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20 The Hadley Circulation and the ITCZ

20.1 Introduction

When an east-west line of deep convection forms near the equator, it begins to change the potential vorticity field
due to latent heat release. In the Northern Hemisphere such convection induces a positive potential vorticity anomaly at
low levels and a negative anomaly aloft. Since this convectively induced potential vorticity anomaly develops from an
initial state which has potential vorticity increasing toward the north, reversed poleward gradients of potential vorticity
tend to be produced. The regions of potential vorticity gradient reversal are expected to be found on the poleward side
of the ITCZ at low levels and on the equatorward side of the ITCZ at upper levels. This sets the stage for combined
barotropic-baroclinic instability, the formation of tropical waves, and the breakdown of the ITCZ. The use of potential
vorticity arguments seems the most direct way of understanding this process.

20.2 Derivation of the zonal mean equations

We consider a compressible, stably stratified, quasi-static atmosphere on the sphere. Using potential temperature
θ as the vertical coordinate, using spherical coordinates inthe horizontal, and denoting the zonal wind byu and the
meridional wind byv, the governing set of primitive equations takes the form

∂u

∂t
+ θ̇

∂u

∂θ
− σPv +

∂

a cosφ∂λ

[

M + 1

2
(u2 + v2)

]

= F, (20.1)

∂v

∂t
+ θ̇

∂v

∂θ
+ σPu+

∂

a∂φ

[

M + 1

2
(u2 + v2)

]

= G, (20.2)

∂M

∂θ
− Π = 0, (20.3)

∂σ

∂t
+

∂(σu)

a cosφ∂λ
+
∂(σv cosφ)

a cosφ∂φ
+
∂(σθ̇)

∂θ
= 0, (20.4)

whereσ = −∂p/∂θ is the pseudodensity,Π = cp(p/p0)
κ the Exner function,P = ζθ/σ the potential vorticity,

ζθ = 2Ω sinφ+∂v/a cosφ∂λ−∂(u cosφ)/a cosφ∂φ the isentropic absolute vorticity,M = θΠ+gz the Montgomery
potential, andF,G the zonal and meridional components of the frictional forceper unit mass. Expressingσ andΠ in
terms ofp, we can regard (20.1)–(20.4) as a closed system inu, v, M andp. We do not regardF,G, θ̇ as unknown,
but rather as given in terms of the known or parameterized momentum and heat sources/sinks. Of course, for adiabatic
flow θ̇ = 0.

To derive the zonal mean equations from (20.1)–(20.4) we shall define two types of zonal average—an ordinary
zonal average on an isentropic surface and a mass weighted zonal average on an isentropic surface. For example, for
the zonal windu, the ordinary zonal average is defined by

ū(φ, θ, t) =
1

2π

∫

2π

0

u(λ, φ, θ, t) dλ. (20.5)

For the meridional windv, the mass weighted zonal average is defined by

v̂ =
σv

σ̄
. (20.6)

Deviations from the ordinary zonal average ofu are defined byu′ = u − ū and deviations from the mass weighted
zonal average ofv by v∗ = v − v̂. Similar definitions hold for the other variables.

Applying ( ) to each term in (20.4) and noting from (20.6) thatσv = σ̄v̂ andσθ̇ = σ̄
ˆ̇
θ, we can write the zonal

mean mass continuity equation as

∂σ̄

∂t
+
∂(σ̄v̂ cosφ)

a cosφ∂φ
+
∂(σ̄

ˆ̇
θ)

∂θ
= 0. (20.7)

This equation can also be written in the advective form (20.15).

20-1



CSU ATS601/602 Spring 2011

To derive the equation for the mean zonal motion we first applythe ( ) operator to each term in (20.1), which
yields

∂ū

∂t
+ θ̇

∂u

∂θ
− σPv = F̄ . (20.8)

Noting thatθ̇ =
ˆ̇
θ + θ̇∗, P = P̂ + P ∗ andv = v̂ + v∗, we can writeθ̇∂u/∂θ =

ˆ̇
θ∂ū/∂θ + θ̇∗∂u/∂θ andσPv =

σ̄P̂ v̂ + σP ∗v∗ sinceσv∗ = 0 andσP ∗ = 0. Thus, (20.8) can be written

∂ū

∂t
+

ˆ̇
θ
∂ū

∂θ
− σ̄P̂ v̂ = F , (20.9)

whereF is defined below in (20.17). Noting thataDφ/Dt = v̂ (easily confirmed by applying (20.16) toφ) and that
σ̄P̂ = ζ̄θ = 2Ω sinφ − ∂(ū cosφ)/a cosφ∂φ, (20.9) can be written in the absolute angular momentum formgiven
below in (20.12).

Now consider the meridional momentum equation. Since both (20.12) and (20.15) contain̂v, we would like to
transform (20.2) into a prediction equation forv̂. This requires putting (20.2) into a flux form before taking the zonal
average. Thus, combining (20.2) and (20.4), we obtain the flux form

∂(σv)

∂t
+

∂(σuv)

a cosφ∂λ
+
∂(σvv cosφ)

a cosφ∂φ
+
∂(σθ̇v)

∂θ
+

(

2Ω sinφ+
u tanφ

a

)

σu+ σ
∂M

a∂φ
= σG. (20.10)

Taking the zonal average of (20.10), we obtain

∂(σv)

∂t
+
∂(σvv cosφ)

a cosφ∂φ
+
∂(σθ̇v)

∂θ
+

(

2Ω sinφ+
u tanφ

a

)

σu+ σ
∂M

a∂φ
= σG. (20.11)

Noting thatσv = σ̄v̂, σG = σ̄Ĝ, σvv = σ̄v̂v̂+σv∗v∗, σθ̇v = σ̄
ˆ̇
θv̂+σθ̇∗v∗, σ∂M/a∂φ = σ̄∂M̄/a∂φ+σ′∂M ′/a∂φ,

and using the zonal mean continuity equation (20.7), we obtain the advective form (20.13).
Collecting the above results, and taking the zonal average of (20.3), we obtain the complete set of zonal mean flow

equations
D(ū cosφ+ Ωa cos2 φ)

Dt
= F cosφ, (20.12)

Dv̂

Dt
+

(

2Ω sinφ+
ū tanφ

a

)

ū+
∂M̄

a∂φ
= G, (20.13)

∂M̄

∂θ
− Π(p̄) = Π(p) − Π(p̄), (20.14)

Dσ̄

Dt
+ σ̄

(

∂(v̂ cosφ)

a cosφ∂φ
+
∂

ˆ̇
θ

∂θ

)

= 0, (20.15)

where
D

Dt
=

∂

∂t
+ v̂

∂

a∂φ
+

ˆ̇
θ
∂

∂θ
(20.16)

is the derivative following the mass weighted mean meridional circulation, and

F = F̄ + σP ∗v∗ − θ̇∗
∂u

∂θ
, (20.17)

G = Ĝ−
1

σ̄





∂
(

σv∗v∗ cosφ
)

a cosφ∂φ
+
∂
(

σθ̇∗v∗
)

∂θ
+

(

2Ω sinφ+
ū tanφ

a

)

σ′u′ +
(σu)′u′ tanφ

a
+ σ′

∂M ′

a∂φ



 , (20.18)

are the eddy-induced effective mean zonal and meridional forces per unit mass. Equations (20.12)–(20.15) have the
form of the zonally symmetric primitive equations forū, v̂, M̄ , p̄, all of which are functions of(φ, θ, t). The termsF ,

G, ˆ̇
θ appear as forcings. As discussed in Appendix I, it is possible to express the eddy-induced part ofF in terms of

the divergence (or, more generally, pseudodivergence) of the Eliassen-Palm flux. We shall not need such expressions
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here, since the compact form (20.17) is well-suited for suchproblems as understanding the interactions of symmetric
and asymmetric components of the flow, e.g., the influence of tropical upper tropospheric troughs (TUTTs) on the
mean circulation.

The governing equation for the mass weighted zonal mean potential vorticity P̂ can be derived by first noting that
the equation for the zonal mean absolute isentropic vorticity (derived from (20.9) or (20.12)) takes the form

Dζ̄θ
Dt

+ ζ̄θ

(

∂(v̂ cosφ)

a cosφ∂φ
+
∂

ˆ̇
θ

∂θ

)

=
∂ū

∂θ

∂
ˆ̇
θ

a∂φ
+ ζ̄θ

∂
ˆ̇
θ

∂θ
−
∂(F cosφ)

a cosφ∂φ
. (20.19)

Eliminating the isentropic divergence between (20.15) and(20.19) we obtain the mass weighted zonal mean potential
vorticity equation

σ̄
DP̂

Dt
=
∂ū

∂θ

∂
ˆ̇
θ

a∂φ
+ ζ̄θ

∂
ˆ̇
θ

∂θ
−
∂(F cosφ)

a cosφ∂φ
, (20.20)

whereP̂ = ζ̄θ/σ̄.

20.3 The potential latitude coordinate

A simple meridional coordinate transformation leads to a simplification of both the right hand side of (20.20) and
the material derivative operator on the left hand side. To accomplish this transformation, let us now introduce the
potential latitudeΦ, defined in terms of the absolute angular momentum per unit mass byΩa cos2 Φ = ū cosφ +
Ωa cos2 φ. Consider (Φ,Θ, T ) space, whereΘ = θ andT = t. The symbolsΘ andT are introduced to distinguish
partial derivatives at fixedΦ (∂/∂Θ and∂/∂T ) from partial derivatives at fixedφ (∂/∂θ and∂/∂t). Derivatives in
(φ, θ, t) space are then related to derivatives in (Φ,Θ, T ) space by

(

∂

∂φ
,
∂

∂θ
,
∂

∂t

)

=

(

∂Φ

∂φ

∂

∂Φ
,
∂Φ

∂θ

∂

∂Φ
+

∂

∂Θ
,
∂Φ

∂t

∂

∂Φ
+

∂

∂T

)

. (20.21)

Another way of writing the first entry in (20.21) is∂/ cosφ∂φ = (ζ̄θ/2Ω sin Φ)∂/ cos Φ∂Φ. Thus, in regions where
ζ̄θ > 2Ω sin Φ, theΦ coordinate provides a natural stretching which is analogous to the way the geostrophic coordinate
provides stretching around fronts in semigeostrophic theory. To simplify the right hand side of (20.20), we now use
(20.21) to obtain

∂ū

∂θ

∂
ˆ̇
θ

a∂φ
+ ζ̄θ

∂
ˆ̇
θ

∂θ
−
∂(F cosφ)

a cosφ∂φ
= 2Ω sin Φ

∂(sin Φ,
ˆ̇
θ)

∂(sinφ, θ)
−
∂(F cosφ)

a cosφ∂φ

= −
ζ̄θ

2Ω sin Φ

∂(F cosφ)

a cos Φ∂Φ
+ 2Ω sin Φ

∂(sin Φ,Θ)

∂(sinφ, θ)

∂(sin Φ, ˆ̇Θ)

∂(sin Φ,Θ)

= ζ̄θ

(

∂(V̂ cos Φ sin Φ)

a cos Φ sin Φ∂Φ
+
∂ ˆ̇Θ

∂Θ

)

,

(20.22)

whereV̂ = aDΦ/Dt is given (using (20.12)) in terms ofF by −(2Ω sin Φ)V̂ cos Φ = F cosφ, and whereˆ̇Θ =
ˆ̇
θ.

Using (20.22) in (20.20) we obtain

DP̂

Dt
= P̂

(

∂(V̂ cos Φ sin Φ)

a cos Φ sin Φ∂Φ
+
∂ ˆ̇Θ

∂Θ

)

. (20.23)

TheD/Dt operator, defined in(φ, θ, t)-space by (20.16), can also be expressed in(Φ,Θ, T )-space, since (20.21) can
be used to show that

D

Dt
=

∂

∂T
+ V̂

∂

a∂Φ
+ ˆ̇Θ

∂

∂Θ
. (20.24)

In comparing (20.16) and (20.24) we note that the(Φ,Θ, T )-version ofD/Dt is simpler than the(φ, θ, t)-version
because the mass weighted mean meridional velocityv̂ does not occur explicitly in (20.24). In the next section we
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shall see that this eliminates the need to solve a diagnosticequation for the meridional circulation in the(Φ,Θ, T )-
version of balanced theory.

Note thatV̂ is the rate at which particles (in the mass weighted zonal mean sense) are crossing absolute angular
momentum surfaces. In the upper levels of the Hadley circulation, the frictional effectF̄ is negligible. Potential
vorticity rearrangement due to TUTTs would usually appear to result in a equatorward eddy flux of PV, i.e.,σP ∗v∗ <
0. Thus, from (20.17), we haveF ≈ σP ∗v∗ < 0, so thatV̂ > 0, i.e., particles are drifting northward across the zonal
mean absolute angular momentum surfaces. An interesting question is whether the eddy-induced effective mean zonal

force per unit massσP ∗v∗ can ever be of such a large magnitude that it plays as important a role asˆ̇θ in shaping the
Hadley circulation.

A concept closely related to potential vorticity is potential pseudodensity, and, when making calculations in
(Φ,Θ, T )-space, potential pseudodensity is more convenient. We nowdefine the potential pseudodensity by1

σ⋆ =

(

2Ω sin Φ

ζ̄θ

)

σ̄, (20.25)

so that the potential pseudodensityσ⋆ is related to the potential vorticitŷP by σ⋆P̂ = 2Ω sin Φ. The potential
pseudodensityσ⋆ is the pseudodensity a parcel would acquire ifζ̄θ were changed to2Ω sin Φ under conservative
motion. Because of the simple relation betweenP̂ andσ⋆, the potential pseudodensity equation is easily obtained
from (20.23). It takes the form

Dσ⋆

Dt
+ σ⋆

(

∂(V̂ cos Φ)

a cos Φ∂Φ
+
∂ ˆ̇Θ

∂Θ

)

= 0. (20.26)

The flux form of (20.26) is

∂σ⋆

∂T
+
∂(σ⋆V̂ cos Φ)

a cos Φ∂Φ
+
∂(σ⋆ ˆ̇Θ)

∂Θ
= 0. (20.27)

The advantage of (20.27) is that, if the source termsV̂ and ˆ̇Θ are known functions of (Φ,Θ, T ), one can easily march
forward in time using (20.27) only. The problem of the evolution ofσ⋆ has separated from the problem of determining
the transverse circulation; no second order elliptic partial differential equation for the transverse circulation needs to
be solved each time step. However, when the zonal mean mass field p̄ and balanced zonal wind̄u are to be plotted, the
σ⋆ field must be inverted. This problem is discussed below in section 20.4.

Finally, we comment on an apparent limitation in the derivation of the mean flow equations given here. Since
the zonal average defined by (20.5) is on an isentropic surface, special care must be used on those isentropic surfaces
which intersect the earth’s surface. As shown by Andrews (1983), this situation can be handled using the massless
layer approach. The basic idea is to continue surface-intersecting isentropes just under the earth’s surface and assign
to them a pressure equal to the surface pressure. At any horizontal position where two distinct isentropic surfaces
run just under the earth’s surface (and hence have the same pressure), there is no mass trapped between them, so that
σ = 0 there. Extended definitions of other variables are also required. In addition to such extended definitions, the
massless layer approach also requires that the integral on the right hand side of (20.5) be split into intervals ofλ where
the isentrope is above the earth’s surface and intervals where it is below the earth’s surface. Since the limits of these
integrals depend on(φ, θ, t), the( ) operator no longer commutes with∂/∂φ, ∂/∂θ, ∂/∂t. Although the derivations
then become more involved, the final equations (20.12)–(20.18) are unmodified except for certain refinements in
interpretation.

20.4 Balanced zonal flows

To simplify the zonal mean primitive equation model (20.12)–(20.15) to a balanced model we now assume that
the mean zonal flow evolves as a sequence of nearly balanced states. A sufficient condition for the validity of this
assumption is that|G| remains small compared to the magnitude of the pressure gradient and Coriolis terms in (20.13)

and that the other forcing termsˆ̇θ andF have slow enough time scales that significant, zonal mean inertia-gravity
waves are not excited, i.e.,|Dv̂/Dt| also remains small compared to the magnitude of the pressuregradient and

1Note the use of star (⋆) rather than asterisk (∗) to avoid confusion with the symbol for deviation from the massweighted tangential average.
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Coriolis terms. We also assume that the right hand side of (20.14) is negligible. Under these conditions (20.13) and
(20.14) reduce to

(

2Ω sinφ+
ū tanφ

a

)

ū+
∂M̄

a∂φ
= 0, (20.28)

∂M̄

∂θ
= Π(p̄). (20.29)

Using the definitions ofΠ(p̄) andσ(p̄), the set (20.12), (20.15), (20.28) and (20.29) can now be considered as a
closed, balanced set in the unknownsū, v̂, M̄ , p̄, all of which are functions of(φ, θ, t). However, this is not a
convenient set for prediction since (20.12) and (20.15) cannot be used as independent predictors. The prediction ofū
by (20.12) and the prediction of̄σ by (20.15) must be consistent with a continuous state of hydrostatic and zonal wind
balance, as required by (20.28) and (20.29). This implies that (20.12), (20.15), (20.28) and (20.29) can be combined
into a diagnostic equation which can then replace one of the prognostic equations (20.12) or (20.15). To obtain this
diagnostic equation, the mass continuity equation (20.15), or equivalently (20.7), is first written in the form

∂(σ̄v̂ cosφ)

a cosφ∂φ
+
∂(σ̄

ˆ̇
θ − ∂p̄/∂t)

∂θ
= 0, (20.30)

which implies that̄σv̂ = −∂ψ/∂θ andσ̄ ˆ̇
θ − ∂p̄/∂t = ∂(ψ cosφ)/a cosφ∂φ, whereψ is the streamfunction for the

meridional circulation. If the first of these is inserted into the zonal momentum equation (20.12), or equivalently
(20.9), and the second is multiplied byΓ(p̄) = dΠ(p̄)/dp̄ = κΠ(p̄)/p̄, we obtain

∂ū

∂t
+

ˆ̇
θ
∂ū

∂θ
+ P̂

∂ψ

∂θ
= F , (20.31)

∂Π(p̄)

∂t
+

ˆ̇
θ
∂Π(p̄)

∂θ
+ Γ

∂(ψ cosφ)

a cosφ∂φ
= 0. (20.32)

Taking the time derivative of (20.28) and (20.29), and then eliminating ∂M̄/∂t between the resulting two equations,
we obtain

∂

∂θ

(

f̄
∂ū

∂t

)

+
∂

a∂φ

(

∂Π(p̄)

∂t

)

= 0, (20.33)

wheref̄ = 2Ω sinφ + (2ū tanφ)/a. Substituting from (20.31) for∂ū/∂t and from (20.32) for∂Π(p̄)/∂t, (20.33)
becomes

∂

a∂φ

(

Γ
∂(ψ cosφ)

a cosφ∂φ

)

+
∂

∂θ

(

f̄ P̂
∂ψ

∂θ

)

=
∂(Π(p̄),

ˆ̇
θ)

a∂(φ, θ)
+
∂(f̄F)

∂θ
. (20.34)

This diagnostic equation (often called the Eliassen meridional circulation equation or the Sawyer-Eliassen equation)
may be used as a replacement for either (20.12) or (20.15). Then, the balanced system has a single prognostic equation.
SinceΓ > 0 everywhere and the usual situation is thatf̄ P̂ > 0 almost everywhere1, (20.34) is a second order elliptic

equation forψ when the forcing functionsˆ̇θ,F are known.

20.5 Invertibility principle

The potential pseudodensityσ⋆ can be written in Jacobian form using

σ⋆ =
2Ω sin Φ

ζ̄θ
σ̄ = −

∂(sinφ)

∂(sin Φ)

∂p̄

∂θ
= −

∂(sinφ, θ)

∂(sin Φ,Θ)

∂(sinφ, p̄)

∂(sinφ, θ)
= −

∂(sinφ, p̄)

∂(sin Φ,Θ)
. (20.35)

Introducing the new dependent variablēM, defined byM̄ = M̄ + 1

2
ū2, the balance equation (20.28) and the hydro-

static equation (20.29) transform to
(

−2Ω sin Φ
cos Φ

cosφ
ū,Π(p̄)

)

=

(

∂M̄

a∂Φ
,
∂M̄

∂Θ

)

. (20.36)

1In small regions near the equator, it often happens thatf̄ P̂ < 0, due to cross-equatorial movement of air parcels which are conserving their
potential vorticity.
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Formally, the second part of (20.36) is identical to (20.29)while the first part of (20.36) is simpler than (20.28) in that
(20.36) allows only onēu for a given∂M̄/∂Φ. Using the second part of (20.36), along with the definitionsS = sin Φ
ands = sinφ, we can now write (20.35) and the first part of (20.36) as

∂s

∂S

∂2M̄

∂Θ2
−
∂s

∂Θ

∂2M̄

∂S∂Θ
+ Γσ⋆ = 0, (20.37a)

2Ω2a2S

(

s2 − S2

1 − s2

)

+
∂M̄

∂S
= 0. (20.37b)

Equations (20.37a–b) constitute the desired relation betweenM̄, s andσ⋆. If the upper boundary is an isentropic
surface with potential temperatureΘT and the temperatureT is specified there (e.g.,T = constant for an isothermal
top), the upper boundary condition is simply

∂M̄

∂Θ
= Π(p̄) at Θ = ΘT . (20.37c)

Likewise, if the lower boundary is the isentropic surface with potential temperatureθ = θB and is flat (i.e.,z = 0
there), thenM̄ = ΘBΠ(p̄) atΘ = ΘB . Written in terms ofM̄, this lower boundary condition becomes

Θ
∂M̄

∂Θ
− M̄ +

Ω2a2(s2 − S2)2

2(1 − s2)
= 0 at Θ = ΘB . (20.37d)

We can now summarize the results of our analysis as follows. If the time evolution of theσ⋆ field can be determined
from (20.27), we can then solve the diagnostic problem (20.37) forM̄, after which the wind field̄u and the mass field̄Π
can be determined from (20.36). This is all accomplished in (Φ,Θ) space. The transformation to other representations,
e.g.,ū(φ, θ) or ū(φ, p), is straightforward.

The diagnostic problem (20.37) involves nonlinearity in both the partial differential equation (20.37a), the zonal
balance condition (20.37b) and the lower boundary condition (20.37d); also, the factorΓ in (20.37a) depends nonlin-
early onM̄ through the hydrostatic relation. However, if we limit our attention to the situation where the potential
pseudodensity and the absolute vorticity are positive, thesolution of (20.37) is unique. An iterative method must be
used for the solution of (20.37).

20.6 Solutions

We now turn to the problem of solving (20.27). For simplicitylet us consider the case in whicĥV = 0 and ˆ̇
θ

is independent of time and is given byˆ̇θ = Q(S) sin2(πZ), whereZ = (Θ − ΘB)/(ΘT − ΘB) andQ(S) is the

latitudinal distribution of the heating. We postpone specification ofQ(S) since only the vertical dependence ofˆ̇
θ is

required for our analytic result. Multiplying (20.27) byˆ̇θ we obtain

∂(
ˆ̇
θσ⋆)

∂τ
+ sin2(πZ)

∂(
ˆ̇
θσ⋆)

∂Z
= 0, (20.38)

whereτ(S) = Q(S)T/(ΘT − ΘB) is the dimensionless “convective clock” time. According to(20.38) the quantity
ˆ̇
θσ∗ is constant along each characteristic curve determined from dZ/ sin2(πZ) = dτ . By integration of this equation
we can show that the characteristic through the point(Z, τ) intersects theτ = 0 axis at a levelZ0(Z, τ), determined

by πZ0(Z, τ) = cot−1[πτ + cot(πZ)]. Sinceˆ̇
θσ⋆ is constant along each characteristic, its value at(Z, τ) must equal

its value at(Z0(Z, τ), 0), which results in

σ⋆(Z, τ) = σ⋆(Z0(Z, τ), 0)
sin2{cot−1[πτ + cot(πZ)]}

sin2(πZ)
. (20.39)

Although (20.39) is indeterminant at the boundariesZ = 0, 1, use of l’Hopital’s rule twice yieldsσ⋆(Z, τ) =
σ⋆(Z0(Z, τ), 0) at Z = 0, 1. SinceZ0(Z, τ) → 0 asZ → 0 andZ0(Z, τ) → 1 asZ → 1, theσ∗ field is un-
modified at the upper and lower boundaries. The reason for this can be seen by referring back to (20.26) or (20.27)
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and noting that, for our specifiedˆ̇θ field, both ˆ̇
θ and∂ ˆ̇

θ/∂Θ vanish at the boundaries. For the results presented here
we have specified the initialσ⋆ to be a constant, i.e.,σ⋆(Z, 0) = σ0, which implies an initial state with no zonal flow.

Equation (20.39) constitutes the analytic solution of the potential pseudodensity equation when the diabatic source
has thesin2(πZ) form. The complete solutionσ⋆(S,Θ, T ) can be plotted onceQ(S), and henceτ(S), is specified.
Since theτ clock runs faster whereQ(S) is large, the largest anomalies in theσ⋆ field will occur in the ITCZ.

For the latitudinal distribution of the heating we now choose the particular form

Q(S) = Q04απ
−1/2 {erf[α(1 + Sc)] + erf[α(1 − Sc)]}

−1
exp[−α2(S − Sc)

2], (20.40)

whereQ0, α andSc are specified parameters. By varying the parametersSc andα we can consider simulated ITCZs
centered at different latitudes and with different widths.By integration of (20.40) from the South Pole to the North Pole
we can show that1

2

∫

Q(S)dS = Q0, so that different values ofSc andα all result in the same area averaged heating
Q0. For the results shown here we have chosenα = 15 and eitherSc = sin(10◦) ≈ 0.174 or Sc = sin(15◦) ≈ 0.259.
These can be interpreted as rather narrow ITCZs with approximately 85% of their rainfall occurring between 6N and
14N for theSc = sin(10◦) case or between 11N and 19N for theSc = sin(15◦) case. Because of the way the product
Q(S)T appears in the definition ofτ(S), it is not really necessary to chooseQ0; rather, the solution can simply be
obtained for different values ofQ0T . However, for purposes of physical interpretation let us chooseQ0 = 0.30 K
day−1, along withΘT = 360 K andΘB = 300 K. Then, the peak heating isQ(Sc) ≈ 5.1 K day−1, andT = 3, 6
days correspond toQ0T = 0.9, 1.8 K, or τ(Sc) ≈ 0.26, 0.51.

For the case of an ITCZ at10◦N the fields ofσ⋆(φ, θ), P (φ, θ), u(φ, θ) andp(φ, θ) at 3 and 6 days are shown
in Figs. 20.1 and 20.2 (JAS,48, 1493–1509). Theσ⋆ field has been normalized byσ0 = 1.458 kPa K−1 and theP̂
field by 2Ω/σ0. In the ITCZ, a region of small potential pseudodensity develops at lower levels and a region of large
potential pseudodensity at upper levels. Due to vertical advection in the ITCZ, the lower tropospheric minimum inσ⋆

begins to form an indentation on the upper tropospheric maximum inσ⋆. This same process occurs in a more extreme
form in the development of a tropical cyclone. The solution of the invertibility principle results in low level zonal
flows, which are easterly except in a band that runs between a latitude just north of the equator and a latitude near the
center of the ITCZ. At upper levels the zonal flow is westerly except in a band that runs between a latitude just south
of the equator and a latitude near the center of the ITCZ. As the σ⋆ andP anomalies become larger, the associated
zonal flows also become larger. The isolines of pressure in the bottom panels of Figs. 20.1 and 20.2 reveal only small
adjustments in the mass field, with a slight stabilization atlower levels in the ITCZ and a slight destabilization aloft.

Perhaps the most striking result seen in Figs. 20.1 and 20.2 is that a narrow potential pseudodensity or potential
vorticity anomaly produced in just a few days by convection in the ITCZ can result in significant zonal winds through-
out the entire tropical and subtropical region. This resultis related to the meridional parcel displacements forced by

the convection. SinceΦ is a conservative quantity andˆ̇θ is known, and since the actual latitudeφ(Φ,Θ) is part of
the solution of the invertibility problem, meridional parcel displacements or trajectories are easy to construct. Two

sets of such trajectories from the initial time to 3 days and from 3 to 6 days are shown in Fig. 20.3, along with theˆ̇
θ

field. Away from the ITCZ,ˆ̇θ = 0 and parcel trajectories are along isentropic surfaces. In alower tropospheric layer
bounded by two isentropes, mass is removed in the ITCZ, and there is a shift in parcel positions toward the ITCZ.
The largest shifts are on the cross-equatorial side, because f̄ P̂ is smallest there. Corresponding shifts away from the
ITCZ occur in an upper tropospheric layer bounded by two isentropes. As the heating proceeds,f̄ P̂ becomes larger
in the lower troposphere near the ITCZ. This increasing resistance to motion along isentropic surfaces, coupled with

the fixedˆ̇
θ field, causes the depth of the ITCZ inflow to deepen with time.

The anisotropic response or enhancement of the cross-equatorial Hadley cell has interesting effects on the potential
vorticity field. To see this, consider the−0.1 and0.4 potential vorticity lines in Figs. 20.1 and 20.2. TheseP̂ lines
mark chains of fluid particles beginning approximately equal distances from the ITCZ. At 6 days the−0.1 line is
more distorted than the0.4 line. This is a direct result of the fact that the meridional circulation associated with the
cross-equatorial Hadley cell is more intense than the meridional circulation associated with the Hadley cell north of
the ITCZ. TheP̂ = 0 curve marks the chain of fluid particles which started at reston the equator. Regardless of the
hemisphere into which these particles move, they must acquire a westerly flow, since they move closer to the axis of
the earth’s rotation. Thus, thêP = 0 line bends more than theu = 0 line, so that it lies in the lower tropospheric
westerlies north of the equator and the upper tropospheric westerlies south of the equator.

The convective modification of the PV field occurs within a background state that has a northward increase of PV.
As convection continues, the gradient of PV becomes locallyreversed in the lower troposphere poleward of the ITCZ
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and in the upper troposphere equatorward of the ITCZ. These regions of reversed isentropic poleward gradient of PV
are indicated by stippling in Figs. 20.1 and 20.2. Such features develop quickly and satisfy the necessary condition
for combined barotropic-baroclinic instability. Thus, itwould appear that ITCZ convection alone can lead to the
generation of unstable zonal flows. This may be the cause of periodic breakdowns of the ITCZ.

Results at 6 days for an ITCZ located at15◦N are shown in Fig. 20.4. Comparing Fig. 20.4 with Fig. 20.2 wenote
that, except for the latitudinal shift, theσ⋆ fields are essentially identical. However, the potential vorticity, zonal wind
and mass fields are different, with the ITCZ at15◦N producing a PV anomaly, neighboring zonal winds and isobaric
surface deviations considerably larger than those produced by the ITCZ at10◦N. These differences can be interpreted

as follows. SinceDσ⋆/Dt = −σ⋆(∂
ˆ̇
θ/∂Θ) and the initialσ⋆ is constant, the time evolution ofσ∗ for ITCZs at

different latitudes is essentially identical except for the meridional shift. SinceDP̂/Dt = P̂ (∂
ˆ̇
θ/∂Θ) and the initial

P̂ increases to the north, the material rate of change ofP̂ is larger for an ITCZ at15◦N. An alternate interpretaion is
that, sinceP̂ = (2Ω sin Φ)/σ⋆, identicalσ⋆ anomalies shifted from10◦N to 15◦N result inP̂ anomalies which are
approximately 50% larger for the ITCZ at15◦N.

Problems

1. Derive (20.12) from (20.9).

2. Derive (20.13) from (20.11) and (20.7).

3. Derive (20.19) from (20.9). Then combine (20.19) with (20.15) to obtain (20.20).

4. Derive (20.33) from (20.28) and (20.29). Then combine (20.31), (20.32) and (20.33) to obtain the Eliassen
equation (20.34).

5. Show by direct substitution that (20.39) is a solution of (20.38).
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Figure 20.1: Results atT = 3 days for an ITCZ located at 10N. The upper panel shows isolines ofσ⋆/σ0 (i.e., potential
pseudodensity measured in units ofσ0) in (φ, θ)-space. Note that the convection in the ITCZ generates a lower
tropospheric region of low potential pseudodensity and an upper tropospheric region of high potential pseudodensity.
The middle panel shows isolines ofPσ0/(2Ω) (i.e., potential vorticity measured in units of2Ω/σ0). The stippling
indicates regions where the poleward isentropic gradient of potential vorticity is reversed. The bottom panel shows
pressure (nearly horizontal lines) in kPa and zonal balanced wind in m s−1. Solid wind contours indicate westerly
flow, dashed contours easterly flow, with a contour interval of 1 m s−1. These wind and mass fields are in(φ, θ)-space
and are associated with the potential pseudodensity and potential vorticity fields shown in the top two panels.
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Figure 20.2: Results atT = 6 days for an ITCZ located at 10N.
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Figure 20.3: The upper panel shows the heating functionˆ̇
θ(φ, θ) in K day−1 at 3 days. The distortion of the heating

function from a true Gaussian function results from the transformation to actual latitudeφ. The other two panels show
parcel trajectories from the initial time to 3 days and from 3days to 6 days. The cross-equatorial cell is more intense
because the inertial stabilitȳfP̂ in (20.34) is smaller near the equator. Thus, air parcels near the equator encounter the
least resistance to “horizontal” movement along isentropic surfaces.
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Figure 20.4: Results atT = 6 days for an ITCZ located at 15N.
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