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15 The Geostrophic Momentum Approximation and the Semi-Geostrophic
Equations in Isentropic Coordinates

15.1 Introduction

An emerging view in atmospheric dynamics is that the sintplesy to diagnose or predict balanced flows is
through the use of the Rossby-Ertel potential vorticity senitropic surfaces. This is sometimes referred to as “IPV
thinking” or “IPV modeling”. While it is true that the use ofastropic coordinates and the Rosshy-Ertel potential vor-
ticity dates back about sixty years (Rossby, 1937, 1940;tytumery, 1937; Ertel, 1942), the modern view has added
much—most notably the concepts of balance, invertibilitgt #ansformed horizontal coordinates. The modern view
involves two main mathematical principles—the potentiatieity conservation principle as the prediction equation
and the invertibility principle as the diagnostic equatiorbtain the balanced wind and mass fields from the potential
vorticity field. IPV thinking can lead to increased insightd such phenomena as the formation of cutoff cyclones and
blocking anticyclones, Rossby wave propagation, and tiarobarotropic instability.

An important advantage to be exploited here is that whichaised by using IPV modeling in conjunction with
certain horizontal coordinate transformations. This ad&ge is gained when the IPV approach is used with a filtered
model which includes horizontal advection by the ageostimpart of the wind. In such situations the proper choice
of transformed horizontal coordinates can make this agepisic advection entirely implicit, which eliminates the
need to solve an additional elliptic equation.

How do we handle situations where the lower boundary is nosantropic surface? The simplest prototype
problem to treat in this regard is probably the classic pobbf surface frontogenesis by a vertically independent
deformation field. In this chapter we show how the semi-gepsiic equations in isentropic coordinates can handle
surface frontogenesis in a convenient and accurate fashion

This chapter is organized as follows. Section 15.2 revil@semi-geostrophic equations in isentropic coordinates,
and the invertibility principle in geostrophic space isided in section 15.3. In section 15.4 we show how to extend
the semi-geostrophic equations to the case where the lomerdary is not an isentropic surface by incorporating
a massless layer. The equations developed are then uselddéackssic two-dimensional frontogenesis problem in
section 15.5, and concluding remarks are given in sectiof. 15

15.2 Semi-geostrophic theory and the potential pseudo-dsity equation

We begin with thef-plane system of equations with the geostrophic momentypnoapmation. Assuming the
flow is frictionless and adiabatic, and using potential terafure as the vertical coordinate, our system becomes

% —fv+% =0, (15.1)
%}f + fu+ %—j\; =0, (15.2)
%‘4 =1I, (15.3)

Do o (g’: + gz) o, (15.4)

where

oM 8M) (15.5)

(fvg7 —fug) = <8:p’ 8731

define the components of geostrophic velocity, v) are the horizontal components of the total velocily, =
¢p (p/po)” is the Exner function)M = 611 + ¢ the Montgomery potential witky the geopotentialy = —dp/96
the pseudo-density, and

the material derivative.
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As shown in Appendix G, by combiningandy partial derivatives of (15.1) and (15.2), one can deriveeiipgation

D¢ Ou Ov\
Dt +¢ (83“ + 8y) =0, (15.7)

for the quantity
Ovg  Oug  10(ug,vg)
_ P9 Y%, 2 29 15.8
It Ty Tty 158
which we refer to as the isentropic absolute vorticity, iBwiof (15.7). We can eliminate the isentropic divergence
between (15.4) and (15.7) to obtain

Do*

B = 0, (15.9)
where

oc* = %U (15.10)

is the potential pseudo-density. According to (15.10) thteptial pseudo-density involves the wind figldind the
mass fields. Since¢ can be expressed in terms @f andv, and hencel through geostrophic balance (15.5),
and sinces can be expressed in termsldfand hencel/ through hydrostatic balance (15.3), there exists a second-
order partial differential equation relatily ando*. This equation, along with its associated boundary coouti
is usually referred to as the invertibility principle. Thuse have (15.9) as a predictive equation &dr and an
associated invertibility principle from which we can diage) from a knowns*. However, wherD /Dt is expressed
in physical space by (15.6), (15.9) involves advection kg tiftal wind, in which case the predictive equation for
o* and the invertibility principle do not form a closed systeffhis is the point at which geostrophic coordinates
(X,Y,0,T) = (xz+vy/f,y —ug/f,0,t) enter the picture. The transformation to geostrophic coatés makes the
horizontal advecting velocity geostrophic, so that (1B&yomes

do* do* do™

ar TMrax Tligy T

which is the fundamental predictive equation of the modelc&ise the prediction ef* is then performed in geostro-
phic coordinate space, the invertibility principle must@abe formulated in this space.

0, (15.11)

15.3 Invertibility principle in geostrophic space

Introducing the Bernoulli functiod/* = M + %(ug + vg), it can be shown that the geostrophic and hydrostatic
relations in(X, Y, ©) take the form

(15.12)

(Fog, — fuug,TI) = (aM* OM* 8M*),

X Y 7 90
which is identical to the form taken ifx, y, 6). To prove the first entry, note that

oM _0M 0z 0M Oy
0X  Oxr 0X = Oy 0X

O(fx) O(fy)

~YTox T MTax
a(fX_Ug)_u Y +uy)

T T 9T X
ov ou
=fvg = vy ~ gy

where the geostrophic relations and the geostrophic coatelidefinitions have been used. Taking the last two terms
over to the left hand side, we obtadd/* /0X = fv,, which is the first entry in (15.12). The second and thirdiestr
in (15.12) can be obtained in a similar manner.
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Also, the isentropic vorticity i X, Y, ©) takes the form

f_ 0z,y) 1 (O, Ouy 1 O(ug,vg)

C_é’(X,Y):1 f(ax_ay) X,y (15.13)

Thus,s* depends only oid/*, and we again conclude that the wind and mass fields can iciplerbe obtained from
o* if we can somehow invert it to obtaih/*.
The relation betweed/* ands* is derived as follows. From the definition ef and (15.13) we have

O(z,y,10)

Lo* — 15.14
ax.ve 1T =0 (15.14)

wherel' = dII/dp = «II/p. Expressinge andy in terms ofu, andv,, and then using (15.12), we can write (15.14)
as

0*M* 2 M O*M*
X2 AYOX 000X
27 1 2 7 Ve

% 0*M OM™_ pp OM I poe ) (15.15a)
4 oxoy Y2 000Y
0> M* 0> M~ 0> M*
0X00 Y 00 002

If the upper boundary is an isentropic surface with potémimperature®, and the Exner functiobhl—or equiva-
lently the pressurg;—is specified there (e.g., constant for an isobaric top), gpeuboundary condition for (15.15a)
is simply

oM*

00

Likewise, if the lower boundary condition is the isentropigrface® = ©p and the surface geopotentiak is
specified there (e.ghas = 0 for a flat lower boundary), thed = OI1 + ¢ at® = O . Written in terms ofM *, this
lower boundary condition becomes

oM* 1 OM*N\*  [oM*\?
M* — - —
9% 2f2[(ax>+(ay)
Together with appropriate lateral boundary conditiongjaipns (15.11), (15.12) and (15.15) form a closed system.
The computational scheme is as follows: knowirig solve (15.15) ford/*; use (15.12) to compute, andv,; use

these geostrophic winds in (15.11) to predict a new However, to make the system useful for modeling realistic
flows we must relax the assumption of an isentropic lower bdawn

= HT at 0= @T- (1515b)

—¢s at ©=065 (15.15c¢)

15.4 The massless layer approach

To apply the semi-geostrophic equations when the lower thanis not necessarily an isentropic surface, we
adopt an approach which has proved useful in such contextseadefinition of available potential energy (Lorenz,
1955), the analysis of baroclinic instability (Brethertd®66; Hoskins et al., 1985; James and Hoskins, 1985; Hsu
and Arakawa, 1990), and the finite amplitude Eliassen-Pagarem (Andrews, 1983). The key idea is to think of an
isentropic surface which intersects the earth’s surfa@atnuing just under the earth’s surface with a pressuuakeq
to the surface pressure. At any horizontal position wherm dvstinct isentropic surfaces run just under the earth’s
surface (and hence have the same pressure), there is noragssd between them, so theit = ¢ = 0 there. This
“massless layer” approach is consistent with Brethert(@66) conclusion that “any flow with potential temperature
variations over a horizontal rigid plane boundary may bestmgred equivalent to a flow without such variations, but
with a concentration of potential vorticity very close teethoundary.” We have simply replaced Bretherton’s thin
sheet of infinite potential vorticity with a thin sheet of agrotential pseudo-density.

We extend the semi-geostrophic equations to the masshgmisda follows. We first let the surface geopotential
and potential temperature be givendy(z, y,t) andfs(z,y, t), respectively, so that

¢($,y,95($,y,t),t) = (z)S(xvyvt)? (1516)
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and definep andp for § < 6¢ by

¢(x,y,0,t) = ¢s(z,y,t),  plz,y,0,t) =ps(x,y,t) = p(x,y,0s,1). (15.17)
From the definitions o, II, and M/ we then obtain
o=0, I = IIg = I(ps), M = 0llg + ¢g (15.18)

for 6 < 6. We note thap, II, andM are continuous & = 0g, buto jumps discontinuously frora = 0 for 0 < 65 to

o > 0forf > 0s. Also, p andIl are constant in the massless layer, whilevaries linearly withy there. From (15.18)
we see that the hydrostatic relation (15.3) hold¥ffer 6s; a careful analysis shows that it also holdg at 5. Then
defining(ug, vg) for < s by (15.5) and definingu, v) so that (15.1) and (15.2) hold in the massless layer complete
the extension of semi-geostrophic theory. Since the gavgraquations and definitions all apply unchanged in the
massless layer, the derivation of the potential pseudsitieequation, the transformation to geostrophic cooridisa
and the derivation of the invertibility principle all proee exactly as in section 15.2 and section 15.3.

We thus conclude that (15.11), (15.12), and (15.15) arel walihe massless layer. The lower boundary condition
(15.15¢) is in fact valid anywhere th&iz < ©g holds; for convenience, we choose a constant v&yewhich
satisfies this constraint everywhere, and apply (15.15¢) atrather than a©g. We then predict the evolution
of the entirec* field (including the zero potential pseudo-density regiaith (15.11). Of courseg* = 0 in the
massless layer, but the boundary of the region may move.eShis boundary is the surface potential temperature,
i.e., that value o at whicha™* jumps from zero to a positive value, this procedure alsoipte®s. Any numerical
method used to solve (15.11) must cope properly with theodisicuity ino* at © 5. However, workable schemes do
exist. For example, recently Arakawa and Hsu (1990), in traext of solving (15.4) in a primitive equation model,
have proposed a finite difference scheme which has very sfhisglipation and computational dispersion and which
guarantees positive definiteness. Note, however, thatifoemtinuity inc* presents less of a problem in solving
(15.15) numerically, since* plays the role of the forcing, rather than the solution, anddt differentiated.

15.5 Frontogenesis by horizontal deformation fields

Let us now reconsider the two-dimensional frontogenesiblpm of Hoskins (1971, 1972) and Hoskins and
Bretherton (1972). Fronts oriented in thalirection are assumed to be forced by a pure deformatioo $iekhat

ug(‘xa Y, 07 t) = —ax, (1519a)
vg(w,y,0,t) = oy +vy(x,0,t), (15.19b)

with the first terms on the right hand side representing thedfi¢or “slowly” varying) deformation field and the,
term representing the rotational flow generated during thietbgenesis. Assuming* is independent of so that

80*_87X80*+87Y80*_
oy Oy 90X = Oy oY

and using the definitions ¢fX, Y') and the assumptions (15.19) we obtain

Oo* a Oc*

0 (15.20)

5y = X (15.21)
Using this result in (15.11), we obtain
oo* do*
o7 aX I 0. (15.22)
The solution of (15.22) is given by
o (X,0,T) =0" (Xe*T,0,0). (15.23)

For the initial condition we assume that takes on the constant value- in the top part, the larger constant
valueop in the bottom part, and a zero value in the massless regioneofmiodel atmosphere. These three regions
are separated by the tropopause interface potential terypef; (x) and the surface potential temperattggz). To
allow the possibility of smoothing discontinuous jumpssihover small ranges specified Y95 andAf#; we set

. 0 —0g 0 —0;
o*(x,0,0) = % |:0‘T +op tanh( A5 ) —(op — UT)tanh< A0 )] , (15.24)
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which reduces to

or, 0r(x,0) <0 < 0r
c*(2,0,0) =< op, 0s(x,0) < 6 < 0;(x,0) (15.25)
0, 0  <0<0s(z,0)

in the limit asAfs — 0 andAd; — 0. If the z-derivatives ofs(x, 0) andd;(z,0) are sufficiently small, the relative
vorticity associated with this initiat* field will be much less thaif ando* will approximately equab. Then we can
integrate (15.24) frondg to 61 to obtain

ps(x,0) —pr = § [or(07 — 05) + o05As — (05 — or)Al], (15.26a)
where
Ag = Absn { ZZEE[[EZZ - Zz %igj } (15.26b)
and
A; = A6 In { zzil&zz - Zi ;;231 % } . (15.26¢)

We note thatds — 01 — 20g + 05 asAfs — 0andA; — O0p — 20; + 0 asAf; — 0. If o # op then (15.26)
determines the interface potential temperatyréhis must be computed numerically§6; > 0); otherwise, there is
no interface, and (15.26) serves as a constraint on the comaloesr = op.

For the initial surface potential temperature we specify

0s(x,0) = O + A0 [1 + tanh (%)} : (15.27)

and specify the initial surface pressure(x,0) = pp = constant. Here we use the valuess = 80 = 2 kPa/K,

pr = 5 kPa,0r = 400 K, pp = 100 kPa,fp = 265 K, andAf# = 17.5 K. Figure 15.1a shows the initial (analytical)
0 field as a function ofc andp with Ad; = 5 K and Afg = 0 K; part (b) shows the corresponding initiaf field
(15.24) as a function ok and© (the smoothing at the tropopause is not shown). Singg(cp — or) = 8/7,

the potential temperature variation on the tropopauseightty larger than the potential temperature variation at
the surface. According to (15.23) the two boundaries betvibe threes* regions simply steepen as frontogenesis
proceeds.

The structure of the evolving front was computed at seveahles ofat by evaluating the potential pseudo-density
o* analytically from (15.23) and (15.24), and then solving itheertibility relation numerically as follows. With the
assumption ofj-independence, (15.15) reduces to a two-dimensional @nolrh X and© [c.f. (15.21)]. Although
X is scaled by the factoy/1 + a2/ f2, assuming that the deformation field is weak (ices< f), this factor may be
dropped. The lower boundary is taken to be fla$ (= 0) and the top isobarig(= pr). A 256 x 32 grid was used,
covering the domain-4 < X/L < 4 shown in Fig. 15.1. At the lateral boundari#t* was computed by assuming
it to be independent ok, and solving (15.15) as a boundary value problen®innly. For clarity, only the central
portion—1 < X/L < 1 of the computational domain is shown in the subsequent figure

Figure 15.2 shows the front att = 1. Part (a) shows the potential pseudo-densityevaluated on the compu-
tational grid, part (b) shows the wina() and massy) fields in the geostrophic/isentropic coordinatés ©), and
part (c) shows the windv() and mass#) fields in the physical coordinatés, p). A dotted line on each figure in-
dicates the earth’s surfac@s(or ps). It is interesting to note that the fields in the masslessrdlyig. 15.2b) satisfy
the assumptions given in section 15.4, even though thesengsi®ns were not incorporated into the numerical solver.
Corresponding results at a later time (= 2) in Fig. 15.3 show the surface front and corresponding wiegrospheric
jet strengthening.

An interesting feature of the semi-geostrophic systemas ithpredicts the development of a true discontinuity
in finite time (Hoskins and Bretherton, 1972). This resultliso obtained in the isentropic coordinate formulation
employed here. Figure 15.4 shows the computed structutgedfont atat = 3. However, the transformation from
geostrophic X) to physical ¢) coordinates has broken down at this time, so the fields showdig. 15.4c contain
some error. This is most clearly seen in Fig. 15.5, which shevas a function ofX; note that at the surfacé,
has become a multiple-valued functionzgfso in fact a true discontinuity has developed. In the reabaphere, of
course, physical processes neglected in this study (eajioh or Kelvin-Helmholtz instability along the front) euld
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become significant before this time; this point is addressedore detail in Hoskins and Bretherton (1972). Away
from the surface discontinuity the computed fieldsait= 3 should be approximately correct; we see in Fig. 15.6 that
the model has begun to develop the folded tropopause ckasditt of strong fronts in the real atmosphere (Shapiro et
al., 1987). The low-level minimum of* in Fig. 15.6 is an artifact of the coordinate transformatiwhich has broken
down near the surface front.

15.6 Concluding remarks

We have now seen that the most concise versioftplane semi-geostrophic theory is that version which makes
simultaneous use of isentropic and geostrophic coordinaléhe use of isentropic coordinates for adiabatic flow
simplifies the material derivative operator to (15.6), whihe use of geostrophic coordinates further simplifies the
horizontal advection by making it geostrophic. The fundatakpredictive equation for potential pseudo-densitynthe
takes the simple form (15.11), and the invertibility priplei (15.15) closes the theory. This basic structure of aedos
theory based on a predictive equation or and an invertibility principle ford/* is maintained in thes-plane and
hemispheric generalizations of semi-geostrophic thebimg combined use of isentropic and generalized geostrophic
coordinates is crucial for the mathematical simplicity loé$es-plane and hemispheric semi-geostrophic theories.

Problems

1. Prove that, in the two-dimensional frontogenesis céeeinvertibility relation (15.15a) reduces to

1 o2\ &2M* ) 92 M+ o2 92N 2 L
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(a) potential temperature

(b) potential pseudo-density
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Figure 15.1: (a) Initial &t = 0) 6 field in («, p) space; (b) Corresponding initial* field in (x, #)-space.
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Figure 15.2: Structure of the frontat = 1: (a) o™ in (z, p)-space, (bp andv, in (X, ©)-space, and () andv, in
(x, p)-space. Dashed contours represent 0 (out of the paper) and dotted lines represent the earthfaceirNote
the change in th& scale from Fig. 15.1. 15-8
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Figure 15.3: Same as Fig. 15.2 excephat= 2.
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15.7 Historical notes and references

Two ideas which underlie most of our discussion are the geplsic momentum approximation and the transfor-
mation to geostrophic coordinates in the horizontal ortisigric coordinates in the vertical. The geostrophic momen-
tum approximation was first briefly discussed by Eliassehsnanuch with the goal of producing a theoretical model
but rather of introducing a formula from which the wind collel calculated using geopotential observations.

e Eliassen, A., 1948: The quasi-static equations of mot®aofys. Publ.17, No. 3.

Later, Fjgrtoft studied the geostrophic momentum appraiom with the goal of eventual numerical solutions.
Although Fjgrtoft did not use geostrophic coordinates, likrdalize the advantage of vertical derivatives along the
absolute vorticity vector. He also recognized that the gephic momentum approximation and the quasi-geostrophic
approximation should give similar results except for horital distortions and vertical tilts.

e Fjartoft, R., 1962: On the integration of a system of gegstically balanced prognostic equatiorfoc. Int.
Symp. Numerical Weather Predictiddeteorological Society of Japan, 153-159.

e Fjgrtoft, R., and B. 8derberg, 1965: A prediction experiment with filtered eduagt. NCAR Manuscript No.
59, 33 pp.

Geostrophic coordinates were apparently first introdugedualin.

e Yudin, M. I., 1955: Invariant quantities in large-scale aspheric processe3r. Glav. Geofiz. ObseryNo. 55,
3-12.

The paper by Yudin is in Russian but an English summary caoted in Phillips et al.

e Phillips, N. A., W. Blumen, and O. R. Cet 1960: Numerical weather prediction in the Soviet Unidull.
Amer. Meteor. So¢cA1l, 599-617.

Yudin apparently did not make use of the geostrophic mommrdpproximation. The first use of the geostrophic
coordinate in the western literature was by Eliassen in toidysof the two-dimensional vertical circulation in frohta
zones. This paper gives the two-dimensional version off/(4and (14.71).

The first exploitation of both the geostrophic momentum agjmnation and the geostrophic coordinate was in the
two-dimensional frontogenesis studies of Hoskins (197t)ldoskins and Bretherton (1972).

e Hoskins, B. J., 1971: Atmospheric frontogenesis: sometisois. Quart. J. Roy. Meteor. SQ@7, 139-153.

e Hoskins, B. J., and F. P. Bretherton, 1972: Atmospherictbganesis models: mathematical formulation and
solution.J. Atmos. Sci.29, 11-37.

Later, a comprehensive semi-geostrophic theory in thregedsions was worked out by Hoskins (1975) and
Hoskins and Draghici (1977). These papers should be reagais 8 understand the complete theory.

e Hoskins, B. J., 1975: The geostrophic momentum approxanathd the semi-geostrophic equatiofisAtmos.
Sci, 32, 233-242.

e Hoskins, B. J., and I. Draghici, 1977: The forcing of agemsiiic motion according to the semi-geostrophic
equations and in an isentropic coordinate modeAtmos. Sci.34, 1859-1867.

At the time the first paper was written the forms of the gerieedl omega equation and the generalized Eliassen
cross-front circulation equation were apparently not kno®ince the generalized omega equation is written with the
forcing as the divergence of th@-vector, the quasi-geostrophic omega equation can alsarittemthis way. For a
discussion of the quasi-geostrophic omega equation irsteft@-vectors, see

e Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new labkhew-equation.Quart. J. Roy. Meteor. Sqc.
104, 31-38.

15-12



CSU ATS601/602 Spring 2011

e Trenberth, K. E., 1978: On the interpretation of the diadgicaguasi-geostrophic omega equatidvion. Wea.
Rev, 106, 131-137.

Detailed studies of frontogenesis in semi-geostrophicetwldave been made by

e Hoskins, B. J., 1972: Non-Boussinesq effects and furthegldpment in a model of upper tropospheric fronto-
genesisQuart. J. Roy. Meteor. Sq@8, 532-541.

e Hoskins, B. J., 1974: The formation of atmospheric front&astream in a deformation fieldl. Fluid Mech,
64, 177-194.

e Blumen, W., 1980: A comparison between the Hoskins-Brédimemodel of frontogenesis and the analysis of
an intense surface frontal zon&.Atmos. Sci.37, 64-77.

Imposing a horizontal deformation field is one way of forcfmgntogenesis. A more realistic way is to start from
a baroclinically unstable zonal flow and allow the develgparoclinic wave to force frontogenesis. In this regard
Eady waves and uniform potential vorticity flows have beewligtd by

e Hoskins, B. J., 1976: Baroclinic waves and frontogenesdst IPIntroduction and Eady wave®uart. J. Roy.
Meteor. So0¢.102, 103-122.

e Hoskins, B. J., and N. V. West, 1979: Baroclinic waves andtisgenesis. Part II: Uniform potential vorticity
jet flows—cold and warm frontsl. Atmos. Sci.36, 1663-1680.

e Heckley, W. A., and B. J. Hoskins, 1982: Baroclinic waves fradtogenesis in a non-uniform potential vorticity
semi-geostrophic modell. Atmos. Scj.39, 1999-2016.

e Blumen, W., 1978a: Uniform potential vorticity flow: PartTheory of wave interactions and two-dimensional
turbulence J. Atmos. Sci.35, 774—-783.

e Blumen, W., 1978b: Uniform potential vorticity flow: Part h model of wave interactionsl. Atmos. Scij.35,
784-7809.

e Blumen, W., 1979: Unstable nonlinear evolution of an Eadyenia time-dependent basic flows and frontoge-
nesis.J. Atmos. Sci.36, 3—11.

A study of the energy cascade predicted by the semi-gedstréipeory of frontogenesis can be found in

e Andrews, D. G., and B. J. Hoskins, 1978: Energy spectra ptediby semi-geostrophic theories of frontogen-
esis.J. Atmos. Sci.35, 509-512.

An interpretation of geostrophic coordinates as a kind otact transformation has been given by

e Blumen, W., 1981: The geostrophic coordinate transforomati. Atmos. Sci.38, 1100-1105.
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