Opažanje polarizacije gama zračenja

Ana-Marija Kožuljević Mentor: izv. prof. Mihael Makek

Fizički odsjek, PMF, Bijenička c.32, 10000 Zagreb

28. siječnja 2019.

Komptonsko raspršenje

Slika: Komptonsko raspršenje i polarizacija fotona nakon anihilacije [2]

Klein-Nishina formula:

$$\frac{d\sigma}{d\Omega} = \frac{1}{2}r_0^2 \left(\frac{k'}{k_0}\right)^2 \left(\frac{k_0}{k'} + \frac{k'}{k_0} - 2\sin^2\theta\cos^2\phi\right)$$

Komptonske kamere

Slika: Komptonska kamera s dva sloja detektora. Preuzeto iz [3].

$$E_0 = E_1 + E_2$$

Eksperimentalni postav

- izvor ²²Na
- scintilacijski detektori LSO anorganski kristali
- Multipixel Photon Counter (S13361-3050AE Hamamatsu)
- pasivni pojačivač (AiT instruments)
- digitalizator (CAEN V1743)

Slika: Eksperimentalni postav. Preuzeto iz [5].

• Izotop 22 Na raspada se β -raspadom:

$${}^{22}_{10}Na = {}^{22}_{10}Ne^* + e^+ + \nu_e$$

- Unutar materijala pozitron se anihilira s elektronom
- ightarrow nastaje par fotona energije 511 keV, okomitih polarizacija

Efikasan scintilacijski detektor:

- ima visoku efikasnost konverzije energije pubuđenja u fluorescentno zračenje
- transparentan na vlastito fluorescentno zračenje
- emisija svjetla u suglasju sa spektralnim odgovorom fotomultiplikatora
- reemisijski puls ima kratko vrijeme raspada

Scintilacijski detektori

U ovom eksperimentu:

- LFS (Lutetium Fine Silicate) anorganski kristali
- Energijska rezolucija $\frac{\Delta E}{E}$ ovih kristala izmjerena na 511 keV iznosi 12%

gustoća [gcm $^{-3}$]	7.35
efektivni Z	64
duljina atenuacije [cm]	1.15
vrijeme deekscitacije [ns]	<33

LFS karakteristike

Tablica: Karakteristike LFS scintilacijskih kristala. Preuzeto iz [1].

Koincidencijska mjerenja

- lutecij-176 je radioaktivan
- β -raspadom emitira fotone energije \sim 200 300 keV
- ightarrow u mjerenjima postoji pozadinski šum

KOINCIDENCIJSKA MJERENJA \rightarrow potisnuće ovog pozadinskog šuma mjerenjem samo signala koji okidaju oba detektora istovremeno

Scintilacijski detektori

Slika: Geometrija detektora korištenih u eksperimentu. Preuzeto iz [7].

Udarni presjek

Slika: Udarni presjek za energiju upadnog fotona od 511 keV naznačen je punom crvenom crtom. Slika dobivena pomoću Wolfram CDF Player-a

Geometrijska svojstva raspršenja na detektoru

Pretpostavke:

- upadni foton se raspršuje na 1.5 mm dubine
- raspršeni foton se zaustavlja na 18.5 mm dubine
- pomoću Pitagorinog poučka izračunali smo kuteve koji će biti dostupni za svaku pojedinu kombinaciju piksela
- iz energijske rezolucije detektora izračunate granice dostupnih energija za tražena raspršenja

Geometrijska svojstva raspršenja na detektoru

θ [rad]	E_e [keV]	E_2 [keV]
0.175	8±3	503±26
0.242	14±4	497±26
0.339	28±6	483±25
0.375	33±7	478±25
0.463	49±8	462±25
0.487	14±4	503±26
0.51	58±9	453±25
0.565	69±10	442±24
0.642	85±11	426±24

Tablica: Izračunate granične vrijednosti energija za kuteve dobivene iz geometrije detektora.

REZULTATI

- analiza pomoću programskog paketa ROOT
- ukupni broj događaja: 12 275
- rekonstrukcija slike izvora pomoću programskih jezika C++ i Python - biblioteka SymPy i funkcije plot_parametric

Detektor 1

Slika: Energijski spektar dobiven rezanjem prema Tablici II. Ovo je rezultat za raspršenje pod kutem od 0.566 radijana. Broj događaja koji odgovaraju ovom rezu je 39.

Detektor 2

Slika: Energijski spektar dobiven rezanjem prema Tablici II. Ovo je rezultat za raspršenje pod kutem od 0.375 radijana. Broj događaja koji odgovaraju ovom rezu je 40.

Rekonstrukcija slike

Slika: Skica *back-projection* algoritma za rekonstrukciju događaja. Preuzeto iz [4].

Rezultat rekonstrukcije slike

Slika: Presjek konusa svih događaja.

Zaključak

- pomoću ovog mjernog postava može se rekonstruirati slika izvora zračenja
- postoji potencijal da se zamijene detektori u dva sloja \rightarrow jednostavniji i jeftiniji jednoslojni detektori
- široka primjenjivost razvoj komptonskih kamera u jednom sloju za primjenu u medicinskom i industrijskom oslikavanju, detekciju zračenja iz okoliša...
- rekonstrukcija slike se može unaprijediti korištenjem iterativnih algoritama

Hvala na pažnji!

- LFS White Paper, http://www.zecotek.com/media/LFSWhitePaper.pdf;
- http://universe-review.ca/I15-72-Compton1.jpg;
- https://www.frontiersin.org/files/Articles/170445/fonc-06-00080-HTML-r2/image_m/fonc-06-00080-g004.jpg
- Tornga, Shawn. "A prototype Compton imager : simulations, measurements and algorithm development." (2010). http://digitalrepository.unm.edu/ne_etds/48
- Performance of scintillation pixel detectors with MPPC read-out and digital signal processing, Makek et al., Acta Physica Polonica B, Vol. 48 (2017);

- Koincidencijska mjerenja gama zraka scintilacijskim detektorima - priprema za vježbu iz praktikuma, http://www.phy.pmf.unizg.hr/ makek/nukl_prakt/vjezbe/np_vjezba06.pdf;
- Compact Compton detectors in coincidence setup, Makek et al., 3rd Symposium on Positron Emission Tomography, Krakow 2018
- Pavla Šenjug, Demonstracijski uređaj za mjerenje polarizacijskih korelacija u pozitronskoj anihilaciji, diplomski rad, PMF - Fizički odsjek, Zagreb, 2016.