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1. Introduction

The stability of the Ekman boundary layer is of in-
terest largely due to the observed similarity between
large-scale lineal structures in the atmosphere and the
roll structure of the primary instabilities of the lJaminar
Ekman layer. Although many of the large-scale rolls in
the atmospheric boundary layer are dominated by con-
vective mechanisms, the role of shear instabilities in
initiating vertical motions preceding cloud develop-
ment has been suggested by several researchers, nota-
bly Faller (1965), Brown (1980), and Etling and
Brown (1993).

Examination of laminar Ekman layer instability by
experimental studies (see Faller 1990) and through the
solution of the linearized instability equations (e.g.,
Melander 1983) has resulted in refined values for phase
speed, orientation, and critical Reynolds numbers for
two primary instabilities. The Type I instability is an
inflectional instability, which grows via extraction of
energy from the component of the mean flow perpen-
dicular to the instability roll axis and appears as a nearly
stationary wave with a critical Reynolds number of
112. The Type II instability is commonly termed a
‘‘parallel’’ instability, since it extracts energy from the
component of the mean flow parallel to the roll axis,
through an interaction with the Coriolis terms. The
Type 1I instability is observed as a rapidly traveling
wave with a critical Reynolds number of 54. Several
studies, including those of Faller, have noted that the
early onset of Type II waves may suppress develop-
ment of Type I waves, leading to speculation that the
Type II waves are an important path to turbulence in
the laminar Ekman layer. While most studies of large-
scale rolls in the atmospheric boundary layer have fo-
cused on Type I instabilities, both Type I and Type II
are observed (Shirer 1986; Stensrud and Shirer 1988).

Previous linear stability studies of the Ekman layer
have considered only temporal stability. The results
from these studies have generally compared well with
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experimental results; however, experimentally ob-
served waves tend to be more closely aligned with the
geostrophic free stream than predicted by theory
(Faller and Kaylor 1966; Tatro and Mollo-Christensen
1967; Caldwell and Van Atta 1970; a review of the
pertinent experimental findings is given by Caldwell
and Van Atta (1970)]. Since physical phenomena are
observed in a spatial reference frame, consideration of
spatial instability modes of the Type II instabilities
should prove interesting, to identify whether the ob-
served discrepancy is a result of the temporal approx-
imation. This note briefly addresses this issue.

2. Relations between temporal and spatial instability
modes

The Ekman layer linear stability problem is generally
approached as a two-dimensional problem, utilizing a
coordinate system rotated about the surface normal axis
(y) by an angle ¢ (+CCW) such that the z axis is
aligned with the axis of the instability (cf. Lilly 1966),
allowing the linear stability equations to be written

o — 20" + a'dp — ia Re[(U — ¢)
X(¢rl_a2¢)__Un¢]+2#/=O (la)
w—a’p —iaRe[(U—-c)u + Wl —2¢' =0.
(1b)

In Egs. (1a,b) the Reynolds number is based on_the
geostrophic velocity V,, the Ekman depth 6 = vv/Q,
and the molecular kinematic viscosity v, Re = V,0¢/v,
where {1 is the system rotation rate. The quantities U
and W are the x and z velocity components of the lam-
inar base flow in the rotated coordinate system, and '
denotes differentiation with respect to y. The pertur-
bation streamfunction ¢ |ju = —0y/0y, v = O¢/0x
and the spanwise velocity w take the form

lp('x, y, t) = ¢(y)ei(ﬂx~w1)
w(x,y, 1) = u(y)e' @,

(2a)
(2b)

In general, @ and ¢ are compleX, representing insta-
bilities along a continuum between temporal modes («
real) and spatial modes (¢ real). The parameters «, c,
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TaBLE 1. Ekman layer primary instability modes. Comparison of the linear solver results

with values graphically interpolated from Melander (1983).

Re a € c ¢ (ref)

54.15504 031623 —23.3261 (0.616, 5.98¢ — 4) (0.616, 0.0)
65.0 0.314 -20.8 (0.572, 6.98¢ — 3) (0.574, 6.85¢ —~ 3)
75.0 0.306 —-18.7 (0.540, 1.15¢ - 2) (0.542, 1.11e — 2)
85.0 0.300 —-17.0 (0.513, 1.49¢ — 2) (0.514, 1.48¢ — 2)
95.0 0.298 —15.6 (0.489, 1.74e — 2) (0.489, 1.73e — 2)
100.0 0.292 —-15.0 (0.482, 1.89¢ — 2) (0.482, 1.88¢ — 2)
105.0 0.289 -14.5 (0.473, 1.98¢ — 2) 0471, 1.98¢ — 2)
115.0 0.287 —13.1 (0.452,2.14¢ — 2) (0454, 2.14¢ — 2)
125.0 0.283 -12.0 (0.435,2.28¢ — 2) (0439, 2.29¢ — 2)
150.0 0.275 -10.0 (0.402, 2.56¢ — 2) (0.400, 2.56¢ — 2)

and w = ac have distinct physical significance: the
wavenumber is given by «,, the spatial growth rate by
«; , the phase velocity by c,, the frequency by w,, and
the temporal growth rate by w;, where the subscripts r
and i indicate real and imaginary parts of the complex
value, respectively. Temporal solutions are considered
unstable if ¢ (or w) grows with ¢, that is, if w; > 0.
Similarly, spatial solutions are unstable for «; < 0.

Typically, linear stability studies consider.only the
temporal modes, solving (1a,b) as a linear eigenvalue
problem for ¢, assuming fixed values for «, and Re. It
is possible to obtain directly the spatial modes (e.g.,
Danabasoglu and Biringen 1990) by assuming w, and
Re and solving the nonlinear eigenvalue problem for
a. In an alternative and simpler approach, the spatial
eigenvalues may be determined from a knowledge of
the temporal instability modes and the group velocity
Ow,/ da,.

Gaster’s relations (1962) allow the spatial eigenval-
ues to be obtained from temporal eigenvalues, using
the temporal eigenvalues to compute the group veloc-
ity. Denoting the temporal modes by (7') and the spatial
modes by (§), Gaster’s relations may be summarized
as

a,(T) =~ a(S) (3a)
wA(T) = w,(S) (3b)
w; (T) — _a_w_r

@ (S)  ba,’ (3¢)

which are accurate for parallel, two-dimensional
boundary layers to O(w?), under the condition that
Ow;/da; is of the same order as the maximum temporal
growth rate at the Reynolds number of interest.

As Gaster’s analysis considers only the relation be-
tween « and w, (3a,b,c) may be immediately applied
to the Ekman layer to evaluate the spatial eigenvalues
from the results of temporal-mode computations.

3. Discussion of results

Equations (1a,b) were solved for the eigenvalues ¢
and eigenvectors ¢ and y at given Re and « using a

second-order finite-difference method and QZ eigen-

value solver (Van Dooren 1982). The technique was
validated by comparison of eigenvalues and eigenvec-
tors with Melander (1982); a list of eigenvalue com-
parisons for the Type Il instability is presented in Table
1. Temporal eigenvalues were computed for Reynolds
numbers of 65 and 100; group velocities were corn-
puted from the temporal data using fourth-order finite
differences, and the spatial eigenvalues were computed
from (3a,b,c). Figure 1 presents both temporal and spa-
tial growth rate contours for Re = 65 and Re = 100.

The spatial evolution of small amplitude distur-
bances in the Ekman layer was also investigated using
a three-dimensional, time-dependent, incompressible
Navier—Stokes solver to numerically integrate the gov-
erning equations by a mixed spectral~finite difference
method (Danabasoglu et al. 1991), as an adjunct to a
related study (Marlatt and Biringen 1994). In the pres-
ent simulations, prescribed time-dependent inflow ve-
locity perturbations are allowed to grow in a spanwise
periodic domain, using a nonreflective outflow bound-
ary condition. The inflow conditions consisted of per-
turbation velocities derived from the eigenvectors of
the linear instability equations (1a,b) and transforming
the temporal eigenvalues using (3a,b,c). Note that the
Gaster transformations do not affect the eigenvectors;
that is, the eigenvectors for the temporal and spatial
cases are identical. A comparison of the perturbation
velocity contours obtained from a numerical simulation
at Re = 65 and those from the linear theory is presented
in Figs. 2a and 2b, showing excellent agreement. The
small amplitude errors noted far from the wall, espe-
cially in the u velocity contours, arise from coarse com-
putational grid resolution in these regions. The close
agreement of the direct simulation results with the spa-
tially evolving linear solution confirms the applicability
of the Gaster relations to the Ekman layer stability
problem.

4. Conclusions

Gaster’s theoretical relationship between temporally
and spatially evolving instability modes has been ap-
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Fic. 1. Temporal (w;) and spatial («;, dotted) growth rates. (a) Re = 65. Contour interval 0.0005 for w; and —0.0005 for «;; minimum
contour levels 0.0 and —0.002 for w; and «;, respectively. (b) Re = 100. Contour interval is 0.001 for w; and —0.001 for «;; minimum contour
levels 0.0 and —0.011 for w; and a;, respectively.
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FIG. 2. Perturbation velocity contours at Re = 65 from direct numerical simulation results (solid lines) and from spatial linear stability
solutions (dotted lines). Contours of (a) u and (b) v perturbation velocities. Contours for w show similar agreement with linear theory.
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plied to the Ekman-layer Type II instability. Linear re-
sults were compared with results from a direct simu-
lation, confirming the applicability of Gaster relations
to the Ekman-layer stability problem.

In both of the cases examined, the least stable spatial
mode is more closely aligned with the geostrophic free
stream than is the temporal mode. In Fig. 1b, the least
stable spatial mode is nearly parallel to the geostrophic
wind vector, while the temporal mode is oriented ap-
proximately 15° clockwise. This shift in orientation
may explain the discrepancies between the experimen-
tally observed Type II waves and the results of tem-
poral linear theory.

This is interesting from an atmospheric perspective,
given that the longitudinal vortices observed in the at-
mosphere also tend to be more closely aligned with the
geostrophic wind direction (Brown 1980). Whether
persistence of transitional structures into higher Reyn-
olds number flows plays a role in large-scale lineal
structures in the atmosphere remains an open question;
results presented here indicate that attempts to answer
this question might benefit by considering the spatial
evolution of such structures.
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