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20 The Hadley Circulation and the ITCZ

20.1 Introduction

When an east-west line of deep convection forms near the @gitdiegins to change the potential vorticity field
due to latent heat release. In the Northern Hemisphere surstection induces a positive potential vorticity anomaly a
low levels and a negative anomaly aloft. Since this convelstinduced potential vorticity anomaly develops from an
initial state which has potential vorticity increasing tand the north, reversed poleward gradients of potentialaityr
tend to be produced. The regions of potential vorticity ggatreversal are expected to be found on the poleward side
of the ITCZ at low levels and on the equatorward side of thedE&Eupper levels. This sets the stage for combined
barotropic-baroclinic instability, the formation of trigal waves, and the breakdown of the ITCZ. The use of potentia
vorticity arguments seems the most direct way of understgrthis process.

20.2 Derivation of the zonal mean equations

We consider a compressible, stably stratified, quasiestdithosphere on the sphere. Using potential temperature
0 as the vertical coordinate, using spherical coordinatékerhorizontal, and denoting the zonal wind tand the
meridional wind byv, the governing set of primitive equations takes the form

ou :0u 0 12 o\
8t+989 UPU+(J,COS(Z58)\ [M + 3(u* +0%)] = F, (20.1)
ov  -0v 0 1,9, o2\ _
§+9%+0Pu+—aa¢ [M + 3(u” +07)] =G, (20.2)
oM
W_H_O’ (20.3)

do  O(ou) | d(ovcosg) . d(ch)
Ot acos oA a cos ¢O¢ o6

whereo = —0p/00 is the pseudodensityl = c,(p/po)” the Exner function,P = (y/o the potential vorticity,
Co = 2Qsin ¢p+0v/a cos pOX—0(u cos ¢) /a cos ¢pI¢ the isentropic absolute vorticityy = 611+ gz the Montgomery
potential, andF’, G the zonal and meridional components of the frictional fqee unit mass. ExpressirngandIl in
terms ofp, we can regard (20.1)-(20.4) as a closed system in M andp. We do not regard?, G, § as unknown,
but rather as given in terms of the known or parameterized emum and heat sources/sinks. Of course, for adiabatic
flow 6 = 0.

To derive the zonal mean equations from (20.1)—(20.4) w# dbfine two types of zonal average—an ordinary
zonal average on an isentropic surface and a mass weightedlagerage on an isentropic surface. For example, for
the zonal windu, the ordinary zonal average is defined by

=0, (20.4)

1

27
a(é,0,t) = %/O u(X, 6, 6,t) d\. (20.5)

For the meridional wind, the mass weighted zonal average is defined by

(20.6)

@:

SE

Deviations from the ordinary zonal averagew#re defined by, = u — u and deviations from the mass weighted
zonal average of by v* = v — ©. Similar definitions hold for the other variables.i

Applying () to each term in (20.4) and noting from (20.6) tiwat = 50 andof = &6, we can write the zonal
mean mass continuity equation as

95 dGicose)  9(a6)
ot a cos pO¢p 00

This equation can also be written in the advective form (2.1

= 0. (20.7)
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To derive the equation for the mean zonal motion we first apipdy( ) operator to each term in (20.1), which
yields

ou  0u —— =

5 + 0% —oPv=F. (20.8)
Noting thatf = 646, P =P+ P*andv = o + v*, we can write§du /90 = 097/96 + 0*9u/00 ando Po —
P? + o P*v* sincecv* = 0 ando P* = 0. Thus, (20.8) can be written

ou :0u  _ ..

EJFQ% —oPo=F, (20.9)
whereF is defined below in (20.17). Noting thaD¢/Dt = © (easily confirmed by applying (20.16) t) and that
P = (g = 20sin ¢ — d(acos ¢) /a cos ¢, (20.9) can be written in the absolute angular momentum fgikran
below in (20.12).

Now consider the meridional momentum equation. Since b2@hl@) and (20.15) contaity, we would like to
transform (20.2) into a prediction equation fiar This requires putting (20.2) into a flux form before takihg zonal
average. Thus, combining (20.2) and (20.4), we obtain theffitm

(o) O(ouw) d(ovvcos )  d(obv) . utan ¢ oM
oL +acos¢8A+ 0 cos 600 + 20 + [ 2Qsing + . Jraaa(beG. (20.10)
Taking the zonal average of (20.10), we obtain
d(ov)  O(Tuvcos @) 8(%) . utan ¢ oM —
o 1c0s 606 20 + | 2Qsin ¢ + u ou+o (9(;5 oG. (20.11)

Noting thatzo = 50, 0G = 6@, 500 = G0 +0ov*v*, 00v = G00+0b*v*, M adp = GOM |adp~+0'OM’ [adp,
and using the zonal mean continuity equation (20.7), weiotit® advective form (20.13).
Collecting the above results, and taking the zonal aver&{f#0a3), we obtain the complete set of zonal mean flow
equations
D(ii cos ¢ + Qacos? ¢)

D = F cos ¢, (20.12)
Dv atang\ _  OM B
oM S
0 (p) = Il(p) — IL(p), (20.14)
D _ [ 0(vcos o) By, B
Dt to <acos ool + 89) =0 (20.15)

where Do 5 8

is the derivative following the mass weighted mean merldiamrculatlon, and
F=F+oPw — 60— Ou (20.17)
90’ '

G=G-

1 | 0 (cv™v* cos @) (‘79* ) atan ¢ (ou)u'tang ~ OM’
7 | acoseds T a0 (%“m¢+ a ) T g | €019

are the eddy-induced effective mean zonal and meridiommaéfoper unit mass. Equations (20.12)—(20.15) have the
form of the zonally symmetric primitive equations foro, M, p, all of which are functions of¢, 6, t). The termsF,

g, 9 appear as forcings. As discussed in Appendix I, it is posdiblexpress the eddy-induced part®in terms of
the divergence (or, more generally, pseudodivergencdjeoEtiassen-Palm flux. We shall not need such expressions
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here, since the compact form (20.17) is well-suited for su@iblems as understanding the interactions of symmetric
and asymmetric components of the flow, e.g., the influenceopidal upper tropospheric troughs (TUTTS) on the
mean circulation.

The governing equation for the mass weighted zonal meamgiatgorticity P can be derived by first noting that
the equation for the zonal mean absolute isentropic voytiderived from (20.9) or (20.12)) takes the form

D - <8(ﬁcos¢) . aé>  ou 9

_'_59% ~ O(Fcos o)

P (20.19)

Dt T\ Gcosone T 90) T 90 a0

Eliminating the isentropic divergence between (20.15) @@d19) we obtain the mass weighted zonal mean potential
vorticity equation
DP_0u df .00  O(Fcosg)

Dt " 90000 T8 acosode (20.20)

whereP = (;/5.

20.3 The potential latitude coordinate

A simple meridional coordinate transformation leads tonaggification of both the right hand side of (20.20) and
the material derivative operator on the left hand side. Tooawlish this transformation, let us now introduce the
potential latitude®, defined in terms of the absolute angular momentum per urssmgQa cos®? ® = @cos ¢ +
Qa cos? ¢. Consider ¢, 0, T) space, wher® = § and7 = t. The symbol® and7 are introduced to distinguish
partial derivatives at fixe® (9/00© andd/97) from partial derivatives at fixed (0/06 andd/dt). Derivatives in
(¢, 0,t) space are then related to derivativesdn @, 7)) space by

0P 0 09 0 0 00 0 0

o 0 0

(aqs’ae’at) - (a¢ 9%’ 90 0% 90" O 8<I>+6T>' (20.21)
Another way of writing the first entry in (20.21) i/ cos p9¢ = (Cp/2Q2sin @)/ cos ®OP. Thus, in regions where
Cy > 20 sin ®, thed coordinate provides a natural stretching which is analsgothe way the geostrophic coordinate
provides stretching around fronts in semigeostrophic thedo simplify the right hand side of (20.20), we now use
(20.21) to obtain

8u 96 - 90 O(Fcos) _ 9(sin®,f)  H(Fcosg)

— 4 (= — ——— L =2Qsin P -
00 ad¢ + 00  acospdP s d(sin,0)  acospdp

d(sin®,0) J(sin P, é)
d(sin ¢, 0) O(sin @, O)

Cop  O(Fcosg)

- _ 20.22
2Qsin ® a cos POP ( )

+ 2Qsin ®

_¢ A(V cos ® sin @) @

"\ Gcos®sin®0® | 90 )’
whereV = aD® /Dt is given (using (20.12)) in terms of by — (202 sin )V cos ® = F cos ¢, and whered = 6.
Using (20.22) in (20.20) we obtain

(20.23)

@_p A(V cos ® sin @) @
Dt acosPsin®o0d 00 |

TheD/Dt operator, defined iip, 6, t)-space by (20.16), can also be expresse@ir®, 7 )-space, since (20.21) can
be used to show that D 5 5 )

In comparing (20.16) and (20.24) we note that {de ©, 7 )-version of D/Dt is simpler than the¢, 6, ¢)-version
because the mass weighted mean meridional vela@cttges not occur explicitly in (20.24). In the next section we
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shall see that this eliminates the need to solve a diagnegtiation for the meridional circulation in ti&, ©,7)-
version of balanced theory.

Note thatV is the rate at which particles (in the mass weighted zonahnsease) are crossing absolute angular
momentum surfaces. In the upper levels of the Hadley citicmlathe frictional effectF is negligible. Potential
vorticity rearrangement due to TUTTs would usually appeaesult in a equatorward eddy flux of PV, i.e P*v* <
0. Thus, from (20.17), we hav€ ~ o P*v* < 0, so thatl’ > 0, i.e., particles are drifting northward across the zonal
mean absolute angular momentum surfaces. An interestiestign is whether the eddy-induced effective mean zonal

force per unit mass P*v* can ever be of such a large magnitude that it plays as impaatesie asf in shaping the
Hadley circulation.

A concept closely related to potential vorticity is potahtpseudodensity, and, when making calculations in
(®, 0, T)-space, potential pseudodensity is more convenient. Wededine the potential pseudodensity by

ot = (W) 5, (20.25)
Co

so that the potential pseudodensity is related to the potential vorticity? by o*P = 2Qsin®. The potential
pseudodensity* is the pseudodensity a parcel would acquirégifwere changed t@<2sin ® under conservative
motion. Because of the simple relation betwdemndo*, the potential pseudodensity equation is easily obtained

from (20.23). It takes the form R
Do* [0(Veos®) 96 B
Dt to ( a cos POD * 0@) =0 (20.26)

The flux form of (20.26) is R
do*  9(o*Vcos®)  9(0*O)
oT a cos POP 00

— 0. (20.27)

The advantage of (20.27) is that, if the source tefimend® are known functions of&, ©, 7), one can easily march
forward in time using (20.27) only. The problem of the evatof o* has separated from the problem of determining
the transverse circulation; no second order elliptic phdifferential equation for the transverse circulatioreds to

be solved each time step. However, when the zonal mean miakg find balanced zonal windare to be plotted, the
o* field must be inverted. This problem is discussed below itiGe0.4.

Finally, we comment on an apparent limitation in the deftvatof the mean flow equations given here. Since
the zonal average defined by (20.5) is on an isentropic seiriecial care must be used on those isentropic surfaces
which intersect the earth’s surface. As shown by Andrew88)9this situation can be handled using the massless
layer approach. The basic idea is to continue surfacesetting isentropes just under the earth’s surface andrassig
to them a pressure equal to the surface pressure. At anyonbaizposition where two distinct isentropic surfaces
run just under the earth’s surface (and hence have the sassype), there is no mass trapped between them, so that
o = 0 there. Extended definitions of other variables are alsoiredu In addition to such extended definitions, the
massless layer approach also requires that the integrakanght hand side of (20.5) be split into intervalsofvhere
the isentrope is above the earth’s surface and intervalsenhes below the earth’s surface. Since the limits of these
integrals depend ofw, ¢, ¢), the ( ) operator no longer commutes withf9¢, 9/06, 9/0t. Although the derivations
then become more involved, the final equations (20.12)3@0are unmodified except for certain refinements in
interpretation.

20.4 Balanced zonal flows

To simplify the zonal mean primitive equation model (20-4(2p.15) to a balanced model we now assume that
the mean zonal flow evolves as a sequence of nearly balarated.stA sufficient condition for the validity of this
assumption is thdtj| remains small compared to the magnitude of the pressuréegitzahd Coriolis terms in (20.13)

and that the other forcing terntsand F have slow enough time scales that significant, zonal meatiargravity
waves are not excited, i.e[P9/Dt| also remains small compared to the magnitude of the preggadient and

INote the use of stas rather than asterisk to avoid confusion with the symbol for deviation from the massghted tangential average.

20-4



CSU ATS601/602 Spring 2011

Coriolis terms. We also assume that the right hand side ofl@0s negligible. Under these conditions (20.13) and
(20.14) reduce to

(29 sin ¢ + maw) T+ % -0, (20.28)
OM

Using the definitions ofl(p) ando(p), the set (20.12), (20.15), (20.28) and (20.29) can now beidered as a
closed, balanced set in the unknowis®, M, p, all of which are functions of ¢, 0,¢). However, this is not a
convenient set for prediction since (20.12) and (20.15noabe used as independent predictors. The predictian of
by (20.12) and the prediction afby (20.15) must be consistent with a continuous state ofdstdtic and zonal wind
balance, as required by (20.28) and (20.29). This implies(@0.12), (20.15), (20.28) and (20.29) can be combined
into a diagnostic equation which can then replace one of thgrstic equations (20.12) or (20.15). To obtain this
diagnostic equation, the mass continuity equation (20drsquivalently (20.7), is first written in the form

Oabcoso) | (56 — 0p/ot)
a cos pO¢ lol7)

=0, (20.30)

which implies thatto = —0 /00 ands6 — 0p/ot = 0(v cos p) /a cos pd¢, where) is the streamfunction for the
meridional circulation. If the first of these is insertedadrthe zonal momentum equation (20.12), or equivalently
(20.9), and the second is multiplied byp) = dIl(p)/dp = <I1(p)/p, we obtain

ou  20u  L0Y
S t05 T Pag =7 (20.31)
Ol(p) | ;0I(p)  O(pcosg) _
D +6 50 +Facos¢8¢ =0. (20.32)
Taking the time derivative of (20.28) and (20.29), and thiémieating 9 /0t between the resulting two equations,
we obtain 5 / 94 o (oTI(p)
-0Ju p -
a6 (f 8t> + 206 ( ot ) =0 (20.33)
where f = 2Qsin ¢ + (2 tan ¢)/a. Substituting from (20.31) fofu /0t and from (20.32) fowIl(p)/ot, (20.33)
becomes A
9 (LO(osd)\ | D (500 _ 00L(p),0)  O(fF)
0% (F acosone ) T \UPa0) T v T ae (20.34)

This diagnostic equation (often called the Eliassen meniali circulation equation or the Sawyer-Eliassen equgtion
may be used as a replacement for either (20.12) or (20.1¥n,The balanced system has a single prognostic equation.
Sincel" > 0 everywhere and the usual situation is tiid > 0 almost everywherg (20.34) is a second order elliptic

equation for) when the forcing functiong, F are known.

20.5 Invertibility principle

The potential pseudodensity can be written in Jacobian form using

_ 2Qsin®_ J(sin @) op d(sing,0) d(sing,p) B J(sin ¢, ) (20.35)
TG 77 T om®) 06 9(sind,0) dsing,d)  o(sin®,0) '

0_*

Introducing the new dependent variabVe, defined byM = M + 142, the balance equation (20.28) and the hydro-
static equation (20.29) transform to

. cos®_ OM OM

Lin small regions near the equator, it often happens fifat< 0, due to cross-equatorial movement of air parcels which areeming their
potential vorticity.
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Formally, the second part of (20.36) is identical to (20.28)le the first part of (20.36) is simpler than (20.28) in that
(20.36) allows only on@ for a givend M /0®. Using the second part of (20.36), along with the definitiSns sin ®
ands = sin ¢, we can now write (20.35) and the first part of (20.36) as

0s 0* M ds 0°M

2 Q2 v
202428 (81 - :; ) 88/;4 = 0. (20.37h)

Equations (20.37a-b) constitute the desired relation éetvi1, s ando*. If the upper boundary is an isentropic
surface with potential temperatu@e; and the temperaturg is specified there (e.dl; = constant for an isothermal
top), the upper boundary condition is simply

oM _

00
Likewise, if the lower boundary is the isentropic surfacgéhwpotential temperaturé = 0 and is flat (i.e.. = 0
there), them/ = ©3II(p) at® = O . Written in terms ofM, this lower boundary condition becomes

I(p) at ©=06r. (20.37¢)

v L 0242(s2 — §2)2
QM _ el - ST

5 sy =0 0 =05 (20.37d)

We can now summarize the results of our analysis as folloitise ltime evolution of the™ field can be determined
from (20.27), we can then solve the diagnostic problem @0d@& M, after which the wind field: and the mass field
can be determined from (20.36). This is all accomplishe®ir) space. The transformation to other representations,
e.g.,u(¢,0) oru(o, p), is straightforward.

The diagnostic problem (20.37) involves nonlinearity irttbthe partial differential equation (20.37a), the zonal
balance condition (20.37b) and the lower boundary comuliti®.37d); also, the factdr in (20.37a) depends nonlin-
early onM through the hydrostatic relation. However, if we limit outeation to the situation where the potential
pseudodensity and the absolute vorticity are positive stitetion of (20.37) is unique. An iterative method must be
used for the solution of (20.37).

20.6 Solutions

We now turn to the problem of solving (20.27). For simpliciéf us consider the case in whidh = 0 andf
is independent of time and is given Iéy: Q(S)sin*(nZ), whereZ = (© — ©3)/(01 — Op) andQ(9) is the
latitudinal distribution of the heating. We postpone sfieation of Q(.S) since only the vertical dependenceébis
required for our analytic result. Multiplying (20.27) l@we obtain

d(60*)
or

. 8(50*)
2 —
+ sin“(7Z2) 97 = 0, (20.38)

wherer(S) = Q(S)T/(©r — ©p) is the dimensionless “convective clock” time. According(20.38) the quantity

fo* is constant along each characteristic curve determined 6/ sin?(rZ) = dr. By integration of this equation
we can show that the characteristic through the p@ihtr) intersects the = 0 axis at a levelZy(Z, 7), determined

by 7 Z(Z,7) = cot™! [z + cot(nZ)]. Sincefo* is constant along each characteristic, its valugZat-) must equal
its value at(Zy(Z, ), 0), which results in

sin{cot ! [r7 + cot(nZ)]}
sin?(72) .

o*(Z,1) =0"(Zo(Z,7),0) (20.39)

Although (20.39) is indeterminant at the boundariés= 0,1, use of I'Hopital's rule twice yields*(Z,7) =
o*(Zo(Z,7),0) at Z = 0,1. SinceZy(Z,7) — 0asZ — 0andZy(Z,7) — 1asZ — 1, theos* field is un-
modified at the upper and lower boundaries. The reason fercdm be seen by referring back to (20.26) or (20.27)
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and noting that, for our specifigiifield, bothd andaé/a@ vanish at the boundaries. For the results presented here
we have specified the initial* to be a constant, i.es*(Z, 0) = ¢, which implies an initial state with no zonal flow.
Equation (20.39) constitutes the analytic solution of tbeeptial pseudodensity equation when the diabatic source
has thesin?(7Z) form. The complete solutioa* (S, ©,T) can be plotted onc@(S), and hence (S), is specified.
Since ther clock runs faster wher(.S) is large, the largest anomalies in th&field will occur in the ITCZ.
For the latitudinal distribution of the heating we now chedise particular form

Q(S) = Qodar /2 {erfla(1 + S.)] + erfla(1 — S.)]} " exp[—a?(S — S.)?], (20.40)

whereQy, a and.S,. are specified parameters. By varying the parameigi@nda we can consider simulated ITCZs
centered at different latitudes and with different widtBg.integration of (20.40) from the South Pole to the NorthePol
we can show that [ Q(S)dS = Qo, so that different values of. anda all result in the same area averaged heating
Qo. For the results shown here we have chasen 15 and eitherS, = sin(10°) ~ 0.174 or S, = sin(15°) ~ 0.259.
These can be interpreted as rather narrow ITCZs with apprataly 85% of their rainfall occurring between 6N and
14N for theS, = sin(10°) case or between 11N and 19N for the= sin(15°) case. Because of the way the product
Q(S)T appears in the definition af(S), it is not really necessary to choogk; rather, the solution can simply be
obtained for different values ap,7". However, for purposes of physical interpretation let usage@, = 0.30 K
day !, along with©1 = 360 K and©p = 300 K. Then, the peak heating §(S.) ~ 5.1 Kday !, andT = 3,6
days correspond tQ,7 = 0.9,1.8 K, or 7(S.) ~ 0.26,0.51.

For the case of an ITCZ at°N the fields ofa*(¢,0), P(¢,0), u(¢,0) andp(¢,d) at 3 and 6 days are shown
in Figs. 20.1 and 20.2 (JA28, 1493-1509). The* field has been normalized by, = 1.458 kPa K1 and theP
field by 2Q/0¢. In the ITCZ, a region of small potential pseudodensity degpe at lower levels and a region of large
potential pseudodensity at upper levels. Due to verticedetibn in the ITCZ, the lower tropospheric minimumdn
begins to form an indentation on the upper tropospheric mari ino*. This same process occurs in a more extreme
form in the development of a tropical cyclone. The solutidrihe invertibility principle results in low level zonal
flows, which are easterly except in a band that runs betweatitade just north of the equator and a latitude near the
center of the ITCZ. At upper levels the zonal flow is westexgept in a band that runs between a latitude just south
of the equator and a latitude near the center of the ITCZ. Asrthand P anomalies become larger, the associated
zonal flows also become larger. The isolines of pressurecibtittom panels of Figs. 20.1 and 20.2 reveal only small
adjustments in the mass field, with a slight stabilizatioloaer levels in the ITCZ and a slight destabilization aloft.

Perhaps the most striking result seen in Figs. 20.1 and 20tat a narrow potential pseudodensity or potential
vorticity anomaly produced in just a few days by convectiothie ITCZ can result in significant zonal winds through-
out the entire tropical and subtropical region. This re@utelated to the meridional parcel displacements forced by

the convection. Sincé is a conservative quantity artlis known, and since the actual latituge®, ©) is part of
the solution of the invertibility problem, meridional patadisplacements or trajectories are easy to construct. Two

sets of such trajectories from the initial time to 3 days amdnf3 to 6 days are shown in Fig. 20.3, along with the

field. Away from the ITCZ§ = 0 and parcel trajectories are along isentropic surfaces.ldwar tropospheric layer
bounded by two isentropes, mass is removed in the ITCZ, asr@ tils a shift in parcel positions toward the ITCZ.
The largest shifts are on the cross-equatorial side, becaliss smallest there. Corresponding shifts away from the
ITCZ occur in an upper tropospheric layer bounded by twotisgres. As the heating proceeds? becomes larger
in the lower troposphere near the ITCZ. This increasingstasice to motion along isentropic surfaces, coupled with

the fixedd field, causes the depth of the ITCZ inflow to deepen with time.

The anisotropic response or enhancement of the crossee@i&tadley cell has interesting effects on the potential
vorticity field. To see this, consider the0.1 and0.4 potential vorticity lines in Figs. 20.1 and 20.2. TheRdines
mark chains of fluid particles beginning approximately dqiistances from the ITCZ. At 6 days the0.1 line is
more distorted than th@é.4 line. This is a direct result of the fact that the meridionatalation associated with the
cross-equatorial Hadley cell is more intense than the rizaréd circulation associated with the Hadley cell north of
the ITCZ. TheP = 0 curve marks the chain of fluid particles which started at oesthe equator. Regardless of the
hemisphere into which these particles move, they must ezguivesterly flow, since they move closer to the axis of
the earth’s rotation. Thus, the = 0 line bends more than the = 0 line, so that it lies in the lower tropospheric
westerlies north of the equator and the upper troposphexsteniies south of the equator.

The convective modification of the PV field occurs within akground state that has a northward increase of PV.
As convection continues, the gradient of PV becomes locallgrsed in the lower troposphere poleward of the ITCZ
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and in the upper troposphere equatorward of the ITCZ. Thegiems of reversed isentropic poleward gradient of PV
are indicated by stippling in Figs. 20.1 and 20.2. Such festdevelop quickly and satisfy the necessary condition
for combined barotropic-baroclinic instability. Thus,vibuld appear that ITCZ convection alone can lead to the
generation of unstable zonal flows. This may be the causerfdie breakdowns of the ITCZ.

Results at 6 days for an ITCZ locatedla®N are shown in Fig. 20.4. Comparing Fig. 20.4 with Fig. 20.2ne&e
that, except for the latitudinal shift, the' fields are essentially identical. However, the potentiatieity, zonal wind
and mass fields are different, with the ITCZ1&N producing a PV anomaly, neighboring zonal winds and isiabar
surface deviations considerably larger than those pratibgehe ITCZ atl0°N. These differences can be interpreted

as follows. SinceDo*/Dt = —0*(86/90) and the initialo* is constant, the time evolution of* for ITCZs at

different latitudes is essentially identical except foe theridional shift. SincéP/Dt = P(80/9©) and the initial
P increases to the north, the material rate of chang &f larger for an ITCZ ail5°N. An alternate interpretaion is
that, sinceP = (2Q2sin ®)/0*, identicalo* anomalies shifted from0°N to 15°N result in P anomalies which are
approximately 50% larger for the ITCZ a5°N.

Problems

. Derive (20.12) from (20.9).
. Derive (20.13) from (20.11) and (20.7).
. Derive (20.19) from (20.9). Then combine (20.19) with.(Z) to obtain (20.20).

A W N R

. Derive (20.33) from (20.28) and (20.29). Then combine32J) (20.32) and (20.33) to obtain the Eliassen
equation (20.34).

5. Show by direct substitution that (20.39) is a solution2tf.38).
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Figure 20.1: Results §t = 3 days for an ITCZ located at 10N. The upper panel shows iselifie* /o (i.e., potential
pseudodensity measured in unitsaf) in (¢, 0)-space. Note that the convection in the ITCZ generates arlowe
tropospheric region of low potential pseudodensity and@reu tropospheric region of high potential pseudodensity.
The middle panel shows isolines & /(2Q) (i.e., potential vorticity measured in units 2f/0(). The stippling
indicates regions where the poleward isentropic gradiépiotential vorticity is reversed. The bottom panel shows
pressure (nearly horizontal lines) in kPa and zonal baldmdgad in m s, Solid wind contours indicate westerly
flow, dashed contours easterly flow, with a contour interfdl m s—!. These wind and mass fields are(in 0)-space
and are associated with the potential pseudodensity aedipatvorticity fields shown in the top two panels.
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Figure 20.2: Results &t = 6 days for an ITCZ located at 10N.
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Figure 20.3: The upper panel shows the heating func&(@ﬂw) in K day~! at 3 days. The distortion of the heating
function from a true Gaussian function results from thedfarmation to actual latitude¢. The other two panels show
parcel trajectories from the initial time to 3 days and frord&/s to 6 days. The cross-equatorial cell is more intense
because the inertial stabilitf? in (20.34) is smaller near the equator. Thus, air parcelsthesequator encounter the
least resistance to “horizontal” movement along isentrepirfaces.
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Figure 20.4: Results &t = 6 days for an ITCZ located at 15N.

20-12

Spring 2011



