PROTOLITI

ishodišne stijene

magmatske, sedimentne, metamorfne

Metamorfizam mafitnih stijena

Mali broj minerala, reakcija, izograda - zbog čvrstih otopina

- Mineralne promjene i zajednice se razvijaju s porastom metamorfnog stupnja duž P-T gradijenta
 - Minerali koji sadrže vodu nisu uobičajeni u visoko-T mafitnim protolitima, tako da je hidratizacija preduvjet za razvoj metamorfnih mineralnih parageneza koje karakteriziraju većinu facijesa
 - Ako nema vode mafitna magmatska stijena će ostati nemetamorfozirana čak i kad se okolni sedimenti metamorfoziraju
 - Krupnozrnati intruzivi se najmanje propusni (permeabilni) i otporni na metamorfne promjene dok su tufovi i grauvake vrlo podložni promjenama

Vrste protolita

Uobičajeni tipovi ishodišnih stijena (protolita) su grupirani u 6 kemijski različitih grupa 1. Mafitna - visok sadržaj Fe, Mg, i Ca 2. Pelitna - visok sadržaj Al, K, Si 3. Karbonatna - visok sadržaj Ca, Mg, CO₂ 4. Ultramafitna - visok sadržaj Mg, Fe, Ni, Cr

5. Kvarcna - skoro čisti SiO₂.
6. Kvarcno-feldspatska - visok sadržaj Si, Na, K, Al

Metamorfizam mafitnih stijena

Plagioklas:

- "breakdown" dva tipična minerala za bazalte (pl + cpx)
- kako se T snizuje bazičniji plagioklasi postaju nestabilni
- Postoji općenita korelacija između T i maksimalnog sadržaja An komponente stabilnog plagioklasa
 - U niskom metamorfnom stupnju stabilan je albit (An_{0-3})
 - U višim djelovima facijesa zelenih škriljavaca oligoklas postaje stabilan. An-sadržaj plagioklasa zatim "skače" od An₁₋₇ do An₁₇₋₂₀ (peristeritni solvus) kako metamorfni stupanj raste
 - Andezin i bazičniji plagioklasi su stabilni u višim djelovima amfibolitnog facijesa i granulitnom facijesu
 - Višak Ca i Al se oslobađa → kalcit, epidot (czo), sfen, amfibol, itd ovisno o P-T-X

Metamorfizam mafitnih stijena

• Klinopiroksen se raspada na brojne mafitne minerale ovisno o metamorfnom stupnju. To su klorit, aktinolit, hornblenda, epidot, metamorfni piroksen itd. Oni minerali koji nastanu su dijagnostični za stupanj i facijes.

1. Mafiti: mineralne zajednice niskog stupnja

- Zeolitni i prehnit-pumpeleitni facijes
- Ne javljaju se uvijek potreban im je nestabilan protolit
- Boles i Coombs (1975) su pokazali da je metamorfizam tufova na Novom Zelandu potpomognut značajnim kemijskim promjenama uslijed cirkulacije fluida. Stoga klasično područje metamorfizma tonjenja ima značajnu komponentu i hidrotermalnog metamorfizma.

2. Mafiti: P/T serije srednjeg stupnja

- Facijes zelenih škriljavaca, amfibolitni i granulitni facijes su najčešći facijesi regionalnog metamorfizma
- Klasična Barovljeva serija pelitnih zona i low-P Buchan-Abukuma serija predstavljaju varijacije istog trenda

2. Mafiti: facijes zelenih škriljavaca

- Zeolitni i prehnit-pumpeleitni facijes nisu prisutni u području Scottish Highlands
- Metamorfizam mafitnih stijena se prvi put javlja u facijesu zelenih škriljavaca, koji odgovara kloritnoj i biotitnoj zoni pridruženih pelitnih stijena
 - Tipični minerali uključuju klorit, albit, aktinolit, epidot, kvarc, i ± kalcit, biotit ili stilpnomelan
 - Klorit, aktinolit i epidot daju zelenu boju prema kojoj su stijena i facijes dobili ime
- Karakteristična mineralna parageneza za facijes zelenih škriljavaca: klorit + albit + epidot + aktinolit ± kvarc

- 2. Mafiti: f. zelenih škriljavaca ⇒ amfibolitni f.
- Prijelaz iz facijesa zelenih škriljavaca u amfibolitni facijes uključuje dvije značajne mineralne promjene
- Prijelaz iz albita u oligoklas (povišenje Ca-sadržaja stabilnog plagioklasa s porastom T)
 peristeritni "gap"
- 2. Prijelaz iz aktinolita u hornblendu (amfibol prihvaća Al i alkalije pri višim T)
- Oba prijelaza se odvijaju u istom stupnju ali s različitim P/T nagibima reakcijskih krivulja

Slika 26-19. Pojednostavljena petrogenetska mreža za metamorfozirane mafitne stijene pokazuje položaj nekih od univarijantnih reakcija u CaO-MgO-Al₂O,-SiO₂-II₃O-(Na₂O) sustavu ("C(N)MASH"). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

2. Mafiti: amfibolitni facijes

- Amfibolitni facijes
- Tipične su dvije faze Hbl-Pl
- Većina amfibolita su crne stijene sa do 30 vol. % plagioklasa
- Granat se javlja u Al-Febogatim i Ca-siromašnim mafitnim stijenama.
- Klinopiroksen se javlja u Alsiromašnim-Ca-bogatim stijenama

Slika 25-7. ACF dijagram pokazuje reprezentativne mineralne parageneze za metabazite u amfibolitnom facijesu. Tipičan sastav mafitnih stijena je osjenčan. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

2. Mafiti: amfibolitni ⇒ granulitni facijes

- prijelaz iz amfibolitnog u granulitni facijes se odvija u rasponu T od 650-700°C
- U prisutnosti vode (fluida) pridružene pelitne i kvarcnofeldspatske stijene (uključujući granitoide) se počinju taliti (kod niskih do srednjih pritisaka) i nastaju migmatiti
- Posljedica toga je da ne dosižu svi peliti i kvarcnofeldspatski protoliti granulitni facijes

2. Mafiti: granulitni facijes

- Mafitne stijene se tale pri visokim T (ovisno o prisutnosti fluida)
- Ako se voda (fluid) odstrani odlaskom ranih taljevina (liq + H₂O) mafitna stijena postaje osiromašena brojem minerala
- Hornblenda se raspada na ortopiroksen + klinopiroksen

2. Mafiti: granulitni facijes

Porijeklo stijena granulitnog facijesa je kontroverzno i kompleksno. Postoji opće slaganje oko dvije točke:

- 1) Granuliti predstavljaju neobično vruće uvjete
 - Temperature > 700°C, geotermometrija daje vrlo visoke T čak preko 1000°C
 - Prosječne geotermalne temperature za dubine granulitnog facijesa su u blizini 500°C, sugerirajući da su granuliti produkt zadebljanja kore i suviška topline

2) Granuliti su "suhi"

- Jedini razlog zašto se nisu rastalili je nedostatak vode
- Područje granulitnog facijesa predstavlja duboke i dehidrirane korijene kontinentalne kore

2. Mafiti: granulitni facijes

Slika 26-19. Pojednostavljena petrogenetska mreža za metamorfozirane mafitne stijene pokazuje položaj nekih od univarijantnih reakcija u CaO-MgO-Al,O₃-SiO₂-H,O-(Na₂O) sustavu (~C(N)MASH[¬]). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Granulitni facijes je karakteriziran prisutnošću <u>bezvodnih mineralnih</u> <u>parageneza</u> U metabazitima:

ortopiroksen + klinopiroksen + plagioklas + kvarc

Granat je također čest mineral u granulitnom facijesu a podređeno se mogu javljati hornblenda i/ili biotit $(H_2O!)$

3. Mafiti: P/T serije "low" gradijenta Albit-epidot-, hornblenda-, piroksen-hornfels i sanidinitni facijes

- Mineralogija metabazita niskog tlaka ne razlikuje se znatno od medium-P serije facijesa
- Albit-epidot hornfels facijes odgovara facijesu zelenih škriljavaca u koji prelazi porastom tlaka
- Hornblenda hornfels facijes odgovara amfibolitnom facijesu a piroksen hornfels i sanidinitni facijes odgovaraju granulitnom facijesu

Slika 25-2. P-T dijagram pokazuje opće prihvaćene granice facijesa. Granice su približne i postupne. Tipičan ili prosječni kontinentalni geoterm je iz Brown and Mussett (1993). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall

4. Mafiti: serije "high" P/T gradijenta Facijes plavih škriljavaca i eklogitni facijes

- Mafitne stijene daju mineralne zajednice pri visokim P/T uvjetima
- Visok P/T geotermalni gradijent vezan je uz subdukcijske zone
- Mafîtni plavi škriljavci su lako prepoznatljivi po boji i indikator su drevnih subdukcijskih zona
- Velika gustoća eklogita sugerira da subducirana bazaltna oceanska kora iz koje su nastali postaje gušća od okolnog plašta

"high" P/T gradijent: facijes plavih škriljavaca

- Facijes plavih škriljavaca karakterizira prisutnost Na plavog amfibola stabilnog samo pri visokim P (glaukofan, čvrste otopine krosita i ribekita)
- Parageneza glaukofan + lawsonit je tipična.
- Albit se raspada pri visokom P na jadeitski piroksen + kvarc :

 $NaAlSi_{3}O_{8} = NaAlSi_{2}O_{6} + SiO_{2}$ Ab Jd Qtz

• Parageneza jadeit + kvarc indicira high-P facijes

"high" P/T gradijent: eklogitni facijes

• Eklogitni facijes: mafitna parageneza omfacitski piroksen + pirop-grosular granat

- vezan uz visoke P i razne T (ali uglavnom visoke T)
- prateći mineral kijanit (disten)

Odnos metamorfnog facijesa i stupnja

WINKLER jednostavnija podjela na stadije (stupnjeve) ("grade") na temelju diskontinuiranih reakcija prepoznatljivih na terenu kao izograde.

Very Low Grade - ZF, PPF, FPŠ	Medium Grade - AF, HHF				
Low Grade - FZŠ, AEHF	High Grade - GF, PHF, SF				

Metamorfizam pelitnih protolita

- Muljnjaci (mudstones) i šejlovi (shales): sitnozrnati zreli klastični sedimenti
- Akumulirani u udaljenim područjima akrecijske prizme i na kontinentalnoj padini/šelfu
- Prelaze u krupnije grauvake i pjeskovite sedimente prema kontinentu (izvoru materijala)
- Iako svoj razvoj započinju kao "neugledno blato" metapeliti predstavljaju značajnu skupinu metamorfnih stijena zbog toga što su minerali glina vrlo osjetljivi na varijacije u temperaturi i tlaku te prolaze kroz značajne promjene u mineralnom sastavu tijekom progresivnog metamorfizma

Metapeliti

- Kemijski sastav: visok sadržaj Al₂O₃ i K₂O, nizak CaO
- Otkriva visok sadržaj tinjaca i glina ishodišnog sedimenta i pokazuje dominaciju muskovita i kvarca u širem rasponu metamorfnih uvjeta
- Visok udio tinjaca → razvija se folijacija u stijenama poput slejta, filita i tinjčevog škriljavca

Metapeliti

- Mineralnim sastavom pelitnih sedimenata dominiraju sitni Al-K-bogati filosilikati poput minerala glina (montmorilonit, kaolinit, smektit), bijelih tinjaca (sericit, paragonit, fengit) i klorita, a svi oni mogu biti i detritus i autigena zrna
- Filosilikati mogu činiti i više od 50% originalnog sedimenta
- Sitni kvarc 10-30%
- Ostali česti sastojci su feldspati (albit i K-feldspat), Feoksidi i hidroksidi, zeoliti, karbonati, sulfidi i organska tvar

Metapeliti

slejt, filit, t.šk.

gnajs

- Facijes zelenih škriljavaca

 - kloritna zonabiotitna zona
- Amfibolitni facijes tinjčev škriljavac, gnajs
- granatna zona (prijelaz fac. zel. šk. ka amfibolitnom fac.)
- staurolitna zona
- kijanitna (distenska) zona
- sillimanitna zona
- Granulitni facijes (!? P, T, fluid)
- K-feldspat-sillimanit zona
- kordijerit-granat zona
- **migmatiti** (parcijalno taljenje, prijelaz amf. fac./granulitni fac.)

Metamorphic Grade							
Metamorphic Facies	Greensch	ist ^{Tri}	ansitional States	Amphib	olite	Gran	ulite
Albite Plagioclase > An ₁₂			Oligoclase			Andes	ine
Epidote Actinolite Hornblende							
Augite Orthopyroxene							
Chlorite Garnet							
Biotite Quartz Phengite							
Cummingtonite							
Zone for associated metapelites	Chlorite Zone	Biotite Zone	Garnet Zone	Staurolite and Kyanite Zones	Sillimanite- Muscovite Zone	K-feldspar- Sillimanite Zone	Cordierite- Garnet Zone

Slika 25-9. Tipične prpmjene u mineralnom sastavu metabazične stijene tijekom progresivnog metamorfizma u P-T seriji facijesa srednjeg stupnja. Za usporedbu dane su i zone u metapelitima Barovljevog metamorfizma. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Metapeliti

Slika 28-22. Teksture migmatita. a. Brečasta u agmatitu. b. Mrežasta. c. Raft-like. d. Žilna. e. Stromatitna ili uslojena. f. Budinaž. g. Šlirasta. h. Nebulitna. Iz Mehnert (1968) *Migmatites and the Origin of Granitic Rocks*. Elsevier. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Metakarbonati

- Karbonatne stijene vapnenac i dolomit
- Nastale na stabilnom kontinentalnom šelfu duž pasivne granice ploča
- Mogu biti čisti karbonati ili mogu sadržavati precipitate (čert, hematit) ili detritični materijal (pijesak, gline, ...)
- Raspon od čistih karbonata do čistih klastita
- Metamorfoziraju se kada pasivna granica postaje dio orogenog pojasa

Metamorfizam ultramafita

- Alpinski (alpinotipni) peridotiti: gornji plašt = baza oceanske litosfere koja se ugrađuje na kontinentalnu koru duž subdukcijske zone
- Razbijeni dijelovi ofiolita: dijelovi oceanske kore i plašta koji su ili odvojeni od subducirane ploče i ugrađeni u akrecijsku prizmu subdukcijske zone ili (češće) uhvaćeni između dva bloka tijekom kolizije
- Dijelovi ultramafitnih tijela u orogenu slijede glavne rasjedne zone razdvajajući različite mase stijena Interpretirane kao ostatak oceanske kore + plašt koji su nekad razdvajali kolizijske terene i zato predstavljaju suturnu zonu
- Asocijacija stijena facijesa plavih škriljavaca s ultramafitima podržava porijeklo vezano uz subdukciju

Metakarbonati

- Metakarbonati su metamorfozirane karbonatne stijene u kojima dominira karbonatna komponenta
- Mramori su skoro čisti karbonati
- Kalcijsko-silikatne stijene: karbonatna komponenta je podređena, Ca-Mg-Fe-Al silikatni minerali poput diopsida, grosulara, Ca-amfibola, vezuvijanita, epidota, volastonita, itd.
- Skarn: kalcijsko-silikatna stijena nastala metasomatozom između karbonata i Si-bogatih fluida
 - Kontakt između sedimentnih slojeva
 - Kontakt između karbonata i intruzije vruće i mokre magme (granitna magma)

Metamorfni fluidi i metasomatizam

- H₂O • CO₂
- CO
- H₂S, CH₄ H₂
- transport iona

Slika 30-1. Vrste fluida u C-O-H-S sustavu pri 0.2 GPa. Iz Holloway (1981) Compositions and volumes of supercritical fluids in the Earth's crust. In L. S. Hollister and M. L. Crawford (1981). Short Course in Fluid Inclusions: Applications to Petrology. Mineral. Assoc. Canada. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Metamorfni fluidi i metasomatizam

Slika 30-15. "Idealno" mineralno zoniranje uslijed metasomatizma u ultramafitnom tijelu (< 3m dugo) u regionalnom metamorfizmu niskog stupnja (okolna stijena - pelit), Unst, Shetland Islands. Prema Read (1934) *Mineral. Mag.*, 23, 519-540. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Stabilne mineralne zajednice u metamorfnim stijenama

Prirodni sustavi teže prema stanju minimuma energije

Isti protolit će uvijek dati istu mineralnu zajednicu kad je podvrgnut istoj temperaturi i tlaku tj. mineraloški sastav je određen kemijskim sastavom pri konstantnoj T i P.

Mineralna asocijacija vs. parageneza

Magmatska mineralna parageneza - kristalizacijom magme formira se zajednica minerala u ravnoteži. Svi minerali pripadaju istoj paragenezi jer je magmatska taljevina homogena. Dakle asocijacija = parageneza

Metamorfna mineralna parageneza - minerali mogu biti članovi jedne ili više parageneza. Istoj paragenezi pripadaju minerali koji su u ravnoteži pri istim P i T uvjetima i koji su u međusobnom kontaktu. Pri tome je važno da minerali ne pokazuju teksturne indikacije neravnoteže poput reakcijskih rubova, razlika u kemijskom sastavu, zatim da je parageneza uravnotežena u duljem vremenskom razdoblju, da ne postoje neusklađene faze (Ol + Qtz) te da sadrže mali broj minerala (mineraloško pravilo faza).

Stabilne mineralne zajednice u metamorfnim stijenama

REAKCIJE I RAVNOTEŽE

Mineralna parageneza nije slučajna nakupina minerala već je određena s P, T i C, a do završne parageneze dolazi se preko (pomoću) reakcija (kontinuiranih i diskontinuiranih) kojima se nastoji doseći stanje minimuma slobodne energije.

TERMODINAMIKA GEOTERMOBAROMETRIJA

Promatraju se kemijski sastavi stijena i minerala, ti zatvoreni ili otvoreni sustavi imaju određena svojstva i reagiraju na određen način s okolinom. U našem slučaju metamorfne stijene. Prirodni sustavi odstupaju od ideala, pitanje mjerila, tekstura, "layering"...

Stabilne mineralne zajednice u metamorfnim stijenama

Niz postupaka i metoda kojima se dovodi u direktnu ili indirektnu vezu kemijski sastav minerala s uvjetima metamorfizma naziva se GEOTERMOBAROMETRIJA. Promjena uvjeta metamorfizma u vremenu tijekom orogeneze naziva se P-T-t reakcijski put.

Najčešće su to vršni uvjeti ("peak"). Za određivanje P i T potrebno je ustanoviti stanje ravnoteže. Geotermobarometri osim na kemijskom sastavu mogu biti temeljeni i na nekim strukturnim elementima (ćelija, parametri ćelije), pojavom ili nestankom minerala i.t.d. Razvijeni su na pojedinom mineralu, mineralnim parovima i mineralnim paragenezama. Vrlo je usko područje njihove primjene.

Geotermobarometrija

WDS Mg kemijska karta

Lokalno Fe-Mg uravnoteženje između granata i biotita pri 600 °C i 6 kbar vidi se na Mg kemijskoj karti.

Mg se smanuje na svim rubovima u granatu (plavi rub - retrogradni metamorfizam) i povisuje u biotitu (zeleno). U području kontakta dolazi do novog uravnoteženja ovisno o P i T (crveno). University of Massachusetts at Amherst.

Geotermometrija

Upotreba raspodjele elemenata u koegzistirajućim fazama izmjerenim u eksperimentima pri poznatim P i T da bi se odredili ravnotežni P i T u stvarnim uzorcima.

Table 27-2. Experimental results of Ferry and Spear (1978) on a Garnet-Biotite Geothermometer

	Т°С	Initial	Final	Final	Final	Final	К	Т	1/T	InK
Constant histit		X(Fe-Bt)	X(Fe-Bt)	X(Fe-Grt)	(Mg/Fe)Grt	(Mg/Fe)Bt		Kelvins	Kelvins	
Granat-bloth	799	1.00	0.750	0.905	0.105	0.333	0.315	1072	0.00093	-1.155
	799	0.50	0.710	0.896	0.116	0.408	0.284	1072	0.00093	-1.258
geotermometar	749	0.50	0.695	0.896	0.116	0.439	0.264	1022	0.00098	-1.330
0	738	1.00	0.730	0.906	0.104	0.370	0.281	1011	0.00099	-1.271
	698	0.75	0.704	0.901	0.110	0.420	0.261	971	0.00103	-1.342
	698	0.50	0.690	0.896	0.116	0.449	0.258	971	0.00103	-1.353
	651	0.75	0.679	0.901	0.110	0.473	0.232	924	0.00108	-1.459
	651	0.50	0.661	0.897	0.115	0.513	0.224	924	0.00108	-1.497
	599	0.75	0.645	0.902	0.109	0.550	0.197	872	0.00115	-1.623
	599	0.50	0.610	0.898	0.114	0.639	0.178	872	0.00115	-1.728
	550	0.75	0.620	0.903	0.107	0.613	0.175	823	0.00122	-1.741
	550	0.50	0.590	0.898	0.114	0.695	0.163	823	0.00122	-1.811
	601	0.50	0.500	0.800	0.250	1 000	0.250	874	0.00114	-1 386
	601	0.25	0.392	0.797	0.255	1.551	0.164	874	0.00114	-1.807
	697	0.75	0.574	0.804	0.244	0.742	0.329	970	0.00103	-1.111
	697	0.25	0.468	0.796	0.257	1 137	0.226	970	0.00103	-1 487

Geotermometrija

Granat-biotit geotermometar

Slika 27-5. Grafikon InK vs. 1/T (u K) za granat-biotit geotermometar pri 0.2 GPa prema Ferry and Spear (1978). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Geotermometrija

Granat-biotit geotermometar

Slika27-6. AFM projekcija pokazuje relativnu raspodjelu Fe i Mg u granatu i biotitu pri 500°C (a) i 800°C (b). Iz Spear (1993) *Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths*. Mineral. Soc. Amer. Monograph 1.

Slika 27-8. P-T dijagram s ravnotežnim krivuljama za različit K kod GASP geobarometra reakcija: 3 An = Grs + 2 Ky + Qtz. Iz Spear (1993) *Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths.* Mineral. Soc. Amer. Monograph 1.

Geotermobarometrija: P-T-t reakcijski put P-T-t Paths

Slika 27-12. Zonalan plagioklas i poikiloblastičan granat, metapelit, Wopmay Orogen, Canada. a. Kemijski profil kroz granat (rim \rightarrow rim). b. An-sastav plagioklasnih inkluzija u granatu odgovara zonama u susjednom plagioklasu. Prema St-Onge (1987) *J. Petrol.* 28, 1-22.

Slika 27-13. Primjena Grt-Bt geotermometra i GASPgeobarometra na jezgru, zonu i rub minerala. Tri presječnice daju P-T procjenjene uvjete koji definiraju P-T-t reakcijski put za rastuću paragenezu. Put pokazuje izotermalnu dekompresiju. Prema Spear (1993).

Geotermobarometrija

Slika 27-15. P-T dijagram pokazuje izračunata odstupanja u primjeni različitih kalibracija kod Grt-B t geotermometra i GASPgeobarometra na pelitniškriljavac iz S Čilea. Prema Kohn and Spear (1991b) Amer. Mineral., 74, 77-84 and Spear (1993) Irrom Spear (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineral. Soc. Amer. Monograph 1.

Slika 27-10. P-T dijagram pokazuje rezultate Grt-Bt termometra (crveno) i GASD barometra (plavo), Razne krivulje predstavljaju različite kalibracije. Osjenčano područje je polje procjenjenih P-T uvjeta za uzorak. AL_SSiO₅ invariantna točka je unutar osjenčanog područja.

P-T-t reakcijski put

- Serije metamorfnih facijesa ukazuju da put kroz metamorfni teren slijedi metamorfni gradijent (metamorphic field gradient) i prolazi kroz slijed (sekvencu) metamorfnih facijesa
- Stijene razvijaju seriju metamorfnih mineralnih zajednica koje se kontinuirano uravnotežavaju prema rastućem metamorfnom stupnju
- Razmatra se kompletan skup P-T uvjeta kroz koje stijena prolazi tijekom metamorfnog ciklusa od tonjenja (subdukcije), metamorfizma, orogeneze do uzdizanja i erozije -> ciklus
- Takav ciklus se naziva P-T-t reakcijski put (pressuretemperature-time path ili P-T-t path)

P-T-t reakcijski put

Metamorfni P-T-t reakcijski put prepoznaje se pomoću:

- 1) Opažanja parcijalnih overprint-ova jedne mineralne zajednice na drugu
 - Reliktni minerali ukazuju na dio progradnog ili retrogradnog puta (ili oba) ovisno o uvjetima pod kojima su nastali

2) primjenu geotermometra i geobarometra na jezgru i rub kemijski zonalnih minerala da bi se dokumentirala promjena P-T uvjeta tijekom njegovog rasta

Čak i u najboljim okolnostima (1) i (2) mogu dokumentirati samo male djelove P-T-t reakcijskog puta

3) Zbog toga ovisimo o modelima npr. toplinskog toka ("forward" heat-flow models) za različite tektonske režime

za proračun složenijih P-T-t reakcijskih puteva

Slika 25-13a. Kemijski profili kroz **zonalni granat** iz Tauern Window. Prema Spear (1989)

Kemijski zonalni minerali

Slika 25-13b. Konvencionalni P-T dijagram pokazuje modeliran "clockwise" P-T-t reakcijski put prema profilima koristeći metr

SIIKa 25-13b. Konvencionalini P-1 dijagram pokazuje modeliran "clockwise" P-T-t reakcijski put prema profilima koristeći metodu Selverstone et al. (1984) J. Petrol., 25, 501-531 and Spear (1989). After Spear (1989) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineral. Soc. Amer. Monograph 1.

P-T-t reakcijski put

- Klasičan stav: regionalni metamorfizam je posljedica dubokog tonjenja ili intruzije vruće magme
- Tektonika ploča: regionalni metamorfizam rijetko je posljedica samog tonjenja nego i zadebljanja kore i dovoda topline tijekom orogeneze na konvergentnim granicama ploča
- Heat-flow modeli su razvijeni za različite tektonske režime uključujući tonjenje, progresivno navlačenje, zadebljanje kore kontinentalnom kolizijom uz dodatne efekte anateksisa kore i migracije magme
 - Viši dovod od normalnog toplinskog toka je potreban za tipičnu medium P/T seriju facijesa (facijes zelenih škriljavacaamfibolitni facijes)
 - Uzdizanje i erozija imaju značajan efekt na geoterm i moraju se uzeti u obzir u potpunom modelu metamorfizma

• THERMOCALC "pseudosections" za gnajs i amfibolit (Kutjevo) u rasponu T=500-700 °C i P=2-12 kbara

P-T-t reakcijski put

 Iako točan oblik, veličina i položaj orogenog P-T-t reakcijskog puta poput slučaja (a) može varirati s ograničenjima modela, većina primjera zadebljanja kore ima isti oblik

 Put poput (a) slučaja se naziva "clockwise" P-T-t reakcijski put i smatra se obrascem regionalog metamorfizma

Slika 25-12. Shematski P-T-t reakcijski put temeljen na heat-flow modelima. Al₂SiO₅ fazni dijagram, dvije hipotetske dehidratacijske krivulje, granice facijesa i serije metamorfnih facijesa su uključene u sliku. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

P-T-t reakcijski put

Suprotno klasičnom shvaćanju metamorfizma temperatura i tlak ne rastu jedinstveno u metamorfnom stupnju!

Njihova relativna magnituda značajno varira tijekom procesa metamorfizma

P-T-t reakcijski put

P_{max} i T_{max} se ne javljaju istovremeno

- U uobičajenom "clockwise" P-T-t reakcijskom putu, P_{max} se javlja ranije nego T_{max} .
- T_{max} predstavlja maksimalan metamorfni stupanj kod kojeg je kemijska ravnoteža "zamrznuta" i metamorfna mineralna parageneza razvijena
- To se javlja pri znatno nižim tlakovima od P_{max} , pa je određivanje tlaka nesigurno jer mineralni geobarometar bilježi tlak pri T_{max}
- "Metamorfni stupanj" se stoga odnosi na T i P pri T_{max}, zbog toga što je stupanj determiniran u odnosu na ravnotežnu mineralnu zajednicu