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Nepravi integrali

Zadatak ∫ 5

1

dx

(x − 2)2
=?

Zadatak ∫ ∞

1
exp(−x) dx =?

Odredeni (Riemannov) integral definiran je samo za ograničene
funkcije na ograničenom području integriranja.

Nepravi integrali . . .

. . . su integrali koji podsjećaju na odredene integrale jer su im
definirane granice integriranja, ali ili je funkcija na intervalu
integriranja neograničena ili je interval integriranja neograničen.
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Primjeri nepravih integrala∫ 1

0
ln x dx ,

∫ π/2

0
tg x dx ,

∫ 3

0

dx

x − 1
,∫ +∞

1

dx

x2
,

∫ 5

−∞

dx

1 + x2
,

∫ +∞

−∞
e−x2 dx .

Neograničena povřsina ̸= beskonačna povřsina

Ako je povřsina nečega opisiva kao P(x) = 2 + 1
1−x za rastući

x > 0, onda ona ne postaje beskonačno velika iako s rastućim x i
ona raste: limx→+∞ P(x) = 2.
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x > 0, onda ona ne postaje beskonačno velika iako s rastućim x i
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Nepravi integrali s neograničenom podintegralnom

funkcijom

x

y

b
a b− ε



Nepravi integrali s neograničenim područjem integriranja

x

y

a R



Ako je konačni rezultat izračunavanja potrebnog limesa realan broj,
kažemo da nepravi integral konvergira, a u suprotnom da divergira.

Zadatak ∫ 2

0

dx
3
√
1− x

=?

∫ +∞

−∞

dx

1 + x2
=?

Zadatak

Konvergiraju li integrali∫ 1

0

1

xα
dx i

∫ ∞

1

1

xα
dx

za α = 1 i za α = 2?

Oprez: Ako je f : R→ R neparna,

∫ +∞

−∞
f (x) dx = 0 samo ako

konvergira

∫ +∞

0
f (x) dx = 0.
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Kakva treba biti podintegralna funkcija . . .

. . . da bi bilo šanse da njen integral od 0 do +∞ konvergira?



Dvije korisne formule

Što su faktorijeli i kako se interpretiraju?

Gama-funkcija je primjer
neelementarne funkcije zadane integralom:

Γ : R \ (−N) → R, Γ(x) =

∫ +∞

0
tx−1e−t dt.

⇒∫ +∞

0
xn exp(−a x) dx =

n!

an+1
, n ∈ N, a > 0.

Postoje integrabiln funkcije čija antiderivacija nije elementarna
funkcija, npr.

erf x =
2√
π

∫ x

0
exp(−t2) dt.

Za x = +∞: ∫ +∞

0
e−ax2 dx =

1

2

√
π

a
.
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Osnove teorije vjerojatnosti

Slučajni pokus: aktivnost čiji ishod nije moguće unaprijed
predvidjeti.

Vjerojatnosni prostor: skup Ω svih mogućih ishoda nekog
slučajnog pokusa.

Elementarni dogadaj: element x vjerojatnosnog prostora.

(Slučajni) dogadaj: podskup A vjerojatnosnog prostora.

Slučajna varijabla: funkcija X : Ω → R (kontinuirana je ako
joj je slika interval).

Vjerojatnost je funkcija p koja svakom slučajnom dogadaju A
pridružuje njegovu vjerojatnost p(A) ∈ R, tako da vrijedi:

1 p(A) ≥ 0 za sve A;
2 p(Ω) = 1;
3 ako je Ai ∩ Aj = ∅ za sve parove indeksa i , j , onda je

p(A1 ∪ A2 ∪ . . .) = p(A1) + p(A2) + . . .



Zadatak

Dokažite da je za svaki dogadaj A uvijek p(A) ∈ [0, 1] i
p(Ac) = 1− p(A).

Većina kontinuiranih slučajnih varijabli ima svoju funkciju gustoće
vjerojatnosti φ : R→ R takva da je

p(X ≤ b) = p(X < b) =

∫ b

−∞
φ(x) dx .

φ je nenegativna.
φ(x) = 0 za x-eve koji nisu u slici slučajne varijable.
Normiranost funkcije gustoće vjerojatnosti:∫ +∞

−∞
φ(x) dx = 1.

Dakle, φ sigurno ima x-os kao obostanu HA.

p(X ≥ a) = P(X > a) =

∫ +∞

a
φ(x) dx .
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Većina kontinuiranih slučajnih varijabli ima svoju funkciju gustoće
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Zadatak
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p(a ≤ X ≤ b) =

∫ b

a
φ(x) dx ,

i specijalno p(X = a) = 0.

Očekivanje (očekivana ili prosječna vrijednost) kontinuirane
slučajne varijable X s funkcijom gustoće vjerojatnosti φ:

⟨X ⟩ =
∫ ∞

−∞
x φ(x)dx .
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Za valnu funkciju (orbitalu) ψ, funkcija φ = |ψ|2 = ψ∗ψ je realna.
Prema Bornovoj interpretaciji valne funkcije, ta funkcija je funkcija
gustoće vjerojatnosti za nalaženje elektrona opisanog valnom
funkcijom ψ unutar razmatranog prostora. Često se koristi i
radijalna gustoća vjerojatnosti

ϕ(r) = 4πr2|ψ|2,

koja je funkcija gustoće vjerojatnosti za nalaženje elektrona
opisanog valnom funkcijom ψ na udaljenosti r od jezgre.

Zadatak

2s-orbitala za vodikov atom je valna funkcija

ψ2,0,0(r) = N

(
2− r

a0

)
exp

(
− r

2a0

)
. Koliko iznosi N? Koliko

iznosi očekivani polumjer R vodikove 2s-orbitale? Koliko iznosi
p(r = R)? Kolika je vjerojatnost da vodikov 2s-elektron bude na
udaljenosti izmedu a0 i očekivane?



Skalarni produkt integrabilnih funkcija zadanih na intervalu I je
integral njihova umnoška s područjem integriranja I . Ako im je
skalarni produkt 0, kažemo da su ortogonalne.

Zadatak

Čestica u jednodimenzionalnoj kutiji je čestica koja se može gibati
samo unutar segmenta [0, a]. Pripadne valne funkcije dane su (za
kvantne brojeve n ∈ N0) formulom

ψn(x) = An sin
nπx

a
, 0 ≤ x ≤ a.

Skicirajte ih!
Dokažite da su valne funkcije čestice u jednodimenzionalnoj kutiji
za različite kvantne brojeve n ∈ N medusobno ortogonalne.
Izračunajte vjerojatnost P da se čestica kvantnog broja n nade u
srednjoj trećini kutije! Odredite konstante normiranja An i
očekivanu vrijednost ⟨x⟩ položaja čestice za svaki n.
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