# Optimizacija Niza Čerenkovljevih teleskopa (CTA) pomoću Monte Carlo simulacija

Mario Petričević

Fizički odsjek, PMF Sveučilište u Zagrebu

30. siječnja 2016.

Izvori Spektar Detekcija

Gama-astronomija

- E  $\gtrsim$  0,5 MeV
- najviša detektirana E pprox 100 TeV
- VHE  $\gtrsim$  30 GeV

Gama-zračenje IACT Izvori CORSIKA Spektar Osjetljivost LST-ova

Leptonski procesi

- sinkrotronsko zračenje
- inverzno Comptonovo raspršenje

Neleptonski procesi u gustim područjima međuzvjezdanog medija

nastanak neutralnih mezona

 $\pi^0 
ightarrow \gamma + \gamma \ m_0 c^2/2 pprox 68 MeV$ 

**Izvori** Spektar Detekcija



poznato 155



Slika 1: Preuzeto iz [1], [2]

**Izvori** Spektar Detekcija

#### Izvori $\gamma$ -zračenja



Slika 2: Uključeni i podaci s GLAST/Fermi satelita. Preuzeto iz [1], [2].

Gama-zračenje IACT Izvori CORSIKA Spektar Osjetljivost LST-ova

Spektar  $\gamma$ -zračenja

- Diferencijalni udarni presjek  $\frac{d^3N_{\gamma}}{dEdtdS}$  brzo opada s energijom
- Spektralna energetska distribucija (SED):

$$E^{2}\frac{d^{3}N_{\gamma}}{dEdtdS} = E\frac{d^{3}N_{\gamma}}{dlnEdtdS}$$
(1)

Izvori **Spektar** Detekcija

#### Spektar $\gamma$ -zračenja



Slika 3: SED  $E^2 d^3 N_{\gamma}/(dEdtdS)$  dvaju različitih netermalnih izvora od radio do VHE  $\gamma$ -područja - Rakove maglice (lijevo) i aktivne galaktičke jezgre PKS2155-304 (desno). Preuzeto iz [4].

 $\propto E^{-lpha}$ 

 $\alpha$  - spektralni indeks

Izvori Spektar **Detekcija** 



Slika 4: Vizualizacija pljuskova. Redom: foton energije 100 GeV, foton energije 100 TeV, proton energije 100 GeV i proton energije 100 TeV [8].

Izvori Spektar Detekcija



Slika 5: Radijalna ovisnost intenziteta Čerenkovljevih fotona [1].



IACT - Imaging Air/Atmospheric Cherenkov Telescope

• H.E.S.S, MAGIC, VERITAS

• CTA



Slika 6: Stereoskopski način određivanja smjera i energije upadne zrake. Preuzeto iz [3].

CTA

### CTA - Cherenkov Telescope Array



CTA

#### **IACT** sensitivities



Slika 7: Integralna ocietliivest postojoćih i CTA projekta [2]





Slika 8: Lijevo: Diferencijalna osjetljivost u jedinicama toka Rakove maglice za jedan od predloženih rasporeda čitavog niza. Tanke linije s malim simbolima prikazuju mali utjecaj smanjenog dinamičkog raspona (omjera signala najmanjeg i najvećeg korisnog intenziteta). Tanka crna linija prikazuje osjetljivost bez utjecaja pozadinskih elektrona. **Desno**: Integrirana osjetljivost za CTA i slične instrumente u sličnim uvjetima (50 sati za IACT-ove, 1 godina za Fermi-LAT i HAWC). [4].



Slika 9: Očekivani broj novih izvora. [3].

CORSIKA

### • COsmic Ray SImulations for KAscade

- ulazni parametri:
  - spektralni indeks:
     2,0 umjesto 2,6
  - impact parameter:
     1000 m za fotone
     1500 m za elektrone i protone

| primarna čestica | broj simulacija (10 <sup>6</sup> ) | raspon energije |
|------------------|------------------------------------|-----------------|
| foton            | 5                                  | 3 GeV - 33 TeV  |
| elektron         | 4                                  | 3 GeV - 33 TeV  |
| proton           | 14                                 | 4 GeV - 60 TeV  |

Parametri Lokacije Uvjeti



Slika 10: Predložene lokacije LST-ova na jučnoj hemisferi (Čile).

Gama-zračenje IACT Parametri Lokacije Osjetljivost LST-ova Uvjeti

Svakim korakom prolaska kroz atmosferu ispituje se uvjet

$$nv/c = n\beta > 1.$$
 (2)

Aproksimacija:

$$n = 1 + 0.000283\rho(h)/\rho(0).$$
 (3)

Ovisnost *n* o valnoj duljini je zanemarena. Broj fotona  $N_C$  emitiranih po jedinici duljine putanje *s* pod kutom  $\theta_C$ :

$$\frac{dN_{C}}{ds} = 2\pi\alpha \int \frac{\sin^{2}\theta_{C}}{\lambda^{2}} d\lambda.$$

$$\theta_{C} = \arccos\frac{1}{\beta n}.$$
(4)

- Integrirana osjetljivost integrirani tok izvora iznad energije za koju broj (nepozadinskih) događaja  $N_{excess}$  podijeljen sa korijenom broja pozadinskih događaja  $\sqrt{N_{bkg}}$  iznosi 5 nakon 50 sati efektivnog promatranja. Donja granica energije odgovara vrhu Monte Carlo distribucije sa spektrom sličnim spektru Rakove maglice (nagiba -2.6)
- Diferencijalna osjetljivost podaci podijeljeni u pet koraka po dekadi energije [6]





Slika 11: Diferencijalne osjetljivost konfiguracija triju četiriju teleskopa - konfiguracije 123 i 4567 sa slike 11.

- Krivulja diferencijalne osjetljivosti pada niže dodatkom jednog teleskopa
- Najbolje osjetljivosti leže u području 2 3.16 TeV

- 3LST: 4.10<sup>-13</sup> erg cm<sup>-2</sup> s<sup>-1</sup> 16,67.10<sup>-6</sup> C.U.
- 4LST: 3.10<sup>-13</sup> erg cm<sup>-2</sup> s<sup>-1</sup> 12,5.10<sup>-6</sup> C.U.
- na 2,5 TeV, za 50 sati

## Literatura

- [1] arXiv:1510.05675v1
- [2] http://tevcat.uchicago.edu/
- [3] arXiv:1511.00463v1
- [4] B. Degrange, G. Fontaine, Introduction to high-energy gamma-ray astronomy, Comptes Rendus Physique
- [5] B.S. Acharya, et al., Introducing the CTA concept
- [6] https://magic.mpp.mpg.de/newcomers/technicalimplementation0/
- [7] http://isdc.unige.ch/cta/
- [8] http://www.ast.leeds.ac.uk/ fs/showerimages.html