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14 The Geostrophic Momentum Approximation and the Semi-Geostrophic
Equations in Pseudo-Height Coordinates

14.1 Geostrophic momentum approximation on an f -plane

In midlatitude cyclones the relative vorticity is often comparable with the Coriolis parameter, particularly in frontal
regions. This raises the question of the validity of quasi-geostrophic theory in simulating the life cycle of midlatitude
cyclones. We now proceed to develop semi-geostrophic theory. Like quasi-geostrophic theory, semi-geostrophic
theory is a filtered theory in that it does not possess solutions corresponding to freely propagating gravity waves.
However, semi-geostrophic theory contains less approximations than quasi-geostrophic theory. The additional physics
in semi-geostrophic theory is crucial for the simulation ofcertain nonlinear aspects of cyclones, especially fronts.

Semi-geostrophic theory has two parts—the geostrophic momentum approximation and the transformation to geo-
strophic coordinates. The geostrophic momentum approximation to the primitive equations (13.13)–(13.17) is
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where

fug = −
∂φ

∂y
, fvg =

∂φ

∂x
.

These equations form a balanced system in that they cannot describe gravity wave propagation. In comparing the
semi-geostropic equations (14.1)–(14.5) with the quasi-geostrophic equations (13.19)–(13.23) we note that (14.1) and
(14.2) include momentum advection by the horizontal ageostrophic motion and by the vertical motion. In addition,
the thermodynamic equation (14.5) is exact as opposed to thequasi-geostrophic version (13.23).

The semi-geostrophic equations (14.1)–(14.5) possess a very reasonable vector vorticity equation and potential
vorticity equation. These are not simple to derive, and the details are given in Appendix F. The three-dimensional
vorticity equation is
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.

The potential vorticity conservation relation is
DP

Dt
= 0, (14.7a)

where

P =
1

ρ
ζg · ∇θ. (14.7b)

Note that the semi-geostrophic potential vorticity principle (14.7) is identical to the primitive equation potentialvor-
ticity principle except that the vector vorticityζ is approximated byζg. The approximation could also, therefore,
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be referred to as the geostrophic potential vorticity approximation. The extra term in the definition of vorticity is
necessary for mathematical consistency. However, in most flows of interest it is only a small correction.

Now consider the energy principle associated with the semi-geostrophic equations (14.1)–(14.5). To obtain the
kinetic energy principle we multiply (14.1) byug, (14.2) byvg, (14.3) byw, and then sum the results, using the
geostrophic relations, to obtain

∂Kg
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∂z
=

g

θ0
wθ, (14.8)

whereKg = 1

2
(u2

g + v2

g) is the geostrophic kinetic energy per unit mass. Using the continuity equation (14.4), we can
put (14.8) in the flux form

∂(ρKg)

∂t
+
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∂x
+
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∂y
+
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∂z
=

g

θ0
wθρ. (14.9)

Integrating (14.9) over the entire volume, assuming there are no net fluxes ofKg or φ across the boundaries of the
domain, we obtain the kinetic energy principle

d
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∫∫∫

1

2
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g + v2

g

)

ρdxdydz =
g

θ0

∫∫∫

wθρdxdydz. (14.10)

Note that the semi-geostrophic kinetic energy principle (14.9) is different than the quasi-geostrophic kinetic energy
principle (13.32), but that the integrated semi-geostrophic form (14.10) is identical to the integrated quasi-geostrophic
form (13.33).

To obtain the potential energy principle, we multiply the thermodynamic equation (14.5) by−(g/θ0)z, which
yields

ρ
D

Dt

(

−
g

θ0
zθ

)

= −
g

θ0
wθρ. (14.11)

In flux form, (14.11) can be written
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g

θ0
wθρ. (14.12)

Integrating (14.12) over the entire domain, assuming thereare no net fluxes ofzθ across the boundaries of the domain,
the potential energy equation becomes

d

dt

∫∫∫
(

−
g

θ0
zθ

)

ρdxdydz = −
g

θ0

∫∫∫

wθρdxdydz. (14.13)

Note that the energy conversion term on the right hand side of(14.13) is identical, except for sign, to the conversion
term on the right hand side of (14.10). Adding the kinetic energy equation (14.10) and the potential energy equation
(14.13), we obtain the total energy equation

d

dt

∫∫∫
{

1

2

(

u2

g + v2

g

)

−
g

θ0
zθ

}

ρdxdydz = 0. (14.14)

According to (14.14), the sum of the mass integrated geostrophic kinetic energy and potential energy is conserved in
semi-geostrophic theory.

For practical numerical prediction, the form (14.1)–(14.5) is inconvenient. The fieldsug, vg, θ cannot be indepen-
dently predicted by (14.1), (14.2), and (14.5), sinceug, vg, θ are all related toφ through the geostrophic and hydrostatic
relations. In fact, only one dependent variable should be predicted, and all others should be diagnosed.

14.2 Geostrophic coordinates

So far we have discussed the primitive equations, the quasi-geostrophic equations and the geostrophic momentum
approximation to the primitive equations. These three systems of equations are summarized in Table 14.1. As we
noted in the previous section the equations with the geostrophic momentum approximation look very much like the
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primitive equations. The quasi-geostrophic equations look more approximate in that vertical advection of momentum
is neglected, horizontal advection of momentum and potential temperature is done geostrophically, and vertical motion
occurs against a standard atmosphere static stabilityN2(z). What we will now show is really quite remarkable.If
the horizontal coordinates are transformed to geostrophiccoordinates and transformed ageostrophic components
are defined, then the geostrophic momentum equations almostbecome formally identical to the quasi-geostrophic
equations.

We begin by introducing the new independent variables(X,Y,Z, T ) defined by

(X,Y,Z, T ) =

(

x+
vg

f
, y −

ug

f
, z, t

)

. (14.15)

The reason for introducingZ andT is that∂/∂Z 6= ∂/∂z and∂/∂T 6= ∂/∂t. The independent variablesX andY
are called geostrophic coordinates since, using (14.1) and(14.2), we can write

DX

Dt
=
Dx

Dt
+

1

f

Dvg

Dt
= u− uag = ug, (14.16)

DY

Dt
=
Dy

Dt
−

1

f

Dug

Dt
= v − vag = vg. (14.17)

Because of (14.16) and (14.17) we can interpret(X,Y ) as the position a particle would have if it moved with the
geostrophic velocity at every instant. Let us now relate(x, y, z, t) derivatives to(X,Y,Z, T ) derivatives:

∂

∂t
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∂

∂T
+
∂X

∂t

∂

∂X
+
∂Y

∂t

∂

∂Y
(14.18)
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∂x
=
∂X

∂x

∂
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∂x

∂
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(14.19)
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=
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∂
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+
∂Y

∂y

∂
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(14.20)

∂

∂z
=
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∂z

∂

∂X
+
∂Y

∂z

∂

∂Y
+

∂

∂Z
. (14.21)

Equations (14.18)–(14.21) can be combined to obtain

D
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=
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∂

∂z
=

∂

∂T
+
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Dt

∂

∂X
+
DY
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∂

∂Y
+ w

∂

∂Z
,

which, with the help of (14.16) and (14.17), can be written

D

Dt
=

∂

∂T
+ ug

∂

∂X
+ vg

∂

∂Y
+ w

∂

∂Z
. (14.22)

Thus, in the new coordinates the horizontal advecting velocity has become geostrophic. Where did the horizontal
ageostrophic advection go? Apparently it has become implicit in the coordinate transformation, i.e., the difference in
plotting a solution in(X,Y,Z) and(x, y, z) is essentially due to horizontal ageostrophic advection.

Defining

a =
1

f

∂vg

∂x
, b = −

1

f

∂ug

∂x
=

1

f

∂vg

∂y
, c = −

1

f

∂ug

∂y
, α =

1

f

∂vg

∂z
, β = −

1

f

∂ug

∂z
, (14.23a)

or, in terms ofφ,

a =
1

f2
φxx, b =

1

f2
φxy, c =

1

f2
φyy, α =

1

f2
φxz, β =

1

f2
φyz , (14.23b)
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Figure 14.1: Panel A shows a meridional geostrophic wind pattern that is sinusoidal in the geostrophic coordinateX
(with the meridional geostrophic wind denoted byV ). Panel B shows the transformation to the physical coordinatex,
wherex = X − V/f . WhereV > 0, there is a shift to the left, and whereV < 0, there is a shift to the right. As a
result, the anticyclonic center H is broadened and weakened, while the cyclonic center L is tightened and strengthened.
From Hoskins (1975).

we can write (14.19)–(14.21) as

∂

∂x
= (1 + a)

∂

∂X
+ b

∂

∂Y
(14.24)

∂

∂y
= b

∂

∂X
+ (1 + c)

∂

∂Y
(14.25)

∂

∂z
= α

∂

∂X
+ β

∂

∂Y
+

∂

∂Z
. (14.26)

Taking certain combinations of (14.24)–(14.26) we can showthat the inverse transformation is

J
∂

∂X
= (1 + c)

∂

∂x
− b

∂

∂y
(14.27)

J
∂

∂Y
= −b

∂

∂x
+ (1 + a)

∂

∂y
(14.28)

J
∂

∂Z
= − [α(1 + c) − βb]

∂

∂x
− [β(1 + a) − αb]

∂

∂y
+ J

∂

∂z
, (14.29)

whereJ , the Jacobian of the transformation, is the nondimensionalvertical component of absolute vorticity, i.e.

J = (1 + a)(1 + c) − b2 =
∂(X,Y )

∂(x, y)
=

1

f
k · ζg =

ζ

f
. (14.30)

Using (14.23a) we can write

− [α (1 + c) − βb] = −
1

f

∂vg

∂z
+

1

f2

∂ (ug, vg)

∂ (y, z)
=
∂(X,Y )

∂(y, z)
=
ξ

f
, (14.31)

− [β (1 + a) − αb] =
1

f

∂ug

∂z
+

1

f2

∂ (ug, vg)

∂(z, x)
=
∂(X,Y )

∂(z, x)
=
η

f
. (14.32)
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Equations (14.29)–(14.32) imply that

fJ
∂

∂Z
= ζ

∂

∂Z
= ξ

∂

∂x
+ η

∂

∂y
+ ζ

∂

∂z
= ζg · ∇. (14.33)

In other words the geostrophic space operatorfJ(∂/∂Z) corresponds in physical space to a derivative along the
absolute vorticity vector.

Defining
Φ = φ+ 1

2

(

u2

g + v2

g

)

(14.34)

and using (14.27) and (14.23a) we can write

J
∂Φ

∂X
=

[

(1 + c)
∂

∂x
− b

∂

∂y

]

[
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2

(

u2

g + v2

g

)]

= (1 + c)

(

∂φ

∂x
− ugfb+ vgfa

)

− b (−fug − ugfc+ vgfb)

=
[

(1 + a) (1 + c) − b2
] ∂φ

∂x
,

or, using (14.30),
∂Φ

∂X
=
∂φ

∂x
. (14.35)

Similarly, we can show that
∂Φ

∂Y
=
∂φ

∂y
. (14.36)

Using (14.26), (14.23a), and (14.34)–(14.36) we can write

∂Φ

∂Z
+ α

∂Φ

∂X
+ β

∂Φ

∂Y
=
∂φ

∂z
+ ug

∂ug

∂z
+ vg

∂vg

∂z
,

or
∂Φ

∂Z
=
∂φ

∂z
. (14.37)

We can summarize (14.35)–(14.37) by writing
(

fvg,−fug,
g

θ0
θ

)

=

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

=

(

∂Φ

∂X
,
∂Φ

∂Y
,
∂Φ

∂Z

)

. (14.38)

In other words the geostrophic and hydrostatic relations take the same form in geostrophic space(X,Y,Z) as in
physical space(x, y, z).

Now suppose we define the new ageostrophic components

(

u∗ag, v
∗

ag, w
∗
)

=

(

uag +
w

f2
ΦXZ , vag +

w

f2
ΦY Z ,

w

J

)

. (14.39)

Then, using (14.22), we can write (14.1) and (14.2) as

Dgug − fv∗ag = 0, (14.40)

Dgvg + fu∗ag = 0, (14.41)

where

Dg =
∂

∂T
+ ug

∂

∂X
+ vg

∂

∂Y
. (14.42)

Using (14.22) in the thermodynamic equation (14.5) we obtain

Dgθ + w
∂θ

∂Z
= 0.
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The units on the potential vorticity (14.7b) are PVU. In the geostrophic coordinates the potential vorticity will play the
role of a static stability. It is thus useful to defineqg = [g/(ρfθ0)]ζg · ∇θ = [g/(fθ0)]P and using (14.33) to write
qg = [g/(ρθ0)]J(∂θ/∂Z), we can then write the thermodynamic equation as

Dgθ +
θ0
g
qgρw

∗ = 0. (14.43)

The form of (14.43) is the same as in quasi-geostrophic theory exceptρqg has replacedN2.
The last equation we want to transform to geostrophic space is the continuity equation. To do this we start from

the vertical component of the vorticity equation. Dottingk into (14.6) and using (14.33) we obtain

D

Dt

(

k · ζg

)

= fJ
∂(ρw)

ρ∂Z
,

or, because of (14.30)

DJ

Dt
= J

∂(ρw)

ρ∂Z
,

DgJ + w
∂J

∂Z
= J

∂(ρw)

ρ∂Z
,

DgJ

J2
=

∂

ρ∂Z

(ρw

J

)

,

DgJ
−1 = −

∂(ρw∗)

ρ∂Z
. (14.44)

From (14.11) and (14.29) we have

k · ζg = fJ = f +
∂vg

∂x
−
∂ug

∂y
+

1

f

(

∂ug

∂x

∂vg

∂y
−
∂vg

∂x

∂ug

∂y

)

.

As discussed at the end of section 14.1 the last term is a smallcorrection which can be neglected at the level of the
geostrophic momentum approximation so that

fJ = f +
∂vg

∂x
−
∂ug

∂y
. (14.45)

Now application of (14.27) and (14.30) yields

J

f

∂vg

∂X
= (1 + c)

1

f

∂vg

∂x
− b

1

f

∂vg

∂y
= (1 + c) a− b2

J −
J

f

∂vg

∂X
= (1 + a) (1 + c) − b2 − a (1 + c) + b2 = 1 + c,

or

J

(

1 −
1

f

∂vg

∂X

)

= 1 + c. (14.46)

Similarly,

J

(

1 +
1

f

∂ug

∂Y

)

= 1 + a, (14.47)

and
J

f

∂vg

∂Y
= −

J

f

∂ug

∂X
= b. (14.48)

Using (14.30) we can write (14.45) as

fJ = f +
∂vg

∂x
−
∂ug

∂y
= f (1 + a+ c) .
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Using (14.46) and (14.47) this becomes

J = J

(

1 +
1

f

∂ug

∂Y

)

+ J

(

1 −
1

f

∂vg

∂X

)

− 1 ,

or, collecting the terms withJ

J =
f

f −
(

∂vg

∂X
−

∂ug

∂Y

) =
f +

∂vg

∂x
−

∂ug

∂y

f
. (14.49)

SinceJ is the dimensionless vertical component of absolute vorticity, as∂vg/∂X−∂ug/∂Y approachesf the vertical
component of absolute vorticity approaches infinity. Returning now to the derivation of the transformed continuity
equation, we substitute (14.49) into (14.44) to obtain

1

f
Dg

(

−
∂vg

∂X
+
∂ug

∂Y

)

+
∂(ρw∗)

ρ∂Z
= 0,

or
1

f

(

−
∂

∂X
Dgvg +

∂

∂Y
Dgug

)

+
∂(ρw∗)

ρ∂Z
= 0.

Using (14.40) and (14.41) we finally obtain

∂u∗ag

∂X
+
∂v∗ag

∂Y
+
∂(ρw∗)

ρ∂Z
= 0. (14.50)

Thus, even after introducing the new independent variables(X,Y,Z) and the new ageostrophic components(u∗ag, v
∗

ag, w
∗)

the form of the continuity equation is unaltered. This is indeed remarkable.
Let us now find the relationship betweenqg andΦ. Sinceqg = g

ρθ0

J ∂θ
∂Z

we can use the hydrostatic equation to
write

J−1 =
1

ρqg
ΦZZ . (14.51)

The product of (14.46) and (14.47) minus the square of (14.48) yields

J2

[(

1 −
1

f2
ΦXX

) (

1 −
1

f2
ΦY Y

)

−
1

f4
Φ2

XY

]

= J. (14.52)

Substituting (14.52) into (14.51) forJ−1 we obtain

1

f2
(ΦXX + ΦY Y ) −

1

f4

(

ΦXXΦY Y − Φ2

XY

)

+
1

ρqg
ΦZZ = 1. (14.53)

To summarize we now collect (14.40), (14.41), (14.38), (14.50), (14.43) and (14.53) into a complete system of equa-
tions in the eight unknownsug, vg, θ,Φ, qg, u

∗

ag, v
∗

ag, w
∗, all of which are functions of(X,Y,Z, T ):

∂ug

∂T
+ ug

∂ug

∂X
+ vg

∂ug

∂Y
− fv∗ag = 0, (14.54)

∂vg

∂T
+ ug

∂vg

∂X
+ vg

∂vg

∂Y
+ fu∗ag = 0, (14.55)

(

fvg,−fug,
g

θ0
θ

)

=

(

∂Φ

∂X
,
∂Φ

∂Y
,
∂Φ

∂Z

)

, (14.56)

∂u∗ag

∂X
+
∂v∗ag

∂Y
+
∂(ρw∗)

ρ∂Z
= 0, (14.57)

∂θ

∂T
+ ug

∂θ

∂X
+ vg

∂θ

∂Y
+
θ0
g
qgρw

∗ = 0, (14.58)

1

f2
(ΦXX + ΦY Y ) −

1

f4

(

ΦXXΦY Y − Φ2

XY

)

+
1

ρqg
ΦZZ = 1. (14.59)

Formally these equations are almost identical to the quasi-geostrophic equations (see Table 14.1). The differences are
as follows: (1) the independent variables areX,Y,Z, T ; (2) the ageostrophic flow isu∗ag, v

∗

ag, w
∗; (3) the effective

static stability isρqg, rather thanN2, which is a standard atmosphere static stability.
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14.3 Ageostrophic circulations

Although the form of the semi-geostrophic equations (14.54)–(14.59) is not very convenient for computation, it is
convenient for derivation of the ageostrophic diagnostic equation. Actually this equation can take two forms, which
we now derive. Because of the similarity in the forms of the semi-geostrophic and quasi-geostrophic equations the
analysis here follows closely that leading from (13.44)–(13.46) to (13.57).

Takingf(∂/∂Z) of (14.54) and (14.55), and taking∂/∂X and∂/∂Y of (14.58) we obtain

(

∂

∂T
+ vg · ∇X

)

f
∂ug

∂Z
− f2

∂v∗ag

∂Z
= −f

∂vg

∂Z
· ∇Xug

= −
g

θ0
(k ×∇Xθ) ·

(

k ×
∂vg

∂Y

)

= −
g

θ0

∂vg

∂Y
· ∇Xθ = Q2 (14.60)

(

∂

∂T
+ vg · ∇X

)

f
∂vg

∂Z
+ f2

∂u∗ag

∂Z
= −f

∂vg

∂Z
· ∇Xvg

=
g

θ0
(k ×∇Xθ) ·

(

k ×
∂vg

∂X

)

=
g

θ0

∂vg

∂X
· ∇Xθ = −Q1 (14.61)

(

∂

∂T
+ vg · ∇X

)

g

θ0

∂θ

∂X
+

∂

∂X
(qgρw

∗) = −
g

θ0

∂vg

∂X
· ∇Xθ = Q1 (14.62)

(

∂

∂T
+ vg · ∇X

)

g

θ0

∂θ

∂Y
+

∂

∂Y
(qgρw

∗) = −
g

θ0

∂vg

∂Y
· ∇Xθ = Q2. (14.63)

Here we have used the thermal wind equationf(∂vg/∂Z) = (g/θ0)k × ∇Xθ and the relations∇Xug = k ×

(∂vg/∂Y ) , ∇Xvg = −k × (∂vg/∂X). Q1 andQ2 are the components of the vectorQ, defined by

Q = (Q1, Q2) = −
g

θ0

(

∂vg

∂X
· ∇Xθ,

∂vg

∂Y
· ∇Xθ

)

. (14.64)

Subtracting (14.61) from (14.62), adding (14.60) and (14.63), and using the thermal wind equation, we can write our
system of diagnostic equations for the ageostrophic flow as

∂

∂X
(qgρw

∗) − f2
∂u∗ag

∂Z
= 2Q1, (14.65)

∂

∂Y
(qgρw

∗) − f2
∂v∗ag

∂Z
= 2Q2, (14.66)

∂u∗ag

∂X
+
∂v∗ag

∂Y
+
∂(ρw∗)

ρ∂Z
= 0. (14.67)

Adding∂/∂X of (14.65) to∂/∂Y of (14.66) and using the continuity equation (14.67) we obtain

∇2

X (ρqgw
∗) + f2

∂

∂Z

(

∂(ρw∗)

ρ∂Z

)

= 2∇X · Q, (14.68)

which is the generalized omega equation. Compare this with the quasi-geostrophic omega equation (13.57). We note
that the physical discussion following (13.57) carries over with little modification.

Another way of proceeding from (14.65)–(14.67) is to define the vector streamfunctionΨ = (ψ1, ψ2) such that

ρu∗ag = −
∂ψ1

∂Z
, ρv∗ag = −

∂ψ2

∂Z
, ρw∗ =

∂ψ1

∂X
+
∂ψ2

∂Y
. (14.69)

14-8



CSU ATS601/602 Spring 2011

The continuity equation (14.67) is then automatically satisfied. Equations (14.65) and (14.66) can then be written

∂

∂X

(

qg
∂ψ1

∂X

)

+ f2
∂

∂Z

(

∂ψ1

ρ∂Z

)

= 2Q1 −
∂

∂X

(

qg
∂ψ2

∂Y

)

, (14.70)

∂

∂Y

(

qg
∂ψ2

∂Y

)

+ f2
∂

∂Z

(

∂ψ2

ρ∂Z

)

= 2Q2 −
∂

∂Y

(

qg
∂ψ1

∂X

)

, (14.71)

which is an alternative to (14.68). In fact, (14.68) is easily derived from (14.69)–(14.71).
Thus we have separate equations for the circulation in the(X,Z) and(Y,Z) planes with vertical velocity terms

providing a linkage in the form of the second terms on the right-hand sides. Scaling arguments suggest that the linkage
term in the(X,Z) equation is negligible if the geostrophic length scale in the Y direction is much larger than the
Rossby radius of deformation. The(X,Z) circulation equation then reduces to the cross-frontal circulation equation
of Eliassen (1962). Thus (14.70) and (14.71) are the naturalextension of Eliassen’s equation to the three-dimensional
domain, and not necessarily to frontal regions. Indeed, with the modifications noted previously, these equations are
applicable in the quasi-geostrophic context also.

14.4 Comparison of semi-geostrophic and quasi-geostrophic theories

Hoskins (1975) has made the following comparison of the semi-geostrophic and quasi-geostrophic theories. The
semi-geostrophic equations include the advection of an approximation to the full potential vorticity, as opposed to the
quasi-potential vorticity advected in the quasi-geostrophic equations. Ageostrophic advection of potential vorticity and
potential temperature is included in the former system. In quasi-geostrophic theory the only ageostrophic advection is
by the vertical velocity where it acts on a standard verticaltemperature gradient.

From this point on, we simplify the comparison by considering only the uniform potential vorticity case. The quasi-
geostrophic equations would be identical with the semi-geostrophic equations (14.54)–(14.59) except thatΦ,X, Y and
Z would be replaced byφ, x, y andz.

The more important difference is that the geostrophic velocities and potential temperature are predicted at(X,Y,Z)
not (x, y, z). From the nature of the coordinate transformation it is easily seen (e.g., Fig. 14.1) that positive relative
vorticity is increased and the region in which it occurs is decreased. Negative relative vorticity is decreased in magni-
tude and the region in which it occurs is increased. Thus the semi-geostrophic theory allows the production of sharp
fronts, small vigorous low pressure cells, and broad weak high pressure cells. This clearly depends on the inclusion
of advection by the convergent or divergent wind field and thenonlinearity in the stretching of vorticity. Using the
semi-geostrophic equations, systems that are vertical using quasi-geostrophic theory tend to orient themselves along
absolute vortex lines [from (14.33)]. This was commented onby Fjortoft. This is exactly the sloping of frontal regions
found in the frontal studies.

Another property of nonlinear baroclinic waves as described by the semi-geostrophic equations may be simply
inferred. The phases of the temperature and pressure waves as given by quasi-geostrophic theory are always such
that near the surface, the temperature perturbation maximum occurs in the cyclonic region and the minimum in the
anticyclonic region. Thus the semi-geostrophic equationsimply that the area of warm anomaly is decreased and that
of cold anomaly is increased. Higher up in the atmosphere thereverse is true. This is clearly the occlusion process
in which warm air is moved upward, thus releasing potential energy. As remarked previously, in quasi-geostrophic
theory, potential energy is released by moving warm air poleward and the occlusion process is not described.

Despite the much less stringent approximations made in the derivation of the semi-geostrophic equations, they
predict merely a distortion of the quasi-geostrophic solution in a range of parameter space in which the derivation
of the latter is not consistent. This may go some way to explaining the point commented on earlier: that the quasi-
geostrophic equations have been successfully used in situations in which their validity is not clear.
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Table 14.1: A Comparison of Equations

Primitive Equations:
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fvag = 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fuag = 0

g
θ

θ0
=
∂φ

∂z

∂uag

∂x
+
∂vag

∂y
+
∂(ρw)

ρ∂z
= 0

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= 0

Geostrophic Momentum Approximation:

∂ug

∂t
+ u

∂ug

∂x
+ v

∂ug

∂y
+ w

∂ug

∂z
− fvag = 0

∂vg

∂t
+ u

∂vg

∂x
+ v

∂vg

∂y
+ w

∂vg

∂z
+ fuag = 0

g
θ

θ0
=
∂φ

∂z

∂uag

∂x
+
∂vag

∂y
+
∂(ρw)

ρ∂z
= 0

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= 0

Quasi-Geostrophic Equations:

∂ug

∂t
+ ug

∂ug

∂x
+ vg

∂ug

∂y
− fvag = 0

∂vg

∂t
+ ug

∂vg

∂x
+ vg

∂vg

∂y
+ fuag = 0

g
θ

θ0
=
∂φ

∂z

∂uag

∂x
+
∂vag

∂y
+
∂(ρw)

ρ∂z
= 0

∂θ

∂t
+ ug

∂θ

∂x
+ vg

∂θ

∂y
+
θ0
g
N2w = 0

Semi-Geostrophic Equations:

∂ug

∂T
+ ug

∂ug

∂X
+ vg

∂ug

∂Y
− fv∗ag = 0

∂vg

∂T
+ ug

∂vg

∂X
+ vg

∂vg

∂Y
+ fu∗ag = 0

g
θ

θ0
=
∂Φ

∂Z

∂u∗ag

∂X
+
∂v∗ag

∂Y
+
∂(ρw∗)

ρ∂Z
= 0

∂θ

∂T
+ ug

∂θ

∂X
+ vg

∂θ

∂Y
+
θ0
g
ρqgw

∗ = 0
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