Potraga za egzotičnim strukturama u jezgrama sumpora

Josipa Diklić Mentor: dr. sc. Tea Mijatović

Kolegij: Samostalni seminar iz istraživanja u fizici

Uvod

- Tehnološkim napretkom postalo moguće sudarati i teške ione ubrzane do energija većih od kulonske barijere za reaktante —> detekcija produkata reakcija poput prijenosa mnogo nukleona i duboko neelastičnih sudara
- Magnetski spektometar PRISMA+ γ-detektor CLARA, Nacionalni laboratorij u Legnaru (korišten za mjerenja)
- Motivacija: za neutronski bogate lakše jezgre poput S postoji odstupanje od standardnog modela ljusaka. Odstupanja se mogu naći i za teže jezgre, za magične brojeve > 28 (teško za proizvesti daleko od doline stabilnosti).

- Cilj: analizom γ-spektara neutronski bogatih jezgri ^{36–40}S
 - <u>potvrditi postojanje</u> γ-prijelaza koji nisu uvršteni u NNDC bazu podataka, ali su već uočeni u objavljenim znanstvenim člancima
 - pronaći nove prijelaze
 - <u>usporedba s teorijom (</u>model ljusaka)

Model ljusaka

Pretpostavka:

nezavisno gibanje A nukleona u srednjem nuklearnom potencijalu

mnogočestična valna funkcija valna funkcija u
$$\hat{H}\Psi_A = E\Psi_A$$

I = 0, 1, 2, 3, 4, ... = s,p,d,f,g,....

Eksperimentalni postav

I. Magnetski spektrometar PRISMA

Mjerimo: položaja iona (*x*,*y*) vremena preleta $tof=t_{MCP}-t_{PPAC}$ kinetičku energiju *E* gubitak energije ΔE

putanja iona

atomski broj Z maseni broj A nabojno stanje q brzina v

II. Detektor elektromagnetskog zračenja CLARA

- Inverzno narinuti p-n spoj
- U području osiromašenja stvaranje elekton-šuljina parova —> struja (signal)
- Broj parova ~ E ulaznog zračenja


```
Moć zaustavljanja \neg Z
Z_{Ge} > Z_{Si}
```


III. Kalibracija efikasnosti

- Efikasnost = br.zabilježenih / br.emitiranih događaja
- br.događaja ~ intenzitet zračenja
- Efikasnost (E)
- Kalibracija izvor ¹⁵²Eu
- Relativna efikasnost = (izmjereni / karakteristični intenzitet) + normalizacija (bitan trend)
- Smanjenje efikasnosti s povećanjem energije

Rezultati

I. Parne jezgre

- Energetski spektri parnih jezgri, za energetski interval bitan za razmatranje
- Potrebno uzeti u obzir efikasnost detektora
- Uočavanje vrhova —> Gaussian fit —> položaj (E), širina (FWHM), površina (A) —> intenzitet (A/FWHM) + normalizacija

I.1. Jezgra ³⁶S

$E(\text{keV}) (\Delta_E)$	$E_{bp}(\text{keV})$	$I(\Delta_I)$	FWHM	$J_i \to J_f$
185.5(0.2)	184.6	0.19(0.09)	3.95	$5^- \rightarrow 4^-$
827.5(0.2)	828.8	0.25(0.09)	4.77	$4^- \rightarrow 3^-$
902.4(0.3)	901.5(4)	0.76(0.22)	9.41	$3^- \rightarrow 2^+$
$1489.5\ (0.2)$	1485	0.04 (0.02)	2.93	$(6^+) \to (5^-)$
$2218.6\ (0.5)$	2217.7(3)	0.05(0.07)	2.85	$(2,4) \to 2^+$
$3292.1 \ (0.7)$	3290.8 (0.6)	1 (0.23)	23.78	$2^+ \rightarrow 0^+$

- Magičan broj neutrona (20)
- Svi prijelazi već upisani u bazu podataka NNDC
- Nisko odstupanje od tabličnih vrijednosti
- Model ljusaka dobro predviđa energetske nivoe, ali bolje se podudara s eksperimentom na nižim energijama

I.2. Jezgra ³⁸S

$E(\text{keV}) (\Delta_E)$	$E_{bp}(\text{keV})$	$I(\Delta_I)$	FWHM	$J_i \to J_f$
383.6(0.6)	$383^{[5]}$	0.04 (0.24)	1.64	
$850.0\ (0.6)$	$849^{[5]}$	0.06 (0.04)	7.51	$(6^+) \to 4^+$
$1292.2 \ (0.3)$	1292.0(0.2)	1 (0.19)	12.57	$2^+ \rightarrow 0^+$
$1533.8\ (0.5)$	1533.2(1)	0.29(0.1)	12.77	$4^+ \rightarrow 2^+$

- Energije na 383 i 850 keV nisu u bazi podataka, ali su uočene u znanstvenim člancima (potrvda postojanja)
- Pobuđivanje yrast stanja (najniže stanje za dani angularni moment) 2+,4+, 6+ koja se dominantno pobuđuju u reakcijama prijenosa mnogo nukleona
- Porastom energije pobuđenja odstupanja između eksperimenta i teorije postaju sve veća

I.3. Jezgra ⁴⁰S

$E(\text{keV}) (\Delta_E)$	$E_{bp}(\text{keV})$	$I(\Delta_I)$	FWHM	$J_i \to J_f$
409.7(0.4)		0.18(0.1)	4.45	
669.7 (0.4)		0.18(0.16)	2.80	
904.2(0.8)	903.7(0.9)	1 (0.58)	8.99	$2^+ \to 0^+$
$983.0\ (0.3)$	981.2(0.4)	0.18(0.12)	3.13	$(6+) \to (4^+)$
1350.8 (0.8)	1351.1 (0.1)	0.77 (0.35)	12.04	$(4^+) \to 2^+$

- Vrhovi na 410 i 670 do sad neuočeni (intenzitet 18%)
- Model ljusaka dobro predviđa 2+ stanje, 4+ za 200 keV niže

- Magičan broj neutrona (20,28) za masene brojeve 36 i 44
- Križići baza podataka NNDC
- Krivulja prikaz trenda
- Energija prvog pobuđenog stanja najniža između magičnih brojeve
- Jezgra masenog broja 44 odstupa

II. Neparne jezgre

- Energetski spektri neparnih jezgri, za energetski interval bitan za razmatranje
- Potrebno uzeti u obzir efikasnost detektora
- Uočavanje vrhova —> Gaussian fit —> položaj (E), širina (FWHM), površina (A) —> intenzitet (A/FWHM) + normalizacija

II.1. Jezgra ³⁷S

$E(\text{keV}) (\Delta_E)$	$E_{bp}(\text{keV})$	$I(\Delta_I)$	FWHM	$J_i \to J_f$
645.2(0.2)	646.17(0.01)	1.0(0.1)	8.0	$\frac{3}{2}^- \rightarrow \frac{7}{2}^-$
$751.1 \ (0.3)$	751.3(0.2)	0.4 (0.06)	8.5	$\frac{\ddot{3}}{2}^+ \rightarrow \frac{\ddot{3}}{2}^-$
1424~(1)	$1420(1)^{[3]}$	0.2(0.1)	12.9	$\left \left(\frac{13}{2}^{+} \right) \rightarrow \left(\frac{11}{2}^{-} \right) \right $
1584~(1)	$1583^{[6]}$	0.13 (0.08)	8.65	$\left(\frac{\overline{1}}{2},\frac{3}{2}\right) \rightarrow \left(\frac{\overline{3}}{2}^{+}\right)$
2774~(1)	2776(2) ^[3]	0.41 (0.09)	27.5	$\left \left(\frac{\overline{11}}{2}^{-} \right) \rightarrow \left(\frac{\overline{7}}{2}^{-} \right) \right $
3123~(3)	$3120(2)^{[3]}$	0.10(0.07)	17.9	$\left \begin{array}{c} \left(\frac{9}{2}^+\right) \to \left(\frac{7}{2}^-\right) \right.$

- Samo dvije energije prijelaza koje smo opazili upisane su u bazu podataka NNDC
- Ostale su već detektirane i prethodno objavljene u znanstvenim člancima.
- Vrh1584 keV prethodno je izmjeren, ali nije odreden spin i paritet prijelaza. U članku je prikazana shema energetskih nivoa gdje je upisan energetski nivo na 2978 keV (odgovara početnom nivou za taj γ-prijelaz).
- Stanja pozitivnog pariteta uljezna stanja ili intruder stanja (nisu izračunata takva stanja prema modelu ljusaka)
- Jako pobudeno stanje može se opisati kao vezanje nesparenog neutrona u jezgri ³⁷S na fonon 2⁺ stanja u jezgri ³⁶S

II.2. Jezgra ³⁹S

$E(\text{keV}) (\Delta_E)$	$E_{bp}(\text{keV})$	$I(\Delta_I)$	FWHM	$J_i \to J_f$
338.6(0.9)	$339(1)^{[4]}$	0.2(0.2)	4.2	$\left(\frac{3}{2}^{-}\right) \rightarrow \left(\frac{5}{2}^{-}\right)$
$398.6\ (0.5)$	398.6(0.1)	0.3 (0.3)	3.3	$\frac{3}{2}^- \rightarrow \frac{7}{2}^-$
$466.0 \ (0.5)$	465.5(0.2)	0.7 (0.4)	6.5	$\frac{\overline{3}}{2}^+ \rightarrow \frac{\overline{3}}{2}^-$
$533.4\ (0.3)$	$533(4)^{[9]}$	0.5(0.1)	6.3	
$1517.3\ (0.9)$	1517(1)	1 (0.4)	12.9	$\frac{11}{2}^- \rightarrow \frac{7}{2}^-$
$1654.5\ (0.3)$	1656(1)	0.3(0.1)	1.4	$\frac{9}{2}^- \rightarrow \frac{7}{2}^-$

- Potvrđene dvije energije prijelaza koje nisu u bazi podataka
- Uljezna stanja (pozitivan paritet) visokog intenziteta
- Ni u najnižim pobuđenim energetskim nivoima teorija ne opisuje eksperiment
- Predvida i drugačiji raspored samih nivoa

_ <u>9/2-</u>_____

- Jezgra s masenim brojem
 37 najbliža magičnom
 broju neutrona
- Križići baza podataka NNDC
- Krivulja prikaz trenda
- Očekivani trend da jezgre s brojem neutrona najbliže magičnom broju imaju najveću energiju γ- zrake za određeni prijelaz

Zaključak

Cilj: iz podataka koje smo dobili reakcijom sudara mete ²⁰⁸Pb i projektila ⁴⁰Ar proučiti spektre neutronski bogatih jezgara sumpora te pronaći:

- neotkrivene prijelaze −> V (za jezgru ⁴⁰S na 409.7 i 669.7 keV)
- nepotvrđene prijelaze −>
- usporebu s modelom ljusaka -> 🔽

Primjetili smo:

- Neslaganje s modelom ljusaka na višim energetskim nivoima
- Pojava yrast stanja
- U neparnim jezgrama izmijernili smo jaka pobuđenja stanja jednočestičnog karaktera te pobuđenja stanja koja se mogu objasniti vezanjem nesparenog neutrona na 2+ stanja pripadajućih parno-parnih jezgri (11/2-)

Istraživanje bitno za opisivanje svojstava jezgre i nadopunjavanje te korekcije sadašnjih teorijskih modela

Literatura

- ¹ NNDC. Karta nuklida. Brookhaven National Laboratories. http://www.nndc.bnl.gov/
- ² Clover konfiguracija. LNL INFN.http://www.lnl.infn. it/~prisma/clara_technical/node3.html
- ³ Chapman, R., Wang, Z. M., Bouhelal, M., Haas, F., Liang, X., Azaiez, F., ... Curien, D. (2016). Particle-core coupling in S 37. Physical Review C, 93(4), 044318.
- ⁴ Chapman, R., Wang, Z. M., Bouhelal, M., Haas, F., Liang, X., Azaiez, F., ... Curien, D. (2016). First in-beam γ-ray study of the level structure of neutron-rich S 39. Physical Review C, 94(2), 024325.
- ⁵ Wang, Z. M., Chapman, R., Liang, X., Haas, F., Azaiez, F., Behera, B. R., ... Deacon, A. N. (2010). γ-ray spectroscopy of neutron-rich S 40. Physical Review C, 81(5), 054305.
- ⁶ Wang, K. L., Wang, J. G., Zhou, X. H., Liu, M. L., Qiang, Y. H., Guo, S., ... Zheng, Y. (2016). Lifetime measurement

of the first excited state in S 37. Physical Review C, 94(4), 044316

- ⁷ Mijatović, T., Szilner, S., Corradi, L., Montanari, D., Pollarolo, G., Fioretto, E., ... Milin, M. (2016). Multinucleon transfer reactions in the Ar 40+ Pb 208 system. Physical Review C, 94(6), 064616.
- ⁸ Mijatovic, T. (2015). Study of heavy-ion reactions with large solid angle magnetic spectrometers (Doctoral dissertation, FACULTY OF SCIENCE, University of Zagreb).
- ⁹ Lunderberg, E., Gade, A., Bader, V., Baugher, T., Bazin, D., Berryman, J. S., ... Weisshaar, D. (2016). In-beam γray spectroscopy of S 38–42. Physical Review C, 94(6), 064327.
- ¹⁰ Deša Jelavić Malenica (2013) Seminar iz Teorije strukture atomske jezgre 1: Kompletni račun modela ljusaka za ³⁶S. Institut Ruder Boškovć, ZEF, LNF