretation, forming a cohesive framework for investigating evolutionary 

dynamics in C. litardierei. The following objectives define the scope of this research: 

1. Assemble and annotate the genome 

Generate a high-quality, chromosome-level reference genome for C. litardierei, including 

annotation of gene content to provide a foundation for population and functional genomic analyses. 

 

2. Identify genotype-phenotype associations (GWAS) 

Conduct univariate GWAS using both single-locus and multi-locus approaches, as well as 

multivariate GWAS to identify SNPs associated with phenological and reproductive trait 

variations, followed by functional annotation of significant genomic regions to identify candidate 

genes involved in trait regulation. 

 

3. Detect genome–environment associations (GEA) 

Conduct genome–environment association analyses to identify genomic regions associated with 

tested environmental variables, and functionally annotate them to uncover candidate genes 

involved in local adaptation. 
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Based on these objectives, the research was guided by the following hypotheses: 

1. C. litardierei comprises three ecologically distinct groups of populations, each genetically 

and morphologically differentiated according to the habitats they inhabit (karst poljes, 

dolomite slopes, and coastal marshes). 

2. Phenological and reproductive traits exhibit high heritability and are associated with 

specific genetic variants, suggesting a strong genetic basis for adaptive trait variation. 

3. As a consequence of highly contrasting environmental conditions they inhabit, the trade-

off between sexual and asexual reproduction differs substantially among groups of 

populations. 

3.2 Overview of research publications 

In order to test the hypotheses, a complex analysis was carried out using different 

molecular-ecological tools and approaches, such as phenotyping and phenological characterization 

based on a common garden experiment, genotyping, and complex statistical data processing. The 

results are presented in three standalone yet thematically integrated publications, each addressing 

specific objectives and hypotheses. 

3.2.1 Publication I overview 

This publication presented a chromosome-level genome assembly of C. litardierei, 

providing a foundational genomic resource for investigating ecological divergence and local 

adaptation in this non-model species. Using PacBio long-read sequencing combined with Hi-C 

scaffolding, a highly contiguous 3.7 Gbp genome was assembled, anchored to 13 chromosome-

scale scaffolds, consistent with previously reported karyotypes. Genome annotation revealed that 

over 80% of the assembly is composed of repetitive elements, with LTR retrotransposons 

particularly abundant. This supports the assumption that genome size in C. litardierei is largely 

driven by repetitive content and that its chromosomal architecture aligns with previous cytogenetic 

observations. Beyond genome characterization, genome-scale data confirmed that C. litardierei is 

phylogenetically distinct from Asparagus and other Asparagales species with available draft 

genome assemblies. 

Although comprehensive genotype–phenotype and genotype–environment analyses are 

presented in later chapters, it must be emphasized that this genome assembly established the 

essential platform for all downstream genomic analyses, including ddRAD-seq data generation and 
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processing, population structure analysis, GWAS, GEA analysis, and functional annotation of 

candidate genomic regions. 

3.2.2 Publication II overview 

This publication investigated the genetic basis of variation in phenological traits of C. 

litardierei, with particular attention to their ecological importance and potential role in local 

adaptation. A common garden experiment was established with 214 individuals from nine 

populations, three from each of the three presumed habitat groups. This setup allowed for the 

isolation of genetically based phenotypic differences and the assessment of four key phenological 

traits: Beginning of Sprouting (BOS), Beginning of Flowering (BOF), Flowering Period Duration 

(FPD), and Vegetation Period Duration (VPD). To investigate the genetic underpinnings of these 

traits, genome-wide SNP data were generated using ddRAD-seq across multiple populations 

included in the common garden experiment, and a GWAS was conducted using both single-locus 

and multi-locus models. 

Phenological traits data did not reveal grouping of the studied populations following their 

habitat types. This analysis revealed numerous significant genotype–phenotype associations, 

supporting the hypothesis that phenological traits in C. litardierei are heritable and influenced by 

specific genetic variants. Narrow-sense heritability was high across all traits, with VPD reaching 

86.95%, highlighting its potential role in adaptation and fitness. To assess the functional relevance 

of associated loci, genomic regions surrounding significant SNPs were annotated. This revealed 

variants in genes encoding protein families central to phenological regulation. Several SNPs were 

identified in genomic regions encoding proteins with key roles in phenological regulation, 

including LHP1 (chromatin-mediated flowering control), pentatricopeptide repeat proteins, PPR 

(flowering onset), PIF1 (sprouting and development), and cytokinin-related genes (flowering 

responses to nutrients and drought). 

3.2.3 Publication III overview 

This publication investigates the genomic basis of local adaptation and reproductive trait 

variation in C. litardierei, integrating environmental and phenotypic data to identify candidate loci 

underlying adaptive divergence. Building on genomic resources developed in previous work, the 

study combines GEA analyses and GWAS to address multiple research objectives. 
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To explore how genomic variation reflects ecological divergence, GEA analysis based on 

RDA was conducted on the same set of studied populations. Precipitation of the coldest quarter 

(winter precipitation) emerged as the strongest predictor, with numerous SNPs being significantly 

associated with the climatic gradients. Recognized genomic regions of significant importance were 

functionally annotated, revealing candidate genes involved in abiotic stress responses, including 

pathways related to drought and cold tolerance. Key examples include kinase domains linked to 

salt tolerance and ion homeostasis, MYB transcription factors enhancing water stress tolerance, 

START domain proteins involved in drought signaling, Rubisco-related genes associated with heat 

sensitivity, and PPR genes related to developmental regulation. 

Population-genetic analyses revealed partial genetic clustering, with the dolomite group 

from dry, drought-prone habitats forming a distinct genetic cluster. In contrast, populations from 

seashore and meadow habitats showed weak or no genetic structuring, likely reflecting recent 

shared ancestry or ongoing gene flow. This pattern only partially supported the hypotheses, 

indicating that while the dolomite group forms a distinct group, the lack of consistent divergence 

across all habitat types points to incomplete habitat type-based genetic differentiation in C. 

litardierei. 

To investigate the genetic basis of reproductive trait development, phenotypic data from 

214 individuals from a common garden experiment, relocated from nine populations across three 

habitat groups, were paired with ddRAD-seq genotyping. The study focused on three reproductive 

traits: two related to sexual reproduction, Average Height of Inflorescences (AHI) and Total Flower 

Count (TFC), and one asexual trait, Bulb Count (BC). Using both single-locus and multi-locus 

GWAS models, multiple significant associations were identified across the genome. All traits 

showed high narrow-sense heritability (>55%), with AHI reaching 71.95%, suggesting a key role 

in reproductive fitness and adaptive differentiation. Similar to phenological traits, recognized 

variations in reproduction-related traits were, for the most part, unrelated to the three assumed 

groups of populations, but were mostly population-specific. However, results showed that clonal 

reproduction (reflected in BC) was substantially more prevalent in flood-prone habitats, pointing 

to adaptive shifts in reproductive strategy under certain environmental constraints. 

Functional annotation of candidate loci associated with reproduction-related morphological 

traits identified key genes involved in nitrogen metabolism, phytohormone signaling, and floral 

organ development, including cytochrome P450 enzymes (gibberellin biosynthesis, plant stature), 
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sugar transporters (bulb formation and starch accumulation), sterol biosynthesis genes (tissue 

morphogenesis and reproductive structures), as well as arginase genes, CCHC-ZFPs, aspartic 

proteases, Complex I genes, receptor-like kinases, and C2 domain proteins—highlighting pathways 

central to growth, reproduction, and adaptation in diverse habitats. 

A schematic summary of the methodological workflow for all three publications is provided 

in Figure 4, offering a visual guide to the overall study design. 

3.3 Scientific contribution 

This thesis presents the first high-quality, chromosome-scale genome assembly of C. 

litardierei, providing a foundational resource for genomic research on this ecologically distinctive 

and previously understudied species. By integrating this genomic resource with extensive 

ecological, phenotypic, and population-genomic data, the study delivers a comprehensive insight 

into the genetic architecture underlying local adaptation and reproductive strategies in a non-model 

species. 

This work pioneers the application of GWAS and GEA approaches in C. litardierei, 

identifying significant associations between genetic variants and key phenological and 

reproductive traits, as well as some of the tested climatic drivers. The research also includes the 

first large-scale common garden experiment in this species, enabling robust heritability estimates 

under standardized conditions—a critical step in disentangling genetic effects from environmental 

influences. 

The results reveal a complex pattern of incipient divergence, with only dolomite 

populations showing clear signs of genetic differentiation. Interestingly, virtually all tested traits 

were not specifically linked to any of the population groups, but rather to a specific population. 

These findings not only shed light on local adaptation in C. litardierei but also establish a powerful 

framework for investigating evolutionary processes in other South-European taxa inhabiting 

fragmented and heterogeneous environments. By linking highly heritable traits to genomic regions 

involved in stress response and developmental regulation, the study establishes a reference point 

for future work on adaptation, speciation, and trait evolution in geophytes and other plant species 

from contrasting habitats. 

Together, these findings establish C. litardierei as one of the few Balkan endemics 

thoroughly characterized across genomic, ecological, and phenotypic dimensions, using GWAS 
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and GEA analyses based on a common garden experiment. The genomic resources and analytical 

framework developed here will support future evolutionary and ecological research, not only 

within Chouardia or the Asparagaceae, but more broadly across other biodiversity hotspots where 

adaptive processes remain poorly understood.
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Figure 4. Schematic overview of the research framework and workflow across the three publications. Purple outlines correspond to Publication I, blue to Publication II, 

and green to Publication III.
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4 Discussion 

This thesis presents an integrative investigation of the genetic basis of local adaptation 

in Chouardia litardierei, a geophytic wild species native to the Balkan Peninsula. Through three 

original publications, it addresses key questions related to genome structure, population-genetic 

patterns, genotype-environment, and genotype-phenotype relationships. Collectively, these 

studies form a coherent framework for understanding early-stage divergence in species that 

occupy environmentally heterogeneous habitats. 

4.1 Broader evolutionary context and implications 

Despite limited prior research, C. litardierei presents a valuable system for investigating 

the early stages of ecological divergence in non-model species. Its distribution spans across 

highly heterogeneous environments, ranging from coastal marshes and wet meadows to high-

elevation dolomite slopes (Gaži-Baskova, 1962; Šilić, 1990), making it a suitable model for 

examining how local selection pressures shape the genetics underlying reproductive strategies, 

phenology, and population structure (Lowry et al., 2008b; Cortés et al., 2018; Bakhtiari et al., 

2019). 

The results presented in this thesis point to early-stage ecological divergence in C. 

litardierei, particularly of the southern dolomite populations. Although the dolomite 

populations are genetically differentiated and uniform in terms of the geological substrate on 

which they grow, it should be noted that they also occur over a wide range of altitudes, thus 

experiencing different climatic conditions. This could easily have led to the development of 

variations that are specific to a particular population and not common across the entire group. 

These environmental differences render this genetically homogeneous dolomite group 

heterogeneous in terms of phenology and reproductive morphology. While divergence remains 

incomplete, the combination of environmental isolation and trait shifts suggests that these 

populations may be on an evolutionary trajectory toward ecological speciation. Such patterns 

are consistent with theoretical expectations under limited gene flow and strong local selection 

(Hoban et al., 2016; Rahbek et al., 2019). 

The results underscore the value of integrating genomics, trait analysis, and 

environmental data to uncover cryptic evolutionary processes not yet reflected in morphological 

differentiation (Theissinger et al., 2023; Peng et al., 2025). In this context, C. litardierei 

contributes to a broader understanding of how adaptation unfolds in fragmented landscapes, 

where gene flow, environmental heterogeneity, and reproductive strategy interact in complex 

ways. 
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4.2 Building genomic infrastructure for ecological and evolutionary inference 

As a wild species without economic value and no prior genomic resources, C. litardierei 

exemplifies the challenges and growing potential of applying modern genomic tools to 

ecologically important but understudied taxa. Its distribution across diverse habitats made it an 

ideal candidate for studying local adaptation, yet until recently, the absence of a reference 

genome limited deeper evolutionary and functional insights. 

The development of a chromosome-scale reference genome (Publication I) addressed 

this limitation, providing the foundational resource needed to link genotypes to ecological and 

phenotypic variation. Using PacBio HiFi long-read sequencing combined with Hi-C 

scaffolding, we assembled a high-quality and complete genome of ~3.7 Gb, anchored to 13 

pseudochromosomes, thus supporting previous cytogenetic data (Siljak-Yakovlev, 2010). 

Additionally, genome annotation revealed that over 80% of the assembly consists of repetitive 

elements, explaining the species’ large genome size. 

This reference genome enabled key downstream analyses, including assessments of 

population structure, trait heritability, GWAS, and GEA (Publications II and III). It has thus 

established the genomic framework necessary for linking adaptive traits to specific loci and for 

interpreting local adaptation at both the genetic and ecological levels. 

Importantly, the successful assembly of a large, repetitive genome from a non-model 

species underscores the feasibility of generating high-quality genomic resources for other 

Balkan endemics, many of which remain poorly characterized despite their ecological 

significance (Quaresma et al., 2024). Beyond its immediate application in this thesis, the C. 

litardierei genome provides a springboard for future research on gene regulation, structural 

variation, and responses to environmental stress, offering a broader insight into plant adaptation 

in fragmented and climatically variable landscapes. 

4.3 Ecotypic differentiation and genetic structure in C. litardierei 

Publication I laid the foundation for further research by revealing preliminary evidence 

of divergence, suggesting an isolated lineage, and motivating broader analyses. 

Publications II and III tested the genetic structuring of the studied populations to reveal 

that dolomite populations form a distinct lineage. In addition, as a prerequisite for the GWAS 

analysis that followed, the common garden experiment was set up, and the results obtained 

provided additional insight into the phenotypic structure of the studied populations. Population 

genetic analyses revealed that dolomite populations form a well-differentiated genetic cluster, 

whereas meadow and seashore populations were genetically indistinct from each other, 
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suggesting either a recent shared origin or substantial ongoing gene flow that prevents 

differentiation. 

 While these results clarify broad patterns of population structure, they do not support 

the idea that C. litardierei consists of three fully distinct ecotypes aligned with the major habitat 

types these groups inhabit. Although some divergence was evident, most notably for the 

dolomite group of populations, this variation was not consistent across all habitat groups. 

Instead, genetic structure and trait differentiation were more strongly associated with local 

environmental conditions and population-specific responses than with broad habitat categories. 

According to Lowry's (2012) definition, ecotypes require both genetic and phenotypic 

distinctiveness. Based on this criterion, C. litardierei does not qualify as a species with fully 

developed ecotypes. We therefore adopt a more conservative interpretation, referring to these 

as habitat-associated population groups, which acknowledges the presence of partial divergence 

without overstating its evolutionary significance. Morphologically and phenologically, 

dolomite and non-dolomite populations are largely indistinguishable, with the only notable 

difference being a substantially greater prevalence of clonal reproduction (reflected in BC trait) 

in flood-prone habitats—likely representing an adaptive shift in reproductive strategy under a 

set of specific environmental constraints. 

In summary, population-genetic and phenotypic analyses revealed only partial 

divergence in C. litardierei, with clear genetic separation of dolomite populations but overall 

morphological similarity across habitats, apart from greater clonal reproduction in flood-prone 

sites. This mismatch between genetic structure and phenotypic expression can probably be 

explained by individual differences in the microclimatic and other environmental conditions to 

which individual populations are exposed, thus providing the evolutionary backdrop for 

interpreting the heritable basis and adaptive potential of phenological and reproductive traits in 

C. litardierei. 

4.4 Trait variation and genetic architecture of adaptation 

Patterns of phenological and reproductive trait variation in C. litardierei suggest that 

environmental pressures are shaping population-level divergence, as demonstrated through 

common garden experiment, heritability estimates, and genome-wide association studies 

(Publications II and III). By minimizing environmental noise in a controlled setting (De 

Villemereuil et al., 2015), we identified genetically based variation, though its alignment with 

ecological differences was not consistent across all traits or habitat types. 
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GWAS results revealed associations between both phenological and reproductive traits 

and numerous loci in genomic regions involved in flowering regulation, hormone signaling, 

stress response, and developmental pathways mechanisms broadly implicated in plant 

adaptation. Several SNPs were identified in genomic regions encoding protein families with 

key roles in phenological regulation. These included LHP1, a chromo domain protein 

controlling flowering time through chromatin-based regulation; pentatricopeptide repeat (PPR) 

proteins, which affect flowering onset via post-transcriptional processes; phytochrome-

interacting factor 1 (PIF1), regulating sprouting and developmental transitions; and cytokinin-

related genes mediating nutrient- and drought-linked flowering responses. Additional 

associations were detected with histidine phosphatases, which regulate hormone signaling and 

vegetative growth, and stress-related genes linked to drought and cold responses. Others were 

linked to reproduction-related morphological traits, including cytochrome P450 enzymes 

regulating gibberellin biosynthesis and plant stature, sugar transporters influencing bulb 

formation and starch accumulation, and sterol biosynthesis genes affecting tissue 

morphogenesis and reproductive structure development. Additional associations involved 

arginase genes central to nitrogen metabolism and growth, CCHC-ZFPs regulating 

development and stress adaptation, aspartic proteases driving rapid organ development, 

Complex I genes essential for growth at all life stages, receptor-like kinases mediating 

brassinosteroid signaling, and C2 domain proteins (e.g., QUIRKY, STRUBBELIG) crucial for 

intercellular communication in reproductive tissues. 

These associations were reinforced by high narrow-sense heritability (h2) estimates, 

which describe the degree of variation in a phenotypic trait that is due to genetic variation. For 

phenology, vegetative period duration (VPD) showed the highest h2 (86.95%), suggesting 

strong genetic control and possible adaptive significance in environments with limited growing 

seasons. In contrast, flowering period duration (FPD) showed lower heritability (20.26%), 

implying greater plasticity or environmental sensitivity. Moreover, the BSLMM analysis 

revealed that 66.03% of the phenotypic variation in BOF (beginning of flowering) and 76.05% 

in BOS (beginning of sprouting) was explained by all genotypes. These findings demonstrate 

that both early-season sprouting and flowering onset are strongly shaped by genetic factors, 

underscoring the significant genetic control of key phenological transitions. This genetic 

regulation may play a critical role in enabling populations to synchronize their life cycle with 

the environmental constraints of their specific habitats. 

These genomic findings partially align with patterns observed in the common garden 

experiment. On average, dolomite populations sprouted later, flowered earlier, and had shorter 
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vegetation periods than meadow and seashore populations, but notable exceptions were present. 

For example, the seashore population from Pag flowered at the same time as dolomite 

populations and significantly earlier than the nearby Vrana Lake population from the same 

habitat. Such variation indicated that phenological differences are not strictly determined by 

habitat group, suggesting additional influences from population-specific factors or 

microenvironmental variation. Together, these results suggest that phenological variation in C. 

litardierei occurs along a continuum of local adaptation rather than as discrete, habitat-specific 

shifts. 

Reproductive traits exhibited complex patterns that varied more among populations than 

across broad habitat types, suggesting that localized selective pressures, such as pollinator 

communities or microhabitat variability, may exert stronger influence than overarching abiotic 

effects. This interpretation is supported by morphometric analyses, which revealed substantial 

population-level variation, and by heritability estimates showing that the average height of 

inflorescence (AHI) had the highest narrow-sense heritability (71.95%), followed by bulb count 

(BC, 69.87%) and total flower count (TFC, 55.89%). Although AHI showed high heritability 

and may be linked to pollination efficiency, its similar expression across habitat groups suggests 

that any potential selection acting on this trait is not strongly habitat-specific, making it difficult 

to draw firm conclusions about directional selection. In contrast, variation in TFC and BC 

appears more tightly linked to environmental conditions. For instance, dolomite populations 

tended to produce fewer bulbs, possibly reflecting a shift toward sexual reproduction in more 

hydrologically stable, drought-prone environments. Conversely, increased clonal reproduction 

in flood-prone habitats like karst poljes and coastal meadows may represent an adaptive 

response to unpredictable opportunities for sexual reproduction. This pattern is consistent with 

the hypothesis that clonal reproduction is more prevalent in flood-prone environments as a 

strategy to ensure persistence under unstable reproductive conditions. 

Despite environmental contrasts, considerable overlap in trait values among habitat 

groups indicates that adaptive divergence in C. litardierei is not uniformly shaped by broad 

habitat categories. Instead, it reflects a mosaic of localized selection, genetic background, and 

the lasting effects of past evolutionary events. These findings support the hypothesis, which 

proposes that phenological and reproductive traits in C. litardierei exhibit high heritability and 

are associated with specific genetic variants. This nuanced pattern highlights how both trait 

types contribute to early-stage adaptation in complex and variable environments, reinforcing 

the importance of integrating ecological, genetic, and trait-based data when investigating 

evolutionary processes in non-model systems. 
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4.5 Genome–environment associations and local adaptation 

To further understand the environmental factors driving genetic differentiation in C. 

litardierei, we explored GEA to identify loci potentially involved in local adaptation 

(Publication III). This approach complements trait-based and population genetic analyses by 

linking specific climatic variables to patterns of genetic variation (Faske et al., 2021; Dauphin 

et al., 2023). While GEA results can be affected by environmental collinearity and population 

structure, they can nonetheless reveal broad signals of climate-mediated selection. 

Among the tested climatic predictors, precipitation during the coldest quarter (BIO19) 

was recognized as the most profound driver of the detected variation. BIO19 was linked to 131 

of 256 SNP outliers, indicating that among the tested variables, winter moisture availability 

may be a key selective force shaping genomic divergence in C. litardierei. This pattern is 

consistent with the species’ fragmented distribution across environments that differ strongly in 

seasonal water availability—from karst fields, where early-spring flooding results from rapid 

snowmelt in surrounding mountains combined with basin-like geomorphology and limited 

permeability of the substrate, to arid, drought-prone dolomite slopes (Horvatić, 1934; Bonacci, 

2014). This aligns with the hypothesis, which proposes that genetic variation among 

populations is associated with environmental factors, indicating potential signatures of local 

adaptation. 

To further explore the functional relevance of these associations, we annotated 

significant loci and identified over 80 genomic regions linked to abiotic stress responses and 

regulatory pathways, including salt and drought resistance, ion homeostasis, temperature 

resilience, photosynthesis, and developmental control. Key examples include C2 domains and 

protein kinase domains involved in salt tolerance and Na⁺/K⁺ homeostasis, MYB transcription 

factors enhancing salt and water stress tolerance, and START domain proteins linked to drought 

signaling. The presence of Rubisco-related genes, sensitive to heat stress, points to potential 

photosynthetic constraints in warmer environments, while DEAD-box and RRM1 genes 

indicate capacity for cold tolerance. Genes such as PPR and OBERON further highlight roles 

in developmental regulation. The alignment between these functional roles and contrasting 

ecological conditions suggests that local adaptation in C. litardierei is supported by a diverse 

physiological toolkit. 

The diversity of detected genes indicates a polygenic basis of adaptation, with many 

small-effect loci collectively shaping population responses rather than a few large-effect genes 

(Hämälä et al., 2020). This polygenic pattern is common in species adapting to complex and 

30



 

 

variable environments (Yeaman, 2015; Ehrlich et al., 2020). While these associations cannot 

confirm causal relationships, they provide a valuable starting point for future studies aiming to 

validate candidate gene functions and deepen our understanding of the molecular basis of local 

adaptation in C. litardierei. 

4.6 Limitations and future objectives 

 While this thesis offers novel insights into the genomic and ecological landscape of C. 

litardierei, several limitations in study design, data quality, and analytical scope affect the 

certainty and generalizability of some conclusions. Addressing these gaps in future research 

will be essential for a more comprehensive understanding of the species’ evolutionary 

dynamics. 

Perhaps the major limitation lies in the genome assembly and the very limited 

accessibility of genome assemblies from other closely related species. Although the assembled 

genome was highly complete, only 44.5% of predicted genes were matched across all selected 

databases, indicating that more than half still lacked full functional annotation. This gap likely 

reflects the scarcity of genomic references for non-model monocots and the absence of closely 

related species for comparison. The large genome size and high repeat content (nearly 70%) 

also posed challenges for accurate annotation. 

Sampling design and data limitations influenced both population- and trait-level 

analyses. Although the study spanned a wide ecological gradient, the number of populations 

and individuals per habitat type remained somewhat modest, possibly limiting the ability to 

detect rare variants, fine-scale genetic structure, and subtle patterns of divergence. The common 

garden experiment helped control for environmental effects, but focused primarily on 

phenological and reproductive traits, leaving other potentially adaptive morphological and 

physiological traits unexplored. 

For the genotyping, the use of ddRAD-seq further constrained resolution. Because only 

a fraction of the genome was analyzed, this approach limited our ability to detect rare variants 

and selection signals that may lie outside the captured loci. These constraints had downstream 

effects, particularly for GWAS, where the combination of limited genomic coverage and small 

sample sizes reduced statistical power and increased the risk of confounding due to population 

structure. Despite efforts to control for multicollinearity, the potential influence of population 

structure and limited gene annotation constrained the interpretation of these results, especially 

regarding the functional significance of candidate loci recognized by GEA. 
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Several opportunities for future research were identified throughout this study. Based 

on the limitations outlined above, future work could further improve, extend, and validate the 

findings presented here. These directions include: 

• Instead of the reduced-representation sequencing, implement whole-genome 

resequencing (WGS) of individuals across populations to detect rare variants. 

Individual-level WGS offers higher resolution of genetic diversity, gene flow, and 

demographic history. 

• Expand sampling across the species’ full ecological and geographic range. A broader 

sample set will better capture environmental gradients and potential ecotypic variation, 

improving inferences about adaptation. 

• Analyze a broader set of traits beyond these tested ones, such as leaf morphology (size 

and number), root architecture, and bulb size. These traits may reveal additional axes of 

adaptation related to environmental stress. 

• Include the analysis of the RNA through the implementation of various RNAseq 

approaches, to directly assess the gene expression in populations from different habitats.  

• Establish reciprocal transplant experiments across habitats to test the fitness 

consequences of trait variation in contrasting environments. Such experiments can help 

distinguish phenotypic plasticity from genetic adaptation and provide direct evidence 

for local adaptation, which is crucial for confirming whether the observed habitat-

associated groups represent true ecotypes. 

• Incorporate soil variables into genome–environment association analyses to evaluate 

how contrasting edaphic conditions, from deep soils to exposed rocky substrates, shape 

genetic divergence. 
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5 Conclusion 

The results of this thesis support most proposed hypotheses, revealing a complex 

interplay of genetic structure, trait variation, and early-stage ecological divergence in 

Chouardia litardierei. By integrating genomic, phenotypic, and environmental data, this work 

clarifies how selection and local adaptation interact in this ecologically diverse Balkan endemic. 

The key findings of this PhD thesis can be summarized as follows: 

1. First chromosome-scale genome reveals evolutionary distinctiveness of C. 

litardierei 

A high-quality ~3.7 Gb genome was assembled, confirming the expected chromosome 

number and structure, and marking the first such resource for this species. Phylogenomic 

analyses placed C. litardierei as evolutionarily distant from Asparagus and other previously 

sequenced Asparagales, underscoring its phylogenetic uniqueness. 

2. Genetic structure separates dolomite populations as a distinct group 

Population genomic analyses revealed two broad genetic clusters: one confined to dolomite 

habitats, and another spanning meadow and seashore sites. This pattern supports describing 

populations as habitat-associated groups rather than distinct ecotypes. 

3. Heritable trait variation is underpinned by specific genetic loci 

GWAS revealed high heritability in phenological and reproductive traits and identified 

SNPs in genomic regions related to hormone signaling, stress response, and developmental 

timing. These findings suggested a strong genetic basis for variation in the tested adaptive 

traits and supported fine-scale natural selection across heterogeneous environments. 

4. Genetic differentiation is shaped by environmental factors, especially winter 

precipitation 

GEA analyses identified winter precipitation as the environmental element with the 

strongest influence on genomic variations, indicating that water availability is a major 

selective force shaping local adaptation across the species’ range. 

5. Clonal reproduction is more common in flood-prone habitats 

Populations from flood-prone habitats, such as karst poljes and coastal meadows, showed a 

stronger tendency toward clonal reproduction. This supports a habitat-specific life-history 

trade-off, as clonality is often favoured in environments where, for some reason, sexual 

reproduction is threatened or unreliable. 
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6. Adaptive divergence is ongoing, partial, and shaped by local ecological conditions 

Despite pronounced environmental contrasts, both genetic structure and trait differentiation 

remain incomplete, particularly among non-dolomite populations. This suggests that local 

adaptation in C. litardierei proceeds along a continuum shaped by different evolutionary 

forces, microhabitat variability, and historical demographic processes. 

7. Adaptive traits appear to be governed by a polygenic basis 

Environment- and trait-associated SNPs mapped to genes involved in drought tolerance, 

flowering regulation, and stress responses, indicating that adaptation in C. litardierei is 

shaped by shifts across multiple biological pathways rather than by single large-effect 

mutations. 
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Abstract: One of the central goals of evolutionary biology is to understand the genomic basis
of adaptive divergence. Different aspects of evolutionary processes should be studied through
genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth
genome-scale analyses often are restricted to a model or economically important species and their
closely related wild congeners with available reference genomes. Here, we present the high-quality
chromosome-level genome assembly of Chouardia litardierei, a plant species with exceptional ecological
plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome
with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among
which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were
functionally annotated using public databases. For the comparative analysis of different ecotypes’
genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was
performed. The detected above-average SNP density within coding regions suggests increased
adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes
within the group. The constructed genome presents an invaluable resource for future research
activities oriented toward the investigation of the genetics underlying the adaptive divergence that is
likely unfolding among the studied species’ ecotypes.

Keywords: Chouardia litardierei; PacBio; Hi-C; chromosome-level genome; draft genome; local adaptation

1. Introduction

Amethyst meadow squill (Chouardia litardierei (Breist.) Speta) (Figure 1A) is a bulbous
perennial species of the Hyacinthaceae family. It grows naturally across the western and
central parts of the Dinaric Alps in the Balkan Peninsula, occupying highly contrasting
ecological niches [1,2] and therefore meadow, seashore, and mountainous ecotypes can be
recognized (Figure 1B).

The meadow ecotype, distributed throughout the central and northern parts of the species
distribution area, is found across karst fields at altitudes of up to 1000 m. These flat-floored
and periodically flooded enclosed depressions are characterized by a unique microclimate
and hydrological and geomorphological conditions compared to the surrounding areas [3].
The seashore ecotype occupies the lowlands of northern Dalmatia across the northwestern
part of the species distribution range. These populations grow in salt marshes reaching the
seashore, which experience Mediterranean climate conditions [4,5]. Finally, the mountainous
ecotype is distributed throughout the southern parts of the species’ distribution range and in
comparison to the aforementioned two ecotypes, occupies a highly contrasting habitat. Its
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populations inhabit arid, rocky slopes of high mountains with very little or virtually no soil in
rock crevices at altitudes of up to 2000 m that are characterized by extreme seasonality of most
climatic elements. Despite occupying contrasting environments, these groups of populations
can hardly be distinguished from each other by any morphological trait. There was an
attempt to describe the mountainous ecotype as a separate taxon based on morphological and
phenological analyses [2], but the research was based on vague and unreliable approaches,
therefore leaving room for justified doubts in the results. C. litardierei undoubtedly is a complex
species characterized by very pronounced ecological plasticity. However, unlike in some other
cases [6], it seems only the specific habitat, and not any morphological trait, can be used for
reliable recognition of the ecotypes. We plan to use this species as a study system for a thorough
investigation of the genetics underlying the ecological divergence and speciation process.
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Figure 1. (A) Chouardia litardierei in full bloom, (B) the distribution area of Chouardia litardierei and
contrasting habitat types it occupies. The distribution area of Chouardia litardierei is marked with
a dotted line. In circles, from left to right, meadow, seashore, and mountainous ecotype habitats
are shown.

To date, no significant research that investigated this species’ ecological divergence or
genetics has been performed. Besides the previously mentioned analyses by Šilić [2], the
cytogenetic characterization of two individuals representing meadow and mountainous
ecotypes was also performed [7]. Karyograms revealed that both ecotypes share the
same number of chromosomes (2n = 26), with one long, two middle-sized, and ten small
chromosome pairs. In addition, the 1C haploid genome size was estimated at 4.13 pg [8] or
4.039 Gbp according to the conversion by Doležel et al. [9].

During the process of speciation, a group of individuals diverges into two or more
distinct phylogenetic lineages. In populations initially indistinguishable from each other,
either genetically or morphologically, the accumulation of genetic differences can gradually
lead to the emergence of a new species [10,11]. The type of speciation in which “barriers to
gene flow evolve between populations as a result of ecologically based divergent selection”
is referred to as ecological speciation [12]. As a consequence of organism adaptation to
specific environmental conditions during ecological speciation, new morphologically and
genetically divergent ecotypes found in a specific habitat rather than a specific geographic
area, can emerge [13]. One of the central goals of evolutionary biology is to understand
the genomic basis of adaptive evolution [14,15]. It is widely accepted that different aspects
of evolutionary processes should be studied through genome-wide approaches, therefore
maximizing the investigated genomic space. However, genome-scale analyses are often
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restricted to a model or economically important species (and their closely related wild
congeners) with available high-quality reference genomes [16–18]. In recent years, with the
advancement of different NGS techniques and the inevitable increase in their affordability,
more non-model species’ genomes are being sequenced and assembled de novo [19–21].

Here, we present the high-quality chromosome-scale genome assembly for C. litardierei,
which is also, to the best of our knowledge, the first reported genome assembly within the
Hyacinthaceae family. By implementing PacBio HiFi sequencing and Hi-C scaffolding, a
haploid 3.7 Gb genome organized in 13 pseudochromosomes was revealed. The obtained
results represent the initial step in comprehensive research that will investigate the process
of adaptive divergence and speciation that is likely unfolding among the ecotypes of the
studied species. The availability of the species’ genome assembly will enable the study of
the ecotypes’ genome architecture, genome–environment association (GEA), and genome-
wide association studies (GWAS), which will elucidate the genomic mechanisms underlying
the ongoing evolutionary processes in C. litardierei.

2. Results
2.1. Genome Sequencing and Assembly

After sequencing, high-quality PacBio CCS reads were obtained from subreads with
a quality score of Q20 (1% error rate). More than 6.5 M PacBio HiFi reads were available
with a total of 94.54 Gbp (23× genome coverage, genome size based on the k-mer analysis),
producing an average read length of 14.5 Kbp. In addition, 861 M Hi-C read-pairs were
obtained, resulting in 432 Gbp (105× genome coverage) in total. Based on k-mer analysis,
the genome size of amethyst meadow squill was estimated at 4.085 Gbp. After processing
the hifiasm assembly using Quast, the initial genome assembly of 3.67 Gbp with an average
contig N50 of 12.9 Mbp was produced.

After processing the initial assembly and Hi-C data with 3D-DNA, the assembly
results were moderately improved and the scaffold N50 measure topped 200 Mbp. The N50
measure obtained after the 3D-DNA pipeline should be considered reliable due to misjoins
having been resolved by the pipeline. The rearrangement of scaffolds produced by the 3D-
DNA pipeline with the Juicebox tool resulted in the recognition of 13 pseudochromosomes:
one very long, two middle-sized, and ten small chromosomes (Figures 2 and 3).
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Figure 3. Genome features of 10 Mbp windows across the Chouardia litardierei genome. From
outer to inner circles: chromosomes, GC content, gene density (purple), total repeats (green), DNA
transposons density (light blue), Copia elements density (blue), Gypsy elements density (dark blue),
and intra-genome syntenic blocks where the bandwidth is proportional to the syntenic block size.

The obtained assembly was polished using the HyPo tool, and the results are presented
in Table 1. The N50 value reached more than 210 Mbp, and the largest scaffold was nearly
825 Mbp. The 13 largest scaffolds (representing pseudochromosomes) range from 146 Mbp to
825 Mbp, with a total size of 3.33 Gbp. This value represents 90% of the complete assembly and
81.6% of the predicted genome length. The rest of the assembly consists of numerous smaller
sequences (2.3 Mbp and smaller) that did not successfully merge with the pseudochromosomes.
Finally, the BUSCO completeness score of 97.4% confirmed the high quality of the obtained
genome assembly. The summary statistics are presented in Table 1.

Table 1. Summary results for the final assembly of the Chouardia litardierei genome.

Sequence

Assembly size (bp) 3,698,590,323
GC content (%) 42.90

Number of scaffolds 9916
Number of scaffolds (≥50 kbp) 1803

Longest scaffold (bp) 824,692,949
Scaffold N50 size (bp) 210,067,440

Number of contigs 3111
Number of contigs (≥50 kbp) 1611

Longest contig (bp) 54,979,118
Contig N50 size (bp) 12,914,002

Pseudochromosome
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Table 1. Cont.

Sequence

Number 13
Size range (Mbp) 145.64–824.69

BUSCO score

Complete BUSCOs (%) 97.4
Complete and single-copy BUSCOs (%) 89.9
Complete and duplicated BUSCOs (%) 7.5

Fragmented BUSCOs (%) 2.4
Missing BUSCOs (%) 0.2

2.2. Repetitive Elements Annotation

The annotation of repetitive elements revealed 2.99 Gbp of repetitive sequences repre-
senting 80.90% of the C. litardierei genome, with transposable elements (TEs) occupying
69.97% of the genome assembly. In addition, the analysis revealed that LTR retrotrans-
posons were by far the most abundant repeat sequences (63.25% of the genome assembly),
of which Copia and Gypsy, two superfamilies, account for 27.03% and 36.01% of the assem-
bled sequences, respectively. Other detected repeat elements were unclassified elements
(7.81%), DNA transposons (3.67%), long interspersed nuclear elements (LINEs; 2.99%), and
others with lower abundances (Table 2).

Table 2. Classification of the repetitive elements in the Chouardia litardierei genome.

Percent (%) Total Length (Mbp)

Retrotransposons
LINE 2.99 110.72
SINE 0.06 2.14
LTR 63.25 2339.37

DNA Transposons 3.67 135.60
Unclassified 7.81 288.98

Satellites 0.14 5.10
Simple repeats 1.42 52.63

Low complexity 0.31 11.53
Rolling circles 0.58 21.30

Small RNA 0.70 25.88
Total 80.90 2991.99

2.3. RNA Sequencing

The RNA sequencing yielded a total of 99.59 M raw reads. After trimming, 96.75 M
reads with an average length of 135.6 bp were retained. The summary of the RNA sequenc-
ing results from different tissues is given in Table 3.

Table 3. RNA sequencing data from different Chouardia litardierei tissues.

Root Leaf Flower Developing
Fruit

No. of raw reads 22,769,326 24,504,881 28,584,130 23,731,351
Total nucleotides [Mbp] 3013.5 3360.2 3918.0 3070.6

GC content [%] 47.90 49.18 49.65 51.26
Average length [bp] 123.0 137.1 137.1 129.4
Min-max length [bp] 8–383 8–381 8–381 8–384

No. of reads after trimming 22,079,991 23,884,368 27,738,059 23,053,022
Total nucleotides after

trimming [Mbp] 2957.7 3309.0 3855.2 3018.6

Average read length after
trimming [bp] 134.0 138.5 139.0 131.0
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2.4. Gene Prediction and Annotation

By combining several approaches, we predicted 27,257 gene models, of which 23,297
were mapped to 13 pseudochromosomes, while the remaining 3960 were mapped to smaller
scaffolds. Their average length, CDS length, and exon number were 3109.9 bp, 764.1 bp, and
4.2 bp, respectively (Table 4). Among the predicted genes, 23,398 were functionally annotated
using the public databases Swiss-Prot, InterPro, NCBI NR, and EggNog (Figure 4A).
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Table 4. Summary of the gene prediction and annotation results of Chouardia litardierei.

Gene Prediction

Number of predicted genes 27,257
Number of predicted genes in 13 pseudochromosomes 23,297

Chr1 1237
Chr2 1152
Chr3 1477
Chr4 2137
Chr5 1757
Chr6 1309
Chr7 1429
Chr8 1513
Chr9 1435

Chr10 1589
Chr11 1344
Chr12 2373
Chr13 4545

Mean gene length (bp) 3109.9
Mean CDS length (bp) 764.1
Mean exon length (bp) 181.0

Mean intron length (bp) 728.0
Avg. exons per gene 4.2

Gene annotation

NCBI NR annotated (%) 17,602
EggNog annotated (%) 14,691
InterPro annotated (%) 22,633

Swiss-Prot annotated (%) 12,782
Number of annotated genes 23,398

Proportion of annotated genes (%) 85.8%

2.5. Evolution Analysis

To elucidate the evolutionary history of C. litardierei within monocots, seven species
across the group and one dicot (A. thaliana as an outgroup) were selected for the phylogenetic
analysis. A total of 24,356 orthologous families of genes were identified: 377 single-copy
families, 5189 shared by all studied species, 5486 shared only by monocots representatives,
and 6621 shared by C. litardierei and A. officinalis (Figure 4C). For C. litardierei 1458 private
gene families were recognized. Single-copy ortho-groups were used for the phylogenetic tree
construction. Species formed groups that were in accordance with their already recognized
phylogenetic relationships. C. litardierei paired with A. officinalis within the order Asparagales,
while Z. mays, H. vulgare, and O. sativa grouped as representatives of the Poaceae family. As
representatives of different families, D. rotundata, M. acuminata, and A. comosus were positioned
separately, as was the case with A. thaliana as the sole representative of dicots that served as
the outgroup. The divergence time between C. litardierei and A. officinalis was estimated at
49.9 Mya. The divergence times among the other analyzed species and gene family expansions
and contractions are indicated in Figure 5.

2.6. Ecotypes Genomes Comparison

To perform a basic comparison of the different ecotypes’ genomes, two additional
samples, one representing the meadow, and another the mountainous ecotype, were
sequenced. Illumina PE150 sequencing yielded 364 and 370 M reads for the meadow and
mountainous ecotype individuals, respectively. However, the usability of such a short-
read data set was limited and does not allow detailed comparative analyses of genomes
characterized by very high proportions of repetitive elements. Nonetheless, we were
able to calculate pairwise distances between the constructed genome assembly and the
additional samples based on the total number of detected SNPs (Figure 6) and analyze
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their distribution across the genomes (Figure 7). Additionally, the SNP abundances within
genes and on the genome level were compared and expressed as the average distance
between neighboring SNPs. The results showed that the mountainous ecotype was the
most diverged one, while a substantially higher density of SNPs was detected within genes
compared to the entire genome.
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Figure 6. Genetic distances and distribution of SNPs among studied Chouardia litardierei
genomes. Assembly—draft genome assembly of an individual belonging to the seashore ecotype;
Sample 1—individual belonging to the meadow ecotype; Sample 2—individual belonging to the
mountainous ecotype. (A) The total number of SNPs for the given sample pair is shown below
the diagonal, and the number of SNPs detected in genes is shown above the diagonal (in millions).
(B) Mean distance between neighboring SNPs throughout the genome for the given sample pair is
shown below the diagonal, and the mean distance between neighboring SNPs within detected genes
is shown above the diagonal (in base pairs).
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3. Discussion

Here, we present a draft genome assembly for Chouardia litardierei, a non-model
monocot species from the Hyacinthaceae family. By combining long-read sequencing
and the chromosome conformation capture method, we successfully assembled a high-
quality 3.7 Gbp genome of C. litardierei, and the obtained result agrees with the previously
reported genome size for the species [8]. By inspecting the Taxonomy Browser of the
NCBI repository (https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/tree/?taxon=4447
(accessed on 17 April 2023)), it became obvious that, within monocots, most species with
assembled genomes are either of substantial economic importance (maize, wheat, rice,
pineapple, banana, asparagus, jams, onion, garlic, etc.) or their wild relatives. In a lower
taxonomic rank, within the order Asparagales, assembled genomes of well-known groups
of orchids (i.e., Dendrobium, Vanilla, and Phalaenopsis) and Asparagus prevail, once again
showing bias towards species of economic importance. Of less closely related species to
C. litardierei within Asparagales that have available genome assemblies, few can be men-
tioned. The genome assembly of Asparagus setaceus was 720 Mb in size and characterized
by 1393 scaffolds and a 2.19 Mb N50 scaffold value [22]. The 1.19 Gb Dendrobium nobile
genome assembly reached a 64.5 Mb N50 scaffold value [23], while the Cymbidium goeringii
genome, of very similar size to the genome of C. litardierei (3.99 vs. 3.70 Gbp, respectively),
had an N50 scaffold size of 178.2 Mb [24]. Since we reached the N50 scaffold value of more
than 210 Mb, this indicates the high contiguity of the assembled genome. In addition, the
BUSCO score of over 97% additionally supported this conclusion. Additionally, a revealed
chromosome size distribution perfectly matches the only known karyotype for this species
reported by Siljak-Yakovlev et al. [7].

The annotation of repetitive elements revealed that TEs occupy almost 70% of the
genome, with LTR retrotransposons being the most abundant class. Such a result was not
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surprising, as it is well known that genome size in plants greatly depends on these elements’
abundance [25,26]. Our results are mostly consistent with those reported for other monocot
species. For instance, the Hordeum vulgare ssp. vulgare genome (5.1 Gbp in size, Poaceae)
consists of 72.8% TE elements [27], the genome of Areca catechu (2.6 Gbp, Arecaceae) of
80.4% [28], and that of Allium fistulosum (Amaryllidaceae 11.2 Gbp) of 69% [29]. At the
same time, genomes of some other monocots, such as Setaria italica (423 Mbp, Poaceae) [30],
Trichopus zeylanicus (713 Mbp, Dioscoreaceae) [31], and Kobresia myosuroides (400 Mbp,
Cyperaceae) [32] reportedly harbor substantially fewer transposable elements, occupying
41%, 36%, and 44.9% of their genomes, respectively. As mentioned, since the abundance of
TEs strongly influences the genome size, species characterized by smaller genomes usually
have fewer TEs as well.

To reach high accuracy for the genome annotation, we implemented various ap-
proaches to annotate protein-coding genes. Out of the 27,257 predicted genes, most of them
(85.8%) were matched with a functional annotation in at least one public database, while
almost half of them (44.5%) were matched in all selected databases.

The genus Prospero represents a closely related group to C. litardierei. It formerly
belonged to Scilla, and the same is true for the Chouardia studied here. Prospero, especially
the P. autumnale s.l. group, is well known for its structural genome rearrangements and
multiple ploidy levels and was used as the model group for research on the evolutionary
implications of karyotype differentiation [33,34]. In addition, Siljak-Yakovlev et al. [7]
hypothesized that the genome of C. litardierei could have originated through whole-genome
duplication events. To verify whether the C. litardierei genome shares some characteristics
with P. autumnale s.l., or has indeed originated through a whole-genome duplication event,
we performed intra-genome syntenic gene block analysis. However, no clues supporting
any of these assumptions were found, as it became clear that the C. litardierei genome did
not undergo any such structural rearrangements since only a few gene blocks co-occurred
on more than one position across the genome. In contrast to the limited distribution
area of C. litardierei, P. autumnale s.l. stretches across the Mediterranean basin, so we can
assume that the vast distances and subsequent geographical isolation eventually led to the
establishment of groups of populations characterized by specific cytotypes.

The evolutionary analysis confirmed the positioning of C. litardierei and the entire
Hyacinthaceae family within Asparagales. At the same time, it confirmed that the genus
Asparagus, the closest relative to C. litardierei with the available draft genome, can hardly
be treated as a close relative since the divergence time was estimated at around 50 Mya.
This result further emphasizes the importance of our work, as C. litardierei is an obvious
representative of, so far, a neglected phylogenetic group in terms of available genomic
resources. Regarding other phylogenetic relationships and divergence times among the
analyzed representatives of various monocot groups, our results were in high agreement
with other similar studies [32,35,36].

Comparative analyses of the assembled genome and two individuals belonging to
different ecotypes were of limited success. A shotgun-sequencing approach with a 150 bp
read length greatly limited our abilities for in-depth analyses. Nonetheless, we were able to
extract SNPs and analyze their distribution across the genomes. The results supported our
initial assumption that a higher degree of relatedness is present between the seashore and
meadow ecotypes, while the mountainous ecotype is more diverged and possibly represents
a separate lineage. In addition, the analysis of SNP distribution within and outside protein-
coding regions indicated an above-average density of variations within the coding regions.
This result shows that some regions are evolving at a higher pace than others, possibly
as a consequence of yet undetermined selective pressures. However, such a conclusion
based on only three individuals is likely premature, as research that would include a
substantially larger sample set is required for more reliable conclusions. The reasoning
behind performing this analysis was to determine if there are any indications of ongoing
divergence processes among the lineages, which in the end, we successfully identified.
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4. Materials and Methods
4.1. Sample Collection, DNA Extraction, and Sequencing

Fresh leaf material from an individual belonging to the seashore ecotype of the studied
species was collected and immediately placed in a silica gel for rapid desiccation. High-
molecular-weight DNA extraction following the CTAB method [37], DNA quality control,
PacBio HiFi, and Hi-C library preparation and sequencing were performed by Brigham
Young University DNA Sequencing Center (Provo, UT, USA). In short, PacBio circular
consensus sequencing (CCS) libraries were constructed and sequenced on the 8M SMRT
cell of the PacBio Sequel II instrument (Pacific Biosciences of California, Menlo Park, CA,
USA), while Hi-C libraries were constructed using a Dovetail® Omni-C® Kit and sequenced
on an Illumina HiSeq platform (Illumina Inc., San Diego, CA, USA) to generate 2 × 250
paired-ends reads.

4.2. Genome Assembly

Before the assembly process, the genome size of C. litardierei was estimated using a
k-mer counting method and the tool Jellyfish 2.3.0 [38]. PacBio HiFi reads were processed
by Jellyfish to determine their k-mer distribution, and the k-mer size of 19 was selected.
The genome size was estimated as the total number of counted k-mers divided by the
highest frequency of k-mers that occurred. PacBio HiFi reads were assembled into contigs
using hifiasm 0.16.1-r375 [39]. Racon 1.4.17 [40] was used in an attempt to improve read
quality before the assembly process. The contigs obtained by hifiasm were polished using
two rounds of consensus correction with Racon and PacBio HiFi reads.

The generated contigs were scaffolded into pseudochromosomes using Hi-C data.
Hi-C reads were first processed following the Omni-C data analysis and quality control
protocol, recording valid ligation events and removing PCR duplicates. After initial pro-
cessing, the Hi-C reads were mapped to contigs using the Juicer tool [41], producing contact
map information. To detect misjoins in contigs and to join contigs located on the same
chromosomes, 3D-DNA v180922 [42] was used. For the manual rearrangement of obtained
scaffolds into pseudochromosomes, we used the Juicebox tool [43]. The same software was
also used to generate a FASTA file with sequences corresponding to 13 manually assembled
chromosomes, with Ns filling the gaps between scaffolds within each chromosome. This
final assembly was further polished with PacBio HiFi reads using the HyPo polisher [44].
HiFi reads were mapped to the final assembly using the minimap2 tool 2.23 [45] with the
option “-x map-hifi”.

The initial and the final assemblies’ quality was assessed using Quast [46] and
BUSCO 5.2.2 [47] to compare the assembly to the gene content of Viridiplantae_odb10
“https://busco-archive.ezlab.org/frame_plants.html (accessed on 7 December 2022)”. For
the genome assembly visualization, we used shinyCircos [48]. The GC content of the
assembled genome was calculated using an in-house script. The density of total re-
peats, DNA transposons, Copia repeats, and Gypsy repeats was determined from the
data obtained through the repetitive element annotation, as explained in the next sub-
section. Intra-genomic syntenic analysis was performed using SyMAP 5.4.0 [49] with the
default parameters.

4.3. Repetitive Elements Annotations

First, the known repeat sequences of Viridiplantae were identified based on Dfam [50]
hidden Markov Model (HMM) sequence profiles (release 3.6) using RepeatMasker 4.1.2-p1 [51]
and the NCBI/RMBLAST search engine. Furthermore, the de novo repeat identification
approach was implemented using RepeatModeler2 2.0.2 [52] with Tandem Repeats Finder
4.10 [53], RECON 1.0.8 [54], and RepeatScout 1.0.6 [55] which enabled LTR Structural analysis.
RepeatClassifier (a module of RepeatModeler2) was implemented for further classification
of de novo repeats into unknown and classified classes. All three groups of repeats were
used in a combined masking step to construct the finally masked version of the genome.
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The final BUSCO analysis against Viridiplantae_odb10 was performed on this version of the
masked genome.

4.4. RNA Isolation and Sequencing

For support of the gene prediction, RNA-Seq data were generated. Total RNA was ex-
tracted from roots, leaves, flowers, and unripe fruit using a Monarch® Total RNA Miniprep
Kit (New England BioLabs, Ipswich, MA, USA). The manufacturer’s protocol, with an
on-column DNAse digestion step, was followed. Eluted RNA was quantified utilizing
spectrometry, and integrity was verified by Agilent Bioanalyzer 2100 electrophoresis using
an RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CO, USA). RNA was stored at
−80 ◦C until processing.

RNA sequencing was performed using the Ion Proton system. Total RNA was enriched
for the poly-A mRNA fraction using a Dynabeads® mRNA DIRECT™ Micro Kit (Thermo
Fisher Scientific, Waltham, MA, USA). The isolated mRNAs were used for RNA-Seq library
preparation using the procedure for low-input RNA from the Ion Total RNA-Seq kit v2
(Thermo Fisher Scientific, Waltham, MA, USA). The RNA was fragmented using RNase
III enzymatic digestion followed by ligation of Ion Adapters using four different barcodes
to retain tissue specificity. The samples were reverse transcribed, purified, and cDNA
amplified, and the obtained library was verified using the High Sensitivity DNA Kit
(Agilent Technologies, Santa Clara, CO, USA). The libraries, in equimolar amounts, were
pooled together and amplified by emulsion PCR using an Ion OneTouch™ 2 System and
Ion PI Hi-Q OT2 200 Kit. Template-positive particles were enriched using Dynabeads®

MyOne™ Streptavidin C1 beads (Thermo Fisher Scientific, Waltham, MA, USA) on an Ion
OneTouch™ ES system. The obtained enriched particle samples were sequenced on PI™
Chip v3 using the Ion PI™ Hi-Q™ Sequencing 200 Kit (Thermo Fisher Scientific, Waltham,
MA, USA) following the manufacturer’s protocol. The quality check of trimmed reads after
processing was performed by the FastQC tool [56].

4.5. Gene Prediction and Annotation

To predict protein-coding sequences, we used several approaches implemented using
different tools. First, gene models were developed with the MAKER genome annotation
pipeline (MPI 3.01.04) [57] incorporating: (1) RNA-seq data, (2) protein-based evidence
based on 139,388 Asparagales clade proteins downloaded from the NCBI RefSeq database
“https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 9 January 2023)”, and (3) ab initio
gene predictions obtained using SNAP 2006-07-28 [58] and Augustus 3.2.3 [59]. For SNAP
software training, MAKER models with a max AED threshold of 0.25 and a minimum
length of 50 amino acids were used, and for training Augustus, the BUSCO pipeline was
employed following the method of Card et al. [60]. Three runs of MAKER were run
iteratively to obtain most gene models with an AED score above 0.5.

Additional ab initio gene prediction was obtained using GeneMark-ES [61], followed
by de novo and genome-guided transcriptome assembling using the Trinity 2.14.0 soft-
ware [62] (default parameters). For the construction of the genome-guided transcriptome,
the GMAP tool [63], and SAMtools 1.14 [64] were used to map the reads to the previously
constructed genome assembly and to obtain a coordinate sorted bam file, respectively. The
transcriptomes obtained by Trinity were used as inputs for the PASA alignment assembly
pipeline 2.5.2 [65] (default parameters). The obtained transcriptome was further used
to identify and extract likely coding regions using PASA’s Transdecoder software. For
homology-based gene prediction, the Asparagales protein set was used again. The proteins
were mapped to the previously constructed genome using the miniprot tool [66].

Finally, the MAKER gene annotations together with the PASA transcriptome, PASA
likely coding regions, protein alignments obtained by miniprot, and ab initio predictions
obtained by GeneMark-ES, were analyzed using EVidenceModeler 2.0.0 [67], producing
the final consensus gene set.
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Recognized protein-coding genes were functionally annotated based on entries in
the NCBI NR database [68], Swiss-Prot [69], InterPro [70], and EggNOG [71] databases,
using BLASTP searches with an E-value cut-off of 1.0 × 10−5. For the visualization of the
obtained results, a Venn diagram was constructed.

4.6. Genome Evolution Analysis

Orthologous groups were identified using OrthoFinder 2.5.4 [72] and protein se-
quences from Ananas comosus (L.) Merr., Arabidopsis thaliana (L.) Heynh., Asparagus offic-
inalis L., Dioscorea rotundata Poir., Hordeum vulgare L., Musa acuminata L., Oryza sativa L.,
and Zea mays L. Single-copy ortho-groups were collected and aligned using MUSCLE
3.8.1551 [73]. The alignments were concatenated into a super-alignment and filtered using
Gblocks 0.91.1 [74]. The phylogenetic trees were constructed using RaxML-NG 0.9.0 [75].

Divergence time estimation was performed using the MCMCTree tool in the PAML 4.9j
package [76]. Analyses were run using default settings (200,000 generations with a burn-in
of 2000 iterations). The calibration points for the O. sativa–H. vulgare (42–62 Mya), A. como-
sus–M. acuminata (103–117 Mya), and D. rotundata–A. thaliana (142–164 Mya) were obtained
from the TimeTree database [77] “http://www.timetree.org (accessed on 6 April 2023)”.
Finally, for the identification of gene families’ expansions and contractions, CAFE5 [78]
was implemented.

4.7. Intra-Species Comparison of the Genomes

In addition, to perform a basic comparative analysis of genomes from different eco-
types, two individuals, each from a distinct ecotype (meadow and mountainous ecotypes,
Samples 1 and 2, respectively), were sampled. DNA was extracted from dried leaf material
using the GenElute™ Plant Genomic DNA Miniprep Kit (Sigma–Aldrich, St. Louis, MO,
USA) and sent to Novogene (UK) Company Limited for short-fragment libraries prepa-
ration and PE150 sequencing on an Illumina NovaSeq platform (Illumina Inc., San Diego,
CA, USA). The paired-end reads were mapped to the constructed genome assembly using
the BWA tool 0.7.17 [79], and the variants were called using the FreeBayes tool [80,81].
The obtained data were used to assess the pairwise genetic distances between analyzed
individuals belonging to different ecotypes. In addition, the abundance of the SNPs within
protein-coding regions was analyzed using an in-house script.
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Chouardia litardierei (Asparagaceae) is a non-model, perennial species

characterized by exceptional ecological plasticity. In this research, we studied

the genetic architecture underlying several phenological traits in selected

ecologically diverged populations of this species. We conducted a genome-wide

association study (GWAS) to identify genomic regions linked to the following

populations-specific phenological traits: Beginning of Sprouting (BOS), Beginning

of Flowering (BOF), Flowering Period Duration (FPD), and Vegetation Period

Duration (VPD). Combining phenological data from a common garden

experiment with an SNP dataset obtained through the ddRAD-seq approach, we

identified numerous loci associated with these traits using single- and multi-locus

GWAS models. Narrow-sense heritability estimates were high for all traits, with the

VPD trait showing the highest estimate (86.95%), emphasizing its importance for

local adaptation. Functional annotation of associated genomic regions revealed

key protein families involved in flowering time regulation, vegetative growth

timing, and stress adaptation. These findings provide insights into the molecular

mechanisms of local adaptation in C. litardierei’s populations from different

habitats, emphasizing the role of genetic factors in phenological trait variation

and ecological divergence across populations.
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Introduction

Understanding the genetic basis of phenotypic variation is

essential for evolutionary biology, as it elucidates mechanisms

underlying speciation, biogeographical distributions, and fitness

in natural populations (Savolainen et al., 2013; Mckown et al.,

2014). Natural selection acts on allele frequencies within

populations, shaping their variation and promoting adaptive traits

that enhance survivability and reproductive success (Hu et al., 2020;

Walter et al., 2022; Lee et al., 2023). As populations undergo local

adaptation, ecological speciation may lead to the emergence of new

ecotypes (Turesson, 1922; Todesco et al., 2020) — genetically

distinct populations of the same species well-adapted to specific

ecological niches (Rundle and Nosil, 2005; Cortés et al., 2018).

Although the role of ecotypes in the speciation process remains

debated (Lowry, 2012; Fernández-Meirama et al., 2022), several

studies highlight their importance in driving genetic divergence

along ecological gradients (Lowry et al., 2008; Brandrud et al., 2017;

Cortés et al., 2018; Bakhtiari et al., 2019). Rapidly evolving lineages

in heterogeneous environments offer valuable insights into the

genetic mechanisms driving adaptation and speciation (Feder

et al., 2011; Cortés et al., 2018).

Phenology is one of the key features of plants as sessile

organisms. It determines the timing of life cycle phases and the

duration of growth and reproduction (Schwartz, 2003). Although

other factors like photoperiod (Adole et al., 2019; Wang et al., 2020),

water availability (Zhou et al., 2024), or selection by pollinators

(Sandring and Ågren, 2009) may play an important role as well,

temperature is considered to be the environmental element with the

most substantial impact on various phenological traits (Schwartz,

2003; Cook et al., 2012). Matching the growth and especially

reproduction periods with the optimal environmental conditions

is of exceptional evolutionary importance and is strongly influenced

by natural selection (Duputié et al., 2015). Among phenological

traits, flowering time is particularly sensitive to environmental

factors, marking a critical transition from vegetative growth to

reproduction (Hill and Li, 2016; Gaudinier and Blackman, 2020). In

seasonally variable habitats, where the timing and duration of the

vegetational season differ across landscapes, plants must initiate

sprouting and flowering within a constrained annual timeframe

(Anderson et al., 2012). Therefore, the regulation of flowering time

emerges as a frequent target of evolutionary processes (Gaudinier

and Blackman, 2020). Ecologically divergent taxa in numerous

lineages often have different flowering times (e.g., Heslop-

Harrison, 1964; Grant, 1981; Levin, 2000) suggesting that some

niche shifts were predicated upon temporal change (Levin, 2006).

Consequently, alterations in flowering schedules may allow

populations to better exploit different groups of pollinators (e.g.,

Waser, 1983; Goldblatt and Manning, 1996; Johnson et al., 1998),

while movements into new pollinator niches are accompanied by

changes in floral attributes (Levin, 2006). Natural selection

generally favours bigger individuals at maturity; however, the

timing of flowering presents a trade-off between maximizing

fecundity and ensuring reproductive completion before adverse

conditions, such as drought or winter, occur (Anderson et al.,

2012). Species facing water limitations often adjust their flowering

phenology to align with peak moisture availability, taking advantage

of optimal conditions (Settele et al., 2016). For example,

Schmalenbach et al. (2014) found that late-flowering Arabidopsis

plants coped better with drought by compensating for early growth

losses with later recovery, while early-flowering plants, which may

flower sooner to exploit available moisture before drought,

exhibited lower fitness under the same conditions. High salinity

also impairs plant growth in Arabidopsis, acting as a suppressive

factor that delays flowering time (Li et al., 2007; Lee et al., 2023).

Coupled with variation in mating opportunity, temporal variation

in sexual phases of individual flowers may have a significant impact

on reproductive success in dichogamous plants (Sargent and

Roitberg, 2000). Since phenological traits display extensive

variations in plants and are often related to local adaptation

(Rathcke and Lacey, 1985), the analysis of their genetic

background presents a great opportunity to study the

mechanisms of the adaptive divergence process.

Investigating the genomic underpinnings of specific traits

within the framework of environmental dynamics is essential for

uncovering the mechanisms driving local adaptation and

elucidating the complex relationship between phenological traits

and adaptive responses (Bernatchez et al., 2023). Although much of

our understanding of flowering regulation and vegetation duration

derives from studies on model organisms such as A. thaliana

(Engelmann and Purugganan, 2006; Kinmonth-Schultz et al.,

2021), significant advancements have also been made in

agriculturally important species (e.g., Molla, 2022; Vicentini et al.,

2023; Flohr et al., 2017; Song et al., 2023). However, broadening this

research beyond model organisms could increase our

understanding of the diverse genetic mechanisms governing

phenological variation in populations of wild, non-model species

facing different ecological pressures in their habitats.

Here, we investigated the genetic basis of selected phenological

traits in the amethyst meadow squill, Chouardia litardierei (Breist.)

Speta; a small, bulbous, perennial species belonging to the

Asparagaceae family [following the APG III system (Bremer et al.,

2009)]. Being a typical geophyte, C. litardierei plants undergo a

dormancy period, which usually stretches from mid-summer to late

autumn or early spring, depending on the individual season’s

properties. During the spring, soon after the development of

young leaves, inflorescence emerges. From late April to early

June, depending on the population’s location, the flowering

phenophase will unfold, shortly followed by fruiting, which marks

the beginning of dying back to an underground perennating organ,

i.e., a bulb. C. litardierei produces a large racemose inflorescence,

typically consisting of several dozen radially symmetrical flowers,

without any apparent morphological adaptations for specific

pollination mechanisms. While this has not been formally

studied, it is expected to be an open-pollinated species (pers.

obs.). In addition to sexual reproduction, it propagates clonally

through the formation of bulbs surrounding the central bulb. C.

litardierei populations are found across the Dinaric Alps in the

western parts of the Balkan Peninsula (Ritter-Studnička, 1954;

Gaži-Baskova, 1962). Throughout this region, populations inhabit
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highly contrasting habitats, thus indicating a very pronounced

ecological plasticity of the species (Figure 1).

In terms of habitat types, the most substantial contrast can be

observed between southernmost populations, which are found on

patches of exposed dolomite bedrocks or dry mountainous grasslands

with very thin and sparse soil cover, on one side, and populations

occupying lush meadows of karst poljes, enclosed depressions with

deep and fertile soils, abundant in water, on another. These groups of

populations cope with very different types of challenges. For the first

group of the populations, the most substantial adaptation pressure is

expected to come from limited resource availability accompanied by

pronounced seasonality in water availability and temperature, which

are usual for such a habitat (Mota et al., 2021). At the same time, the

second group faces seasonal flooding that can last up to seven months

each year (Mihevc et al., 2010; Bonacci, 2014). In addition to these

two prevailing groups of populations, based on a habitat type, a third

and the smallest group can be recognized, the one inhabiting deep-

soiled marshes along the coastline in western parts of the species

FIGURE 1

Habitat types of the studied Chouardia litardierei populations, shown from top to bottom: (A) Karst poljes meadows (locality of Budoške Bare
population), (B) Dry mountainous grasslands with exposed bedrock (Lovćen), and (C) Saline coastal marshes (Vrana Lake).
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distribution range. These populations situated in proximity to the

seashore are experiencing different climates [i.e., Cfa and Csb climate

types according to Köppen classification (Köppen, 1918)] than other

inland meadow-habitat populations, which, for the most part, are

found in habitats characterized by Cfb type of climate. In addition,

these seashore populations are exposed to periodical sea flooding,

which causes an increase in soil salinity, one of the major factors in

plant ecology (Bui, 2013). Nonetheless, it is essential to note that

although this issue was already addressed by Šilić (1990), no clear

differentiation, either phenotypic or genetic, among these groups of

populations has yet been recognized.

To learn as much as possible about the genetic background of

phenological traits of selected C. litardierei populations from across

its distribution range and from different habitats, results from a

common garden experiment and genotyping were processed

through a set of comprehensive single- and multi-locus genome-

wide association (GWA) models. Functional annotation of

recognized candidate loci was further performed, thus enabling us

to deepen our understanding of the complex genetics behind the

phenological aspect of adaptive divergence and to analyze the extent

to which differentiation of the studied populations has advanced.

Methods

Plant material, common garden
experiment, and phenotyping

To establish the common garden experiment, 214 individuals

were relocated from nine chosen populations of C. litardierei. Three

populations were selected to represent each of the three presumed

groups of populations from different habitat types, as illustrated

in Figure 1.

During the sampling expeditions, 22 to 25 individuals were

selected from each population, ensuring a minimum distance of 10

meters between them, following the 1:20 rule (Wagner, 1995). The

geographic coordinates of the sampling locations are listed in

Supplementary File 1. Leaf material from each individual was

collected for DNA extraction and desiccated using silica gel. Each

sampled individual (represented by a single bulb) was transplanted

into a separate two-litre plastic container filled with a mixture of soil,

sand, and perlite. The containers were placed in raised beds outdoors,

creating a common garden setup that exposed the plants to a

temperate continental climate (Cfb climate type) (Köppen, 1918;

Zaninović et al., 2008). No additional interventions, such as

supplemental watering or pesticide use, were applied, allowing the

plants to grow under natural, undisturbed environmental conditions.

After two vegetative seasons of acclimatization, four phenological

traits were selected for further research (Table 1): (i) Flowering Period

Duration (FPD), calculated as the number of days from the appearance

of the first flower to the last; (ii) Vegetation Period Duration (VPD),

measured as the time from sprouting to the opening of the first capsule

with ripened seeds, also in days; (iii) Beginning of Flowering (BOF),

recorded using the earliest plant flowering dates a reference; and (iv)

Beginning of Sprouting (BOS), noted by referencing the sprouting date

of the first individual. All traits examined were measured on an

individual genotype level and were considered polygenic.

To assess differences in phenological traits across individual

populations and three groups of populations originating from

different habitat types, Kruskal-Wallis tests were implemented in

the PAST software (Hammer et al., 2001), were performed. We

further performed pairwise comparisons using Mann-Whitney

post-hoc tests with Bonferroni correction to identify significant

trait variations. Since none of the variables followed a normal

distribution, Spearman’s correlation analysis was conducted to

examine the relationships between FPD, VPD, BOF, and BOS

variables using the “stats” package in R (R Core Team, 2016).

Sequencing, genomic data processing, and
population genetic structure

DNA isolation was carried out using the GenElute™ Plant

Genomic DNA Miniprep Kit (Sigma–Aldrich®) . DNA

concentrations were measured with the Qubit™ Fluorometer

(Thermo Fisher Scientific, Wilmington, DE, USA), and samples

were subsequently diluted to a concentration of 20 ng/mL.
For genotyping the studied C. litardierei populations, a ddRAD-

seq approach was utilized (Peterson et al., 2012). DNA was initially

digested with two restriction enzymes, AseI and NsiI (NEB

#R0526L and #R0127L, respectively). The resulting fragments

were then ligated with barcoded i5 and i7 adapters, allowing all

samples to be multiplexed. Final amplification was carried out after

nick repair using DNA polymerase I (NEB #M0209L). The resulting

DNA libraries were double-sequenced (150 bp paired-end) on the

Illumina HiSeq X platform.

The initial sequencing data underwent preprocessing for quality

trimming and adapter removal using Trim Galore (Martin, 2011).

TABLE 1 Descriptive statistics of the Chouardia litardierei phenological
traits examined in the study.

Overall

Trait
(days)

Description
Median
(Q1 – Q3)

Min – max

FPD
Duration from the date of the
first to the last flower for
each genotype

17 (15 – 18) 9 - 25

VPD
Duration from genotype
sprouting to the opening of the
first capsule

97 (88 – 107) 55 - 162

BOF

Beginning of flowering
considering the flowering date
of the first genotype as
a reference

11 (10 – 13) 1 - 33

BOS

Beginning of sprouting
considering the sprouting date
of the first genotype as
a reference

56 (52 – 63) 1 - 88

All traits were measured in days. BOF, Beginning of Flowering; BOS, Beginning of Sprouting;
FPD, Flowering Period Duration; max, maximum value; min, minimum value; VPD,
Vegetation Period Duration; Q1, first quartile; Q3, third quartile.
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Post-trimming, BAM files were generated by aligning the reads to

the C. litardierei reference genome (Radosavljević et al., 2023) using

the Burrows-Wheeler Aligner (Li and Durbin, 2009).

SNP identification was performed with the Stacks software

package v1.48 (Catchen et al., 2013). The ref_map.pl wrapper

module was ut i l i z ed , fo l lowing Par i s e t a l . (2017)

recommendations, the pstacks module was executed to extract loci

previously aligned to the reference genome, with a minimum

coverage depth of three reads to ensure a reliable representation

of loci across samples and reduce low-confidence genotype calls.

The cstacks module then constructed a comprehensive catalogue of

loci across populations, allowing a maximum of four mismatches

among sample loci to minimize alignment errors. Subsequently, the

populations module calculated population-level summary statistics.

To ensure high data quality, loci were retained only if present in all

nine populations and at least 70% of individuals within each

population, with a maximum observed heterozygosity of 0.70.

Additional filtering criteria included retaining only one SNP per

locus and excluding loci with minor allele frequencies (MAF) below

1%. This stringent filtering approach focused on common and well-

represented genetic variants, reducing the risk of inaccuracies due to

sequencing or sampling errors. The resulting dataset, comprising

high-quality genetic markers, was exported in .vcf format for

downstream analysis.

To assess the neutral population genetic structure of the studied

populations, we used a model-based clustering method

implemented in ParallelStructure (Pritchard et al., 2000; Besnier

and Glover, 2013). To overcome the issue of this analysis’s high

computational demands and lengthy processing time for such a

large number of SNPs, we constructed a subset of 5,000 randomly

selected SNPs. The analysis comprised ten runs for each of the ten

clusters (K). Each run consisted of a burn-in period of 50,000 steps,

followed by 500,000 Monte Carlo Markov Chain (MCMC)

replicates. We used the StructureSelector online software (Li and

Liu, 2018) to obtain the most likely number of clusters (K) following

Evanno’s method (Evanno et al., 2005) as well as to retrieve the final

data through the clustering and averaging of the runs following the

Clumpak algorithm (Kopelman et al., 2015). The obtained results

were processed using CorelDRAW X7 v.17.1.0.572 software (Corel

Corp., Ottawa, Canada) for improved visualization.

Genome-wide association analyses

Figure 2 illustrates a schematic representation of the

methodological approach used in this study. All traits were treated

as polygenic and GWAS analyses were carried out assuming an

additive genetic model. Variants with a minor allele frequency (MAF)

below 1% were excluded using the BCFtools software (Danecek et al.,

2021). Two distinct statistical approaches were employed for each

association analysis: the frequentist single-locus approach and the

Bayesian multi-locus approach. In the frequentist single-locus

approach, two distinct models were applied. A standard linear

mixed model (LMM) was fitted using GEMMA 0.98.5 (Zhou and

Stephens, 2012) for all four traits, keeping in mind that this approach

assumes a normal trait distribution. Additionally, all traits were

analyzed using GMMAT 1.4.2 (Chen et al., 2019), applying a

Poisson generalized linear mixed model (GLMM), to account for

their count-based distributions. The Poisson GLMM inGMMATwas

selected because it effectively accounts for the non-normal

distribution of count data, providing a complementary approach to

the LMM analysis performed in GEMMA.

In the Bayesian multi-locus approach, a Bayesian sparse linear

mixed model (BSLMM) (Zhou et al., 2013) was simultaneously fitted

for all traits under analysis. Significant SNPs for each trait were identified

by first intersecting the sets of significant SNPs obtained from GLMM

and LMM, and then further intersecting the resulting set with those

identified by BSLMM, ensuring consistency across both the frequentist

and Bayesian approaches (Figure 2). Additionally, a multivariate linear

mixed model (mvLMM) was performed in GEMMA to simultaneously

analyze significantly correlated traits (FPD andVPD, as well as BOF and

VPD) to identify shared association signals between them.

The results were visualized using Manhattan plots generated

with the R package “qqman” (Turner, 2018) and “CM plot” (Yin

et al., 2021). An ad hoc threshold of 1×10−³ was used for the

frequentist GWAS analyses (GLMM, LMM, and mvLMM).

Generalized linear mixed model using a
poisson distribution

The generalized linear mixed model (GLMM) with a Poisson

distribution was applied using GMMAT, and the model is expressed

as follows (Equations 1–3):

log(mi) = Wia + xib + ui (1)

u ∼ MVNn(0,  lK) (2)

yi ∼ Poisson(mi) (3)

In this model, yi represents the observed count for the i-th

individual, while mi denotes the mean count, modeled as the

exponential of the linear predictor. Wi is the i-th row of an n × c

matrix of covariates (fixed effects), a is the corresponding vector of

coefficients for these covariates, xi represents the genotype of the i-

th individual, and b denotes the effect size of the genetic marker.

The random effects u are assumed to follow a multivariate normal

distribution MVNn (0,lK), where K is the relatedness matrix of size

n × n, and l represents the ratio of variance components. The

observed data yi is assumed to follow a Poisson distribution with mi.
This model incorporates individual-level random effects and a

genetic relationship matrix K to account for population structure

and relatedness. When assuming a normal distribution and an

identity link function for continuous traits, GMMAT conducts

association tests using linear mixed models (LMMs).
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Linear mixed model

The standard LMM was applied using GEMMA 0.98.5. in the

following form:

y = Wa + xb + u +  e (4)

u ∼ MVNn(0,  lt
−1K) (5)

e ∼ MVNn(0,  t
−1In) (6)

Here, y represents a vector of trait values for 214 individuals,

and W is an n × c matrix of covariates (fixed effects), which, in this

case, consists of a column of 1s. Let a represent a c-vector of the

intercept, x be an n-vector of marker genotypes, and b denote the

effect size of the marker. Additionally, u is an n-vector of random

FIGURE 2

A schematic outline of the methodological approach employed to study the genetic basis of phenological traits in Chouardia litardierei.
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effects, e is an n-vector of errors, t-1 denotes the variance of the

residual errors, and l is the ratio between the two variance

components. K is the known n × n relatedness matrix, and In is

an n × n identity matrix. MVNn refers to the n-dimensional

multivariate normal distribution. The effect sizes indicate the

change in trait values associated with each additional effect allele

in the genotypes of individuals.

Bayesian framework

The LMM (Equations 4–6) implemented in GEMMA evaluates

the alternative hypothesisH1: b ≠ 0 against the null hypothesisH0: b
= 0 for each SNP individually. Extensions of the LMM that account

for the effects of variants across multiple loci simultaneously could

improve the power to identify causal variants. Bayesian LMMs can

model all markers simultaneously by assigning different prior

distributions to the marker effects and sampling from their

posterior distribution. These Bayesian models, designed for

estimating SNP effect sizes, start with a basic linear model that

links genotypes X to phenotypes y:

y = 1n μ +Xb + e (7)

e ∼ MVNn(0,  t − 1In) (8)

we let y be a vector of phenotypes observed on n individuals,

and X be an n × p matrix of genotypes for these same n individuals

at p genetic markers. The vector b represents the effects of genetic

markers, 1n is an n-vector of 1s, µ is a scalar representing the mean

phenotype, and e is an n-vector of error terms with variance t-1. Our
aim was to estimate the parameter b, which corresponds to the

effects of the genetic markers. However, because the number of

genetic markers in our study (p = 23,315) far exceeds the number of

individuals (n = 214), certain modeling assumptions regarding SNP

effect sizes b had to be made. These assumptions range from the

infinitesimal (or polygenic) model, which posits that all SNPs have

non-zero effects, to the sparse model, which assumes that only a

small subset of SNPs affect the phenotype. The success of the model

relies on the true genetic architecture of the trait being studied,

although this is typically unknown. The most widely used polygenic

model assumes that all SNPs impact the phenotype (i.e., have non-

zero effects) with normally distributed effect sizes:

b ∼ N(0,s 2
b ) (9)

When Equations 7–8 are combined with the normality

assumption (Equation 9) for effect sizes b, they result in the

previously described LMM, as it incorporates a random effect

term that represents the combined genetic effects.

Bayesian sparse linear mixed model

A more general assumption, which includes both polygenic and

sparse modeling scenarios, suggests that effect sizes come from a

mixture of two normal distributions.

bi  ∼   pN(0,
s 2
a +  s 2

b

pt
) + (1 − p)N(0,

s 2
b

pt
) (10)

In this model, p represents the proportion of SNPs with large

effects, while s2
b and s2

a correspond to the variances of small and

large effects, respectively. The resulting BSLMM model combines

polygenic and sparse effects in the prior distribution of effect sizes,

allowing it to adapt to various genetic architectures of the traits

being studied. BSLMM addresses population structure and

relatedness by incorporating a genomic kinship matrix as a

random effect term, and it accounts for linkage disequilibrium

(LD) by estimating SNP effect sizes b while controlling for other

SNPs in the model. The model uses a Markov chain Monte Carlo

algorithm to sample from the posterior distribution and estimate

SNP effect sizes. Unlike LMM, which provides p-values, BSLMM

outputs a posterior inclusion probability (PIP) for each SNP,

reflecting the likelihood that a marker is associated with the

trait based on the data. This PIP is calculated as the proportion

of chain iterations in which the SNP exhibits a large effect. SNPs

with high PIPs are considered the most likely functional variants

influencing the analyzed traits. We applied BSLMM to the same

dataset (214 individuals and 23,315 variants) used in our primary

frequentist association analysis to compare single-SNP and multi-

SNP approaches and reduce false positives. The BSLMM chain

was run with 1,000,000 sampling steps and 100,000 burn-in

iterations. We used the estimated PIPs from BSLMM for

additional fine-mapping of genomic regions identified in the

frequentist analysis.

SNP heritability estimation

The proportion of variance in phenotypes accounted for by all

available genotypes (PVE), also referred to as narrow-sense

heritability (h2), along with the proportion of genetic variance

explained by variants with large effects (PGE), was estimated for

the traits shown in Table 1. This estimation was based on the

assumption that SNP effect sizes follow a mixture of two normal

distributions (Equation 10), as implemented in GEMMA BSLMM.

Multivariate genome-wide association
analyses

To identify common variants associated with the trait pairs

showing the strongest statistically significant correlations,

multivariate genome-wide association analyses were performed

using a multivariate linear mixed model (mvLMM) in GEMMA.

Specifically, multivariate GWAS was conducted for the VPD and

BOS traits, as well as for the VPD and BOF traits, which exhibited

the strongest statisticaly significant correlations. This approach

enabled the simultaneous analysis of genetic effects on both trait

pairs of traits by treating them as dependent variables. The mvLMM

method accounts for population structure and relatedness among

individuals, ensuring accurate identification of genetic variants

contributing to the observed phenotypic variation in these traits.
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Candidate genes prediction

After identifying phenotypic evidence for local adaptation in

distinct C. litardierei populations and conducting GWAS analysis,

efforts focused on pinpointing associated candidate genes. Using the

reference genome, sequences were extracted spanning a total of 50

kilobases – including 25 kilobases upstream and downstream of

each significant SNP identified through both statistical models,

using SAMtools (Danecek et al., 2021). Functional annotations

for these sequences were then obtained through the eggNOG-

mapper v2 database, applying an e-value threshold of < 1 × 10−2

(Huerta-Cepas et al., 2019).

Results

Phenotyping

Figure 3 illustrates the phenological variations observed among

C. litardierei populations in the common garden experiment.

Out of the 214 individuals sampled across nine populations, 204

flowered successfully. Consequently, all traits related to flowering

[FPD, VPD (since its ending is related to the start of the fruiting

phenophase), and BOF] were measured and subsequent analyses

were performed on the set of 204 individuals, while the remaining

10 were discarded. At the same time, the BOS trait was analyzed

across all 214 individuals. The FPD and the VPD ranged from 9 to

25 days, with a median of 17 days (Q1 – Q3: 15 – 18), and 55 to 162

days, with a median of 97 days (Q1 – Q3: 88 – 107), respectively.

The BOF and BOS traits ranged from 1 to 33 days, with a median of

11 days (Q1 – Q3: 10 – 13), and 1 to 88 days, with a median of 56

days (Q1 – Q3: 52 – 63), respectively. All the obtained data are

summarised in Table 1. Supplementary File 2 contains the results of

Kruskal-Wallis and Mann-Whitney post-hoc tests for the studied

phenological traits, showing significant differences at the population

level and between the assumed population groups. The distribution

of these phenological traits is visually represented using box plots

in Figure 4.

A correlation analysis revealed several significant associations

among the studied traits (Table 2). A weak positive correlation was

observed between FPD and VPD, while a strong positive correlation

was found between VPD and BOF.

Sequencing, genomic data processing, and
population genetic structure

The sequencing process generated a total of 1,284,680,304 reads.

After filtering the raw sequences and mapping them to the reference

genome, 1,278,409,966 reads were retained. SNP identification and

filtration were performed using the Stacks software, resulting in the

detection of 24,660 SNPs. Following the application of the BCFtools

MAF filter with a 1% threshold, 23,315 SNPs were kept for

subsequent analysis.

The cluster analysis based on the Bayesian model implemented in

the ParallelStructure software revealed that the most likely number of

genetic clusters was two (Supplementary File 3). One cluster

corresponded to the group of populations from the dolomite

bedrock habitat, while the remaining populations formed the other

cluster (Supplementary File 4). Such structuring reflects the

environmental preferences of the studied populations only to some

extent, as populations from seashore and meadow habitats remained

grouped without any differentiation among them.

Genome-wide association analyses

The analysis of the FPD trait using LMM identified 48

significant SNPs, while GLMM detected 8. An overlap of these

results revealed 8 SNPs that were significant across both methods.

Further validation using BSLMM confirmed 3 of these SNPs as

significant, with one located on each of chromosomes 10, 7, and 11.

For the VPD trait, LMM identified 26 significant SNPs, while

GLMM detected 54. Fourteen SNPs were found to overlap

between the two methods. Subsequent analysis with BSLMM

confirmed 2 of these SNPs as significant, located on

chromosomes 4 and 12. In the case of the BOF trait, LMM and

GLMM identified 17 and 29 SNPs, respectively, with 8 overlapping

SNPs. BSLMM analysis confirmed 1 significant SNP located on

chromosome 2. For the BOS trait, LMM identified 34 significant

SNPs, while GLMM detected 162. Seven SNPs overlapped between

the two methods, and BSLMM analysis confirmed 1 significant SNP

FIGURE 3

The horizontal bar plot illustrates the durations of Vegetation period
Duration (VPD) and Flowering Period (FPD) across populations of the
Chouardia litardierei during one vegetational season. The x-axis
represents the days of the year, while the y-axis lists the populations
being compared. The dark magenta bars indicate the FPD, which
represents the duration from the date of the first to the last flower
for each genotype. In contrast, the grey bars represent the VPD,
denoting the duration from the genotype sprouting to the opening
of the first capsule. Additionally, the figure provides a visual
reference for the Beginning of Flowering (BOF) and the Beginning of
Sprouting (BOS), where BOF and BOS are calculated relative to the
individual that flowered or sprouted first, respectively.
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on chromosome 12. All SNPs passing the genome-wide significance

threshold (1 × 10−3) in both LMM and GLMM single-SNP LMM

analysis are listed in Table 3. The results from the single-SNP

association analysis conducted in GMMAT and GEMMA are

presented together in Manhattan plots in Figure 5.

In the Bayesian association analysis, two SNPs were identified as

having a major sparse effect on the FPD trait. These SNPs were

estimated to have a sparse effect in at least 10% of the BSLMM chain

iterations (posterior inclusion probability, PIP ≥ 0.099).

Additionally, both SNPs showed a sparse effect in over 16% of the

iterations (PIP ≥ 0.165), further highlighting their significance. In

contrast, for the VPD trait, 75 SNPs displayed a major sparse effect

in ≥10% of BSLMM chain iterations (PIP ≥ 0.095). In addition, the

top four SNPs displayed a major sparse effect in more than 44% of

iterations (PIP ≥ 0.447). Concerning the BOF trait, three SNPs were

identified with a major sparse effect in ≥10% of iterations (PIP ≥

0.098) and the top SNP had a major sparse effect in over 17% of

iterations (PIP ≥ 0.172). Similarly, for the BOS trait, 26 SNPs

exhibited a sparse effect in ≥10% of BSLMM chain iterations (PIP

≥ 0.095), with the top two SNPs showing a strong effect in over 82%

of iterations (PIP > 0.829). The data outlined above is reported in

Supplementary File 5.

A total of 7 SNPs passed the genome-wide significance threshold

(1 × 10−³) in the single-SNP LMM analyses and the posterior

inclusion probability threshold (PIP ≥ 10%) in the Bayesian multi-

SNP BSLMM analysis and are listed in Table 4. Manhattan plots from

the BSLMM analysis are provided in Supplementary File 6.

SNP heritability estimation

The BSLMM analysis, performed using 23,315 SNPs, provided

estimates of narrow-sense heritability (PVE) for the phenological

traits studied, along with the proportion of genetic effect (PGE) and

the count of variants with a major effect (n.gamma), as detailed in

Table 5. The PVE estimate for the FPD revealed that 20.26% of the

FIGURE 4

Box plots illustrate the obtained phenological results from a common garden experiment, depicting four phenological traits: (A) Flowering Period
Duration (FPD) (top left), (B) Vegetation Period Duration (VPD) (top right), (C) Beginning of Flowering (BOF) (bottom left), and (D) Beginning of
Sprouting (BOS) (bottom right) per genotype. Each box represents the interquartile range (IQR), with the horizontal line inside the box indicating the
median. Whiskers extend to data points within 1.5 times the IQR, while dots represent outliers.

TABLE 2 Spearman’s correlation coefficients and p-values for the four
C. litardierei phenological traits: FPD, VPD, BOF, and BOS.

Trait 1 Trait 2 Spearman’s r p-value

FPD VPD 0.025 0.725

FPD BOF -0.241 0.0005

FPD BOS -0.069 0.324

VPD BOF 0.430 1.33e-10

VPD BOS -0.948 < 2.2e-16

BOF BOS -0.241 0.0005

BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration;
VPD, Vegetation Period Duration.
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TABLE 3 SNPs passing the genome-wide significance threshold (1 × 10−³) in both GMMAT and GEMMA single-SNP LMM analyses for Chouardia
litardierei traits: FPD, VPD, BOF, and BOS.

Trait SNP Chr Position
Effect
Allele

Referent
Allele

MAF
Single-SNP LMM Analysis b

(p-value) in GMMAT
Single-SNP LMM Analysis
b (p-value) in GEMMA

FPD 275195_16 13 197688818 C T 0.14 0.12 (2.41 × 10-4) -0.52 (5.68 × 10-6)

FPD 131957_13 10 97222552 T G 0.02 0.30 (2.79 × 10-4) -1.13 (8.22 × 10-6)

FPD 750129_37 7 113120650 G A 0.06 0.18 (3.24 × 10-4) -0.76 (9.69 × 10-6)

FPD 688820_29 5 89511430 T C 0.03 0.33 (3.68 × 10-4) -1.39 (1.02 × 10-5)

FPD 134834_42 11 108997955 G C 0.02 0.38 (3.69 × 10-4) -1.49 (1.89 × 10-5)

FPD 445498_105 1 133595095 T G 0.07 0.16 (5.24 × 10-4) -0.66 (2.29 × 10-5)

FPD 53032_22 9 14725086 A G 0.06 0.16 (6.05 × 10-4) -0.68 (2.98 × 10-5)

FPD 380447_37 13 615321041 T A 0.06 0.18 (8.73 × 10-4) -0.77 (5.91 × 10-5)

VPD 565532_39 4 14626431 C A 0.13 0.10 (5.23 × 10-6) -0.46 (1.01 × 10-5)

VPD 65720_38 9 26233589 A G 0.03 -0.14 (1.52 × 10-6) 0.60 (1.28 × 10−5)

VPD 305761_25 13 320423026 T G 0.13 -0.08 (6.14 × 10-7) 0.33 (1.58 × 10−5)

VPD 167223_27 11 64125165 T G 0.09 0.11 (1.62 × 10-4) -0.46 (7.95 × 10−5)

VPD 221833_73 12 284678317 C G 0.35 0.05 (6.52 × 10-4) -0.22 (1.02 × 10−4)

VPD 210123_39 12 239066297 T G 0.03 -0.13 (8.71 × 10-7) 0.51 (1.37 × 10−4)

VPD 618657_20 4 345766799 A G 0.01 -0.23 (2.46 × 10-5) 0.93 (1.75 × 10−4)

VPD 334377_114 13 437172692 C A 0.01 -0.14 (5.03 × 10-4) 0.75 (1.75 × 10−4)

VPD 76416_37 9 64503815 A G 0.06 -0.08 (1.09 × 10-4) 0.35 (2.34 × 10−4)

VPD 57078_21 9 163441584 A C 0.28 -0.06 (3.76 × 10-5) 0.23 (2.43 × 10−4)

VPD 774777_66 7 206933711 C T 0.03 -0.14 (1.07 × 10-4) 0.56 (2.83 × 10−4)

VPD 635043_17 4 93373391 T C 0.08 -0.09 (8.57× 10-5) 0.37 (3.38 × 10−4)

VPD 790473_18 7 8052404 A T 0.02 -0.20 (2.39 × 10-5) 0.81 (4.63 × 10−4)

VPD 272420_33 13 186297710 T G 0.08 -0.10 (8.13 × 10-7) 0.33 (9.05 × 10−4)

BOF 445520_34 1 133744238 A G 0.23 -0.19 (2.16 × 10-6) 0.41 (1.74 × 10−4)

BOF 504422_54 2 95535920 T G 0.34 -0.18 (9.52 × 10-6) 0.49 (9.17 × 10−5)

BOF 623094_18 4 39016369 A G 0.43 -0.14 (3.29 × 10-5) 0.30 (4.02 × 10−4)

BOF 477240_15 2 115724781 A G 0.25 -0.15 (6.87 × 10-5) 0.34 (9.49 × 10−4)

BOF 768498_16 7 186900792 G C 0.02 -0.33 (1.86 × 10-4) 0.89 (3.07 × 10−4)

BOF 252813_22 13 104630774 C G 0.03 0.60 (4.04 × 10-4) -1.26 (3.79 × 10−5)

BOF 455458_35 1 37036194 G T 0.36 -0.28 (4.08 × 10-4) 0.59 (7.76 × 10−4)

BOF 186978_19 12 148693882 A C 0.03 -0.30 (6.69 × 10-4) 0.81 (1.99 × 10−4)

BOS 210123_39 12 239066297 T G 0.03 0.95 (5.88 × 10-22) -0.64 (5.95 × 10-5)

BOS 65720_38 9 26233589 A G 0.03 0.71 (2.04 × 10−14) -0.64 (5.95 × 10−5)

BOS 57078_21 9 163441584 A C 0.28 0.20 (1.19 × 10−10) -0.61 (4.60 × 10−4)

BOS 774777_66 7 206933711 C T 0.03 0.36 (6.64 ×10−6) -0.27 (3.39 × 10−4)

BOS 221833_73 12 284678317 C G 0.35 -0.12 (1.85 × 10-5) -0.66 (5.88 × 10−4)

BOS 38821_38 8 94422071 G A 0.27 0.12 (4.12 × 10-5) 0.27 (1.34 × 10−4)

BOS 333922_26 13 435879200 T G 0.43 0.12 (4.58 × 10-5) -0.24 (6.68 × 10−4)

Statistical analyses were performed with GEMMA and GMMAT LMM. p-values < 1 × 10−3 are considered genome-wide significant. BOS, Beginning of Sprouting; BOF, Beginning of Flowering;
Chr, Chromosome; FPD, Flowering Period Duration; LMM, Linear Mixed Model; MAF, Minor Allele Frequency; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration.
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phenotypic variation was explained by all available genotypes, with

47.22% attributed to 60 SNPs exhibiting significant phenotypic

effects. Similarly, the PVE estimate for the VPD indicated that

86.95% of the phenotypic variation was explained by all genotypes,

with 65.72% attributed to 111 SNPs exhibiting notable phenotypic

effects. Moreover, the BSLMM analysis revealed that 66.03% of the

phenotypic variation in BOF was explained by all genotypes, with

25.86% of this variation accounted for by 47 SNPs with significant

effects. The PVE estimate for the BOS revealed that 76.05% of the

phenotypic variation was explained by all available genotypes, with

63.19% attributed to 52 SNPs exhibiting significant phenotypic

effects. Supplementary File 7 contains the means, medians, and 95%

equal tail posterior probability intervals (95% ETPPIs) of the

hyperparameters derived from the BSLMM.

FIGURE 5

Manhattan plots of single-SNP association mapping of FPD, VPD, BOF, and BOS traits. Single-SNP analysis was conducted using (A) GMMAT (top
row) and (B) GEMMA (bottom row) for each trait, where the x-axis represents the chromosomal positions of SNPs and the y-axis shows the −log10
(p-values) from the LMM analysis. The red horizontal line denotes the genome-wide significance threshold (p = 1 × 10−³). Each point on the
Manhattan plot corresponds to a SNP, with stronger associations appearing higher due to lower p-values. Green dots indicate SNPs identified in
both analyses.

TABLE 4 SNPs passing the genome-wide significance threshold (1 × 10−³) in the single-SNP LMM analyses and the posterior inclusion probability
treshold (PIP ≥ 10%) in the Bayesian multi-SNP BSLMM analysis.

Trait SNP Chr Position
Effect
Allele

Referent
Allele

MAF
Single-SNP LMM

Analysis b (p-value)
in GMMAT

Single-SNP LMM
Analysis b (p-value)

in GEMMA

Multi-SNP
BSLMM
Analysis
b (PIP)

FPD 131957_13 10 97222552 T G 0.02 0.30 (2.79 × 10-4) -1.13 (8.22 × 10-6) -0.70 (0.17)

FPD 750129_37 7 113120650 G A 0.06 0.18 (3.24 × 10-4) -0.76 (9.69 × 10-6) -0.48 (0.17)

FPD 134834_42 11 108997955 G C 0.02 0.38 (3.69 × 10-4) -1.49 (1.89 × 10-5) -0.70 (0.06)

VPD 565532_39 4 14626431 C A 0.13 0.10 (5.23 × 10-6) -0.46 (1.01 × 10-5) -0.33 (0.91)

VPD 210123_39 12 239066297 T G 0.03 -0.13 (8.71 × 10-7) 0.51 (1.37 × 10-4) 0.33 (0.75)

BOF 504422_54 2 95535920 T G 0.34 -0.18 (9.52 × 10-6) 0.49 (9.17 × 10-5) 0.32 (0.17)

BOS 210123_39 12 239066297 T G 0.03 0.95 (5.88 × 10-22) -0.64 (5.95 × 10-5) -0.48 (0.83)

Statistical analyses were performed with GEMMA and GMMAT LMM and BSLMM. p-values< 1 × 10−3 are considered genome-wide significant. BOS, Beginning of Sprouting; BOF, Beginning of
Flowering; BSLMM, Bayesian Sparse Linear Mixed Model; Chr, Chromosome; FPD, Flowering Period Duration; LMM, Linear Mixed Model; MAF, Minor Allele Frequency; PIP; Posterior
Inclusion Probability; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. The table presents the single-SNP LMM p-values along with their corresponding posterior
inclusion probabilities from the BSLMM analysis for Chouardia litardierei traits FPD, VPD, BOF, and BOS.
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Multivariate GWAS analysis

In the multivariate GWAS analysis, 113 SNPs surpassed the

genome-wide significance threshold (p = 1 × 10-3) for the model with

BOS and VPD traits as dependent variables (Supplementary File 8).

This indicates shared genetic factors influencing these phenological

traits across multivariate and univariate analyses. Five SNPs were

significant in both LMM and GLMM univariate analyses for the BOS

trait, and these same five were also significant for the VPD trait, along

with an additional eight SNPs that were significant only for VPD,

bringing the total to 13 (Table 6). In the multivariate GWAS analysis for

the model with VPD and BOF traits as dependent variables, 36 SNPs

exceeded the same threshold (Supplementary File 9). Among these, 10

SNPs were significant in LMM and GLMM univariate analyses for the

VPD trait, while 4 showed significance for the BOF trait (Table 6). The

multivariate GWAS findings for BOS and VPD, and BOF and VPD are

plotted in Manhattan plots in Figure 6. The frequencies of effect alleles

across populations for the significant SNPs (shown in Tables 4, 6) are

depicted in a plot provided in Supplementary File 10.

GWAS candidate genes identification

The eggNOG tool provided detailed data clarifying the

connection between individual SNPs/sequences and specific

protein families (PFAM). To identify candidate genes potentially

influencing phenological traits, we conducted eggNOG analysis on

7 SNPs that passed the genome-wide significance threshold (1 ×

10−³) in both the single-SNP LMM and multi-SNP BSLMM

analyses of C. litardierei traits, including FPD, VPD, BOF, and

BOS. This analysis identified 59 queries corresponding to sequences

matched to the eggNOG database for functional annotation

(Supplementary File 11). Using eggNOG, we further analyzed 13

SNPs that met the same significance threshold in the multivariate

GWAS analysis of BOS and VPD, uncovering 114 additional

queries (Supplementary File 12). Similarly, 14 SNPs passed the

same significance threshold in the multivariate GWAS analysis of

VPD and BOF, resulting in 173 additional queries (Supplementary

File 13). The eggNOG analysis connected sequences to protein

families, which we further explored through manual inspection and

a literature review to identify specific genes and PFAM domains

related to the traits being studied. Some domains were common to

both the univariate and multivariate GWAS results, resulting in

overlaps. The most significant findings, along with their biological

functions and relevant references, are summarized in Table 7.

Discussion

This study aimed to advance our understanding of the genetic

foundations of phenological adaptive traits in C. litardierei’s

populations occupying contrasting habitats and shaped by distinct

ecological pressures. To minimize the effects of phenotypic plasticity

and identify heritable local adaptation traits as accurately as possible,

individuals from divergent environments were grown under uniform

conditions (Liu and El-Kassaby, 2019; Schwinning et al., 2022). This

approach allowed the separation of genetic influences from

environmental effects, revealing the heritable components driving

local adaptation, where populations evolve toward optimal

phenotypic and genetic configurations in response to local selective

pressures (Montejo-Kovacevich et al., 2021).

Basic statistical analyses on the common garden experiment data

were first performed to characterize the variations within the tested

phenological traits and their potential importance for the local

adaptation of studied populations in their natural habitats. Except

for the duration of flowering (FPD), substantial variations in tested

traits among the studied populations were revealed, highlighting their

importance for adaptation to contrasting environmental pressures.

However, although significant differences in phenological traits

among studied groups and individual populations were present,

there were many exceptions in the general pattern. For instance,

although the dolomite-habitat population group began with

flowering (BOF) before the remaining two groups, the Pag

population from the seashore habitat was an exception, as it

overlaped with all the dolomite-habitat populations. At the same

time, the Pag population came into flowering significantly earlier

than the Vrana Lake population, which is found in the same habitat

and is even geographically closely positioned to the Pag population.

Similarly, VPD was significantly shorter in the dolomite-habitat

group of populations in contrast to other groups; however, the

Budoške Bare population from karst poljes’ meadow habitat joined

this group due to having VPD also significantly shorter than any of

the remaining populations from this and the seashore habitat. Such a

result supports the earlier assumption that although groups of C.

litardierei population thrive in highly contrasting habitats, their

differentiation into well-differentiated ecotypes remains poorly

supported. This was also partially confirmed by the obtained

population genetic results (Supplementary Files 3, 4). Here, only

the group of populations from the dolomite habitat was substantially

differentiated and formed a well-defined genetic cluster, while all the

remaining populations remained clustered together, without signs of

differentiation between the seashore and meadow-habitat groups.

Since the ecotypes are defined as groups of populations whose

differentiation is supported both genetically and phenotypically

(Lowry, 2012), the studied groups do not meet these criteria.

Nonetheless, some trends can be observed in the obtained results

that point to certain conclusions. The dolomite-habitat population

TABLE 5 Genetic architectures of Chouardia litardierei phenological
traits identified using a BSLMM.

Trait PVE/% PGE/% n.gamma

FPD 20.26 47.22 60

VPD 86.95 65.72 111

BOF 66.03 25.86 47

BOS 76.05 63.19 52

BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration;
n.gamma, number of variants with major effect; PGE, Proportion of Variance Explained by
major effect variants; PVE, Proportion of Variance Explained by genetic data; VPD,
Vegetation Period Duration.
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group sprouted later (BOS) and flowered earlier (BOF) but had a

shorter vegetation period (VPD) than the remaining two groups.

Such a shift in phenophases is likely to be significantly influenced by

habitat properties. To understand how this specific habitat may affect

this phenomenon, two aspects must be considered: the dolomite

substrate properties and the influence of the local climate dynamics

on the vegetation season. These southernmost populations of C.

litardierei are usually found on bare dolomite bedrock or less

frequently in dry, exposed mountainous grassland habitats

developed on very shallow rendzina soils (Figure 1). Due to

reduced water and nutrient capacity, accompanied by high levels of

thermal conductivity and thermal capacity of the dolomite substrate

(Thomas et al., 1973; Waples and Waples, 2004; Mota et al., 2021),

these drought-prone habitats are known to induce heat stress in

adjacent organisms and thus present a hostile environment for plant

species (Mota et al., 2021). In addition, due to very sparse vegetation

cover in such habitats, the substrate temperature can be expected to

reach far greater values when compared to habitats covered with

TABLE 6 SNPs passing genome-wide significance threshold (1 × 10−3) in the multivariate GWAS mvLMM analysis of Chouardia litardierei phenological
traits BOS and VPD, and BOF and VPD.

Trait SNP Chr Position
Effect
Allele

Ref.
Allele

MAF
Beta1
(VPD)

Beta2
(BOS)

mvLMM in GEMMA
(p-value)

BOS +VPD 305761_25 13 320423026 T G 0.13 0.35 -0.37 7.85 × 10−6

BOS +VPD 65720_38 9 26233589 A G 0.03 0.61 -0.59 1.25 × 10−5

BOS +VPD 565532_39 4 14626431 C A 0.13 -0.45 0.55 1.73 × 10−5

BOS +VPD 221833_73 12 284678317 C G 0.35 -0.23 0.30 3.20 × 10−5

BOS +VPD 334377_114 13 437172692 C A 0.01 0.75 -0.62 9.93 × 10−5

BOS +VPD 167223_27 11 64125165 T G 0.09 -0.46 0.49 2.14 × 10−4

BOS +VPD 790473_18 7 8052404 A T 0.02 0.85 -1.13 3.34 × 10−4

BOS +VPD 210123_39 12 239066297 T G 0.03 0.51 -0.58 4.28 × 10−4

BOS +VPD 774777_66 7 206933711 C T 0.03 0.57 -0.72 5.10 × 10−4

BOS +VPD 618657_20 4 345766799 A G 0.01 0.93 -1.05 6.71 × 10−4

BOS +VPD 57078_21 9 163441584 A C 0.28 0.22 -0.21 6.98 × 10−4

BOS +VPD 76416_37 9 64503815 A G 0.06 0.35 -0.38 7.19 × 10−4

BOS +VPD 635043_17 4 93373391 T C 0.08 0.37 -0.44 8.20 × 10−4

Beta1
(VPD)

Beta2
(BOF)

BOF +VPD 65720_38 9 26233589 A G 0.03 0.59 0.25 8.71 × 10−6

BOF +VPD 305761_25 13 320423026 T G 0.13 0.34 0.01 2.04 × 10−5

BOF +VPD 565532_39 4 14626431 C A 0.13 -0.45 0.15 3.26 × 10−5

BOF +VPD 334377_114 13 437172692 C A 0.10 0.73 0.49 7.39 × 10−5

BOF +VPD 774777_66 7 206933711 C T 0.03 0.61 -0.27 2.41 × 10−4

BOF +VPD 167223_27 11 64125165 T G 0.09 -0.46 0.16 2.74 × 10−4

BOF +VPD 221833_73 12 284678317 C G 0.35 -0.22 0.11 3.14 × 10−4

BOF +VPD 618657_20 4 345766799 A G 0.01 0.95 -0.28 4.52 × 10−4

BOF +VPD 76416_37 9 64503815 A G 0.06 0.35 0.06 6.51 × 10−4

BOF +VPD 210123_39 12 239066297 T G 0.03 0.50 -0.01 6.84 × 10−4

BOF +VPD 504422_54 2 95535920 T G 0.34 0.23 0.49 2.16 × 10−5

BOF +VPD 252813_22 13 104630774 C G 0.03 0.10 -1.27 1.03 × 10−4

BOF +VPD 186978_19 12 148693882 A C 0.03 -0.22 0.82 4.17 × 10−4

BOF +VPD 445520_34 1 133744238 A G 0.23 0.06 0.39 5.72 × 10−4

Statistical analyses were performed with GEMMA mvLMM. p-values< 1 × 10−3 are considered genome-wide significant. BOF, Beginning of Flowering; BOS, Beginning of Sprouting; Chr,
Chromosome; FPD, MAF, Minor Allele Frequency; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. Listed SNPs were
found to be significant in both GEMMA and GMMAT univariate analyses.
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canopies or meadows (Oliver et al., 1987), thus further worsening

already inhospitable conditions. Regarding the influence of regional

climatic patterns on local vegetation, two peaks of ecosystem

productivity have been observed in Mediterranean climate

conditions across southern Europe – the larger one during spring

and the less pronounced one during autumn. Such a modality has

developed because of ecological constraints imposed by low winter

temperatures on one side and summer droughts on another (Spano

et al., 2013; Camarero et al., 2021), thus leaving relatively short time

frames in spring and autumn suitable for development and

reproduction. Consequently, it seems plausible that populations

experiencing such climatic patterns, in combination with drought-

and heat-stress-prone habitats, have developed short development-

and reproduction-related phenophases. At the same time, the

remaining C. litardierei populations inhabiting deep, moisture-

retaining soils protected by dense vegetation layer which

additionally reduces the increase of substrate temperature (Oliver

et al., 1987), experience a less limited time frame for closing the sexual

reproduction cycle. This is reflected in significant shifts in related

phenophases toward later sprouting and the beginning of flowering,

as well as a more extended vegetation period.

By emphasizing their heritable nature, the high PVE values

observed in our study were suggested to indicate the great

evolutionary importance of detected candidate loci in shaping the

phenological adaptation of populations to local climatic conditions.

The highest PVE value (86.95%) was exhibited by the trait VPD,

suggesting that the length of the growing season in this species is

predominantly determined by genetic factors. The high genetic

variance observed in VPD could be reflective of adaptive

mechanisms that allow C. litardierei to optimize its growth and

reproductive success in response to environmental cues, such as

climate and soil conditions, with strong natural selection acting on

traits critical for survival in fluctuating environments. While a PVE

for flowering time exceeding 95% has been reported for Arabidopsis

from Cape Verde and Morocco (Neto and Hancock, 2023),

highlighting the predominant genetic influence, the PVE for C.

litardierei flowering period duration (FPD) was found to be

20.26%, indicating a more significant role of environmental or

non-genetic factors. PVE values of 66.03% and 76.05% were

exhibited by the BOF and BOS traits, respectively, indicating that

genetic elements were exerting a greater influence than local

environmental factors in shaping these traits. This was reinforced

by the PGE values, with the highest PGE (65.72%) being observed in

VPD, driven by a few major variants. In contrast, lower PGE values

(25.86% and 63.19%) were found for BOF and BOS, respectively,

reflecting the influence of numerous small-effect variants and a

greater environmental impact. Overall, these heritability estimates

and genetic findings provided evidence of the significant role played

by genetic factors in shaping phenological traits in C. litardierei,

emphasizing the complex interaction between genetics and

environment and offering a strong foundation for future genetic,

evolutionary, and adaptation studies.

In this study, multiple loci linked to phenological traits in C.

litardierei were identified through univariate and multivariate GWAS

approaches. The relatively low overlap of significant SNPs detected

across the different GWAS models likely reflects inherent differences

in their statistical assumptions and approaches to modelling genetic

effects.While both frequentist methods (GLMM and LMM) applied a

consistent significance threshold of < 1 × 10−3, the BSLMM relies on

posterior inclusion probabilities, which are generally more

conservative and not directly comparable to p-values. Importantly,

each model is optimized for different data characteristics: LMM

assumes normally distributed traits, whereas GLMM, using a

Poisson distribution, is more appropriate for count-based traits

with non-normal distributions. Applying trait-appropriate models

increases the reliability and power of association detection, even if it

results in a lower number of shared SNPs. Functional annotation of

the genomic windows surrounding significant SNP loci revealed

FIGURE 6

Manhattan plot of multivariate genome-wide association study (multi-GWAS) of (A) BOS and VPD (left) and (B) BOF and VPD traits (right). The red
horizontal line indicates the genome-wide significance threshold (p = 1 × 10-3). Each dot on the Manhattan plot signifies a SNP. The strongest
associations have the smallest p-values, so their negative logarithms will be the greatest, appearing higher on the plot. Green dots indicate SNPs
identified as significant in the multivariate GWAS analysis as well as in both GEMMA and GMMAT univariate analyses for each of the two plots.
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regions encoding key protein families involved in essential biological

pathways related to phenological events. Among others, SNP loci

were identified in regions encoding the chromo domain, which is

crucial to plant chromatin-based gene regulation. In Arabidopsis,

mutations in LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a

gene encoding a chromo domain, have been shown to cause early

flowering and reduced plant size (Gaudin et al., 2001).

Overexpression of CONSTANS (CO), which activates

FLOWERING LOCUS T (FT) in long-day conditions, has been

found to alter chromatin at the FT locus by reducing LHP1

binding and increasing histone acetylation, suggesting LHP1

represses flowering through chromatin regulation (Adrian et al.,

2010). SNP loci were also identified in regions encoding histidine

phosphatase proteins, which are known to regulate plant

development and stress responses, particularly through hormone

signaling pathways like cytokinins that influence flowering and

vegetative growth (Werner et al., 2001; Hai et al., 2020). For

instance, it has been demonstrated that exogenous cytokinin

TABLE 7 List of candidate genes for regions of strong association with FPD, VPD, BOF and BOS identified by the eggNOG-mapper v2 database.

Query Method e-value Chr
EGGNog
PFAM

Candidate
Genes

Species
Relevant
biological
functions

References

H 9:113095650-113145650_6 GWAS 4.55e-212 7

Chromo domain LHP1

Arabidopsis
thaliana

Chromatin
regulation and
flowering
time control

Gaudin et al.
(2001),
Adrian
et al. (2010)

H 9:206908711-206958711_54 mGWAS1 6.8e-111 13

H 2:95510920-95560920_36 mGWAS2 3.82e-132 2

H 9:113095650-113145650_4 GWAS 3.1e-163 7
Histidine
phosphatase
protein family

Hd3a,
ZCN8

Oryza
sativa,
Zea mays

Hormone signalling,
development, stress
response,
and flowering

Cho
et al. (2022)

H 9:113095650-113145650_44 GWAS 2.31e-42 7
Aspartic
Proteases (APs)

PvAP1
Phaseolus
vulgaris

Drought stress
adaptation and
osmotic resistance

Contour-Ansel
et al. (2010)

H 4:14601431-14651431_21 GWAS 2.19e-80 4
CCHC-type zinc
finger proteins
(CCHC-ZFPs)

AtCSP4

Arabidopsis
thaliana Growth,

development, and
stress responses

Yang and
Karlson (2011)

H 15:284653317-284703317_45 mGWAS1 1.77e-306 12

H 15:284653317-284703317_50 mGWAS2 1.77e-306 12

H 4:14601431-14651431_5 GWAS 1.14e-23 4 Pentatricopeptide
repeat
(PPR) proteins

AT1G15480
Arabidopsis
thaliana

Flowering
time regulation

Emami and
Kempken
(2019)H 4:14601431-14651431_4 mGWAS2 9.61e-26 4

H 14:108972955-109022955_19 GWAS 2.14e-100 11

Phytochrome-
interacting Factor
1 (PIF1)

PIF1
Arabidopsis
thaliana

Sprouting control,
growth, stress
adaptation, and
photosynthesis
regulation

Yadav (2024),
Soy et al.
(2014),
Li et al. (2024),
Chen
et al. (2013)

H 14:108972955-109022955_22 mGWAS1 1.00e-308 11

H 16:320398026-320448026_57 mGWAS1 3.11e-22 13

MATE domain

OsMATE2,
OsMATE4,
OsMATE42,
OsMATE46

Oryza
sativa

Early salt stress
response and
drought
stress resistance

Du et al. (2021)
H 16:320398026-320448026_58 mGWAS2 3.11e-22 13

H 15:284653317-284703317_6 mGWAS1 1.08e-12 12
Protein
kinase domain

SOS2/CIPK24
Arabidopsis
thaliana

Salt stress responses
and
hormonal signaling

Chen
et al. (2023)H 4:345741799-345791799_9 mGWAS2 2.09e-24 4

H 1:133719238-133769238_38 mGWAS2 1.33e-36 1
MLO
protein family

OsMLO1-4,
OsMLO9,
OsMLO11

Oryza
sativa

Heat and/or cold
stress response

Nguyen
et al. (2016)

H 15:148668882-148718882_58 mGWAS2 5.59e-190 12 C2 domain
QUIRKY,
STRUBBELIG

Arabidopsis
thaliana

Promotes
intercellular
communication and
tissue
morphogenesis

Vaddepalli
et al. (2014)

BOF, Beginning of Flowering; Chr, chromosome; BOS, Beginning of Sprouting; flowering period duration; GWAS, genome-wide association study; H, HiC scaffold; mGWAS1, multivariate
Genome-Wide Association Study of BOS and VPD; mGWAS2, multivariate Genome-Wide Association Study of BOF and VPD; PFAM, protein family; VPD, Vegetation Period Duration. (e-
value< 1 × 10−2) in Chouardia litardierei based on the 7 recognized SNPs passing genome-wide significance threshold (1 × 10−3) in the single-SNP LMM and multi-SNP BSLMM analysis as well
as 13 SNPs passing the same threshold in the multivariate GWAS mvLMM analysis of BOS and VPD (mGWAS1), and 14 SNPs in BOF and VPD (mGWAS2). The names of the identified
candidate genes associated with the SNPs, PFAMs, their relevant biological functions, and corresponding references are provided.
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application extends the vegetative phase in rice and maize by

inhibiting the expression of florigen genes, such as Hd3a and

ZCN8, thus delaying flowering time (Cho et al., 2022).

Additionally, cytokinins have been found to interact with

environmental signals like nutrient sensing (Argueso et al., 2009;

Prasad, 2022), potentially aiding plant adaptation to nutrient-poor

and drought-prone habitats, like those inhabited by the southern

group of C. litardierei populations. Similarly, cytokinin-deficient

mutants have been observed to exhibit delayed flowering on

nutrient-poor substrates, underscoring cytokinin’s role in

adaptation to nutrient-limited environments (Miyawaki et al.,

2006). SNP loci within the genomic regions encoding aspartic

proteases (APs) and CCHC-type zinc finger proteins (CCHC-

ZFPs) were recognized as well. In drought-susceptible common

bean cultivars, the PvAP1 gene exhibited significant upregulation

under mild water stress, supporting the role of APs in drought

responses (Contour-Ansel et al., 2010). CCHC-ZFPs are considered

essential for growth and development, as demonstrated in

Arabidopsis, where AtCSP4 has been identified as a key factor

(Yang and Karlson, 2011). Additionally, SNP loci within the

genomic region encoding pentatricopeptide repeat (PPR) proteins

were identified. It has been reported that mutations in theArabidopsis

gene AT1G15480, encoding a P-class PPR protein, result in early

flowering (Emami and Kempken, 2019). Furthermore, mutations

were detected in genetic regions responsible for encoding

phytochrome-interacting factor 1 (PIF1). In Arabidopsis, PIF1 has

been found to play a major role in sprouting inhibition (Oh et al.,

2004; Yadav, 2024), plant growth and development regulation (Soy

et al., 2014), stress adaptation (Li et al., 2024), and regulation of

photosynthesis initiation (Chen et al., 2013). In addition, SNP loci

were identified within regions encoding the MATE domain, the

protein kinase domain, and loci associated with the MLO protein

family. Several MATE domain genes in O. sativa (OsMATE2,

OsMATE4, OsMATE42, and OsMATE46) have been shown to

regulate plant responses to abiotic stresses, such as salt and

drought, through differential expression patterns (Du et al., 2021),

while the protein kinase SOS2/CIPK24 has been recognized as a

central regulator of salt stress response and hormonal signaling in

Arabidopsis (Chen et al., 2023). Finally, the MLO protein family is

considered crucial for temperature stress adaptation, as exemplified

by several OsMLO proteins in O. sativa (Nguyen et al., 2016).

Here, we investigated the genetic background of phenological

traits in C. litardierei, revealing significant associations between them

and specific genetic variations across the genome. Our findings

indicate that certain genomic regions may be instrumental in the

adaptive responses of populations to contrasting environmental

conditions. The genetic architecture of these phenological traits is

complex, with multiple candidate loci contributing to phenotypic

diversity across habitats. Using the ddRAD-seq approach and

comprehensive GWAS analyses, we identified key candidate genes

and multiple loci associated with phenological traits. However, the

limited genome scan resolution of ddRAD-seq, particularly in large

genomes like C. litardierei (3.7 Gb), leaves much genomic information

unexplored. The relatively small sample size is a limitation of our

study, particularly given that GWAS typically include larger cohorts to

detect robust and reproducible associations. Nevertheless, our analysis

revealed several biologically plausible signals, which, while requiring

validation, provide a valuable foundation for future studies. These

findings should be interpreted with caution, but they offer meaningful

insights that can be further explored and confirmed in larger,

independent populations. Functional annotation of the associated

genomic regions revealed key protein families involved in vital

biological pathways related to flowering time, vegetative growth, and

stress adaptation. These protein families are crucial regulators of plant

development, environmental responses, and abiotic stress adaptation.

High narrow-sense heritability estimates indicated that genetic factors

accounted for a significant portion of the phenotypic variance, with

PVE ranging from 20.26% for flowering period duration (FPD) to

86.95% for vegetation period duration (VPD). This study underscores

the complexity of the genetic architecture driving phenotypic diversity

in plants, highlighting the critical role of genomic approaches in

examining adaptive traits in non-model species exposed to diverse

ecological pressures. Despite challenges in studying a wild, non-model

species, this research advances our understanding of the genomic basis

of adaptive divergence and ecological differentiation in C. litardierei.

Expanding this research through a comprehensive Genome-

Environment Association (GEA) study, incorporating more

populations across the species’ distribution range, could provide

deeper insights into the genomic drivers of local adaptation and

phenological divergence.
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Šarančić et al. 10.3389/fpls.2025.1571608

Frontiers in Plant Science frontiersin.org16

87

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fpls.2025.1571608
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


financed by the “Amethyst Meadow Squill (Chouardia litardierei,

Hyacinthaceae): a study system for ecological divergence” (HRZZ-

IP-2020-02-8099) project.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1571608/

full#supplementary-material

References

Adole, T., Dash, J., Rodriguez-Galiano, V., and Atkinson, P. M. (2019). Photoperiod
controls vegetation phenology across Africa. Commun. Biol. 2, 1–13. doi: 10.1038/
s42003-019-0636-7

Adrian, J., Farrona, S., Reimer, J. J., Albani, M. C., Coupland, G., and Turck, F.
(2010). cis-regulatory elements and chromatin state coordinately control temporal and
spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22, 1425–1440.
doi: 10.1105/TPC.110.074682

Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., and Mitchell-Olds,
T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing
flowering phenology in response to climate change. Proc. R. Soc. B: Biol. Sci. 279,
3843–3852. doi: 10.1098/RSPB.2012.1051

Argueso, C. T., Ferreira, F. J., and Kieber, J. J. (2009). Environmental perception
avenues: the interaction of cytokinin and environmental response pathways. Plant Cell
Environ. 32, 1147–1160. doi: 10.1111/J.1365-3040.2009.01940.X

Bakhtiari, M., Formenti, L., Caggìa, V., Glauser, G., and Rasmann, S. (2019). Variable
effects on growth and defense traits for plant ecotypic differentiation and phenotypic
plasticity along elevation gradients. Ecol. Evol. 9, 3740–3755. doi: 10.1002/ECE3.4999

Bernatchez, L., Ferchaud, A. L., Berger, C. S., Venney, C. J., and Xuereb, A. (2023).
Genomics for monitoring and understanding species responses to global climate
change. Nat. Rev. Genet. 25, 165–183. doi: 10.1038/s41576-023-00657-y

Besnier, F., and Glover, K. A. (2013). ParallelStructure: A R package to
distribute parallel runs of the population genetics program STRUCTURE on
multi-core computers. PloS One 8, e70651. doi: 10.1371/JOURNAL.PONE.
0070651

Bonacci, O. (2014). “Ecohydrology of karst poljes and their vulnerability,” in Dinaric
karst poljes - floods for life (EuroNatur, Radolfzell am Bodensee), 25–37.

Brandrud, M. K., Paun, O., Lorenzo, M. T., Nordal, I., and Brysting, A. K. (2017).
RADseq provides evidence for parallel ecotypic divergence in the autotetraploid
Cochlearia officinalis in Northern Norway. Sci. Rep. 7, 1–13. doi: 10.1038/s41598-
017-05794-z

Bremer, B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., Bailey, L. H., et al.
(2009). An update of the Angiosperm Phylogeny Group classification for the orders
and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121. doi: 10.1111/
J.1095-8339.2009.00996.X

Bui, E. N. (2013). Soil salinity: A neglected factor in plant ecology and biogeography.
J. Arid. Environ. 92, 14–25. doi: 10.1016/J.JARIDENV.2012.12.014

Camarero, J. J., Valeriano, C., Gazol, A., Colangelo, M., and Sánchez-Salguero, R.
(2021). Climate differently impacts the growth of coexisting trees and shrubs under
semi-arid Mediterranean conditions. Forests 12, 381. doi: 10.3390/F12030381

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., and Cresko, W. A. (2013).
Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140.
doi: 10.1111/MEC.12354

Chen, C., He, G., Li, J., Perez-Hormaeche, J., Becker, T., Luo, M., et al. (2023). A salt
stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell
niche by enhancing sodium ion extrusion. EMBO J. 42, e113004. doi: 10.15252/
EMBJ.2022113004

Chen, H., Huffman, J. E., Brody, J. A., Wang, C., Lee, S., Li, Z., et al. (2019). Efficient
variant set mixed model association tests for continuous and binary traits in large-scale

whole-genome sequencing studies. Am. J. Hum. Genet. 104, 260–274. doi: 10.1016/
j.ajhg.2018.12.012

Chen, D., Xu, G., Tang, W., Jing, Y., Ji, Q., Fei, Z., et al. (2013). Antagonistic basic
helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate
light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25, 1657–1673.
doi: 10.1105/TPC.112.104869

Cho, L. H., Yoon, J., Tun, W., Baek, G., Peng, X., Hong, W. J., et al. (2022). Cytokinin
increases vegetative growth period by suppressing florigen expression in rice and maize.
Plant J. 110, 1619–1635. doi: 10.1111/TPJ.15760

Contour-Ansel, D., Torres-Franklin, M. L., Zuily-Fodil, Y., and de Carvalho, M. H. C.
(2010). An aspartic acid protease from common bean is expressed ‘on call’ during water
stress and early recovery. J. Plant Physiol. 167, 1606–1612. doi: 10.1016/
J.JPLPH.2010.06.018

Cook, B. I., Wolkovich, E. M., Davies, T. J., Ault, T. R., Betancourt, J. L., Allen, J. M.,
et al. (2012). Sensitivity of spring phenology to warming across temporal and spatial
climate gradients in two independent databases. Ecosystems 15, 1283–1294.
doi: 10.1007/S10021-012-9584-5

Cortés, A. J., Garzón, L. N., Valencia, J. B., and Madriñán, S. (2018). On the causes of
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Glossary
APs Aspartic Proteases

BAM Binary Alignment Map

BOF Beginning of flowering

BOS Beginning of sprouting

BSLMM Bayesian Sparse Linear Mixed Model

CCHC-ZFPs CCHC-type zinc finger proteins

Chr Chromosome

ddRAD-seq Double Digest Restriction Site-Associated DNA Sequencing

EGGNog Evolutionary Genealogy of Genes: Non-supervised
Orthologous Groups

FPD Flowering period duration

GEA Genome-Environment Association

GEMMA Genome-wide Efficient Mixed Model Association

GMMAT Generalized Mixed Model Association Tests

GWAS Genome-Wide Association Study

LMM Linear Mixed Model

MAF Minor Allele Frequency

mGWAS Multivariate genome-wide association study

PGE Proportion of Genetic Effect

PPR proteins Pentatricopeptide repeat proteins

PFAM Protein Family

PIF1 Phytochrome-interacting Factor 1

PIP Posterior Inclusion Probability

PVE Proportion of Variance Explained

SNP Single Nucleotide Polymorphism

VPD Vegetation period duration
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Table 1. The locations of sampled Chouardia litardierei populations and their corresponding habitat 

types. 

Population/Location Country Latitude (N) Longitude (E) Habitat Type 

Bjelopolje Croatia 44.693754° 15.773682° Meadow – karst poljes 

Cetina (Paško polje) Croatia 43.940922° 16.436367° Meadow – karst poljes 

Budoške Bare Montenegro 42.743747° 18.926361° Meadow – karst poljes 

Pag (Kolansko blato) Croatia 44.514886° 14.919922° Seashore - grassland 

Nin Croatia 44.249564° 15.172015° Seashore - grassland 

Vrana Lake Croatia 43.937292° 15.514689° Seashore - grassland 

Lovćen Montenegro 42.377169° 18.843117° Dolomite - bedrock 

Skadar Lake Montenegro 42.326486° 19.069464° Dolomite - bedrock 

Pandurica Montenegro 42.721628° 18.962442° Dolomite - bedrock 
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Table 1. Mann-Whitney post-hoc test for four phenological traits of 

Chouardia litardierei. 
 

 

trait continental-litorarl continental-dolomitic litoral-dolomitic 

BOF 0.5425 1.48E-06 7.32E-09 

BOS 1 4.13E-12 1.04E-18 

FPD  NA NA NA 

VPD 0.918 1.34E-15 3.09E-23 

    

    

    
Table 2. Kruskal-Wallis test for equal medians for four phenological traits of 

Chouardia litardierei. 
 
 

trait H (chi2) Hc (tie corrected) p (same) 

BOF 41.69 42.4 6.22E-10 

BOS 86.83 87.4 1.048E-16 

FPD 0.1727 0.1746 0.9164 

VPD 113.8 113.9 1.845E-25 
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Figure 1. Box plots showing the distribution of four phenological traits (BOF, BOS, FPD, and VPD) in Chouardia litardierei populations 

across different habitat types. Each box plot represents the median, interquartile range (IQR), and variability of trait values across different 

populations. Whiskers indicate data within 1.5 times the IQR, while dots represent outliers. 

BOF VPD 

FPD BOS 
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Table 3. Kruskal-Wallis test for equal medians for four phenological traits in nine Chouardia litardierei populations. 

 

 

 

 

 

 

 

Table 4. Mann-Whitney post-hoc test for VPD trait in nine Chouardia litardierei populations. 

 BJELOPOLJE CETINA BUDOŠKE BARE VRANA LAKE NIN PAG SKADAR LAKE PANDURICA LOVĆEN 

BJELOPOLJE  5.72E-05 2.79E-06 0.003915 2.23E-05 2.74E-06 1.15E-06 3.84E-06 1.16E-06 

CETINA 5.72E-05  1.18E-05 0.03173 1 0.4125 2.31E-07 1.73E-06 1.82E-07 

BUDOŠKE BARE 2.79E-06 1.18E-05  2.88E-07 2.07E-06 0.00124 0.1842 1 0.0003949 

VRANA LAKE 0.003915 0.03173 2.88E-07  0.5151 3.51E-06 7.26E-08 3.62E-07 7.28E-08 

NIN 2.23E-05 1 2.07E-06 0.5151  0.00987 7.83E-08 3.93E-07 7.85E-08 

PAG 2.74E-06 0.4125 0.00124 3.51E-06 0.00987  1.16E-06 1.91E-05 5.55E-07 

SKADAR LAKE 1.15E-06 2.31E-07 0.1842 7.26E-08 7.83E-08 1.16E-06  1 0.2871 

PANDURICA 3.84E-06 1.73E-06 1 3.62E-07 3.93E-07 1.91E-05 1  0.002412 

LOVĆEN 1.16E-06 1.82E-07 0.0003949 7.28E-08 7.85E-08 5.55E-07 0.2871 0.002412  

 

 

trait H (chi2) Hc (tie corrected) p (same) 

BOF 104 105.8 2.762E-19 

BOS 141.5 142.5 7.243E-27 

FPD 21.44 21.68 0.005543 

VPD 168.2 168.3 2.961E-32 
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Table 5. Mann-Whitney post-hoc test for FPD trait in nine Chouardia litardierei populations. 

 

Table 6. Mann-Whitney post-hoc test for BOS trait in nine Chouardia litardierei populations. 

 BJELOPOLJE CETINA BUDOŠKE BARE VRANA LAKE NIN PAG SKADAR LAKE PANDURICA LOVĆEN 

BJELOPOLJE   0.052 0.02663 0.2822 0.2316 0.2235 1 0.05792 0.03659 

CETINA 0.052   1 1 1 1 0.6153 1 1 

BUDOŠKE BARE 0.02663 1   1 1 1 0.3502 1 1 

VRANA LAKE 0.2822 1 1   1 1 1 1 1 

NIN 0.2316 1 1 1   1 1 1 1 

PAG 0.2235 1 1 1 1   1 1 1 

SKADAR LAKE 1 0.6153 0.3502 1 1 1   1 1 

PANDURICA 0.05792 1 1 1 1 1 1   1 

LOVĆEN 0.03659 1 1 1 1 1 1 1   

 BJELOPOLJE CETINA BUDOŠKE BARE VRANA LAKE NIN PAG SKADAR LAKE PANDURICA LOVĆEN 

BJELOPOLJE   0.0014 1.37E-06 0.03928 0.00014 2.82E-06 2.21E-07 1.704E-07 2.2E-07 

CETINA 0.0014   0.000529 1 1 0.4914 8.21E-06 0.0000121 1.1E-06 

BUDOŠKE BARE 1.4E-06 0.00053   5E-06 0.0012 0.04781 1 1 0.2271 

VRANA LAKE 0.03928 1 5E-06   1 0.000133 2.89E-07 2.661E-07 1.9E-07 

NIN 0.00014 1 0.001198 1   1 2.71E-05 6.456E-05 2.2E-06 

PAG 2.8E-06 0.4914 0.04781 0.00013 1   0.000483 0.0009476 1.4E-05 

SKADAR LAKE 2.2E-07 8.2E-06 1 2.9E-07 2.7E-05 0.000483   1 0.2374 

PANDURICA 1.7E-07 1.2E-05 1 2.7E-07 6.5E-05 0.000948 1   0.04234 

LOVĆEN 2.2E-07 1.1E-06 0.2271 1.9E-07 2.2E-06 1.41E-05 0.2374 0.04234   
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Table 7. Mann-Whitney post-hoc test for BOF trait in nine Chouardia litardierei populations. 

 

 

 

 

 

 

 

 

 BJELOPOLJE CETINA BUDOŠKE BARE 
VRANA 

LAKE 
NIN PAG SKADAR LAKE PANDURICA LOVĆEN 

BJELOPOLJE   0.004181 0.7619 1 1 2.35E-05 1E-05 0.00142 0.002 

CETINA 0.004181   1 3.701E-05 0.001553 1 0.01413 1 1 

BUDOŠKE 

BARE 
0.7619 1   0.01927 0.7324 0.009554 0.00026 0.6021 1 

VRANA LAKE 1 
3.701E-

05 
0.01927   1 4.78E-07 2.1E-07 1E-05 9E-06 

NIN 1 0.001553 0.7324 1   3.73E-06 9.1E-07 0.00027 0.0003 

PAG 2.35E-05 1 0.009554 4.775E-07 
0.000003
726 

  0.9649 1 1 

SKADAR LAKE 1E-05 0.01413 0.000261 2.089E-07 
9.085E-

07 
0.9649   0.7455 0.0772 

PANDURICA 0.001416 1 0.6021 1.006E-05 
0.000274

4 
1 0.7455   1 

LOVĆEN 0.002024 1 1 8.607E-06 
0.000314

7 
1 0.07717 1   
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Figure 1. Delta K values as obtained by the STRUCTURE software. 
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Figure 1. Population-genetic structure of studied Chouardia litardierei populations as revealed by the STRUCTURE software. Each stacked 

column represents a single individual. Individuals belonging to the meadow and the seashore groups of populations are marked with blue, and 

individuals from the dolomite habitat populations are marked with red.  
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Table 1. SNPs identified as having a major sparse effect (PIP > 0.1) on FPD, VPD, BPF and BOS 

traits in the multi-SNP Bayesian sparse linear mixed model (BSLMM) analysis. 

Trait SNP Chr Position 
Multi-SNP BSLMM 

Analysis β (PIP) 

FPD 131957_13 10 97222552 -0.699 (0.167) 

 750129_37 7 113120650 -0.476 (0.165) 

VPD 565532_39 4 14626431 -0.327 (0.912) 

 210123_39 12 239066297 0.328 (0.748) 

 64746_61 9 23100056 0.222 (0.579) 

 608473_26 4 312243109 -0.228 (0.447) 

 169192_99 11 71192707 -0.212 (0.393) 

 165641_27 11 59678762 -0.224 (0.308) 

 22755_41 8 27370914 -0.229 (0.286) 

 392671_80 13 668483795 0.188 (0.277) 

 345151_44 13 477215139 0.159 (0.236) 

 68440_39 9 3481745 -0.295 (0.232) 

 114136_23 10 203465059 -0.244 (0.225) 

 131957_13 10 97222552 0.181 (0.224) 

 158923_36 11 31022405 -0.174 (0.224) 

 651864_26 5 14713180 -0.161 (0.192) 

 16906_26 8 164769480 -0.213 (0.188) 

 274011_25 13 193652215 -0.183 (0.184) 

 203695_51 12 214471601 -0.161 (0.180) 

 562222_42 4 133794937 -0.135 (0.175) 

 206941_26 12 227677762 -0.206 (0.175) 

 431951_18 13 86851653 0.173 (0.167) 

 518753_26 3 131097306 -0.206 (0.164) 

 404599_18 13 718065214 0.176 (0.158) 

 264719_36 13 154558733 0.211 (0.152) 

 345740_18 13 478800231 -0.186 (0.152) 

 169723_49 11 73174727 0.177 (0.148) 

 455977_31 1 38506814 -0.187 (0.146) 

 779448_31 7 37409277 -0.127 (0.141) 

 453245_41 1 28792186 0.184 (0.141) 

 175156_81 11 97958069 -0.176 (0.139) 

 732487_30 6 50042305 -0.172 (0.137) 

 236070_45 12 39684927 -0.245 (0.136) 

 794077_90 7 99621809 0.159 (0.135) 

 713226_25 6 119601819 0.135 (0.131) 

 167443_28 11 6497513 0.177 (0.129) 

 628242_25 4 62348852 0.144 (0.122) 

 708419_55 6 102061527 -0.147 (0.122) 

 108954_31 10 185953028 -0.140 (0.119) 

 56223_19 9 159032132 0.169 (0.119) 

 168723_26 11 69545761 0.165 (0.117) 

 321566_29 13 384493611 0.190 (0.115) 

 571637_57 4 172299280 -0.166 (0.115) 

 63780_22 9 20268889 0.150 (0.115) 

 144881_40 11 149677564 0.149 (0.115) 

 196140_32 12 183140101 -0.194 (0.114) 

 41769_13 9 100304229 0.123 (0.114) 

 243670_21 12 66893770 -0.094 (0.114) 

 446954_131 1 137876700 0.195 (0.111) 

 625480_18 4 5030882 -0.155 (0.111) 

 293282_20 13 27101492 -0.144 (0.109) 

 760751_41 7 159527948 -0.123 (0.109) 
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 338697_27 13 45325469 -0.148 (0.108) 

 597865_16 4 273124373 -0.140 (0.107) 

 633475_14 4 84524636 0.130 (0.107) 

 790359_35 7 80015952 -0.128 (0.107) 

 584545_89 4 22256369 0.115 (0.106) 

 76972_41 9 66872924 0.164 (0.106) 

 278704_14 13 212393830 0.127 (0.104) 

 723031_44 6 159155591 -0.119 (0.103) 

 207532_23 12 229820496 0.106 (0.102) 

 173326_23 11 91514076 -0.124 (0.102) 

 577335_20 4 194281453 -0.129 (0.101) 

 513067_18 3 110714483 0.098 (0.100) 

 296028_31 13 282176585 0.169 (0.100) 

 346507_22 13 481318344 0.092 (0.100) 

 321869_23 13 385455641 0.131 (0.099) 

 318805_22 13 374121017 -0.189 (0.099) 

 541757_17 3 63012003 0.113 (0.099) 

 373292_20 13 588262669 0.133 (0.099) 

 541107_21 3 59731100 -0.211 (0.098) 

 369203_29 13 572629490 0.096 (0.098) 

 642210_29 5 103184092 -0.132 (0.097) 

 486980_18 2 22661955 0.116 (0.096) 

 162069_19 11 45040054 0.135 (0.096) 

 634062_21 4 8802327 0.098 (0.096) 

 171198_47 11 79969607 -0.140 (0.095) 

BOF 504422_54 2 95535920 0.321 (0.172) 

 337862_27 13 450832737 0.281 (0.156) 

 633306_18 4 83549086 -0.378 (0.098) 

BOS 565532_39 4 14626431 0.437 (0.959) 

 210123_39 12 239066297 -0.482 (0.829) 

 723031_44 6 159155591 0.307 (0.356) 

 175156_81 11 97958069 0.342 (0.277) 

 114136_23 10 203465059 0.376 (0.241) 

 64746_61 9 23100056 0.229 (0.222) 

 203695_51 12 214471601 0.279 (0.221) 

 165641_27 11 59678762 0.310 (0.219) 

 206941_26 12 227677762 0.391 (0.208) 

 571637_57 4 172299280 0.353 (0.202) 

 169192_99 11 71192707 0.245 (0.177) 

 131957_13 10 97222552 -0.286 (0.172) 

 121534_19 10 48645623 0.326 (0.169) 

 455977_31 1 38506814 0.358 (0.156) 

 252718_24 13 10389007 0.208 (0.143) 

 441735_22 1 121138696 -0.292 (0.138) 

 345740_18 13 478800231 0.284 (0.133) 

 391526_58 13 661633656 0.300 (0.126) 

 708419_55 6 102061527 0.239 (0.123) 

 651208_30 5 143900923 -0.177 (0.123) 

 732487_30 6 50042305 0.358 (0.121) 

 392671_80 13 668483795 -0.236 (0.117) 

 657278_42 5 171253039 0.193 (0.103) 

 518753_26 3 131097306 0.264 (0.100) 

 437888_20 1 105737657 0.228 (0.096) 

 496686_32 2 61419316 -0.311 (0.095) 

 565532_39 4 14626431 0.437 (0.959) 

 210123_39 12 239066297 -0.482 (0.829) 

 723031_44 6 159155591 0.307 (0.356) 

 175156_81 11 97958069 0.342 (0.277) 
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BSLMM was fitted on 23,315 SNPs.; BSLMM, Bayesian sparse linear mixed model; BOF, Beginning of Flowering; BOS, 

Beginning of Sprouting; Chr, Chromosome; FPD, Flowering Period Duration; PIP, Posterior Inclusion Probability; SNP, 

Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. 

 

 114136_23 10 203465059 0.376 (0.241) 

 64746_61 9 23100056 0.229 (0.222) 

 203695_51 12 214471601 0.279 (0.221) 

 165641_27 11 59678762 0.310 (0.219) 

 206941_26 12 227677762 0.391 (0.208) 

 571637_57 4 172299280 0.353 (0.202) 

 169192_99 11 71192707 0.245 (0.177) 

 131957_13 10 97222552 -0.286 (0.172) 

 121534_19 10 48645623 0.326 (0.169) 

 455977_31 1 38506814 0.358 (0.156) 

 252718_24 13 10389007 0.208 (0.143) 

 441735_22 1 121138696 -0.292 (0.138) 

 345740_18 13 478800231 0.284 (0.133) 
 391526_58 13 661633656 0.300 (0.126) 
 708419_55 6 102061527 0.239 (0.123) 

 651208_30 5 143900923 -0.177 (0.123) 

 732487_30 6 50042305 0.358 (0.121) 

 392671_80 13 668483795 -0.236 (0.117) 

 657278_42 5 171253039 0.193 (0.103) 

 518753_26 3 131097306 0.264 (0.100) 

 437888_20 1 105737657 0.228 (0.096) 

 496686_32 2 61419316 -0.311 (0.095) 

102



                                                                                                                                                         Supplementary File 6

  

Figure 1. Manhattan plots of the BSLMM analysis for the FPD, VPD, BOF, and BOS traits of the Chouardia litardierei. The x-axis represents 

the chromosomal position of SNPs, and the y-axis represents their posterior inclusion probabilities (PIPs). 

 

BSLMM; Bayesian Sparse Linear Mixed Model, BOF, Beginning of Flowering; BOS, Beginning of Sprouting;  FPD, Flowering Period Duration; VPD, Vegetation 

Period Duration. 
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Table 1. Means, medians, and 95% equal tail posterior probability intervals (95% ETPPIs) of 

hyperparameters estimated from the Bayesian sparse linear mixed model (BSLMM) in phenological 

trait FPD, VPD, BOF and BOS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BSLMM was fitted on 23,315 SNPs. BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period 

Duration; h, approximation to the proportion of phenotypic variance explained by variants; n.gamma, number of variants 

with major effect; PGE, Proportion of Genetic variance explained by variants with major effect; pi, proportion of variants 

with non-zero effects; PVE, proportion of phenotypic variance explained by variants; rho, approximation to the proportion 

of genetic variance explained by variants with major effect; VPD, Vegetation Period Duration. 

 

 

Trait Hyperparameter Mean Median 2.5% 97.5% 

FPD h  0.3244   0.3128   0.0316   0.6830  

 PVE  0.2026   0.1798   0.0171   0.5215  

 rho  0.5220   0.5315   0.0275   0.9799  

 PGE  0.4722   0.4776   -     0.9671  

 pi 3.23 × 10-2 1.06 × 10-2 6.40 × 10-4 1.42 × 10-1 

 n.gamma 60.67 20.00 - 267.00 

VPD h  0.8224   0.8305   0.6667   0.9312  

 PVE  0.8695   0.8717   0.7803   0.9451  

 rho  0.6511   0.6902   0.1185   0.9872  

 PGE  0.6572   0.7720   0.0553   0.9947  

 pi 5.86 × 10-2 4.62 × 10-2 2.18 × 10-3 1.55 × 10-1 

 n.gamma 111.28 88.00 4.00 290.00 

BOF h  0.7046   0.7164   0.4483   0.8934  

 PVE  0.6603   0.6622   0.4659   0.8455  

 rho  0.3267   0.2735   0.0118   0.8882  

 PGE  0.2586   0.1556   -     0.9121  

 pi 2.52 × 10-2 1.07 × 10-2 6.14 × 10-4 1.11 × 10-1 

 n.gamma 47.29 20.00 0.00 207.00 

BOS h 0.7319 0.7414 0.5371 0.8738 

 PVE 0.7605 0.7616 0.6332 0.8829 

 rho 0.6346 0.6475 0.2029 0.9796 

 PGE 0.6319 0.6870 0.1598 0.9888 

 pi 3.05 × 10-2 2.25 × 10-2 2.87 × 10-3 1.09 × 10-1 

 n.gamma 52.58 39.00 5.00 189.00 
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           Supplementary File 8 

Table 1. SNPs passing the genome-wide significance threshold (p < 1 × 10⁻³) in the multivariate linear 

mixed model (mvLMM) analysis for VPD and BOS traits of Chouardia litardierei in GEMMA 

multivariate GWAS. 

SNP Chr Position 
Effect  

allele 

Reference 

allele 
Beta1 (VPD) Beta2 (BOS) 

mvLMM Analysis 

in GEMMA  

(p-value) 

475214_20 2 10692011 T C 0.01 -0.16 6.68 × 10⁻¹⁰   

654470_57 5 159590069 G A -0.81 0.23 9.18 × 10⁻¹⁰   

689821_13 5 93776308 A C -0.77 0.22 1.66 × 10⁻⁸   

83332_22 9 9096582 G A 0.18 -0.31 4.37 × 10⁻⁸   

558534_14 4 116336173 T A -0.92 0.48 6.36 × 10⁻⁸   

145174_73 11 15061603 C G -0.54 -0.01 1.02 × 10⁻⁷   

522007_32 3 141694985 C T -0.32 -0.07 2.72 × 10⁻⁷   

179782_120 12 117670370 T C -0.49 0.02 3.20 × 10⁻⁷   

248115_31 12 8479581 A T -0.51 -0.06 3.46 × 10⁻⁷   

28256_68 8 50959986 A G -0.38 0.67 4.19 × 10⁻⁷   

187632_54 12 151393801 T G -0.40 -0.01 5.14 × 10⁻⁷   

268970_17 13 171155860 A G -0.49 -0.03 7.85 × 10⁻⁷   

307326_19 13 326551046 A G -0.66 0.06 1.17 × 10⁻⁶   

550061_33 3 97695604 A T -0.46 0.88 1.24 × 10⁻⁶   

26676_33 8 4513527 C G -0.23 -0.11 2.32 × 10⁻⁶   

187238_23 12 149770349 T C -0.34 -0.08 3.29 × 10⁻⁶   

227369_31 12 307596886 C A -0.16 -0.03 4.09 × 10⁻⁶   

305761_25 13 320423026 T G 0.35 -0.37 7.85 × 10⁻⁶   

467066_106 1 91683912 C T -0.55 0.07 9.29 × 10⁻⁶   

770850_26 7 195082174 C T -0.61 0.26 9.98 × 10⁻⁶   

65720_38 9 26233589 A G 0.61 -0.59 1.24 × 10⁻⁵   

565532_39 4 14626431 C A -0.45 0.55 1.73 × 10⁻⁵   

674245_25 5 2834749 C G -0.30 0.03 1.75 × 10⁻⁵   

67781_20 9 32778369 T A -0.16 -0.19 2.65 × 10⁻⁵   

221833_73 12 284678317 C G -0.23 0.30 3.20 × 10⁻⁵   

214650_53 12 255323079 A G -0.74 0.46 4.01 × 10⁻⁵   

651220_77 5 143922570 T G -0.32 -0.10 4.46 × 10⁻⁵   

365394_49 13 555889659 C T -0.28 0.14 4.51 × 10⁻⁵   

723031_44 6 159155591 G A -0.27 0.52 4.78 × 10⁻⁵   

202818_127 12 210719984 C T -0.57 0.30 5.72 × 10⁻⁵   

622051_16 4 357265730 A G -0.31 0.81 6.32 × 10⁻⁵   

592384_37 4 253302099 T C -0.16 -0.43 6.73 × 10⁻⁵   

537684_52 3 44057957 T G -0.16 -0.06 8.02 × 10⁻⁵   

310101_18 13 337885640 T C -0.33 -0.05 9.55 × 10⁻⁵   

681559_42 5 58303261 G T -0.39 0.19 9.72 × 10⁻⁵   

334377_114 13 437172692 C A 0.75 -0.62 9.93 × 10⁻⁵   

600093_25 4 281363631 A G -0.63 0.19 1.42 × 10⁻⁴   

261183_91 13 142406888 T G 0.22 -0.48 1.43 × 10⁻⁴   

328618_13 13 414580639 T A -0.16 -0.18 1.53 × 10⁻⁴   

422540_18 13 792932133 A G -0.87 0.44 1.55 × 10⁻⁴   

607415_46 4 308484921 A G 0.22 -0.36 1.56 × 10⁻⁴   

32158_19 8 64100022 T A -0.05 -0.21 1.74 × 10⁻⁴   

177171_18 12 105568874 A G -0.73 0.60 1.87 × 10⁻⁴   

475216_15 2 10692219 T G -0.01 -0.18 1.91 × 10⁻⁴   

657020_14 5 169994000 G A -0.27 0.02 1.93 × 10⁻⁴   

104384_40 10 170660529 G A -0.25 0.04 1.97 × 10⁻⁴   

771754_39 7 197927864 G C 0.03 -0.20 2.00 × 10⁻⁴   

301480_19 13 302007580 A G -0.35 0.06 2.07 × 10⁻⁴   
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167223_27 11 64125165 T G -0.46 0.49 2.14 × 10⁻⁴   

688909_13 5 89858040 A C -0.04 -0.20 2.15 × 10⁻⁴   

858479_18 13 78001418 T C 0.36 -0.20 2.22 × 10⁻⁴   

143076_28 11 14367538 T C -0.27 -0.07 2.24 × 10⁻⁴   

548241_67 3 88011092 T C -0.25 -0.09 2.37 × 10⁻⁴   

583_81 8 102136191 C A -0.24 0.58 2.38 × 10⁻⁴   

196140_32 12 183140101 A T -0.74 0.37 2.41 × 10⁻⁴   

540381_39 3 5572300 A T 0.14 -0.24 3.13 × 10⁻⁴   

614876_51 4 334032848 C T -0.01 -0.13 3.20 × 10⁻⁴   

790473_18 7 8052404 A T 0.85 -1.13 3.34 × 10⁻⁴   

740200_45 6 89087646 C A -0.50 0.04 3.66 × 10⁻⁴   

71327_30 12 43693525 T G -0.41 0.02 3.67 × 10⁻⁴   

612469_18 13 325349603 A C 0.14 0.16 3.70 × 10⁻⁴   

364317_22 9 551367550 A G -0.70 0.29 4.26 × 10⁻⁴   

210123_39 4 239066297 T G 0.51 -0.58 4.28 × 10⁻⁴   

419317_22 13 780074412 T C -0.39 -0.09 4.49 × 10⁻⁴   

202068_64 12 207629434 T C -0.31 -0.02 4.57 × 10⁻⁴   

60130_20 9 17391855 C T -0.32 0.73 4.58 × 10⁻⁴   

478635_49 8 122304660 A C -0.30 0.04 4.73 × 10⁻⁴   

170834_35 13 774970 G A -0.35 0.11 4.82 × 10⁻⁴   

381580_38 5 619787450 T G -0.27 0.06 4.97 × 10⁻⁴   

154168_43 12 180827479 C A -0.27 0.57 5.07 × 10⁻⁴   

774777_66 3 206933711 C T 0.57 -0.72 5.10 × 10⁻⁴   

548930_13 4 90980761 T G -0.53 0.23 5.11 × 10⁻⁴   

170124_137 13 74451579 A G -0.67 0.27 5.17 × 10⁻⁴   

711345_25 9 112404079 C A 0.04 0.15 5.20 × 10⁻⁴   

207337_22 12 229211403 A C 0.59 -0.14 5.22 × 10⁻⁴   

439975_31 12 114209920 A G 0.01 -0.19 5.30 × 10⁻⁴   

212201_44 4 246320665 T C -0.04 -0.10 5.46 × 10⁻⁴   

631869_38 9 7683248 T G 0.70 -0.46 5.65 × 10⁻⁴   

767107_28 9 18271185 A G -0.30 0.02 5.72 × 10⁻⁴   

55253_106 7 155581032 G A -0.34 0.08 5.81 × 10⁻⁴   

322826_18 12 390026768 A T -0.42 0.18 5.86 × 10⁻⁴   

165592_49 4 59562398 A G 0.04 0.23 5.94 × 10⁻⁴   

529999_34 7 1714447 A G -0.35 -0.02 5.97 × 10⁻⁴   

264780_28 13 154888633 T A 0.12 -0.62 6.07 × 10⁻⁴   

234677_87 7 34919398 G C -0.19 0.42 6.15 × 10⁻⁴   

201405_32 12 204415035 A T -0.27 -0.07 6.26 × 10⁻⁴   

618657_20 7 345766799 A G 0.93 -1.05 6.71 × 10⁻⁴   

76756_18 12 65979867 C A -0.63 0.19 6.81 × 10⁻⁴   

71567_24 13 44564317 T C 0.22 -0.02 6.89 × 10⁻⁴   

765142_28 9 175841496 A C -0.83 1.17 6.90 × 10⁻⁴   

57078_21 5 163441584 A C 0.22 -0.21 6.98 × 10⁻⁴   

484023_15 3 144655732 G A -0.50 0.11 7.03 × 10⁻⁴   

78404_13 5 72519187 T A -0.57 0.29 7.06 × 10⁻⁴   

76416_37 7 64503815 A G 0.35 -0.38 7.19 × 10⁻⁴   

545555_90 3 78147943 T G -0.14 -0.17 7.21 × 10⁻⁴   

512981_36 12 110347767 G T 0.06 0.16 7.26 × 10⁻⁴   

684715_22 7 7273425 T C -0.34 0.49 7.38 × 10⁻⁴   

170122_38 12 74451257 A G -0.66 0.26 7.50 × 10⁻⁴   

200956_103 9 202665910 C T 0.20 0.22 7.55 × 10⁻⁴   

528481_19 12 165845777 T C 0.74 -0.55 7.72 × 10⁻⁴   

180221_31 5 11898341 C A -0.29 0.48 7.78 × 10⁻⁴   

635043_17 4 93373391 T C 0.37 -0.44 8.20 × 10⁻⁴   

581314_17 13 210039723 A G -0.12 0.42 8.55 × 10⁻⁴   

371940_27 4 583317033 T G -0.55 0.16 8.66 × 10⁻⁴   

76460_82 9 64634814 G C -0.28 0.15 8.71 × 10⁻⁴   

560706_36 7 127372766 A C -0.30 -0.06   8.82 × 10⁻⁴   

792151_44 9 90140260 A G 0.11 -0.63 9.00 × 10⁻⁴   

772653_20 12 200562469 C T -0.32 0.53 9.03 × 10⁻⁴   

775046_20 2 207737647 A G 0.19 0.22 9.09 × 10⁻⁴   
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mvLMM in GEMMA was fitted on 23,315 SNPs. BOS, Beginning Sprouting; Chr, Chromosome; VPD, Vegetation Period 

Duration; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism. 

 

 

151787_41 5 173804269 C G -0.11 -0.05 9.58 × 10⁻⁴   

476624_22 5 112342852 A G 0.24 -0.06 9.68 × 10⁻⁴   

415244_13 9 7620614 A G 0.13 -0.26 9.75 × 10⁻⁴ 

77325_18 4 68217631 A C -0.49 0.80 9.94 × 10⁻⁴ 
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Table 1. SNPs passing the genome-wide significance threshold (p < 1 × 10⁻³) in the multivariate linear 

mixed model (mvLMM) analysis for VPD and BOF traits of Chouardia litardierei in GEMMA 

multivariate GWAS. 

mvLMM in GEMMA was fitted on 23,315 SNPs. BOF, Beginning of Flowering; Chr, Chromosome; FPD, Flowering Period 

Duration; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism. 

 

 

SNP Chr Position 
Effect  

allele 

Reference 

allele 
Beta1 (VPD) Beta2 (BOF) 

mvLMM Analysis 

in GEMMA  

(p-value) 

65720_38 9 26233589 A G 0.59 0.25 8.71 × 10⁻⁶ 

305761_25 13 320423026 T G 0.34 0.01 2.04 × 10⁻⁵ 

504422_54 2 95535920 T G 0.23 0.49 2.16 × 10⁻⁵ 

565532_39 4 14626431 C A -0.45 0.15 3.26 × 10⁻⁵ 

334377_114 13 437172692 C A 0.73 0.49 7.39 × 10⁻⁵ 

28256_68 8 50959986 A G -0.39 0.44 8.58 × 10⁻⁵ 

104625_19 10 171714671 C A 0.55 0.71 8.73 × 10⁻⁵ 

622077_29 4 357364641 C T 0.32 -0.62 9.61 × 10⁻⁵ 

252813_22 13 104630774 C G 0.10 -1.27 1.03 × 10⁻⁴ 

528481_19 3 165845777 T C 0.73 0.80 1.03 × 10⁻⁴ 

757985_15 7 148582555 C T 0.47 -0.77 1.40 × 10⁻⁴ 

321869_23 13 385455641 T C 0.36 0.79 1.51 × 10⁻⁴ 

207869_16 12 231068248 T A 0.23 0.60 1.57 × 10⁻⁴ 

631869_38 4 7683248 T G 0.70 0.80 1.87 × 10⁻⁴ 

774777_66 7 206933711 C T 0.61 -0.27 2.41 × 10⁻⁴ 

431930_95 13 86813045 A T 0.21 0.37 2.68 × 10⁻⁴ 

167223_27 11 64125165 T G -0.46 0.16 2.74 × 10⁻⁴ 

221833_73 12 284678317 C G -0.22 0.11 3.14 × 10⁻⁴ 

186978_19 12 148693882 A C -0.22 0.82 4.17 × 10⁻⁴ 

226324_53 12 303921633 A G 0.55 -0.66 4.24 × 10⁻⁴ 

86910_49 10 104918258 T C 0.15 -0.50 4.33 × 10⁻⁴ 

618657_20 4 345766799 A G 0.95 -0.28 4.52 × 10⁻⁴ 

445520_34 1 133744238 A G 0.06 0.39 5.72 × 10⁻⁴ 

723279_19 6 159836366 C T 0.62 -0.54 5.95 × 10⁻⁴ 

623516_30 4 40486247 T G 0.31 -0.33 6.08 × 10⁻⁴ 

207870_38 12 231068565 C T 0.21 0.53 6.11 × 10⁻⁴ 

558534_14 4 116336173 T A -0.92 0.30 6.51 × 10⁻⁴ 

76416_37 9 64503815 A G 0.35 0.06 6.51 × 10⁻⁴ 

65785_19 9 26407191 G A -0.18 -0.13 6.61 × 10⁻⁴ 

210123_39 12 239066297 T G 0.50 -0.01 6.84 × 10⁻⁴ 

41769_13 9 100304229 A G 0.28 0.53 7.44 × 10⁻⁴ 

144881_40 11 149677564 T C 0.42 -0.81 8.05 × 10⁻⁴ 

177171_18 12 105568874 A G -0.73 0.13 8.30 × 10⁻⁴ 

708427_23 6 102085089 A C -0.24 -0.43 8.38 × 10⁻⁴ 

422713_13 13 793523369 G A -0.32 -0.53 8.45 × 10⁻⁴ 

171277_71 11 80221934 T C 0.12 -0.63 9.85 × 10⁻⁴ 
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Figure 1. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and 

GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 × 10⁻³) for the 

Vegetation Period Duration (VPD) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The 

corresponding SNPs are detailed in Table 3 and Table 5 of the manuscript.  
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Figure 2. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and 

GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 × 10⁻³) for the 

Beginning of Flowering (BOF) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The corresponding 

SNPs are detailed in Table 3 and Table 5 of the manuscript. 

110



                                                                                                                                                        

Figure 3. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and 

GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 × 10⁻³) for the 

Beginning of Sprouting (BOS) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The corresponding 

SNPs are detailed in Table 3 and Table 5 of the manuscript.  
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Figure 4. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and 

GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 × 10⁻³) for the 

Flowering Period Duration (FPD) trait. The analysis also includes SNPs meeting the same threshold in the multivariate GWAS. The 

corresponding SNPs are detailed in Table 3 of the manuscript.  
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Due to size constraints, the following supplementary files are not reproduced in this thesis but can be accessed at the journal’s website 

(Frontiers in Plant Science, DOI: 10.3389/fpls.2025.1571608): 

Supplementary File 11: EggNOG output file for 7 SNP loci that exceeded the genome-wide significance threshold (1 × 10−3) in the 

multivariate GWAS analysis of the Chouardia litardierei traits: FPD, VPD, BOF, and BOS. 

Supplementary File 12: EggNOG output file for 13 SNP loci that exceeded the genome-wide significance threshold (1 × 10−3) in the 

multivariate GWAS analysis of the Chouardia litardierei traits: BOS and VPD. 

Supplementary File 13: EggNOG output file for 14 SNP loci that exceeded the genome-wide significance threshold (1 × 10−3) in the 

multivariate GWAS analysis of the Chouardia litardierei traits: BOF and VPD. 
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Genome‑wide association study (GWAS) 
provides insights into the genomic basis 
of reproduction‑related traits in Chouardia 
litardierei (Asparagaceae)
Sara Laura Šarančić1, Nikolina Pleić2, Damjan Mitić1, Krešimir Križanović3, Boštjan Surina4,5 and 
Ivan Radosavljević1* 

Abstract 

Background  Chouardia litardierei, commonly known as amethyst meadow squill, is a plant species characterized 
by profound ecological plasti vcity. As a wild, non-model species, it represents a suitable system for gaining insights 
into the genomic background of the local adaptation process. By implementing a genome-environment and genome-
wide association studies, we sought to investigate the genomic regions related to the local adaptation and the develop-
ment of several reproduction-related traits in C. litardierei: for sexual reproduction, Average Height of Inflorescences (AHI) 
and Total Flower Count (TFC) per genotype, and for asexual reproduction, Bulb Count (BC) per genotype.

Results  A genome-environment association (GEA) study of selected C. litardierei populations revealed the precipi-
tation of the coldest quarter as the bioclimatic variable with the most substantial influence on detected variability, 
with numerous candidate genes detected and functionally characterized. To evaluate the genetic basis of selected 
reproduction-related traits we combined phenotypic data of 214 individuals raised as a part of a common garden experi-
ment with ddRADseq genotyping results. After implementing various single- and multi-locus GWAS models for all traits, 
multiple candidate loci affecting their development were recognized. In addition, high, narrow-sense heritability estimates 
indicated that genetic factors accounted for over 55% of the phenotypic variance in each trait. Notably, the highest herit-
ability estimate was observed for the Average Height of Inflorescences (71.95%), suggesting its crucial role in reproductive 
success. Functional annotation of the associated genomic regions identified key protein families involved in reproduction-
related biological pathways, including nitrogen metabolism, phytohormone regulation, and floral organs development.

Conclusion  By implementing GEA and GWAS, we revealed a list of candidate loci significantly associated with adap-
tation to specific environmental variables and morphological traits related to sexual and asexual reproduction in C. 
litardierei. These findings provide a foundation for a deeper understanding of the molecular mechanisms driving 
the local adaptation processes occurring among C. litardierei populations from different habitat types. At the same 
time, the high heritability estimates of morphological traits further underscore the significance of genetic factors 
in the local adaptation process.

Keywords  GWAS, GEA, Local adaptation, Adaptive traits, Reproduction, Chouardia litardierei
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Background
The intricate interplay between contrasting environmen-
tal conditions shapes the genetic architecture of various 
traits favored by natural selection [1, 2]. Natural selection 
acts on allele frequencies, driving populations toward 
local adaptation [3] through the development of distinct 
phenotypic variations within populations [4]. To cope 
with the highly contrasting environmental conditions, 
populations must adapt rapidly to survive and ultimately 
ensure reproductive success [5, 6]. Such changes not only 
enhance the species’ adaptation to specific ecological 
niches but also play a pivotal role in the broader context 
of speciation, contributing to the emergence of unique 
populations with reproductive isolation potential [2].

The development of reproductive barriers presents 
a crucial point in the lineages’ divergence and specia-
tion. However, besides sexual reproduction, which is 
usually the focus of evolutionary biologists, as much as 
80% of angiosperms reproduce asexually through veg-
etative propagation [7], also referred to as clonal growth. 
The clonal type of reproduction is considered to emerge 
in  situations where different types of biotic or abiotic 
stress threaten the success of sexual reproduction [8, 9]. 
The balance between sexual and asexual reproduction 
may vary significantly among populations of the same 
species, strongly influencing the evolution of life his-
tory traits [10]. In addition, a trade-off between these 
reproduction types occurs since both require substantial 
resources, and different allocation patterns may develop 
[11, 12]. The impact of clonality on sexual reproduction 
is severe, as it can strongly influence its spatial patterns 
by causing the non-random distribution of genotypes 
and the development of a spatial genetic structure in 
affected populations [13]. In addition, since clonality 
positively influences levels of geitonogamy and, con-
sequently, inbreeding, it can also directly influence the 
lineages’ divergence process [14, 15]. Facing challeng-
ing environmental conditions, many plant species rely 
on bulbs as vital storage organs, which enable them to 
endure dormant periods, mitigate the effects of adverse 
environmental conditions [16], and maintain repro-
ductive capacity across heterogeneous habitats [17], as 
reflected in the number of bulbs produced. Bulb forma-
tion is further regulated by internal signaling pathways 
that respond to the surrounding ecological conditions 
[18]. The number of flowers per inflorescence has been 
shown to affect pollination success and subsequent seed 
production [19]. Suetsugu et  al. [20] demonstrated that 
inflorescence size influences pollinator behavior in the 
deceptive orchid Cephalanthera falcata, serving as both 
a visual attractant and a mechanism for enhancing pollen 
accumulation and deposition. Similarly, subtle variations 

in inflorescence height can influence pollinator accessi-
bility and optimize pollen dispersal [21].

Among other evolutionary phenomena (e.g., genetic 
drift, complex genetic architecture, or demographic his-
tory of studied species), phenotypic plasticity presents 
one of the severe challenges when studying the genetic 
background of complex polygenic traits. One of the more 
efficient tools to overcome this challenge is the common 
garden experiment. By growing individuals originating 
from populations experiencing contrasting environmen-
tal conditions in a common environment, the idea is to 
control and restrain the expression of phenotypic plas-
ticity, thus obtaining more reliable results [22]. Since 
it enables overcoming the hampering effect of differ-
ent environmental conditions to the characterization of 
complex phenotypes’ genetic basis, the common garden 
experiments were often used in various local adaptation 
studies (e.g., [23–26]. Extreme caution is also needed 
when performing genome-wide association studies in 
non-model species due to the confounding effect of 
phenotypic plasticity. However, common garden experi-
ments can greatly help address this problem and are con-
sequently being implemented in such studies [27–29].

Chouardia litardierei (Breist.) Speta (Asparagaceae) 
is a bulbous perrenial. It develops a sizeable racemose 
inflorescence, usually comprising several dozen radially 
symmetrical flowers with no specific pollination-related 
morphological adaptations. Although this has never 
been studied, it is presumingly an open-pollinated spe-
cies. In addition to sexual reproduction, it reproduces 
clonally by producing numerous bulbs surrounding 
the central one. This species distribution area stretches 
across the Dinaric Alps karst environment in the western 
Balkans, from Slovenia in the north-west to Montenegro 
in the south-east [30, 31], a region known for its excep-
tional environmental heterogeneity and consequently, 
diverse spectrum of available ecological niches [32, 33]. 
Three groups of populations can be distinguished based 
on their habitat types. The largest group predominantly 
occupies karst poljes, flat-bottomed basins character-
ized by karstic drainage systems. These fields, typically 
enclosed by rugged dolomite and limestone mountains 
and characterized by deep and nutrient-reach soils, 
experience periodic floodings typically lasting for sev-
eral months each year [34], thus presenting a hydro-
logically and geomorphologically unique environment 
[35, 36]. The fewest populations are found in the coastal 
salt marshes of northern Dalmatia, a habitat subjected 
to tidal flooding and dominated by salt-tolerant vegeta-
tion [37]. Finally, the southernmost group of populations 
inhabits highly contrasting habitat types: drought-prone 
dolomite slopes characterized by minimal amounts of 
soil typically present only in rock crevices. This hostile 
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environment is known for its reduced water and nutri-
ent capacity, and pronounced seasonality in temperature 
and water availability [38]. While a previous attempt was 
made to characterize the dolomite group of populations 
as a distinct taxon [39], the reliability of the results was 
compromised due to indistinct approaches employed in 
the research, raising justified doubts about the validity 
of the results [40]. Despite the apparent ecological dif-
ferences between these habitats, identifying consistent 
morphological distinctions among the assumed ecotypes 
remains challenging [39], highlighting the need for a 
deeper investigation into the genetic foundations under-
lying these specific morphological traits. This species 
presents a valuable study system for investigating local 
adaptation and speciation for several reasons. First, it 
exhibits marked ecological plasticity, with three groups 
of populations (Fig.  1) adapted to contrasting environ-
mental conditions [40]. Second, being a small bulbous 
perennial makes it suitable for cultivation under con-
trolled conditions, thus reducing phenotypic plastic-
ity oscillations as a confounding factor in trait analysis 
[41]. Third, C. litardierei populations are, for the most 
part, distributed across easily accessible locations in the 
Dinaric Alps of the Balkan Peninsula [30, 39, 42], ena-
bling comprehensive sampling.

Understanding the genomic basis of specific traits in 
the context of environmental dynamics is essential for 
uncovering the mechanisms underlying local adaptation 
and response to contrasting ecological pressures [43, 
44]. As a foundational step in investigating the genomic 
basis of local adaptation in C. litardierei, we have already 
introduced a high-quality, chromosome-scale assembly 
of the C. litardierei genome [40]. Beyond a prior attempt 
to categorize the dolomite group of populations as a dis-
tinct taxon [39], limited research has been conducted on 
the ecological divergence or genetics of this species, aside 
from the cytogenetic characterization of two individuals 
presumed to belong to the meadow and dolomite groups 
of populations [45], and the chromosome-scale genome 
assembly mentioned above [40]. To advance our under-
standing of the genetic architecture underlying local 
adaptation, we have implemented both a genome-envi-
ronment association (GEA) study based on available bio-
climatic variables and a genome-wide association study 
(GWAS), which integrated morphometric data from a 
common garden experiment with ddRADseq genotyp-
ing. These analyses aimed to elucidate the genetic basis 
of local adaptation and the reproduction-related traits 
in selected populations of the wild, non-model monocot 
species C. litardierei.

Fig. 1  A Chouardia litardierei individual from the common garden experiment. Contrasting types of habitats of the studied C. litardierei 
populations; B Seashore grassland developed on deep soils, prone to occasional tidal floodings and salinization, experiencing the Mediterranean 
climate; C Inland karst poljes’ meadows on deep and rich soils, exposed to seasonal floodings that can last up to several months, and D 
Drought- and heat-stress prone dolomite bedrocks habitat with very little available soil, characterized by highly unhospitable environmental 
elements
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Methods
Plant material, common garden experiment, 
and phenotyping
To set up the common garden experiment, 214 individu-
als were transplanted from nine selected populations of 
C. litardierei, with three populations representing each of 
the three presumed habitat types (Fig. 1).

During the sampling expeditions, 22—25 individu-
als per population, situated no closer than 10 m from 
each other, were selected following the 1:20 rule [46]. 
The geographic coordinates of the sampling locations 
are provided in the Additional File 1. Simultaneously, 
leaf material from each individual required for DNA 
extraction was gathered and desiccated using silica gel. 
Sampled individuals (represented as a single bulb) were 
transplanted into a separate two-litre plastic container 
filled with soil, sand, and perlite. The containers were 
placed in raised beds outdoors as part of a common gar-
den setup, allowing the plants to grow under temperate 
continental climate conditions (Cfb climate type accord-
ing to Köppen classification) [47, 48]. No additional 
interventions, such as supplemental watering or pesticide 
application, were practiced, thus allowing plants to grow 
under undisturbed environmental conditions.

All voucher specimens were deposited in a publicly 
accessible herbarium at the Natural History Museum 
Rijeka (Index Herbariorum: NHMR), under the acces-
sion numbers NHMR 3306 (Budoške bare population), 
NHMR 3189 (Lovćen population), NHMR 2097 (Ska-
dar lake population), NHMR 3151 (Pandurica popula-
tion), NHMR 3247 (Cetina population), NHMR 3125 
(Bjelopolje population), NHMR 3255 (Nin population), 

NHMR 3304 (Pag population), and NHMR 3305 (Vrana 
lake population). Voucher specimens were collected and 
identified by Ivan Radosavljević and Boštjan Surina.

To study the genetic background of selected repro-
duction-related traits in C. litardierei, we conducted 
a common garden experiment using nine populations 
from different habitat types across its distribution 
range. To test the ecological relatedness among studied 
populations in terms of prevailing climatic conditions 
they experience in their natural habitat and the relative 
positioning of the common garden experiment site, we 
ran the PC analysis based on 19 WorldClim bioclimatic 
variables for the 1950–2000 period in the 30 s resolu-
tion [49] using the basic prcomp R function. For the 
visualization of PCA results, R package “ggfortify” [50] 
was used. Measurements were carried out after two 
vegetational seasons of acclimatization to minimize 
carry-over effects from the original environment. Three 
distinct reproduction-related morphological traits 
(Table 1) were measured: (i) Total Flower Count (TFC), 
and (ii) the Average Height of Inflorescences (AHI) as 
pollination-related traits of great importance for sex-
ual reproduction, and (iii) the Bulb Count per geno-
type (BC) as an indicator of asexual reproduction rate. 
TFC was determined as the number of flowers across 
all inflorescences per genotype. At the same time, AHI 
was measured using a graduated ruler with a precision 
of 0.1 cm, with the heights of individuals’ inflorescences 
averaged. All of the studied traits were considered 
polygenic.

Pearson correlation analysis was conducted to examine 
the relationships between AHI and TFC variables with a 

Table 1  Descriptive statistics of the Chouardia litardierei reproduction-related morphological traits examined in the study

AHI Average Height of Inflorescences, BC Bulb Count, SD Standard Deviation, TFC Total Flower Count

Overall
Trait Description Mean ± SD
TFC (number) Count of flowers across all inflorescences per genotype 90.59 ± 45.59

AHI (cm) Average height of inflorescences per genotype 18.00 ± 4.80

BC (number) Count of bulbs per genotype 2.78 ± 3.06

By location
Location BC (Mean ± SD) AHI (Mean ± SD) TFC (Mean ± SD)
Bjelopolje 1.91 ± 1.54 14.68 ± 2.48 39.50 ± 21.33

Budoške Bare 2.14 ± 1.39 15.00 ± 3.20 82.00 ± 42.14

Cetina 4.67 ± 2.71 18.49 ± 3.09 81.17 ± 33.33

Lovćen 0.00 ± 0.00 15.81 ± 2.96 102.72 ± 44.22

Nin 4.83 ± 2.75 20.40 ± 3.54 97.00 ± 32.50

Pag 4.52 ± 2.91 15.78 ± 3.04 64.45 ± 38.68

Pandurica 0.36 ± 0.99 24.70 ± 4.43 115.90 ± 52.41

Skadar 0.56 ± 0.92 14.31 ± 2.94 109.24 ± 51.56

Vrana Lake 6.29 ± 3.57 22.63 ± 3.56 109.12 ± 36.30
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normal distribution using the “stats” package in R [51]. 
For BC, which does not follow a normal distribution, 
Spearman’s correlation was performed using the same 
package.

Sequencing and genomic data processing
DNA isolation was performed using the GenElute™ Plant 
Genomic DNA Miniprep Kit  (Sigma–Aldrich®). Con-
centrations were assessed using the Qubit™ Fluorometer 
(Thermo Fisher Scientific, Wilmington, DE, USA), and 
samples were diluted to a concentration of 20 ng/μL.

To perform genotyping of the studied C. litardierei 
populations, a ddRADseq approach was employed 
[52]. In short, DNA was first digested using restric-
tion enzymes AseI and NsiI (NEB # R0526L and # 
R0127L, respectively). The resulting fragments were 
ligated with barcoded i5 and i7 adapters, after which 
all the samples were multiplexed. Final amplification 
was performed after nick repair using DNA polymer-
ase I (NEB # M0209L). Obtained DNA libraries were 
double-sequenced (150 bp PE) on the Illumina HiSeq X 
platform.

The initial sequencing data was preprocessed with 
quality trimming and adapter removal using Trim Galore 
[53]. After trimming, BAM files were created by align-
ing the reads to the C. litardierei reference genome [40] 
through the Burrow-Wheelers Aligner [54]. SNP identifi-
cation was done using the Stacks software package v1.48 
[55]. The ref_map.pl wrapper module was employed, and 
in line with the suggestions of Paris et al. [56], the pstacks 
module was executed to extract loci previously aligned to 
the reference genome, with a minimum depth of cover-
age set at three. This ensures a reliable representation of 
loci across samples, reducing the risk of low-confidence 
genotype calls. Subsequently, the cstacks module gener-
ated a comprehensive catalogue of loci across popula-
tions, permitting a maximum of four mismatches among 
sample loci during its construction, further minimiz-
ing potential alignment errors. Finally, the populations 
module computed population-level summary statistics, 
requiring loci to be present in all nine populations and 
at least 70% of individuals within each population, with a 
maximum observed heterozygosity of 0.70. Further con-
straints were applied to retain only one SNP per locus 
and discard loci with minor allele frequencies (MAF) 
below 1%, ensuring the inclusion of high-quality, well-
represented genetic markers. By focusing on common 
and stable genetic variants, this approach minimized the 
risk of inaccuracies arising from sequencing or sampling 
errors. The final dataset was generated in.vcf format for 
downstream analysis.

Population‑genetic and genome‑environment association 
analysis
Several methods were implemented to assess the genetic 
structure of the studied populations and deepen our 
understanding of phylogenetic relationships among 
them. First, the VCF file was converted into a genlight 
object using the gl.read.vcf function from the “dartR” 
v2.9.7. package [57]. We performed PCA using the 
prcomp R function, and the R package “plotly” v4.10.4 
(https://​plotly.​com/r/, accessed on 9 Dec 2024) was 
used to construct the PCA plot. We used the hierarchi-
cal clustering method implemented in the R package 
FactoMineR v2.11 [58] to assess the optimal number of 
clusters of PCA data. The results were visualized with a 
dendrogram using the factoextra v1.0.7 package [59].

For the assessment of the genetic structuring of studied 
populations, we transformed genlight into a geno object 
using the gl2geno function in the “dartR” package. The 
sparse non-negative matrix factorization (sNMF) method 
was implemented using the “LEA” R package [60], with 
100,000 iterations, 50% burnin, and 20 repetitions for 
K-values from 1 to 10. From the results, a cross-entropy 
values graph was constructed using a basic R function 
plot to select the optimum K-value. Furthermore, we 
constructed the phylogenetic tree based on Nei’s genetic 
distance matrix to better appreciate phylogenetic rela-
tionships among studied populations. VcfR2genind func-
tion from the “vcfR” v1.15.0. package [61] was used to 
create a genind object, which was further transformed 
into a genpop object by using the genind2genpop func-
tion from “adegenet” package [62]. To generate Nei’s 
genetic distance matrix, dist.genpop function from “ade-
genet” was used. We used the obtained matrix to create 
a bootstrapped phylogenetic tree (1,000 replicates) using 
the aboot function from the “poppr” v2.9.6 package [63]. 
“Ape” package [64] was used to convert the obtained tree 
to the “Newick” format that was used for the final visu-
alization of the phylogenetic tree in the MEGA7 software 
[65].

To gain a more profound knowledge of the adaptation 
of the populations studied to local environmental condi-
tions, we performed the RDA (linear model redundancy 
analysis) [66, 67]. Compared to other approaches often 
used for similar purposes of detecting the genetic signa-
tures of local adaptation like generalized linear models 
(GLM) or latent factor mixed models (LFMM), the RDA 
was recognized as a superior method, as it is character-
ized by high true positive and low false positive rates [68, 
69]. We started the procedure by downloading 19 available 
WorldClim bioclimatic variables for the 1950–2000 period 
in the 30 s resolution [49]. For the location of each sam-
pled population, we used Qgis v3.16.0 (https://​qgis.​org/) to 
extract the data. We treated temperature and precipitation 
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variables (BIO1-11 and BIO 12–19, respectively) as sepa-
rate datasets to test multicollinearity among variables. 
We used the vifstep function from the “usdm” package 
[70] to calculate variance inflation factors (VIF) for each 
variable, and only variables with a VIF < 10 were retained 
for further analysis. RDA implemented in the R package 
“vegan” (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​vegan/​
index.​html Accessed 3 Dec 2024.) [71] was used for the 
characterization of the retained variables’ influence on the 
genetic variations among studied populations. The optimal 
model was determined using the ordiR2 step function for a 
forward selection procedure with 10,000 permutations. To 
test the significance of the RDA model, we ran the anova.
cca function with 10,000 permutations. We used the SNPs’ 
loadings (i.e. coordinates) in the ordination space obtained 
through the RDA analysis to identify which loci are under 
selection. We considered loci as outliers if their loadings 
were more than 3 standard deviations away from the mean 
loading on either of the first two RDA axes (two-tailed 
p-value = 0.0027), following the recommendations of For-
ester et al. [69]. To assess the potential biological function 
of the genes positioned near the outliers, we extracted sur-
rounding 50 kb DNA windows (25 kb upstream and down-
stream of the loci) using a custom Python script and the 
available draft genome assembly [40]. Finally, the obtained.
fasta files were compared against the eggNOG data-
base [72, 73]. Recognized candidate genes were manually 
inspected, and ones with functions seemingly of biological 
importance for the local adaptation to tested environmen-
tal variables were retained.

Genome‑Wide Association Analyses (GWAS)
The schematic representation of the methodological 
approach we employed in GWAS analysis is presented in 
Fig. 2.

All traits were considered polygenic, and GWAS analy-
ses were conducted assuming an additive genetic model. 
Imputed variants with MAF < 0.01 were excluded using 
the BCFtools program [74]. For each association analy-
sis, two different statistical approaches were considered: 
the frequentist single-locus approach and the Bayesian 
multi-locus approach. Within the frequentist single-locus 
approach, different models were employed based on the 
distribution of the traits. For the trait AHI, which has 
an approximately normal distribution, a standard linear 
mixed model (LMM) was fitted using GEMMA 0.98.5 
[75]. For the count-based traits BC and TFC, LMMs 
in GEMMA were also applied, recognizing that this 
approach assumes a normal trait distribution. Addition-
ally, all three traits were analyzed using GMMAT 1.4.2 
[76] with a GMMAT LMM fitted for AHI and a Poisson 
generalized linear mixed model (GLMM) applied for BC 
and TFC to account for their count-based distributions. 

The Poisson GLMM in GMMAT was specifically chosen 
for BC and TFC because it accurately models the non-
normal distribution of count data, complementing the 
LMM analysis conducted in GEMMA.

In the Bayesian multi-locus approach, a Bayesian 
sparse linear mixed model (BSLMM) [77] was fitted in 
parallel for all analyzed traits. By intersecting the result-
ing sets of significant SNPs from the frequentists and 
Bayesian approaches, significant SNPs for each trait were 
consistently identified. In addition, a multivariate linear 
mixed model (mvLMM) was fitted to simultaneously 
analyze significantly correlated traits (AHI and TFC, as 
well as AHI and BC) to detect shared association signals 
between these traits.

To visualize the results, Manhattan plots were generated 
using the R package “qqman” [78] and “CM plot” [79].

Generalized Linear Mixed Model (GLMM) for count data 
using a Poisson distribution
The generalized linear mixed model (GLMM) with a 
Poisson distribution was fitted using GMMAT. The 
model can be expressed in the following form (Eqs. (1-3)):

Here, yi​ denotes the observed count for the i-th individual, 
and μi represents the mean count, which is modeled as the 
exponential of the linear predictor. ​Wi is the i-th row of an 
n × c matrix of covariates (fixed effects), α is the correspond-
ing vector of coefficients for these covariates, xi represents 
the genotype of the i-th individual, and β is the effect size 
of the genetic marker. The random effects u are assumed 
to follow a multivariate normal distribution MVNn (0,λK), 
where K is the n × n relatedness matrix, and λ represents the 
variance component ratio. The observed data yi​ is assumed 
to follow a Poisson distribution with μi​. This model allows 
for integrating individual-level random effects and a genetic 
relationship matrix K to account for population structure 
and relatedness while analyzing count-based traits. If a nor-
mal distribution and an identity link function are assumed 
for continuous traits, GMMAT performs association tests 
based on linear mixed models (LMMs).

Linear Mixed Model (LMM)
The standard LMM was fitted using GEMMA 0.98.5. in the 
following form:

(1)log(µi) = Wiα + xiβ + ui

(2)u ∼ MVNn(0, �K)

(3)yi ∼ Poisson(µi)
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(4)y = Wα + xβ + u + ε

(5)u ∼ MVNn

(

0, �τ−1K
)

(6)ε ∼ MVNn 0, τ−1In

where we let y be a vector of trait values for 214 indi-
viduals and W be an n × c matrix of covariates (fixed 
effects), which in our case is a column of 1  s. Let α 
represent a c-vector of the intercept, x be an n-vector 
of marker genotypes, and β denotes the effect size 
of the marker. Additionally, u  is an n-vector of ran-
dom effects, ϵ is an n-vector of errors, τ−1 represents 
the variance of the residual errors, and λ is the ratio 
between the two variance components. K  is a known 
n × n relatedness matrix, and  In is an n × n identity 
matrix. MVNn denotes the n-dimensional multivariate 
normal distribution. Effect sizes represent the change 

Fig. 2  Outline of the methodological approach used to investigate the genetic basis of reproduction-related traits in Chouardia litardierei 
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in trait levels for each additional effect allele in the 
genotypes of individuals.

Bayesian framework
The LMM (Eqs. (4-6)) implemented in GEMMA tests the 
alternative hypothesis H1: β ≠ 0 against the null hypoth-
esis H0: β = 0 for each SNP individually. Extensions of the 
LMM that simultaneously consider the effects of variants 
across multiple loci could enhance the power to detect 
causal variants. Bayesian LMMs can model all markers 
together by assuming different prior distributions on the 
marker effects and sampling from their posterior distri-
bution. Bayesian models developed for estimating SNP 
effect sizes begin with a simple linear model that relates 
genotypes X to phenotypes y:

we let y be a vector of phenotypes measured on n indi-
viduals and X be an n × p matrix of genotypes measured 
on these same n individuals at p genetic markers. The 
vector β represents the effects of genetic markers, 1n is an 
n-vector of 1 s, μ is a scalar representing the mean phe-
notype, and ϵ is an n-vector of error terms with variance 
τ−1. Our goal was to estimate the parameter β, represent-
ing the effects of the genetic markers. However, since the 
number of genetic markers p in our study (23,315) greatly 
exceeds the number of individuals n (214), we needed 
to make certain modelling assumptions for SNP effect 
sizes β. These assumptions range from the infinitesimal 
(or polygenic) model, which assumes that all SNPs have 
non-zero effects, to the sparse model, which assumes that 
only a small proportion of SNPs affect the phenotype. 
The model’s performance depends on the true underlying 
genetic architecture of the trait being studied. However, 
this genetic architecture is generally unknown. The most 
commonly used polygenic modeling approach assumes 
that all SNPs influence the phenotype (i.e., have non-zero 
effects) with normally distributed effect sizes:

When Eqs. (7 and 8) are combined with the normality 
assumption (Eq. (9)) for effect sizes β, results in the previ-
ously mentioned LMM due to the inclusion of a random 
effect term representing the combined genetic effects.

(7)y = 1nµ + xβ + ε

(8)ε ∼ MVNn(0, τ − 1In)

(9)β ∼ N
(

0, σ 2
β

)

Bayesian Sparse Linear Mixed Model (BSLMM)
A broader assumption, encompassing both polygenic and 
sparse modeling scenarios, posits that effect sizes origi-
nate from a combination of two normal distributions.

In this model, π represents the proportion of SNPs with 
large effects, while σ 2

β/pτ and σ 2
α/pτ represent the small 

and large effects variances, respectively. The resulting 
model, BSLMM, incorporates a combination of polygenic 
and sparse effects for the prior distribution of effect sizes, 
enabling adaptation to various genetic architectures of 
the studied traits. BSLMM accounts for relatedness and 
population stratification by including a genomic kin-
ship matrix as a random effect term, and it handles link-
age disequilibrium (LD) by estimating SNP effect sizes β 
while controlling for other SNPs in the model. The model 
uses a Markov chain Monte Carlo algorithm to sample 
from the posterior distribution and obtain SNP effect 
sizes. Unlike LMM, which provides p-values, BSLMM 
outputs a posterior inclusion probability (PIP) for each 
SNP, indicating the probability that a marker is associ-
ated with the trait, given the data, calculated as the pro-
portion of chain iterations in which the SNP has a large 
effect. SNPs with high PIPs are the most likely candidates 
for functional variants affecting the analysed traits. We 
applied BSLMM to the same dataset (214 individuals and 
23,315 variants) used in our primary frequentist asso-
ciation analysis to compare single-SNP and multi-SNP 
approaches and to reduce false positives. The BSLMM 
chain was run with 1,000,000 sampling steps and 100,000 
burn-in iterations. We used the estimated PIPs from 
BSLMM for additional fine-mapping of genomic regions 
identified in the frequentist analysis.

SNP heritability estimation
The proportion of variance in phenotypes explained by 
all available genotypes (PVE), also known as narrow-
sense heritability (h2), as well as the proportion of genetic 
variance explained by variants with major effect (PGE), 
was estimated for traits listed in Table 1. This estimation 
was conducted assuming that the SNP effect sizes follow 
a mixture of two normal distributions (Eq. 10), as imple-
mented in GEMMA BSLMM.

Multivariate genome‑wide association analyses
To identify common variants associated with the AHI 
and the TFC traits, multivariate genome-wide associa-
tion analyses were conducted using a multivariate lin-
ear mixed model (mvLMM) in GEMMA. Similarly, 

(10)

βi ∼ πN

(

0,
σ 2
α + σ 2

b

pτ

)

+ (1 − π)N

(

0,
σ 2
b

pτ

)
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multivariate GWAS was conducted using the same 
model for AHI and BC traits. This approach allowed for 
the simultaneous examination of genetic influences on 
both pairs of traits by considering them as dependent 
variables. The mvLMM method accounts for population 
structure and relatedness among individuals, ensuring 
robust identification of genetic variants contributing to 
the observed phenotypic variation in these traits.

Candidate genes prediction
Following identifying phenotypic evidence for local adap-
tation to diverse conditions in distinct C. litardierei pop-
ulations and subsequent GWAS analysis, further efforts 
were directed toward identifying associated candidate 
genes. Utilizing the reference genome, sequences were 
generated encompassing a total of 50 kilobases, includ-
ing 25 kilobases upstream and downstream of each sig-
nificant SNP identified through both statistical models, 
using SAMtools [74]. Finally, functional annotations were 
obtained using the eggNOG-mapper v2 database (e-value 
< 1 × 10−2).

Results
Phenotyping
PCA based on the bioclimatic conditions studied popu-
lations are experiencing in their natural habitats showed 
exceptional diversity among sites. In addition, the com-
mon garden experiment site was equally environmentally 
differentiated from the sampling sites of studied popula-
tions, making it suitable for the purpose. The PCA results 
are provided in Additional File 2.

Phenotypic variations among C. litardierei popula-
tions in the common garden experiment are illustrated in 
Fig. 3.

For TFC per genotype, out of 214 individuals across 
nine populations, 204 flowered. Overall, the mean count 
of flowers across all inflorescences per genotype was 
90.59 ± 45.59. The AHI per genotype was assessed across 
a cohort of 204 flowering individuals. Overall, the mean 
height of inflorescences per genotype was 18.00 ± 4.80 
cm. The number of bulbs developed (BC), considered a 
very important indicator of asexual reproduction, had 
a mean count of 2.78 ± 3.06 bulbs per genotype. All the 
data mentioned above are summarized in Table 1.

A positive Pearson’s correlation coefficient was 
observed between the TFC and the AHI traits (r = 0.445, 
p-value < 0.001, 95% CI [0.327, 0.549]). Similarly, a posi-
tive correlation was observed between the BC and the 
AHI traits (Spearman’s ρ = 0.172, p-value = 0.014). At 
the same time, a weak negative correlation was observed 
between the BC and the TFC traits. However, this cor-
relation was not statistically significant (Spearman’s 
ρ = −0.102, p-value = 0.146).

Sequencing and genomic data processing
A total of 1,284,680,304 reads were obtained from the 
sequencing. After filtering the raw sequences and anno-
tating against the reference genome, 1,278,409,966 reads 
were retained. SNP calling and filtration were performed 
using Stacks software, resulting in the identification of 
24,660 SNP loci, which were subsequently processed. 
After applying the BCFtools MAF filter with a threshold 
of 0.01, 23,315 SNPs remained for further analysis.

Population‑genetic and genome‑environment association 
analysis
Results obtained using different approaches were highly 
congruent, thus supporting their high reliability. PC 
analysis revealed that populations from meadow and sea-
shore habitats were genetically indistinguishable, forming 
a compact genetic cluster. At the same time, populations 
from rocky habitats were strongly differentiated, both 
from the populations from other habitats and each other 
(Fig. 4).

As in the sNMF analysis the selection of the final K 
number is somewhat arbitrary, we present results for 
both K = 2 and K = 3 as the two most reliable numbers of 
ancestral populations (Additional File 3). In both cases, 
populations from the meadow and seashore habitats were 
grouped together, forming a separate cluster without sub-
stantial admixture levels among populations, as shown in 
Fig. 5. For K = 2, dry-habitat populations form an individ-
ual cluster. However, this cluster was further structured 
at the K = 3 level, with the Pandurica population being 
differentiated from the remaining two populations.

We assessed Nei’s inter-populations genetic distances 
to investigate the phylogenetic relationships among the 
studied populations, and we constructed the unrooted 
tree to visualize the results (Additional File 4). Once 
again, populations from the dry, rocky habitats have 
shown very strong differentiation from others charac-
terized by substantially weaker differentiation levels. All 
nodes on the phylogenetic tree were statistically well 
supported.

After the variance inflation factors analysis, four tem-
perature-related (BIO2—mean diurnal range, BIO4—
temperature seasonality, BIO8—mean temperature of 
wettest quarter, and BIO9—mean temperature of dri-
est quarter) and two precipitation-related variables 
(BIO17—precipitation of driest quarter and BIO19—
precipitation of coldest quarter) were retained for fur-
ther analysis. The RDA model was globally significant 
(p < 0,001) and explained as much as 52.26% of the 
total variance (adjusted R2 = 0.509). The first RDA axis 
explained the majority (40.49%) of this variation, while 
the second explained a substantially smaller portion 
of just 4.94%. Consequently, most tested bioclimatic 
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Fig. 3  Box plots illustrate the obtained morphometric results from a common garden experiment, depicting three reproduction-related 
morphological traits: A Total Flower Count (TFC), B Average Height of Inflorescences (AHI), and C Bulb Count (BC) per genotype. Each box 
represents the interquartile range (IQR), with the horizontal line inside the box indicating the median. Whiskers extend to data points within 1.5 
times the IQR, while dots represent outliers
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variables were significantly associated with the RDA 
axis 1, with BIO19 being recognized as the variable 
with the most profound influence. Following such a 
result, most loci (131 out of 256) being recognized as 
outliers were linked to the BIO19 variable (precipita-
tion of coldest quarter). In contrast, substantially fewer 
were linked to the remaining variables: two to BIO2, 65 
to BIO4, six to BIO8, and 52 to BIO9, while none was 
linked to BIO17. The results of this analysis are visually 
represented in Fig. 6.

To assess the potential biological functions of genes 
surrounding 83 recognized loci, we compared the 
obtained 50 kb DNA windows to the eggNOG database. 
Querying of annotations revealed 324 genes linked to a 
specific metabolic function. After manually inspecting 
individual genes, we retained 82 with recognized bio-
logical functions seemingly associated with adaptation to 
tested bioclimatic variables (Additional File 5).

Genome‑wide association analyses
GEMMA detected 26 significant SNPs for the AHI 
trait, while GMMAT identified 34. Overlapping these 
results revealed 26 common genome-wide significant 
SNPs. Subsequent analysis with BSLMM confirmed 
four of these SNPs as significant, one on chromosome 
3 and three on chromosome 13. Similarly, for the TFC 
trait, GEMMA and GMMAT identified 18 and 43 SNPs, 
respectively, with nine overlapping SNPs. BSLMM analy-
sis confirmed only one significant SNP on chromosome 
1. In the case of the BC trait, GEMMA and GMMAT 
identified 86 and 96 SNPs, respectively, with 85 overlap-
ping SNPs. BSLMM analysis confirmed seven signifi-
cant SNPs, with three located on chromosome 13 and 
one SNP on each of chromosomes 1, 6, 9, and 12. All 
SNPs passing the genome-wide significance threshold (1 
× 10−3) in the single-SNP LMM analysis are reported in 
Additional File 6.

Fig. 4  A PCA visualization of studied Chouardia litardierei populations. Each dot represents a single sample. Ellipses indicate clusters identified 
by hierarchical clustering analysis. Blue ellipse encircles the meadow and the seashore populations, and red ones the dolomite populations. B 
Hierarchical cluster dendrogram of obtained PCA data of studied C. litardierei populations. In blue are individuals from the meadow and seashore 
populations, and in red are individuals belonging to the dolomite group of populations
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In the Bayesian association analysis, 21 SNPs were 
identified as having a major sparse effect on the AHI 
trait, and these variants were estimated to have a sparse 
effect in ≥ 10% of BSLMM chain iterations (i.e., posterior 
inclusion probability, PIP ≥ 0.099). Moreover, the top five 
SNPs were identified as having a sparse effect on AHI in 
more than 20% of chain iterations (PIP > 0.21). Similarly, 
for the TFC trait, nine SNPs displayed a major sparse 
effect in ≥ 10% of BSLMM chain iterations (PIP ≥ 0.095). 
In addition, the top three SNPs displayed a major sparse 
effect in more than 12% of iterations (PIP ≥ 0.12). Con-
cerning the BC trait, 14 SNPs were identified with a 
major sparse effect in ≥ 10% of iterations (PIP ≥ 0.097), 
and the top six SNPs had a major sparse effect in over 
55% of iterations (PIP ≥ 0.55). The data outlined above is 
reported in Additional File 7.

Results from the single-SNP association analysis in 
GMMAT and GEMMA, alongside the multi-SNP asso-
ciation analysis (BSLMM) for all of the studied traits, are 
plotted in parallel in Manhattan plots in Fig.  7. Twelve 
SNPs reached genome-wide significance (p = 1 × 10⁻3) in 

the LMM analysis, mirroring their major sparse effects 
identified in the BSLMM analysis (Table 2).

Heritability estimation
The BSLMM analysis, conducted with 23,315 SNPs, 
yielded estimates of narrow-sense heritability (PVE) 
for the examined reproduction-related morphological 
traits, along with the PGE and the number of variants 
with major effect (n.gamma), as summarised in Table 3. 
The PVE estimate for the TFC revealed that 55.89% of 
the phenotypic variation in TFC was explained by all 
available genotypes, with 28.78% attributed to 78 SNPs 
exhibiting significant phenotypic effects. Similarly, the 
PVE estimate for the AHI indicated that 71.95% of the 
phenotypic variation in AHI was explained by all geno-
types, with 37.47% attributed to 47 SNPs exhibiting nota-
ble phenotypic effects. Moreover, the BSLMM analysis 
revealed that 69.87% of the phenotypic variation in BC 
was explained by all genotypes, with 89.15% of this vari-
ation accounted for by 18 SNPs with significant effects. 
Additional File 8 contains the means, medians, and 95% 

Fig. 5  Genetic structure of the studied Chouardia litardierei populations as determined by sNMF analysis at K = 2 and K = 3. Each stacked column 
represents an individual’s ancestry coefficient, with populations separated by lines. Population names are labeled along the x-axis
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equal tail posterior probability intervals (95% ETPPIs) of 
the hyperparameters derived from the BSLMM.

Multivariate GWAS analysis
In the multivariate GWAS analysis, 42 SNPs surpassed 
the genome-wide significance threshold (p = 1 × 10⁻3) 
for AHI and TFC traits (Additional File 9). Among these, 
10 SNPs were significant in GEMMA and GMMAT uni-
variate analyses for the AHI trait, while only three SNPs 
showed significance for the TFC trait (Table  4). In the 
multivariate GWAS analysis for AHI and BC traits, 64 
SNPs exceeded the same threshold (Additional File 10). 
Among these, two SNPs were significant in GEMMA 
and GMMAT univariate analyses for the BC trait, while 
none showed significance for the AHI trait (Table 4). This 
indicates shared genetic factors influencing these repro-
ductive traits across multivariate and univariate analyses. 
The multivariate GWAS findings for the AHI and TFC, as 
well as AHI and BC traits, are plotted in Manhattan plots 
in Fig. 8. The frequencies of effect alleles across popula-
tions for the significant SNPs (shown in Tables 2 and 4) 
are depicted in a plot provided in Additional File 11.

GWAS candidate genes identification
The eggNOG tool provided comprehensive data elucidat-
ing the relationship between individual SNPs/sequences 
and distinct protein families (PFAM). To identify candi-
date genes potentially influencing reproduction-related 
morphological traits, we conducted eggNOG analysis 

on 12 SNPs that exceeded the genome-wide significance 
threshold (1 × 10−3) in both the single-SNP LMM and 
multi-SNP BSLMM analyses of C. litardierei traits: TFC, 
AHI, and BC. This analysis identified 130 queries cor-
responding to sequences matched to the eggNOG data-
base for functional annotation (Additional File 12). We 
utilized eggNOG to analyze 13 SNP loci that met the 
significance threshold in the multivariate GWAS analy-
sis for AHI and TFC. This analysis identified 134 queries 
(Additional File 13) corresponding to sequences associ-
ated with functional roles in reproduction-related mor-
phological traits. Similarly, eggNOG was employed to 
analyze 2 SNP loci meeting the same threshold in the 
multivariate GWAS analysis for AHI and BC, uncovering 
18 additional queries (Additional File 14). The eggNOG 
analysis linked identified sequences to protein families, 
which we then further examined through manual inspec-
tion and a literature review to identify specific genes and 
PFAM domains associated with the traits under study. 
Some domains were shared between the univariate and 
multivariate GWAS results, leading to overlaps across the 
sets. The most relevant findings, along with their relevant 
biological functions and references, are summarized in 
Table 5.

Discussion
In our research, we took several approaches to gain 
insight into the genetic background of local adapta-
tion of C. litardierei populations inhabiting contrasting 

Fig. 6  A triplot based on six bioclimatic variables included in the optimal RDA model illustrating the relative contribution of bioclimatic variables 
in shaping the genetic structure of nine C. litardierei populations. Colored dots represent samples, while empty dots around the centre represent 
SNPs. Temperature-related variables (BIO2, BIO4, BIO8, and BIO9) are shown as red vectors, and precipitation-related variables (BIO17 and BIO19) 
as blue vectors
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types of habitats. First, we coupled population-genetic 
analysis with the GEA study to characterize the genetic 
structure of studied populations, identify the bioclimatic 
variables predominantly influencing detected variability, 
and finally gather knowledge regarding the molecular 

mechanisms underlying populations’ ability to cope with 
contrasting ecological conditions. Then, based on the 
common garden experiment, a comprehensive GWAS 
analysis was performed to elucidate the genetic back-
ground of heritable reproduction-related traits. This 

Fig. 7  Manhattan plots of single-SNP and multi-SNP association mapping of TFC, AHI and BC traits. A Manhattan plots of single-SNP analysis 
in GMMAT and B in GEMMA for each trait. The x-axis represents the chromosomal position of SNPs, and the y-axis represents their − log10 (p-values) 
obtained by the LMM analysis. The red horizontal line indicates the genome-wide significance threshold (p = 1 × 10–3). Each dot on the Manhattan 
plot signifies a SNP. Because the strongest associations have the smallest p-values, their negative logarithms will be the greatest, appearing higher 
on the plot. C Manhattan plots of multi-SNP BSLMM analysis for each trait. The x-axis represents the chromosomal position of SNPs, and the y-axis 
represents their posterior inclusion probabilities (PIPs) obtained by the BSLMM analysis. Green dots signify SNPs that are recognized in all three 
models
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way, we provided comprehensive coverage of molecular 
mechanisms involved in the ecology-driven differentia-
tion process observed among C. litardierei populations.

Population genetic structure
Population-genetic analyses only partially confirmed 
the assumed genetic structuring of the studied popula-
tions, where we anticipated that ecological differentiation 
would be coupled with the genetic one. While the pop-
ulations from the dry, drought-prone habitats formed a 
separate, well-differentiated group, the same was not the 
case with the remaining two groups of populations, the 
one from the inland meadow habitats and the other from 
the seashore habitats. These populations were genetically 
indistinguishable on the level of presumed ecotypes and 
the individual population level as well (Figs.  4 and  5). 
Such results suggest they either recently originated from 
a common ancestral population or are experiencing pro-
found contemporary inter-population gene flow, which 

acts against any substantial differentiation [80, 81]. In 
contrast, dolomite-habitat populations were character-
ized by high inter-population differentiation levels, which 
can likely be explained by strong fragmentation and 
patchiness of their habitat and subsequent lack of gene 
flow among them. However, although these robust results 
undoubtedly point to the general genetic structure and 
phylogenetic relationships among studied populations 
from different habitats, substantially more populations 
from across the entire species’ distribution range should 
be included for more reliable and comprehensive results.

Genome‑environment association analysis
We performed RDA to understand better the genetic 
mechanisms enabling the local adaptation of C. litardierei 
populations to specific bioclimatic conditions across the 
species distribution range. Due to the ubiquitous nature 
of environmental correlations, interpreting the obtained 
RDA result can easily lead to misleading conclusions 
[82]. Therefore, we observe the obtained results only as 
general patterns of local adaptation-related mechanisms 
and focus more on the genetic aspect of the obtained 
results rather than on details regarding specific biocli-
matic variables. Of the tested variables, BIO19 (precipita-
tion of the coldest quarter) was recognized as the most 
profound driver of the detected variation. Consequently, 
it is unsurprising that most outliers were linked to this 
variable. The functional annotation of genomic regions 
surrounding outliers identified numerous candidate 
genes potentially involved in local adaptations, includ-
ing PFAM domains linked to stress responses and key 

Table 2  SNPs passing genome-wide significance threshold (1 × 10−3) in the single-SNP LMM analysis and their corresponding PIPs 
from the multi-SNP BSLMM analysis of Chouardia litardierei traits TFC, AHI and BC

Statistical analyses were performed with GEMMA and GMMAT LMM, GLMM and BSLMM. p-values < 1 × 10−3 are considered genome-wide significant

AHI Average Height of Inflorescences, BC Bulb Count, BSLMM Bayesian Sparse Linear Mixed Model, Chr Chromosome, GLMM Generalized linear Mixed Model, LMM 
Linear Mixed Model, MAF Minor Allele Frequency, PIP Posterior Inclusion Probability, SNP Single Nucleotide Polymorphism, TFC Total Flower Count

Trait SNP Chr Position Effect Allele Referent 
Allele

MAF Single-SNP GLMM 
Analysis β (p-value) in 
GMMAT

Single-SNP LMM 
Analysis β (p-value) in 
GEMMA

Multi-SNP 
BSLMM Analysis 
β (PIP)

TFC 439681_33 1 113,066,723 G A 0.35 −0.89 (6.50 × 10–5) −1.29 (1.69 × 10–4) −0.53 (0.14)

AHI 536624_21 3 40,433,867 G T 0.02 −1.02 (1.98 × 10–4) −1.02 (2.57 × 10–4) −0.41 (0.21)

AHI 299462_80 13 294,757,456 T C 0.04 −0.67 (3.02 × 10–4) −0.67 (3.81 × 10–4) −0.43 (0.36)

AHI 383241_14 13 626,409,144 A G 0.03 −0.73 (7.01 × 10–4) −0.73 (8.43 × 10–4) −0.42 (0.22)

AHI 377817_17 13 604,813,128 A G 0.13 −0.62 (7.09 × 10–4) −0.62 (8.51 × 10–4) −0.43 (0.35)

BC 241986_29 12 6,101,088 G A 0.01 1.28 (3.19 × 10–6) 1.28 (5.63 × 10–6) 0.94 (0.91)

BC 713226_25 6 119,601,819 T A 0.06 0.50 (1.38 × 10–5) 0.50 (2.15 × 10–5) 0.45 (0.96)

BC 291775_18 13 26,477,605 T C 0.02 0.72 (1.39 × 10–4) 0.72 (1.82 × 10–4) 0.57 (0.70)

BC 260150_22 13 138,653,995 G A 0.35 −0.93 (1.75 × 10–4) −0.93 (2.26 × 10–4) −0.65 (0.55)

BC 64746_61 9 23,100,056 T A 0.50 0.33 (2.51 × 10–4) 0.33 (3.17 × 10–4) 0.26 (0.23)

BC 441718_55 1 121,120,631 G A 0.04 0.48 (4.50 × 10–4) 0.48 (5.49 × 10–4) 0.43 (0.63)

BC 293695_19 13 272,369,031 A G 0.03 0.66 (6.08 × 10–4) 0.66 (7.30 × 10–4) 0.42 (0.11)

Table 3  Genetic architectures of Chouardia litardierei 
reproduction-related morphological traits obtained using the 
BSLMM

AHI Average Height of Inflorescences, BC Bulb Count, n.gamma number of 
variants with major effect, PGE Proportion of Variance Explained by major effect 
variants, PVE Proportion of Variance Explained by genetic data, TFC Total Flower 
Count

Trait PVE/% PGE/% n.gamma

TFC 55.98 28.78 78

AHI 71.95 37.47 47

BC 69.87 89.15 18
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Table 4  SNPs passing genome-wide significance threshold (1 × 10−3) in the multivariate GWAS mvLMM analysis of Chouardia 
litardierei reproduction-related morphological traits AHI and TFC, and AHI and BC. Listed SNPs were significant in both GEMMA and 
GMMAT univariate analyses

Statistical analyses were performed with GEMMA mvLMM. p-values < 1 × 10−3 are considered genome-wide significant

AHI Average Height of Inflorescences, BC Bulb Count, Chr Chromosome, MAF Minor Allele Frequency, mvLMM multivariate Linear Mixed Model, SNP Single Nucleotide 
Polymorphism, TFC Total Flower Count

Trait SNP Chr Position Effect Allele Ref. Allele MAF Beta1 (AHI) Beta2 (TFC) mvLMM in 
GEMMA (p-
value)

AHI + TFC 62254_22 9 181,728,136 C A 0.04 −1.02 −0.65 5.17 × 10–6

AHI + TFC 423028_13 13 795,057,155 A C 0.03 −0.80 −0.31 3.90 × 10–5

AHI + TFC 230454_16 12 319,053,038 A T 0.14 −0.53 −0.51 1.53 × 10–4

AHI + TFC 423027_44 13 795,056,910 T A 0.03 −0.76 −0.35 1.56 × 10–4

AHI + TFC 730317_18 6 4,133,503 C A 0.36 −0.72 0.04 1.76 × 10–4

AHI + TFC 356033_30 13 518,039,464 A C 0.35 −0.25 −0.74 1.98 × 10–4

AHI + TFC 357122_13 13 523,783,140 C G 0.27 0.38 0.31 2.77 × 10–4

AHI + TFC 45968_38 9 118,116,906 C G 0.06 −0.02 0.56 3.49 × 10–4

AHI + TFC 275195_16 13 197,688,818 C T 0.14 −0.22 −0.49 3.77 × 10–4

AHI + TFC 593460_76 4 257,849,493 A C 0.04 −0.64 −0.10 4.60 × 10–4

AHI + TFC 669910_120 5 218,775,782 A G 0.14 −0.41 −0.11 5.88 × 10–4

AHI + TFC 679100_46 5 47,723,772 G A 0.03 −0.82 −0.47 9.56 × 10–4

AHI + TFC 299462_80 13 294,757,456 T C 0.04 −0.68 −0.43 9.92 × 10–4

Beta1 (AHI) Beta2 (BC)
AHI + BC 178892_42 12 113,762,962 A G 0.29 0.40 0.22 3.92 × 10–4

AHI + BC 22031_53 8 25,314,160 A G 0.29 0.14 1.07 9.88 × 10–4

Fig. 8  Manhattan plot of multivariate genome-wide association study of (A) AHI and TFC traits and (B) AHI and BC traits. The red horizontal 
line indicates the genome-wide significance threshold (p = 1 × 10–3). Each dot on the Manhattan plot signifies a SNP. The strongest associations 
have the smallest p-values, so their negative logarithms will be the greatest, appearing higher on the plot. Green dots represent SNPs identified 
as significant in the multivariate GWAS analysis and in both GEMMA and GMMAT univariate analyses for each of the two plots
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Table 5  List of genes and PFAM domains for regions of strong association with AHI, TFC, and BC identified by the eggNOG-mapper 
v2 database (e-value < 1 × 10⁻2) in Chouardia litardierei, based on the 12 recognized SNPs passing the genome-wide significance 
threshold (p = 1 × 10⁻3) in the single-SNP LMM and multi-SNP BSLMM analysis, 13 SNPs passing the same threshold in the multivariate 
GWAS mvLMM analysis of AHI and TFC (mGWAS1), and two SNPs passing the threshold in the multivariate GWAS mvLMM analysis of 
AHI and BC (mGWAS2). Names of identified candidate genes associated with the SNPs and PFAMs, along with their relevant biological 
functions and references, are provided

AHI Average Height of Inflorescences, BC Bulb Count, Chr Chromosome, GWAS Genome-Wide Association Study, H HiC scaffold, mGWAS1 multivariate Genome-Wide 
Association Study of AHI and TFC, mGWAS2 multivariate Genome-Wide Association Study of AHI and BC, PFAM Protein Family, TFC Total Flower Count

Query Method e-value Chr EGGNog PFAM Candidate Genes Species Relevant 
biological 
functions

References

H 16:294,732,456-
294782456_3

GWAS 1.34e−40 13 Arginase family 
(ARG)
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Arabidopsis thaliana
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GWAS 2.11e−50 9 Protein tyrosine 
kinase (PTK)

OsPTK2, OsPTK8, 
OsPTK13, OsPTK14, 
OsPTK18
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stress tolerance, 
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and submergence

[123]

H 15:319,028,038-
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mGWAS1 2.72e−29 12

H 8:119,576,819-
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GWAS 2.16e−143 6 C2 domain QUIRKY, STRUB-
BELIG

Arabidopsis thaliana Promotes intercel-
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tion and tissue 
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[124]

H 16:518,014,464-
518064464_15

mGWAS1 1.48e−85 13
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294782456_44

GWAS 1.48e−137 13 Receptor-like pro-
tein kinases (RLK)

BRI1 Arabidopsis thaliana Regulate numerous 
aspects of plant 
growth and devel-
opment

[120–122]

H 10:25,289,160-
25339160_15

mGWAS2 1.43e−57 8 Sterol synthase FACKEL (FK) Arabidopsis thaliana Regulates mem-
brane integrity, cell 
division, and tissue 
patterning dur-
ing plant develop-
ment

[125]

H 10:25,289,160-
25339160_17

mGWAS2 9.51e−21 8 Sugar transporters LohSTP8, LohSTP12, 
LflERD6.3
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formation

[126]
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physiological processes. For example, we recognized the 
C2 domain has been shown to boost salt stress tolerance 
in soybean [83], the protein kinase domain that regulates 
Na +/K + homeostasis under salt stress in Arabidopsis 
[84], and the MYB transcription factor that enhances 
stress tolerance under salt and water stress in sugarcane 
[85]. We also identified TPR16, which has been found to 
regulate stress responses and enhance drought tolerance 
in Arabidopsis [86] and START domain proteins that aid 
in drought stress signaling in chickpeas [87]. Addition-
ally, we identified Rubisco, an enzyme whose activity is 
affected by heat stress, thereby limiting photosynthesis 
[88], while the recognized DEAD-box gene family and the 
RRM1 gene family in wheat and Brassica rapa enhance 
cold stress tolerance [89, 90]. PPR, OBERON, and ZF-
C2H2 proteins were also identified as critical regulators 
of gene expression in growth and development, influenc-
ing RNA editing [91], interacting with WRKY factors 
[92], and modulating transcriptional networks [93].

Heritability and evolutionary significance of reproductive 
traits
Studying the genetic basis of adaptive traits presents 
significant challenges, mainly due to the complex inter-
actions among polygenic backgrounds and diverse envi-
ronmental factors [22]. Traits observed in natural settings 
may exhibit variability influenced by environmental con-
ditions, rendering them less reliable for identifying local 
adaptation [44]. To mitigate the effects of phenotypic 
plasticity among the groups of studied populations of C. 
litardierei, we employed a common-garden experiment 
in which individuals from contrasting environments 
were cultivated under uniform conditions. This approach 
enabled us to differentiate genetic influences from envi-
ronmental effects on trait expression [94], thereby eluci-
dating aspects of the genetic background underlying the 
local adaptation process in the studied species.

Our morphometry analysis revealed substantial vari-
ations in reproduction-related traits among the studied 
populations but not the groups of populations from dif-
ferent habitats. Such results suggest these populations 
experience specific selection pressures in their surround-
ings, unrelated to the habitat types they originated from 
(i.e., seashore grasslands, karst poljes’ meadows, and 
dolomite bedrocks). These findings are consistent with 
Exposito-Alonso et al. [95], who investigated Arabidopsis 
populations and found that the fitness heritability traits 
varied significantly between experimental sites due to 
contrasting natural selection pressures. Such variations 
across diverse environments contribute to developing the 
populations’ adaptive potential and evolutionary trajec-
tories, further reflected in our study’s high PVE values. 
The substantial genetic contribution these values indicate 

underscores the heritable nature of reproductive traits 
in C. litardierei, emphasizing the solid genetic founda-
tion critical for understanding evolutionary processes 
and local adaptation mechanisms. In contrast to moder-
ate heritabilities previously reported for complex traits in 
some other taxa (e.g., Pinus albicaulis [96] and Populus 
[97]), our GWAS study identified a notably higher herita-
bility for the average height of inflorescences (AHI). With 
PVE and PGE values of 71.95% and 37.47%, respectively, 
the high heritability of AHI suggests that inflorescence 
height, a trait important for pollination efficiency and 
reproductive success [98], holds significant evolutionary 
importance. Furthermore, the high PGE value for total 
flower count (TFC) emphasizes the critical role of major 
effect variants in shaping reproductive traits. This finding 
is consistent with studies in other species, such as Silene 
dioica and Silene latifolia [99], where high PGE values 
underscore the significant contribution of major effect 
loci to phenotypic variation in cumulative flowering. 
Although discussing our findings in the context of their 
biological meaning and importance for evolution and the 
local adaptation process in studied species is specula-
tive, some assumptions can still be made. The trade-off 
between sexual and asexual reproduction is of major evo-
lutionary importance and develops in response to various 
biotic and abiotic elements in different environments. 
It is considered that on the evolutionary scale, species 
orientation towards clonal reproduction will occur as a 
response to various pressures endangering the success 
of sexual reproduction [100]. In the case of C. litardierei, 
among many others, the habitats occupied by the stud-
ied population groups differ in a way that has signifi-
cant ecological importance. Although coping with many 
challenges, populations growing on dolomite slopes will 
never experience floods of any intensity. On the other 
hand, populations from karst poljes or seashore mead-
ows are flooded regularly for prolonged periods [34, 37], 
which puts their sexual reproduction at risk and makes 
it irregular. Consequently, the genetics underlying a bias 
toward clonal reproduction observed in populations 
from karst poljes and areas near the sea can be linked 
with the evolutionary shift favoring clonal reproduction. 
At the same time, the results obtained for the inflores-
cence height and the total number of flowers were even 
more population-specific, as their values overlapped sub-
stantially among all three studied groups of populations 
(Fig. 3). Such results suggested that genetic mechanisms 
underlying these pollination success-related variations 
have developed independently of perceived ecological 
pressures in different habitats. They are likely unrelated 
to abiotic variables we considered important when clas-
sifying these habitats (e.g., water and nutrients availabil-
ity or drought and temperature stress). Instead, they are 

134



Page 19 of 25Šarančić et al. BMC Plant Biology          (2025) 25:577 	

possibly linked to biotic elements outside this research’s 
scope, such as local pollinator assemblage or predomi-
nant vegetation type [101–103].

Genetic loci and functional pathways associated 
with reproductive traits in C. litardierei
Using univariate and multivariate GWAS approaches, 
we identified several loci associated with reproduction-
related traits in C. litardierei. Functional annotation of 
the genomic regions surrounding these SNP loci revealed 
their association with genomic regions responsible for 
coding key protein families involved in crucial biological 
pathways related to reproduction. We observed the piv-
otal role of nitrogen metabolism mediated by arginase 
(ARG), which in O. sativa is encoded by OsARG, influ-
encing plant height, growth, and development through 
its impact on amino acid metabolism and photosynthe-
sis [104, 105]. The silencing of arginase genes ARGAH1 
and ARGAH2 in Arabidopsis increased nitric oxide (NO) 
synthase activity, reducing nitrogen levels [106]. Given 
that nitrogen is essential for almost all plant metabolic 
processes, including the formation of macromolecules 
necessary for growth [107, 108], its deficiency can sig-
nificantly impede plant productivity by inhibiting photo-
synthesis [109, 110], growth potential [111], CO2 uptake, 
and carbohydrate synthesis [112]. We also identified SNP 
loci in regions encoding enzymes from the cytochrome 
P450 family involved in the biosynthesis and catabolism 
of phytohormones and metabolites [113]. For example, in 
O. sativa, CYP701 A8, a member of the cytochrome P450 
family, regulates gibberellin (GA) phytohormone biosyn-
thesis [114], while in Malus domestica, MdCYP716B1 
influences plant height by modulating GA levels [115]. 
Similarly, mutations in CYP88 disrupt gibberellin bio-
synthesis, resulting in altered plant stature in barley and 
maize [116]. Our findings suggest that GAs could stimu-
late bulb growth by enhancing cell division and regulating 
processes such as sugar accumulation, which is essen-
tial for dormancy release and growth initiation in bulbs 
[117]. We identified significant SNP loci within genomic 
regions associated with CCHC-ZFP genes, which are 
known to play critical roles in plant growth, develop-
ment, and responses to biotic and abiotic stresses [118]. 
Sun et al. [119] have further demonstrated that TaCCHC-
ZFP genes in Triticum aestivum regulate plant growth 
and stress adaptation. Furthermore, we identified signifi-
cant SNP loci within the genomic region associated with 
aspartic proteases (APs), crucial for rapid growth and 
organ development, as demonstrated in Phyllostachys 
edulis (Moso bamboo) and its associated PhAPs [120]. 
SNP loci within the genomic region encoding Complex I 
were also discovered; deficiencies in Complex I, specifi-
cally due to the absence of the NDUFV1 gene, are known 

to slow down growth and development at all life stages, 
as observed in A. thaliana mutants [121]. Additionally, 
we detected mutations in genetic regions encoding recep-
tor-like kinases (RLKs), which are crucial for perceiving 
brassinosteroids (BR) and regulating essential growth 
processes, as exemplified by the BRI1 receptor in A. thali-
ana [122–124]. Regions encoding protein tyrosine kinases 
(PTKs) were also recorded in the functional annotation of 
C. litardierei sequences. In O. sativa, OsPTK2, OsPTK8, 
OsPTK13, OsPTK14, and OsPTK18 were identified as 
stress-responsive PTKs involved in abiotic stress toler-
ance, including cold, heat, and submergence [125]. In the 
context of flower development, we identified variations 
within the regions encoding the C2 domain, including 
the proteins QUIRKY and STRUBBELIG, which are cru-
cial for intercellular communication and tissue morpho-
genesis in A. thaliana, processes vital for reproductive 
structure development [126]. We identified significant 
SNP loci within genomic regions associated with sterol 
synthase, and in A. thaliana, mutations in the FACKEL 
(FK) gene, which encodes a sterol C-14 reductase involved 
in sterol biosynthesis, disrupt cell division and tissue pat-
terning, leading to stunted growth and abnormal devel-
opment of key structures like cotyledons, hypocotyl, and 
meristem [127]. Also, we detected mutations in genetic 
regions encoding sugar transporters. Huang et  al. [128] 
found that the expression of key sugar transporter genes, 
such as LohSTP8, LohSTP12, and LflERD6.3, was upregu-
lated during critical stages of bulb formation, including 
bulblet initiation, suggesting these genes play vital roles in 
sucrose metabolism and starch accumulation during bulb 
development in lilies (Lilium spp.).

Study limitations and considerations for future research
Despite giving valuable insight into molecular mecha-
nisms underlying local adaptation in studied C. litardierei 
populations, this research also has limitations worth 
mentioning, and perhaps the most important one is the 
selection of the ddRADseq approach for the DNA library 
preparation. As one of the most popular reduced rep-
resentation sequencing approaches, known for its high 
robustness, flexibility, and cost-efficiency, ddRADseq has 
often been used in similar research [129–131]. However, 
ddRADseq, like other members of a RADseq family, has a 
significant limitation regarding the genome scan resolu-
tion [132]. When implementing any of the RADseqs for 
the DNA library preparation, a substantial portion of the 
genomic information remains unexplored, particularly as 
the size of the studied genome increases. Consequently, 
given the relatively large genome size of C. litardierei (3.7 
Gb) [40], the complexity of our results is also influenced 
by this factor.
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Conclusion
This study provides valuable insights into the genetic 
basis of local adaptation and reproduction-related traits 
in selected Chouardia litardierei populations across 
contrasting environments. Population-genetic analy-
ses revealed partial genetic structuring, with popu-
lations from dry, drought-prone habitats forming a 
distinct, well-differentiated group. In contrast, those 
from inland meadows and seashore habitats showed 
no clear genetic structuring, likely due to recent com-
mon ancestry or contemporary gene flow. Precipitation 
in the coldest quarter was recognized as a key driver of 
adaptive genetic variation. Furthermore, the GEA study 
identified numerous genes linked mostly to various abi-
otic stress responses and key physiological processes, 
improving our understanding of molecular mechanisms 
enabling local adaptation of natural populations coping 
with contrasting environmental conditions. By imple-
menting comprehensive GWAS approaches, we identi-
fied numerous loci significant for reproduction-related 
traits’ development in studied populations. Functional 
annotation of the associated genomic regions revealed 
key protein families involved in vital biological pathways 
related to reproduction, including nitrogen metabolism, 
phytohormone regulation, and floral organ development. 
High narrow-sense heritability estimates indicated that 
genetic factors accounted for over 55% of the phenotypic 
variance in each trait. Among these, the average height 
of inflorescences (AHI) showed the highest heritability of 
71.95%, underscoring its significant role in reproductive 
success. These findings enhance our understanding of the 
genetic mechanisms driving local adaptation in C. litar-
dierei and establish a foundation for future plant adap-
tation and speciation studies. This research emphasizes 
the complexity of the genetic architecture driving phe-
notypic diversity in plants. It highlights the importance 
of genomic approaches in investigating adaptive traits in 
non-model species facing various ecological pressures.
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Additional file 1. Locations of sampled Chouardia litardierei populations 
with their associated habitat types. Locations of sampled C. litardierei 
populations and their associated habitat types. This file provides the 
geographic coordinates (latitude and longitude) for each population site, 
along with the habitat type for each location. Populations were sampled 
from three distinct habitat types: meadow-karst poljes, seashore-grass-
land, and dolomite-bedrock. The table includes populations from both 
Croatia and Montenegro.

Additional file 2. PCA result based on 19 bioclimatic variables for the 
localities of the studied populations and the common garden experiment 
site. The principal component analysis (PCA) was conducted based on 
19 bioclimatic variables to assess the environmental conditions of the 
localities of the studied populations and the common garden experiment 
site. These variables represent a comprehensive suite of climatic factors, 
including temperature and precipitation metrics, which are critical for 
understanding ecological and environmental diversity. The temperature-
related variables analyzed include Annual Mean Temperature (BIO1), 
Mean Diurnal Range (BIO2), Isothermality (BIO3), Temperature Seasonality 
(BIO4), Maximum Temperature of the Warmest Month (BIO5), Minimum 
Temperature of the Coldest Month (BIO6), Temperature Annual Range 
(BIO7), and the mean temperatures for specific seasonal periods: Wettest 
Quarter (BIO8), Driest Quarter (BIO9), Warmest Quarter (BIO10), and Cold-
est Quarter (BIO11). The precipitation-related variables encompass Annual 
Precipitation (BIO12), Precipitation of the Wettest Month (BIO13), Precipita-
tion of the Driest Month (BIO14), Precipitation Seasonality (BIO15), and 
the precipitation levels during the Wettest Quarter (BIO16), Driest Quarter 
(BIO17), Warmest Quarter (BIO18), and Coldest Quarter (BIO19).

Additional file 3. Cross-entropy vs. number of ancestral populations in 
sNMF analysis on Chouardia litardirei. Description of Data: This figure 
shows the relationship between the number of ancestral populations 
(K) and the cross-entropy values from an sNMF analysis. Cross-entropy 
decreases as the number of ancestral populations increases, eventually 
stabilizing, indicating an optimal K where the model best explains the 
genetic structure.

Additional file 4. Phylogenetic relationships among Chouardia litardierei 
populations based on Nei’s genetic distances. The unrooted phylogenetic 
tree illustrates the relationships among Chouardia litardierei populations 
based on Nei’s genetic distances, highlighting genetic divergence across 
habitats. The tree was constructed by calculating Nei’s genetic distances 
using the “adegenet” package in R, followed by bootstrapping (1,000 rep-
licates) with the “poppr” package. The final tree was visualized in MEGA7 
after conversion to Newick format using the “ape” package.

Additional file 5. EggNOG output file for the 83 most significant SNP loci 
associated with four distinct bioclimatic variables, identified as being most 
relevant to the traits under investigation. The EggNOG output file provides 
functional annotations for the 83 most significant SNP loci associated 
with four key bioclimatic variables, identified as crucial to the traits under 
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investigation. These variables include bio4 (Temperature Seasonality), 
bio8 (Mean Temperature of Wettest Quarter), bio9 (Mean Temperature 
of Driest Quarter), and bio19 (Precipitation of Coldest Quarter). Using 
the reference genome, sequences were generated for each significant 
SNP, covering a 50-kilobase region, with 25 kilobases upstream and 
downstream of each SNP.

Additional file 6. SNPs passing the genome-wide significance threshold 
in the single-SNP linear mixed model (LMM) analysis in both GEMMA 
and GMMAT analyses for each reproduction-related morphological trait 
of Chouardia litardierei: TFC, AHI and BC. This file details the results of the 
single-SNP linear mixed model (LMM) analyses performed using both 
GEMMA and GMMAT for C. litardierei. It specifically presents the single 
nucleotide polymorphisms (SNPs) that passed the genome-wide sig-
nificance threshold (p-values < 1 × 10⁻3) for each reproduction-related 
morphological trait, including Average Height of Inflorescences (AHI), 
Total Flower Count (TFC), and Bulb Count (BC) per genotype. The LMM 
was fitted on a dataset comprising 23,315 SNPs and 214 individuals.

Additional file 7. SNPs identified as having a major sparse effect 
(PIP > 0.1) on the AHI, TFC and BC traits of Chouardia litardierei in the 
multi-SNP Bayesian sparse linear mixed model (BSLMM) analysis. This 
file presents the results of the Bayesian sparse linear mixed model 
(BSLMM) analysis conducted on 23,315 single nucleotide polymor-
phisms (SNPs) across 214 individuals of C. litardierei. It highlights SNPs 
identified as having a major sparse effect (posterior inclusion prob-
ability, PIP > 0.1) on three key reproductive traits: Average Height of 
Inflorescences (AHI), Total Flower Count (TFC), and Bulb Count (BC) per 
genotype.

Additional file 8. Means, medians, and 95% equal tail posterior prob-
ability intervals (95% ETPPIs) of hyperparameters estimated from the 
Bayesian sparse linear mixed model (BSLMM) in reproduction-related 
morphological traits AHI, TFC and BC of Chouardia litardierei. This file 
presents the means, medians, and 95% equal tail posterior probability 
intervals (95% ETPPIs) of hyperparameters estimated from the Bayesian 
sparse linear mixed model (BSLMM) analysis focused on reproduction-
related morphological traits in C. litardierei, specifically Average Height 
of Inflorescences (AHI), Total Flower Count (TFC), and Bulb Count (BC). 
The BSLMM was fitted using a dataset of 23,315 single nucleotide 
polymorphisms (SNPs) across 214 individuals. The file includes detailed 
estimates of hyperparameters such as h (the proportion of phenotypic 
variance explained by variants), n.gamma (the number of variants with 
major effect), pi (the proportion of variants with non-zero effects), PGE 
(the proportion of genetic variance explained by variants with major 
effect), PVE (the proportion of phenotypic variance explained by vari-
ants), and rho (the proportion of genetic variance explained by variants 
with major effect).

Additional file 9. SNPs passing the genome-wide significance threshold 
(p < 1 × 10⁻3) in the multivariate linear mixed model (mvLMM) analysis 
for AHI and TFC traits of Chouardia litardierei in GEMMA multivariate 
GWAS. This file lists the single nucleotide polymorphisms (SNPs) that 
passed the genome-wide significance threshold (p < 1 × 10⁻3) in the 
multivariate linear mixed model (mvLMM) analysis for the Average 
Height of Inflorescences (AHI) and Total Flower Count (TFC) traits of C. 
litardierei, using multivariate genome-wide association studies (GWAS) 
conducted with GEMMA. The mvLMM in GEMMA was fitted on a data-
set comprising 23,315 SNPs from 214 individuals.

Additional file 10. SNPs passing the genome-wide significance 
threshold (p < 1 × 10⁻3) in the multivariate linear mixed model (mvLMM) 
analysis for AHI and BC traits of Chouardia litardierei in GEMMA multi-
variate GWAS. This file lists the single nucleotide polymorphisms (SNPs) 
that passed the genome-wide significance threshold (p < 1 × 10⁻3) in 
the multivariate linear mixed model (mvLMM) analysis for the Average 
Height of Inflorescences (AHI) and Bulb Count (BC) traits of C. litardierei, 
using multivariate genome-wide association studies (GWAS) conducted 
with GEMMA. The mvLMM in GEMMA was fitted on a dataset compris-
ing 23,315 SNPs from 214 individuals.

Additional file 11. Frequency of effect alleles across populations for 
significant SNPs identified in the single-SNP LMM analysis (GEMMA and 

GMMAT), as well as the multi-SNP BSLMM analysis, all of which surpassed 
the genome-wide significance threshold (1 × 10⁻3). The analysis also 
includes SNPs meeting the same threshold in the multivariate GWAS. The 
corresponding SNPs are detailed in Table 2 and Table 4 of the manuscript. 
Overlapping points of different colors represent SNPs associated with dif-
ferent traits, with each color corresponding to a specific trait. The overlap 
occurs because some SNPs are shared across traits, leading to their place-
ment one in front of the other. AHI, Average Height of Inflorescences; BC, 
Bulb Count; TFC, Total Flower Count. The data represents the frequency 
of effect alleles for significant SNPs identified through different GWAS 
approaches, including single-SNP LMM analyses (GEMMA and GMMAT), 
multi-SNP BSLMM analysis, and multivariate GWAS. All SNPs included 
surpassed the genome-wide significance threshold of 1 × 10⁻3. The dataset 
also captures overlaps of SNPs associated with different traits—AHI 
(Average Height of Inflorescences), BC (Bulb Count), and TFC (Total Flower 
Count)—with overlapping points indicating shared SNPs across traits. 
Frequencies are stratified by population, allowing for comparative analysis 
of allele distributions.

Additional file 12. EggNOG output file for 12 SNPs that exceeded the 
genome-wide significance threshold (1 × 10−3) in both the single-SNP 
LMM and multi-SNP BSLMM analyses of the Chouardia litardierei traits: 
TFC, AHI, and BC. This file lists the results of eggNOG-mapper v2 analysis 
for regions associated with 12 SNPs that exceeded the genome-wide sig-
nificance threshold (1 × 10−3) in both the single-SNP LMM and multi-SNP 
BSLMM analyses of TFC, AHI, and BC traits in C. litardierei.

Additional file 13. EggNOG output file for 13 SNP loci that exceeded the 
genome-wide significance threshold (1 × 10−3) in the multivariate GWAS 
analysis of the Chouardia litardierei traits: AHI and TFC. This file lists the 
results of eggNOG-mapper v2 analysis for regions associated with 13 SNPs 
that exceeded the genome-wide significance threshold (1 × 10−3) in the 
multivariate GWAS BSLMM analysis of the C. litardierei traits: AHI and TFC.

Additional file 14: Table 1. EggNOG output file for 2 SNP loci that exceeded 
the genome-wide significance threshold (1 × 10−3) in the multivariate 
GWAS analysis of the Chouardia litardierei traits: AHI and BC. This file lists 
the results of eggNOG-mapper v2 analysis for regions associated with 13 
SNPs that exceeded the genome-wide significance threshold (1 × 10−3) in 
the multivariate GWAS BSLMM analysis of the C. litardierei traits: AHI and 
BC.
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Additional File 1 

Table 1. Locations of sampled Chouardia litardierei populations with their associated habitat 

types. 

Population/Location Country Latitude (N) Longitude (E) Habitat Type 

Bjelopolje Croatia 44.693754° 15.773682° Meadow – karst poljes 

Cetina (Paško polje) Croatia 43.940922° 16.436367° Meadow – karst poljes 

Budoške Bare Montenegro 42.743747° 18.926361° Meadow – karst poljes 

Pag (Kolansko blato) Croatia 44.514886° 14.919922° Seashore - grassland 

Nin Croatia 44.249564° 15.172015° Seashore - grassland 

Vrana Lake Croatia 43.937292° 15.514689° Seashore - grassland 

Lovćen Montenegro 42.377169° 18.843117° Dolomite - bedrock 

Skadar Lake Montenegro 42.326486° 19.069464° Dolomite - bedrock 

Pandurica Montenegro 42.721628° 18.962442° Dolomite - bedrock 
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Additional File 2 

Figure 1. PCA result based on 19 bioclimatic variables for the localities of the studied 

populations and the common garden experiment site. BIO1 - Annual Mean Temperature; BIO2 

- Mean Diurnal Range; BIO3 - Isothermality; BIO4 - Temperature Seasonality; BIO5 - Max 

Temperature of Warmest Month; BIO6 - Min Temperature of Coldest Month; BIO7 - 

Temperature Annual Range; BIO8 - Mean Temperature of Wettest Quarter; BIO9 - Mean 

Temperature of Driest Quarter; BIO10 - Mean Temperature of Warmest Quarter; BIO11 - 

Mean Temperature of Coldest Quarter; BIO12 - Annual Precipitation; BIO13 - Precipitation of 

Wettest Month; BIO14 - Precipitation of Driest Month; BIO15 - Precipitation Seasonality; 

BIO16 - Precipitation of Wettest Quarter; BIO17 - Precipitation of Driest Quarter; BIO18 - 

Precipitation of Warmest Quarter; BIO19 - Precipitation of Coldest Quarter  
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Additional File 3 

 

Figure 1. Cross-entropy vs. number of ancestral populations in sNMF analysis on Chouardia litardierei. Description of Data: This figure shows 

the relationship between the number of ancestral populations (K) and the cross-entropy values from an sNMF analysis. Cross-entropy decreases 

as the number of ancestral populations increases, eventually stabilizing, indicating an optimal K where the model best explains the genetic structure. 
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Additional File 4 

Figure 1. Phylogenetic relationships among Chouardia litardierei populations based on Nei’s genetic distances. The unrooted phylogenetic tree 

illustrates the relationships among C. litardierei populations based on Nei’s genetic distances, highlighting genetic divergence across habitats. The 

tree was constructed by calculating Nei’s genetic distances using the “adegenet” package in R, followed by bootstrapping (1,000 replicates) with 

the “poppr” package. The final tree was visualized in MEGA7 after conversion to Newick format using the “ape” package. 
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Additional File 6 

 

 

Table 1. SNPs passing the genome-wide significance threshold in the single-SNP linear mixed model (LMM) analysis in both GEMMA and GMMAT analyses 

for each reproduction-related morphological trait of Chouardia litardierei: TFC, AHI, and BC. 

Trait SNP Chr Position Reference allele Effect allele 
Single-SNP LMM Analysis β (p-

value) in GMMAT 
Single-SNP LMM Analysis β (p-

value) in GEMMA 

 

TFC 15052_36 8 158551682 C G 5.76 × 10-6 (0.6915) 2.77 × 10⁻⁴ (−0.9771) 

 475181_57 2 1067391 A C 1.83 × 10-5 (0.4512) 8.85 × 10⁻⁴ (−0.5857) 

 682731_21 5 63843877 G A 3.12 × 10-5 (0.5882) 6.59 × 10⁻⁴ (−0.8690) 

 356033_30 13 518039464 A C 4.45 × 10-5 (0.4788) 1.25 × 10⁻⁴ (−0.7181) 

 439681_33 1 113066723 G A 6.50 × 10-5 (0.8912) 1.69 × 10⁻⁴ (−1.2873) 

 380447_37 13 615321041 T A 8.28 × 10-5 (0.4479) 3.06 × 10⁻⁴ (−0.7120) 

 45968_38 9 118116906 C G 9.07 × 10-5 (-0.3201) 7.32 × 10⁻⁴ (0.5426) 

AHI 62254_22 9 181728136 C A 1.14 × 10-6 (1.0287) 2.29 × 10⁻⁶ (−1.0287) 

 423028_13 13 795057155 A C 1.04 × 10-5 (0.7959) 1.69 × 10⁻⁵ (−0.7959) 

 423027_44 13 795056910 T A 3.69 × 10-5 (0.7564) 5.39 × 10⁻⁵ (−0.7564) 

 357122_13 13 523783140 C G 7.10 × 10-5 (-0.3847) 9.88 × 10⁻⁵ (0.3847) 

 230454_16 12 319053038 A T 7.47 × 10-5 (0.5503) 1.03 × 10⁻⁴ (−0.5503) 

 536624_21 3 40433867 G T 1.98 × 10-4 (1.0158) 2.57 × 10⁻⁴ (−1.0158) 

 593460_76 4 257849493 A C 2.08 × 10-4 (0.6376) 2.69 × 10⁻⁴ (−0.6376) 

 659179_34 5 178097173 A G 2.29 × 10-4 (-0.6336) 2.94 × 10⁻⁴ (0.6336) 

 534889_25 3 32961390 T C 2.37 × 10-4 (-0.4168) 3.03 × 10⁻⁴ (0.4168) 

 679100_46 5 47723772 G A 2.64 × 10-4 (0.8166) 3.36 × 10⁻⁴ (−0.8166) 

 669910_120 5 218775782 A G 2.64 × 10-4 (0.4081) 3.36 × 10⁻⁴ (−0.4081) 

 167406_45 11 6489057 G A 2.89 × 10-4 (0.6809) 3.66 × 10⁻⁴ (−0.6809) 

 299462_80 13 294757456 T C 3.02 × 10-4 (0.6737) 3.81 × 10⁻⁴ (−0.6737) 

 137109_19 11 119021216 T C 3.21 × 10-4 (-0.6327) 4.03 × 10⁻⁴ (0.6327) 

 228909_34 12 313636308 A T 3.77 × 10-4 (-0.3962) 4.70 × 10⁻⁴ (0.3962) 

 218952_18 12 27381126 G T 4.60 × 10-4 (0.5300) 5.66 × 10⁻⁴ (−0.5300) 

 631549_20 4 75595465 C T 5.10 × 10-4 (0.5409) 6.24 × 10⁻⁴ (−0.5409) 

 96271_20 10 142377502 T G 5.60 × 10-4 (0.9148) 6.82 × 10⁻⁴ (−0.9148) 

 53067_33 9 147851683 A G 5.85 × 10-4 (0.3589) 7.11 × 10⁻⁴ (−0.3589) 

 730317_18 6 4133503 C A 6.20 × 10-4 (0.7198) 7.50 × 10⁻⁴ (−0.7198) 

 403881_18 13 716013518 G A 6.29 × 10-4 (0.5012) 7.61 × 10⁻⁴ (−0.5012) 

 383241_14 13 626409144 A G 7.01 × 10-4 (0.7275) 8.43 × 10⁻⁴ (−0.7275) 

 377817_17 13 604813128 A G 7.09 × 10-4 (0.6227) 8.51 × 10⁻⁴ (−0.6227) 

 360081_66 13 534790629 T A 7.37 × 10-4 (0.5730) 8.84 × 10⁻⁴ (−0.5730) 

 794075_23 7 99621462 A G 7.69 × 10-4 (1.2110) 9.20 × 10⁻⁴ (−1.2110) 

 104294_72 10 170303215 C G 8.39 × 10-4 (-0.5422)  9.99 × 10⁻⁴ (0.5422) 

BC 253435_30 13 107335971 G A 6.87 × 10⁻⁸ (−0.4151) 1.83 × 10⁻⁷   (0.4151) 

 642566_22 5 104574563 G A 3.05 × 10⁻⁶ (1.0706) 1.98 × 10⁻⁷   (1.0706) 
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 241986_29 12 6101088 G A 3.19 × 10⁻⁶ (−1.2847) 1.62 × 10⁻⁷   (1.2847) 

 649437_15 5 13468654 A G 3.36 × 10⁻⁶ (−0.8847) 2.31 × 10⁻⁷   (0.8847) 

 656817_53 5 169059242 T A 5.16 × 10⁻⁶ (−0.6242) 2.63 × 10⁻⁷   (0.6242) 

 154558_21 11 18248593 T C 7.21 × 10⁻⁶ (−0.5456) 1.92 × 10⁻⁷   (0.5456) 

 203263_28 12 212399118 T C 7.24 × 10⁻⁶ (−1.1158) 1.07 × 10⁻⁶   (1.1158) 

 326909_111 13 408253490 T C 8.22 × 10⁻⁶ (0.4218) 3.92 × 10⁻⁷   (0.4218) 

 713226_25 6 119601819 T A 1.38 × 10⁻⁵ (−0.5002) 4.66 × 10⁻⁷   (0.5002) 

 76595_24 9 65171073 C A 1.39 × 10⁻⁵ (−0.5538) 1.17 × 10⁻⁷   (0.5538) 

 22031_53 8 25314160 A G 1.42 × 10⁻⁵ (0.3055) 2.05 × 10⁻⁷   (0.3055) 

 449864_18 1 146668342 G T 1.57 × 10⁻⁵ (−0.6531) 3.10 × 10⁻⁷   (0.6531) 

 177168_43 12 105567044 T G 1.98 × 10⁻⁵ (−1.2990) 2.65 × 10⁻⁶   (1.2990) 

 491467_27 2 39704043 T G 2.17 × 10⁻⁵ (−0.3640) 4.76 × 10⁻⁷   (0.3640) 

 362848_15 13 546154157 T C 2.92 × 10⁻⁵ (0.5494) 6.82 × 10⁻⁷   (0.5494) 

 188007_17 12 152850324 A T 3.03 × 10⁻⁵ (−1.0653) 1.25 × 10⁻⁶   (1.0653) 

 154104_24 11 180657987 A G 3.97 × 10⁻⁵ (−0.4466) 2.81 × 10⁻⁷   (0.4466) 

 168618_59 11 68980362 A C 4.11 × 10⁻⁵ (0.4063) 2.31 × 10⁻⁷   (0.4063) 

 178892_42 12 113762962 A G 4.19 × 10⁻⁵ (−0.3068) 1.78 × 10⁻⁷   (0.3068) 

 688782_16 5 89357080 A G 4.50 × 10⁻⁵ (0.2832) 2.35 × 10⁻⁷   (0.2833) 

 5022_15 8 122022233 A C 5.14 × 10⁻⁵ (−0.3252) 2.51 × 10⁻⁷   (0.3252) 

 14652_22 8 157168515 A G 5.39 × 10⁻⁵ (−0.5751) 3.20 × 10⁻⁷   (0.5751) 

 571070_26 4 17043373 T C 6.74 × 10⁻⁵ (−0.3067) 2.14 × 10⁻⁷   (0.3067) 

 661577_27 5 185906413 C G 7.33 × 10⁻⁵ (0.8340) 1.29 × 10⁻⁶   (0.8341) 

 824846_131 12 205849898 G C 8.13 × 10⁻⁵ (−0.4234) 5.42 × 10⁻⁷   (0.4234) 

 309278_17 13 33471278 A C 8.52 × 10⁻⁵ (−0.5773) 7.51 × 10⁻⁷   (0.5773) 

 775464_44 7 208947973 A G 9.47 × 10⁻⁵ (0.3681) 4.56 × 10⁻⁷   (0.3681) 

 236426_14 12 40747253 G T 9.54 × 10⁻⁵ (−0.6723) 8.01 × 10⁻⁷   (0.6723) 

 426598_87 13 810283382 A T 9.55 × 10⁻⁵ (0.2838) 2.15 × 10⁻⁷   (0.2838) 

 2730_51 8 110403271 A C 9.68 × 10⁻⁵ (−0.2893) 2.24 × 10⁻⁷   (0.2893) 

 323413_32 13 39372258 A G 9.92 × 10⁻⁵ (−1.1485) 1.21 × 10⁻⁶   (1.1485) 

 202604_47 12 210026545 G A 1.02 × 10⁻⁴ (−0.4234) 5.42 × 10⁻⁷   (0.4234) 

 101366_35 10 160674132 G A 1.14 × 10⁻⁴ (−0.7825) 1.13 × 10⁻⁶   (0.7825) 

 208646_19 12 234004964 C T 1.18 × 10⁻⁴ (−0.3534) 3.71 × 10⁻⁷   (0.3534) 

 717130_26 6 136955413 A G 1.37 × 10⁻⁴ (−0.3974) 3.83 × 10⁻⁷   (0.3974) 

 291775_18 13 26477605 T C 1.39 × 10⁻⁴ (−0.7174) 9.13 × 10⁻⁷   (0.7174) 

 201641_32 12 205775063 A C 1.40 × 10⁻⁴ (−0.7385) 8.95 × 10⁻⁷   (0.7385) 

 275195_16 13 197688818 C T 1.53 × 10⁻⁴ (0.3184) 2.93 × 10⁻⁷   (0.3184) 

 90763_61 10 121305153 G T 1.57 × 10⁻⁴ (−0.2903) 2.45 × 10⁻⁷   (0.2903) 

 261805_25 13 144317310 T C 1.73 × 10⁻⁴ (−0.4124) 4.90 × 10⁻⁷   (0.4124) 

 260150_22 13 138653995 G A 1.75 × 10⁻⁴ (0.9271) 1.01 × 10⁻⁶   (0.9271) 

 206213_23 12 225086121 A T 1.76 × 10⁻⁴ (−0.6725) 7.81 × 10⁻⁷   (0.6725) 

 726003_42 6 24894175 G T 1.88 × 10⁻⁴ (0.2737) 1.91 × 10⁻⁷   (0.2737) 

 572458_29 4 175624353 T C 1.96 × 10⁻⁴ (−0.6042) 6.72 × 10⁻⁷   (0.6042) 

 179046_40 12 114292861 C T 2.01 × 10⁻⁴ (0.5540) 5.90 × 10⁻⁷   (0.5540) 

 680794_16 5 55125312 A C 2.27 × 10⁻⁴ (−0.5969) 8.73 × 10⁻⁷   (0.5969) 

 226322_15 12 303921342 T C 2.46 × 10⁻⁴ (−0.9300) 9.18 × 10⁻⁷   (0.9300) 
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Statistical analyses were performed with GEMMA and GMMAT. LMM was fitted on 23,315 SNPs. p-values < 1 × 10−3 are genome-wide significant. AHI, Average Height of Inflorescences per 

genotype; BC, Bulbs Count per genotype; Chr, Chromosome; LMM, Linear Mixed Model; SNP, Single Nucleotide Polymorphism; TFC, Total Flower Count per genotype. 

 

 64746_61 9 23100056 T A 2.51 × 10⁻⁴ (−0.3266) 3.06 × 10⁻⁷   (0.3266) 

 430075_45 13 822183802 T C 2.72 × 10⁻⁴ (−0.2848) 2.46 × 10⁻⁷   (0.2848) 

 598489_119 4 275215624 C G 2.84 × 10⁻⁴ (0.2950) 3.41 × 10⁻⁷   (0.2950) 

 360276_31 13 535270309 T A 3.01 × 10⁻⁴ (0.5274) 5.81 × 10⁻⁷   (0.5274) 

 380447_37 13 615321041 T A 3.16 × 10⁻⁴ (0.4729) 6.48 × 10⁻⁷   (0.4729) 

 651099_28 5 143602840 A T 3.17 × 10⁻⁴ (−0.4787) 7.36 × 10⁻⁷   (0.4787) 

 445961_30 1 135087176 C T 3.24 × 10⁻⁴ (−0.2652) 3.67 × 10⁻⁷   (0.2652) 

 44175_36 9 110634998 T C 3.44 × 10⁻⁴ (0.2755) 2.75 × 10⁻⁷   (0.2755) 

 331309_70 13 425001652 G C 3.53 × 10⁻⁴ (−0.9734) 1.29 × 10⁻⁶   (0.9734) 

 252444_137 13 102435018 A G 3.92 × 10⁻⁴ (−0.2657) 3.72 × 10⁻⁷   (0.2657) 

 648614_50 5 130563585 T C 3.97 × 10⁻⁴ (−0.3560) 4.01 × 10⁻⁷   (0.3560) 

 89984_62 10 118298581 A C 4.21 × 10⁻⁴ (−0.3812) 4.66 × 10⁻⁷   (0.3812) 

 531929_17 3 21899113 T C 4.32 × 10⁻⁴ (0.2056) 2.91 × 10⁻⁷   (0.2056) 

 325231_32 13 401796448 T A 4.45 × 10⁻⁴ (−0.2695) 3.11 × 10⁻⁷   (0.2695) 

 441718_55 1 121120631 G A 4.50 × 10⁻⁴ (−0.4841) 4.88 × 10⁻⁷   (0.4841) 

 3438_34 8 113956553 A G 4.66 × 10⁻⁴ (−0.4134) 5.14 × 10⁻⁷   (0.4134) 

 591772_23 4 250745030 C T 4.80 × 10⁻⁴ (−0.9506) 1.12 × 10⁻⁶   (0.9506) 

 201876_77 12 206762918 T C 4.92 × 10⁻⁴ (−0.6514) 8.24 × 10⁻⁷   (0.6514) 

 554483_14 4 101633733 G T 5.13 × 10⁻⁴ (0.5548) 5.94 × 10⁻⁷   (0.5548) 

 447402_22 1 139232915 C T 5.15 × 10⁻⁴ (−0.5579) 6.07 × 10⁻⁷   (0.5579) 

 228909_34 12 313636308 A T 5.37 × 10⁻⁴ (−0.3041) 3.42 × 10⁻⁷   (0.3041) 

 769726_28 7 191343469 A T 5.41 × 10⁻⁴ (0.3239) 2.34 × 10⁻⁷   (0.3239) 

 66901_34 9 30152315 T G 5.43 × 10⁻⁴ (−0.4763) 5.81 × 10⁻⁷   (0.4763) 

 272420_33 13 186297710 T G 5.44 × 10⁻⁴ (0.3702) 4.22 × 10⁻⁷   (0.3702) 

 80554_31 9 7962018 A G 5.69 × 10⁻⁴ (0.6022) 6.55 × 10⁻⁷   (0.6022) 

 339452_85 13 455653812 A C 5.71 × 10⁻⁴ (−0.2736) 2.35 × 10⁻⁷   (0.2736) 

 560733_51 4 127515444 T C 5.82 × 10⁻⁴ (0.5123) 5.17 × 10⁻⁷   (0.5123) 

 546891_140 3 82875693 A C 5.88 × 10⁻⁴ (−0.5194) 5.26 × 10⁻⁷   (0.5194) 

 71435_14 9 44021754 G T 5.98 × 10⁻⁴ (−0.2466) 3.77 × 10⁻⁷   (0.2466) 

 293695_19 13 272369031 A G 6.08 × 10⁻⁴ (−0.6642) 8.83 × 10⁻⁷   (0.6642) 

 392720_57 13 668772912 G T 6.32 × 10⁻⁴ (0.3679) 4.62 × 10⁻⁷   (0.3679) 

 466588_35 1 89484395 A C 6.72 × 10⁻⁴ (0.4678) 6.56 × 10⁻⁷   (0.4678) 

 48910_53 9 12893230 T G 7.13 × 10⁻⁴ (0.4002) 4.50 × 10⁻⁷   (0.4002) 

 763026_20 7 1681982 T G 7.41 × 10⁻⁴ (0.2608) 3.48 × 10⁻⁷   (0.2608) 

 445498_105 1 133595095 T G 7.64 × 10⁻⁴ (0.3789) 4.90 × 10⁻⁷   (0.3789) 

 672852_31 5 23571109 A C 7.82 × 10⁻⁴ (−0.7870) 9.53 × 10⁻⁷   (0.7870) 

 659179_34 5 178097173 A G 7.97 × 10⁻⁴ (−0.4594) 6.72 × 10⁻⁷   (0.4594) 

 793910_83 7 98929040 C T 8.09 × 10⁻⁴ (0.6528) 8.19 × 10⁻⁷   (0.6528) 

148



Additional File 7 

 

 

Table 1. SNPs identified as having a major sparse effect (PIP > 0.1) on the AHI, TFC, and BC traits of 

Chouardia litardierei in the multi-SNP Bayesian sparse linear mixed model (BSLMM) analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BSLMM was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; BC, Bulb Count per genotype; BSLMM, 

Bayesian Sparse Linear Mixed Model; Chr, Chromosome; PIP, Posterior Inclusion Probability; SNP, Single Nucleotide 

Polymorphism; TFC, Total Flower Count per genotype. 

 

Trait SNP Chr Position 
Multi-SNP BSLMM 

Analysis β (PIP) 

TFC 750129_37 7 113120650 -0.324 (0.150) 

 750129_37 1 113066723 -0.527 (0.142) 

 750129_37 10 105055239 0.295 (0.116) 

 750129_37 5 74279195 -0.211 (0.112) 

 750129_37 3 144638725 -0.226 (0.110) 

 750129_37 1 13072555 -0.225 (0.110) 

 750129_37 7 123155593 0.175 (0.104) 

 750129_37 6 156375740 0.176 (0.104) 

 750129_37 13 793523075 -0.306 (0.095)  

AHI 299462_80 13 294757456 -0.429 (0.361) 

 377817_17 13 604813128 -0.429 (0.345) 

 752051_37 7 123155593 0.327 (0.329) 

 383241_14 13 626409144 -0.422 (0.222) 

 536624_21 9 40433867 -0.512 (0.206) 

 447236_67 1 138736826 -0.307 (0.174) 

 487582_35 8 25023093 0.249 (0.170) 

 272531_23 13 186930464 -0.455 (0.152) 

 643010_44 11 106406258 0.401 (0.150) 

 175155_40 5 97957904 -0.387 (0.136) 

 565532_39 10 14626431 -0.287 (0.134) 

 626164_80 10 52896152 0.287 (0.126) 

 51325_24 3 138708252 -0.357 (0.115) 

 708355_18 12 101851366 0.398 (0.114) 

 206941_26 6 227677762 -0.417 (0.110) 

 634062_21 10 8802327 -0.252 (0.109) 

 131957_13 4 97222552 -0.341 (0.108) 

 543242_19 9 69802074 0.362 (0.106) 

 728823_24 12 35185140 0.334 (0.104) 

 210123_39 6 239066297 -0.321 (0.103) 

 155402_49 5 18495521 -0.217 (0.099) 

BC 713226_25 12 119601819 0.448 (0.955) 

 241986_29 6 6101088 0.942 (0.909) 

 291775_18 13 26477605 0.571 (0.698) 

 441718_55 1 121120631 0.425 (0.627)  

 381378_15 13 619145251 -0.510 (0.594) 

 260150_22 13 138653995 -0.653 (0.547)  

 26230_86 8 4273979 0.299 (0.316)  

 64746_61 3 23100056 0.256 (0.233)  

 755807_21 7 139325995 -0.447 (0.182)  

 444730_73 1 13072555 -0.351 (0.130)  

 296029_34 13 282177106 -0.469 (0.115)  

 293695_19 13 272369031 0.418 (0.108)  

 108823_24 4 185496013 -0.504 (0.100)  

 490848_21 8 37042132 0.294 (0.097)  
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Table 1. Means, medians, and 95% equal tail posterior probability intervals (95% ETPPIs) of hyperparameters 

estimated from the Bayesian sparse linear mixed model (BSLMM) in reproduction-related morphological 

traits AHI, TFC, and BC of Chouardia litardierei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BSLMM was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; BC, Bulb Count per genotype; h, 

approximation to the proportion of phenotypic variance explained by variants (PVE); n.gamma, number of variants with major 

effect; PGE, Proportion of Genetic Variance explained by variants with major effect; pi, proportion of variants with non-zero effects; 

PVE, Proportion of Phenotypic Variance explained by variants; rho, approximation to the proportion of genetic variance explained 

by variants with major effect; TFC, Total Flower Count per genotype.  

 

 

Trait Hyperparameter Mean Median 2.5% 97.5% 

AHI h 0.7850 0.7944 0.5869 0.9278 

 PVE 0.7195 0.7206 0.5226 0.9037 

 rho 0.4134 0.3846 0.0227 0.9378 

 PGE 0.3747 0.3489 0.0012 0.9317 

 pi 2.51 × 10-2 1.75 × 10-2 8.53 × 10-4 8.40 × 10-2 

 n.gamma 47.40 33 1 159 

TFC h 0.6909 0.7119 0.3569 0.9104 

 PVE 0.5598 0.5561 0.2571 0.8861 

 rho 0.3299 0.2767 0.0115 0.8950 

 PGE 0.2878 0.2415 0.0000 0.8627 

 pi 4.13 × 10-2 2.15 × 10-2 6.31 × 10-4 1.46 × 10-1 

 n.gamma 77.57 40 0 274 

BC h 0.6409 0.6537 0.3717 0.8404 

 PVE 0.6987 0.7019 0.5546 0.8277 

 rho 0.8856 0.9281 0.5359 0.9976 

 PGE 0.8915 0.9596 0.2568 0.9986 

 pi 9.96 × 10-3 8.23  × 10-2 1.96 × 10-3 2.65 × 10-2 

 n.gamma 18.09 15 5 44 
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Table 1. SNPs passing the genome-wide significance threshold (p < 1 × 10⁻³) in the multivariate linear mixed 

model (mvLMM) analysis for AHI and TFC traits of Chouardia litardierei in GEMMA multivariate GWAS. 

 

mvLMM in GEMMA was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; Chr, Chromosome; 

mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism; TFC, Total Flower Count per genotype.  

 

SNP Chr Position 
Reference 

allele 
Effect allele Beta1 (AHI) Beta2 (TFC) mvLMM Analysis in 

GEMMA (p-value) 

62254_22 9 181728136 A C -1.0233 -0.6464 5.17 × 10⁻⁶ 

423028_13 13 795057155 C A -0.8016 -0.3108 3.90 × 10⁻⁵ 

500624_24 2 7834046 A G -0.3194 0.7410 6.34 × 10⁻⁵ 

588341_19 10 236169480 T C -0.2150 0.4102 6.42 × 10⁻⁵ 

230454_16 12 319053038 T A -0.5337 -0.5133 1.53 × 10⁻⁴ 

423027_44 13 795056910 A T -0.7603 -0.3483 1.56 × 10⁻⁴ 

730317_18 6 4133503 A C -0.7169 0.0446 1.76 × 10⁻⁴ 

356033_30 13 518039464 C A -0.2531 -0.7405 1.98 × 10⁻⁴ 

463223_64 1 73180436 C T 0.3163 -0.2853 2.42 × 10⁻⁴ 

561279_13 10 130303684 G T 0.4456 1.4653 2.56 × 10⁻⁴ 

208200_70 12 23218154 T G -0.0628 0.5553 2.71 × 10⁻⁴ 

357122_13 13 523783140 G C 0.3769 0.3095 2.77 × 10⁻⁴ 

666088_105 11 204738976 G A -0.2455 0.3554 3.11 × 10⁻⁴ 

45968_38 9 118116906 G C -0.0231 0.5586 3.49 × 10⁻⁴ 

81506_26 9 82807440 C A -0.3177 0.5778 3.69 × 10⁻⁴ 

275195_16 13 197688818 T C -0.2214 -0.4944 3.77 × 10⁻⁴ 

341030_70 13 460998239 G T -0.1489 1.0188 3.77 × 10⁻⁴ 

144029_28 5 146787421 T C -0.2007 -0.4054 4.56 × 10⁻⁴ 

593460_76 10 257849493 C A -0.6385 -0.1012 4.60 × 10⁻⁴ 

750129_37 7 113120650 A G -0.5378 -0.6841 4.68 × 10⁻⁴ 

197966_30 12 18977810 A G -0.2716 0.1541 4.71 × 10⁻⁴ 

445498_105 1 133595095 G T -0.4377 -0.6521 4.79 × 10⁻⁴ 

285797_40 13 241129049 G T 0.0988 -0.4041 5.20 × 10⁻⁴ 

205633_17 12 222557156 G T 0.0332 0.6208 5.55 × 10⁻⁴ 

669910_120 11 218775782 G A -0.4145 -0.1086 5.88 × 10⁻⁴ 

20739_90 8 20177276 T C -0.2182 0.3899 6.14 × 10⁻⁴ 

48553_26 9 127546435 C T -0.6902 0.0702 6.37 × 10⁻⁴ 

774988_31 7 207552004 A G -0.2538 0.1140 6.54 × 10⁻⁴ 

518385_24 9 129492878 T C -0.5431 0.1163 6.73 × 10⁻⁴ 

48552_21 9 127546136 G A -0.6851 0.0752 6.88 × 10⁻⁴ 

58193_25 12 167644306 G T -0.2927 0.4614 6.94 × 10⁻⁴ 

203254_20 12 212353432 G A 1.0385 1.9815 7.13 × 10⁻⁴ 

186978_19 12 148693882 C A -0.6745 -0.8306 7.23 × 10⁻⁴ 

206941_26 5 227677762 A T -0.9359 -0.9880 7.32 × 10⁻⁴ 

135671_24 9 112993797 C T 0.8214 0.9700 8.33 × 10⁻⁴ 

536624_21 13 40433867 T G -0.9858 -0.8117 8.35 × 10⁻⁴ 

423033_32 3 795167985 C T 0.2732 0.3570 8.80 × 10⁻⁴ 

64618_14 11 22823004 G T -0.1080 0.2438 8.86 × 10⁻⁴ 

100510_16 6 157555197 G T -0.6082 0.0212 9.29 × 10⁻⁴ 

679100_46 7 47723772 A G -0.8230 -0.4745 9.56 × 10⁻⁴ 

723260_21 9 159782442 T A -0.4675 0.1541 9.79 × 10⁻⁴ 

299462_80 13 294757456 C T -0.6833 -0.4259 9.92 × 10⁻⁴ 
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Table 1. SNPs passing the genome-wide significance threshold (p < 1 × 10⁻³) in the multivariate linear mixed 

model (mvLMM) analysis for AHI and BC traits of Chouardia litardierei in GEMMA multivariate GWAS. 

SNP Chr Position 
Reference 

allele 
Effect allele Beta1 (AHI) Beta2 (BC) mvLMM Analysis in 

GEMMA (p-value) 

736175_27 6 67903776 C G 0.5979 1.415 1.03 × 10⁻⁷ 

364607_20 13 552521276 T G -15.809 0.2513 4.56 × 10⁻⁶ 

176612_27 12 102085689 T G 0.2323 0.5946 9.45 × 10⁻⁶ 

773973_55 7 204445848 A G -12.131 0.3277 1.17 × 10⁻⁵ 

733886_34 6 5721001 G T 0.2418 0.7287 1.35 × 10⁻⁵ 

524058_56 3 148761312 T C -0.4348 -0.3413 1.38 × 10⁻⁵ 

264616_23 13 154205990 T C 0.5185 0.8123 1.44 × 10⁻⁵ 

18006_76 8 168175276 G A 0.5963 0.7048 1.67 × 10⁻⁵ 

224704_28 12 297710995 T G 0.5639 0.7713 1.92 × 10⁻⁵ 

538105_25 3 45117962 C A 0.8985 13.156 1.95 × 10⁻⁵ 

677181_33 5 3870016 G A -0.1287 -0.739 3.65 × 10⁻⁵ 

108764_25 10 185320554 T G -0.3746 0.443 4.14 × 10⁻⁵ 

524057_35 3 148761135 C A 0.4288 0.3377 6.14 × 10⁻⁵ 

92521_57 10 128449310 A C 0.1445 0.4099 1.03 × 10⁻⁴ 

769653_97 7 191131828 A G 0.6619 0.7687 1.05 × 10⁻⁴ 

77194_22 9 6766688 T G -0.4583 -0.1688 1.18 × 10⁻⁴ 

766497_33 7 180578950 A G -0.02 0.3902 1.34 × 10⁻⁴ 

674817_56 5 30528207 C G 0.4579 0.7237 1.36 × 10⁻⁴ 

643010_44 5 106406258 A C 0.4711 -0.4387 1.43 × 10⁻⁴ 

368751_23 13 570896987 T A 0.8173 12.086 1.78 × 10⁻⁴ 

668508_28 5 213959178 A C -0.5816 0.1643 1.97 × 10⁻⁴ 

468248_25 1 96988857 A T -0.7511 0.6573 1.97 × 10⁻⁴ 

630601_22 4 7135974 T C -0.2828 -0.4859 2.04 × 10⁻⁴ 

274513_23 13 195179209 C A 0.6461 -0.2094 2.07 × 10⁻⁴ 

529123_19 3 168860131 T A 0.8623 -0.0234 2.45 × 10⁻⁴ 

167780_52 11 66195928 G C 0.3489 0.8378 2.54 × 10⁻⁴ 

195619_17 12 181011473 A T -0.3514 0.9959 2.63 × 10⁻⁴ 

772778_13 7 200837811 C A -0.6746 0.1614 2.90 × 10⁻⁴ 

529321_19 3 16953884 T C -0.8858 -0.7266 3.09 × 10⁻⁴ 

211566_37 12 243839810 A T 0.4811 0.0241 3.20 × 10⁻⁴ 

585482_58 4 226159268 A T 0.1996 0.7592 3.21 × 10⁻⁴ 

442856_30 1 124869628 A C -0.3202 -0.4025 3.25 × 10⁻⁴ 

112990_33 10 199377871 C A 0.3393 -0.217 3.54 × 10⁻⁴ 

775883_28 7 21276111 A G 0.9731 0.6984 3.65 × 10⁻⁴ 

178892_42 12 113762962 A G 0.3957 0.2169 3.92 × 10⁻⁴ 

265427_20 13 157460474 A G 0.4658 -0.4725 4.12 × 10⁻⁴ 

708607_31 6 102551803 G A 0.6296 -0.3405 4.36 × 10⁻⁴ 

146609_18 11 156264743 A G 0.3416 0.0919 4.37 × 10⁻⁴ 

229378_26 12 315229318 C T 0.2088 0.3259 4.50 × 10⁻⁴ 

70626_65 9 41503693 T C -0.3768 -10.127 4.54 × 10⁻⁴ 

322_26 8 101414222 C T 0.8316 -0.4206 5.01 × 10⁻⁴ 

149663_69 11 166136268 T C 0.8973 -0.1638 5.09 × 10⁻⁴ 

365305_47 13 555442390 A G 0.6108 11.891 5.10 × 10⁻⁴ 

360080_19 13 534790477 C T 0.6631 13.626 5.24 × 10⁻⁴ 

20248_53 8 18385940 A G 0.3844 0.5787 5.30 × 10⁻⁴ 

9058_15 8 137969173 A G 0.7381 0.8322 5.47 × 10⁻⁴ 

170461_26 11 7610629 A G -0.3711 -0.1396 5.70 × 10⁻⁴ 

13864_52 8 154615308 C A 0.5852 0.2518 5.73 × 10⁻⁴ 
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mvLMM in GEMMA was fitted on 23,315 SNPs. AHI, Average Height of Inflorescences per genotype; Chr, Chromosome; BC, 

Bulb count; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism. 

 

427675_39 13 814235512 A T 0.2918 0.6833 5.73 × 10⁻⁴ 

774577_45 7 206386106 T A 0.0031 0.636 6.18 × 10⁻⁴ 

650985_26 5 143049003 C T 0.4261 12.124 6.46 × 10⁻⁴ 

771180_71 7 196132350 C A -0.5368 -0.3073 6.71 × 10⁻⁴ 

68322_22 9 34484978 G A -0.4129 -0.225 6.85 × 10⁻⁴ 

667179_22 5 208973401 T G -0.6511 0.0569 7.68 × 10⁻⁴ 

238115_20 12 46592935 A T 0.2443 10.283 7.86 × 10⁻⁴ 

738313_35 6 8070864 G T 0.2117 -0.3262 8.41 × 10⁻⁴ 

718968_54 6 14451537 A G 0.677 0.8042 8.45 × 10⁻⁴ 

715340_33 6 128544256 T A -0.5495 0.35 8.51 × 10⁻⁴ 

473972_18 2 102121380 A G 0.1559 0.6482 8.90 × 10⁻⁴ 

240119_70 12 54071168 T A -10.754 -0.0847 8.97 × 10⁻⁴ 

157538_21 11 25491070 A C -0.1713 0.9383 9.30 × 10⁻⁴ 

38147_41 8 90743188 G T 0.1764 0.4746 9.42 × 10⁻⁴ 

22031_53 8 25314160 A G -0.0928 0.2756 9.69 × 10⁻⁴ 

634131_58 4 885019 A G 0.1445 1.074 9.88 × 10⁻⁴ 
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Figure 1. Frequency of effect alleles across populations for significant SNPs identified in the single-SNP LMM analysis (GEMMA and GMMAT), 

as well as the multi-SNP BSLMM analysis, all of which surpassed the genome-wide significance threshold (1 × 10⁻³). The analysis also includes 

SNPs meeting the same threshold in the multivariate GWAS. The corresponding SNPs are detailed in Table 2 and Table 4 of the manuscript. 

Overlapping points of different colors represent SNPs associated with different traits, with each color corresponding to a specific trait. The overlap 

occurs because some SNPs are shared across traits, leading to their placement one in front of the other. AHI, Average Height of Inflorescences; 

BC, Bulb Count; TFC, Total Flower Count. 
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Due to size constraints, the following additional files are not reproduced in this thesis but can be accessed at the journal’s website (BMC Plant 

Biology, DOI: 10.1186/s12870-025-06617-4): 

Additional File 5: EggNOG output file for the 83 most significant SNP loci associated with four distinct bioclimatic variables, identified as being 

most relevant to the traits under investigation. 

Additional File 12: EggNOG output file for 12 SNPs that exceeded the genome-wide significance threshold (1 × 10−3) in both the single-SNP 

LMM and multi-SNP BSLMM analyses of the Chouardia litardierei traits: TFC, AHI, and BC. 

Additional File 13: EggNOG output file for 13 SNP loci that exceeded the genome-wide significance threshold (1 × 10−3) in the multivariate 

GWAS analysis of the Chouardia litardierei traits: AHI and TFC. 

Additional File 14: EggNOG output file for 2 SNP loci that exceeded the genome-wide significance threshold (1 × 10−3) in the multivariate GWAS 

analysis of the Chouardia litardierei traits: AHI and BC. 
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