> Petar Marević¹ mentorica: izv. prof. dr. sc. Tamara Nikšić¹

¹Fizički odsjek, PMF, Sveučilište u Zagrebu

Samostalni seminar iz istraživanja u fizici, veljača 2015.

 oblik atomske jezgre ovisi o broju nukleona i njihovom međudjelovanju

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 oblik atomske jezgre ovisi o broju nukleona i njihovom međudjelovanju

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

raznolikost nuklearnih oblika

- oblik atomske jezgre ovisi o broju nukleona i njihovom međudjelovanju
- raznolikost nuklearnih oblika

(Preuzeto iz Nature 497, 190191 (2013).)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Oktupolna pobuđenja atomske jezgre

Oktupolna pobuđenja atomske jezgre

Oktupolna pobuđenja atomske jezgre

Oktupolna pobuđenja atomske jezgre

oktupolne deformacije mogu biti statične ili dinamične

Oktupolna pobuđenja atomske jezgre

Oktupolna pobuđenja atomske jezgre

- oktupolne deformacije mogu biti statične ili dinamične
- mikroskopsko porijeklo: zaposjednuće orbitala suprotnog pariteta s razlikom angularnih momenata 3h u blizini Fermijeve površine

Oktupolna pobuđenja atomske jezgre

Oktupolna pobuđenja atomske jezgre

- oktupolne deformacije mogu biti statične ili dinamične
- mikroskopsko porijeklo: zaposjednuće orbitala suprotnog pariteta s razlikom angularnih momenata 3h u blizini Fermijeve površine

(Preuzeto iz Rev. Mod. Phys. 68, 349 (1996).)

Oktupolna pobuđenja atomske jezgre

 pojavljuju se u području karte nuklida oko aktinida i elemenata rijetkih zemalja

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

└─Oktupolna pobuđenja atomske jezgre

 pojavljuju se u području karte nuklida oko aktinida i elemenata rijetkih zemalja

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

razumijevanje nuklearne strukture

Oktupolna pobuđenja atomske jezgre

- pojavljuju se u području karte nuklida oko aktinida i elemenata rijetkih zemalja
- razumijevanje nuklearne strukture i fizika izvan standardnog modela?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Oktupolna pobuđenja atomske jezgre

- pojavljuju se u području karte nuklida oko aktinida i elemenata rijetkih zemalja
- razumijevanje nuklearne strukture i fizika izvan standardnog modela?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

■ novi eksperimenti: ¹⁵²Sm, ²²⁰Rn i ²²⁴Ra

Oktupolna pobuđenja atomske jezgre

- pojavljuju se u području karte nuklida oko aktinida i elemenata rijetkih zemalja
- razumijevanje nuklearne strukture i fizika izvan standardnog modela?

- novi eksperimenti: ¹⁵²Sm, ²²⁰Rn i ²²⁴Ra
- potreba za preciznim teorijskim opisom

Energijski funkcionali gustoće

Energijski funkcionali gustoće

Energijski funkcionali gustoće

Energijski funkcionali gustoće

 najpotpuniji i najtočniji teorijski okvir za opis osnovnog stanja i kolektivnih pobuđenja jezgre duž cijele karte nuklida

Energijski funkcionali gustoće

 najpotpuniji i najtočniji teorijski okvir za opis osnovnog stanja i kolektivnih pobuđenja jezgre duž cijele karte nuklida

■ aproksimacija srednjeg polja: nuklearni problem mnoštva čestica ⇒ neovisni nukleoni koji se gibaju u srednjem polju

Energijski funkcionali gustoće

- najpotpuniji i najtočniji teorijski okvir za opis osnovnog stanja i kolektivnih pobuđenja jezgre duž cijele karte nuklida
- aproksimacija srednjeg polja: nuklearni problem mnoštva čestica ⇒ neovisni nukleoni koji se gibaju u srednjem polju
- egzaktan funkcional gustoće aproksimiran je jednostavnim funkcionalima koji sadrže potencije i derivacije nukleonskih gustoća i struja u osnovnom stanju

Energijski funkcionali gustoće

- najpotpuniji i najtočniji teorijski okvir za opis osnovnog stanja i kolektivnih pobuđenja jezgre duž cijele karte nuklida
- aproksimacija srednjeg polja: nuklearni problem mnoštva čestica ⇒ neovisni nukleoni koji se gibaju u srednjem polju
- egzaktan funkcional gustoće aproksimiran je jednostavnim funkcionalima koji sadrže potencije i derivacije nukleonskih gustoća i struja u osnovnom stanju

 fenomenološki funkcionali: prilagodba dostupnim eksperimentalnim podacima

Energijski funkcionali gustoće

- najpotpuniji i najtočniji teorijski okvir za opis osnovnog stanja i kolektivnih pobuđenja jezgre duž cijele karte nuklida
- aproksimacija srednjeg polja: nuklearni problem mnoštva čestica ⇒ neovisni nukleoni koji se gibaju u srednjem polju
- egzaktan funkcional gustoće aproksimiran je jednostavnim funkcionalima koji sadrže potencije i derivacije nukleonskih gustoća i struja u osnovnom stanju
- fenomenološki funkcionali: prilagodba dostupnim eksperimentalnim podacima
- relativistički funkcionali: prirodno uključivanje spinskog stupnja slobode, spin-orbit vezanje, ...

Relativistički Hartree-Bogoliubovljev model

Relativistički Hartree-Bogoliubovljev model

Relativistički Hartree-Bogoliubovljev model

Relativistički Hartree-Bogoliubovljev model

 korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara

Opis oktupolnih pobuđenja atomske jezgre pomoću relativističkih nuklearnih energijskih funkcionala gustoće – Relativistički Hartree-Bogoliubovljev model

Relativistički Hartree-Bogoliubovljev model

- korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara
- RHB model omogućuje jedinstven opis ph- i pp- korelacija

Opis oktupolnih pobuđenja atomske jezgre pomoću relativističkih nuklearnih energijskih funkcionala gustoće <u>Relativistički Hartree-Bogo</u>liubovljev model

Relativistički Hartree-Bogoliubovljev model

- korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara
- RHB model omogućuje jedinstven opis ph- i pp- korelacija

polazišna točka: uvođenje Bogoliubovljevih kvazičestica

Relativistički Hartree-Bogoliubovljev model

Relativistički Hartree-Bogoliubovljev model

- korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara
- RHB model omogućuje jedinstven opis ph- i pp- korelacija
- polazišna točka: uvođenje Bogoliubovljevih kvazičestica
- veza čestičnih (c_l^{\dagger}, c_l) i kvazičestičnih $(\beta_k^{\dagger}, \beta_k)$ operatora:

Relativistički Hartree-Bogoliubovljev model

Relativistički Hartree-Bogoliubovljev model

- korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara
- RHB model omogućuje jedinstven opis ph- i pp- korelacija
- polazišna točka: uvođenje Bogoliubovljevih kvazičestica
- veza čestičnih (c_l^{\dagger}, c_l) i kvazičestičnih $(\beta_k^{\dagger}, \beta_k)$ operatora:

$$\beta_k^{\dagger} = \sum_{l} \left(U_{lk} c_l^{\dagger} + V_{lk} c_l \right)$$

Relativistički Hartree-Bogoliubovljev model

- korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara
- RHB model omogućuje jedinstven opis ph- i pp- korelacija
- polazišna točka: uvođenje Bogoliubovljevih kvazičestica
- veza čestičnih (c_l^{\dagger}, c_l) i kvazičestičnih $(\beta_k^{\dagger}, \beta_k)$ operatora:

$$\beta_k^{\dagger} = \sum_{l} \left(U_{lk} c_l^{\dagger} + V_{lk} c_l \right)$$

 osnovno stanje jezgre predstavlja vakuum s obzirom na Bogoliubovljeve kvazičestice:

Relativistički Hartree-Bogoliubovljev model

- korelacije sparivanja: opis sferičnih jezgara s otvorenim ljuskama i deformiranih jezgara
- RHB model omogućuje jedinstven opis ph- i pp- korelacija
- polazišna točka: uvođenje Bogoliubovljevih kvazičestica
- veza čestičnih (c_l^{\dagger}, c_l) i kvazičestičnih $(\beta_k^{\dagger}, \beta_k)$ operatora:

$$\beta_k^{\dagger} = \sum_{l} \left(U_{lk} c_l^{\dagger} + V_{lk} c_l \right)$$

 osnovno stanje jezgre predstavlja vakuum s obzirom na Bogoliubovljeve kvazičestice:

$$\beta_k |\Phi\rangle = 0$$

Relativistički Hartree-Bogoliubovljev model

• uvodimo matricu gustoće ρ i tenzor sparivanja κ :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• uvodimo matricu gustoće ρ i tenzor sparivanja κ :

$$\rho_{II'} = \langle \Phi | c_{I'}^{\dagger} c_I | \Phi \rangle, \quad \kappa_{II'} = \langle \Phi | c_{I'} c_I | \Phi \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• uvodimo matricu gustoće ρ i tenzor sparivanja κ :

$$\rho_{ll'} = \left\langle \Phi \right| c_{l'}^{\dagger} c_l \left| \Phi \right\rangle, \quad \kappa_{ll'} = \left\langle \Phi \right| c_{l'} c_l \left| \Phi \right\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RHB jednadžbe glase:

• uvodimo matricu gustoće ρ i tenzor sparivanja κ :

$$\rho_{II'} = \langle \Phi | c_{I'}^{\dagger} c_{I} | \Phi \rangle, \quad \kappa_{II'} = \langle \Phi | c_{I'} c_{I} | \Phi \rangle$$

RHB jednadžbe glase:

$$\begin{pmatrix} h - m - \lambda & \Delta \\ -\Delta^* & -h + m + \lambda \end{pmatrix} \begin{pmatrix} U_k \\ V_k \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

• uvodimo matricu gustoće ρ i tenzor sparivanja κ :

$$\rho_{ll'} = \langle \Phi | c_{l'}^{\dagger} c_l | \Phi \rangle, \quad \kappa_{ll'} = \langle \Phi | c_{l'} c_l | \Phi \rangle$$

RHB jednadžbe glase:

$$\begin{pmatrix} h-m-\lambda & \Delta \\ -\Delta^* & -h+m+\lambda \end{pmatrix} \begin{pmatrix} U_k \\ V_k \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix}$$

 u ph-kanalu koristimo DD-PC1 funkcional, a u pp-kanalu separabilnu sila sparivanja

RHB jednadžbe rješavamo iterativno, razvojem spinora U_k i V_k u bazi deformiranog aksijalno simetričnog H.O.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- RHB jednadžbe rješavamo iterativno, razvojem spinora U_k i V_k u bazi deformiranog aksijalno simetričnog H.O.
- rješenja odgovaraju kvazičestičnim stanjima i energijama, a odgovarajućom ih je transformacijom moguće preslikati u čestičnu bazu

- RHB jednadžbe rješavamo iterativno, razvojem spinora U_k i V_k u bazi deformiranog aksijalno simetričnog H.O.
- rješenja odgovaraju kvazičestičnim stanjima i energijama, a odgovarajućom ih je transformacijom moguće preslikati u čestičnu bazu
- rješavanjem RHB jednadžbi dobije se samo jedna točka: da bismo dobili energiju kao funkciju kolektivnog parametra q, koristimo metodu kvadratičnog ograničenja
- RHB jednadžbe rješavamo iterativno, razvojem spinora U_k i V_k u bazi deformiranog aksijalno simetričnog H.O.
- rješenja odgovaraju kvazičestičnim stanjima i energijama, a odgovarajućom ih je transformacijom moguće preslikati u čestičnu bazu
- rješavanjem RHB jednadžbi dobije se samo jedna točka: da bismo dobili energiju kao funkciju kolektivnog parametra q, koristimo metodu kvadratičnog ograničenja
- ovakav pristup omogućuje efikasan račun energija vezanja u $q_2 q_3 (\beta_2 \beta_3)$ ravnini na razini srednjeg polja

 aproksimacijom srednjeg polja slomljene su neke simetrije (translacijska, rotacijska, paritetna, broj čestica, ...) koje je potrebno ponovno uspostaviti

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- aproksimacijom srednjeg polja slomljene su neke simetrije (translacijska, rotacijska, paritetna, broj čestica, ...) koje je potrebno ponovno uspostaviti
- zadržimo li se na jezgrama koje imaju dobro definiran minimum u kvadrupolnoj koordinati, najveći doprinos korelacijskoj energiji dolazit će od fluktuacija u oktupolnom stupnju slobode i ponovnog uspostavljanja dobrog pariteta

- aproksimacijom srednjeg polja slomljene su neke simetrije (translacijska, rotacijska, paritetna, broj čestica, ...) koje je potrebno ponovno uspostaviti
- zadržimo li se na jezgrama koje imaju dobro definiran minimum u kvadrupolnoj koordinati, najveći doprinos korelacijskoj energiji dolazit će od fluktuacija u oktupolnom stupnju slobode i ponovnog uspostavljanja dobrog pariteta
- te je dvije korekcije moguće istovremeno uzeti u obzir u okviru metode generirajućih koordinata (GCM)

└─ Metoda generirajućih koordinata

Metoda generirajućih koordinata

Opis oktupolnih pobuđenja atomske jezgre pomoću relativističkih nuklearnih energijskih funkcionala gustoće Metoda generirajućih koordinata

Metoda generirajućih koordinata

 gradimo valne funkcije |ψ_α > koje predstavljaju približna svojstvena stanja Hamiltonijana cijele jezgre:

Opis oktupolnih pobuđenja atomske jezgre pomoću relativističkih nuklearnih energijskih funkcionala gustoće Metoda generirajućih koordinata

Metoda generirajućih koordinata

 gradimo valne funkcije |ψ_α⟩ koje predstavljaju približna svojstvena stanja Hamiltonijana cijele jezgre:

$$|\psi_{\alpha}\rangle = \sum_{j} f_{\alpha}(q_{j}) |\phi(q_{j})\rangle$$

Opis oktupolnih pobuđenja atomske jezgre pomoću relativističkih nuklearnih energijskih funkcionala gustoće └─Metoda generirajućih koordinata

Metoda generirajućih koordinata

 gradimo valne funkcije |ψ_α⟩ koje predstavljaju približna svojstvena stanja Hamiltonijana cijele jezgre:

$$|\psi_{\alpha}\rangle = \sum_{j} f_{\alpha}(q_{j}) |\phi(q_{j})\rangle$$

• iz zahtjeva da očekivana vrijednost energije E_{α} u stanju $|\psi_{\alpha}\rangle$ bude nepromijenjena s obzirom na proizvoljnu varijaciju δf_{α} slijedi Hill-Wheelerova jednadžba (HW):

Metoda generirajućih koordinata

 gradimo valne funkcije |ψ_α⟩ koje predstavljaju približna svojstvena stanja Hamiltonijana cijele jezgre:

$$|\psi_{\alpha}\rangle = \sum_{j} f_{\alpha}(q_{j}) |\phi(q_{j})\rangle$$

• iz zahtjeva da očekivana vrijednost energije E_{α} u stanju $|\psi_{\alpha}\rangle$ bude nepromijenjena s obzirom na proizvoljnu varijaciju δf_{α} slijedi Hill-Wheelerova jednadžba (HW):

$$\sum_{j} f_{\alpha}(q_{j}) \left(\underbrace{\langle \phi(q_{i}) | \hat{H} | \phi(q_{j}) \rangle}_{\mathcal{H}(q_{i},q_{j})} - E_{\alpha} \underbrace{\langle \phi(q_{i}) | \phi(q_{j}) \rangle}_{\mathcal{N}(q_{i},q_{j})} \right) = 0$$

 HW jednadžba predstavlja generalizirani problem svojstvenih vrijednosti i f_α(q_i) nisu kolektivne valne funkcije za varijablu q

• HW jednadžba predstavlja generalizirani problem svojstvenih vrijednosti i $f_{\alpha}(q_i)$ nisu kolektivne valne funkcije za varijablu q

■ koristeći set funkcija g_α(q_i) = ∑_j(N)^{1/2}(q_i, q_j)f_α(q_j) HW jednadžbu transformiramo u običan problem svojstvenih vrijednosti:

- HW jednadžba predstavlja generalizirani problem svojstvenih vrijednosti i $f_{\alpha}(q_i)$ nisu kolektivne valne funkcije za varijablu q
- koristeći set funkcija g_α(q_i) = ∑_j(N)^{1/2}(q_i, q_j)f_α(q_j) HW jednadžbu transformiramo u običan problem svojstvenih vrijednosti:

$$\sum_{j} \tilde{\mathcal{H}}(q_i, q_j) g_\alpha(q_j) = E_\alpha g_\alpha(q_i)$$

- HW jednadžba predstavlja generalizirani problem svojstvenih vrijednosti i $f_{\alpha}(q_i)$ nisu kolektivne valne funkcije za varijablu q
- koristeći set funkcija g_α(q_i) = ∑_j(N)^{1/2}(q_i, q_j)f_α(q_j) HW jednadžbu transformiramo u običan problem svojstvenih vrijednosti:

$$\sum_{j} \tilde{\mathcal{H}}(q_i, q_j) g_\alpha(q_j) = E_\alpha g_\alpha(q_i)$$

 funkcije g_α(q_i) su ortonormirane i predstavljaju kolektivne valne funkcije za varijablu q

- HW jednadžba predstavlja generalizirani problem svojstvenih vrijednosti i $f_{\alpha}(q_i)$ nisu kolektivne valne funkcije za varijablu q
- koristeći set funkcija g_α(q_i) = ∑_j(N)^{1/2}(q_i, q_j)f_α(q_j) HW jednadžbu transformiramo u običan problem svojstvenih vrijednosti:

$$\sum_{j} \tilde{\mathcal{H}}(q_i, q_j) g_\alpha(q_j) = E_\alpha g_\alpha(q_i)$$

- funkcije g_α(q_i) su ortonormirane i predstavljaju kolektivne valne funkcije za varijablu q
- potrebno je i ponovno uspostaviti dobar broj čestica

$$\sum_{j} \mathcal{N}(q_i, q_j) u_k(q_j) = n_k u_k(q_i)$$

$$\sum_{j} \mathcal{N}(q_i, q_j) u_k(q_j) = n_k u_k(q_i)$$

 svojstvene funkcije s jako malim svojstvenim vrijednostima eliminiramo, a od ostalih gradimo kolektivni Hamiltonijan:

$$\sum_{j} \mathcal{N}(q_i, q_j) u_k(q_j) = n_k u_k(q_i)$$

 svojstvene funkcije s jako malim svojstvenim vrijednostima eliminiramo, a od ostalih gradimo kolektivni Hamiltonijan:

$$\mathcal{H}_{kl}^{coll} = \frac{1}{\sqrt{n_k}} \frac{1}{\sqrt{n_l}} \sum_{i,j} u_k(q_i) \tilde{\mathcal{H}}(q_i, q_j) u_l(q_j)$$

$$\sum_{j} \mathcal{N}(q_i, q_j) u_k(q_j) = n_k u_k(q_i)$$

 svojstvene funkcije s jako malim svojstvenim vrijednostima eliminiramo, a od ostalih gradimo kolektivni Hamiltonijan:

$$\mathcal{H}_{kl}^{coll} = \frac{1}{\sqrt{n_k}} \frac{1}{\sqrt{n_l}} \sum_{i,j} u_k(q_i) \tilde{\mathcal{H}}(q_i, q_j) u_l(q_j)$$

kolektivni Hamiltonijan potom dijagonaliziramo:

$$\sum_{j} \mathcal{N}(q_i, q_j) u_k(q_j) = n_k u_k(q_i)$$

 svojstvene funkcije s jako malim svojstvenim vrijednostima eliminiramo, a od ostalih gradimo kolektivni Hamiltonijan:

$$\mathcal{H}_{kl}^{coll} = \frac{1}{\sqrt{n_k}} \frac{1}{\sqrt{n_l}} \sum_{i,j} u_k(q_i) \tilde{\mathcal{H}}(q_i, q_j) u_l(q_j)$$

kolektivni Hamiltonijan potom dijagonaliziramo:

$$\sum_{l} \mathcal{H}_{kl}^{coll} g_{l}^{\alpha} = E_{\alpha} g_{k}^{\alpha}$$

└─ Metoda generirajućih koordinata

 dobivene svojstvene vrijednosti odgovaraju spektru promatranog sustava, a iz dobivenih svojstvenih stanja i svojstvenih stanja norme mogu se izračunati g_α(q_i) i f_α(q_i)

- ロ ト - 4 回 ト - 4 □ - 4

— Metoda generirajućih koordinata

- dobivene svojstvene vrijednosti odgovaraju spektru promatranog sustava, a iz dobivenih svojstvenih stanja i svojstvenih stanja norme mogu se izračunati g_α(q_i) i f_α(q_i)
- paritetna simetrija kolektivnih valnih funkcija ponovno je uspostavljena računajući na mreži deformacija q koja je simetrična s obzirom na ishodište

— Metoda generirajućih koordinata

- dobivene svojstvene vrijednosti odgovaraju spektru promatranog sustava, a iz dobivenih svojstvenih stanja i svojstvenih stanja norme mogu se izračunati g_α(q_i) i f_α(q_i)
- paritetna simetrija kolektivnih valnih funkcija ponovno je uspostavljena računajući na mreži deformacija q koja je simetrična s obzirom na ishodište
- poznavanje težinskih funkcija omogućuje izravan račun svih fizikalnih opservabli (npr. snage oktupolnih prijelaza), koje je onda moguće usporediti s eksperimentom

(ロ)、(型)、(E)、(E)、 E) の(の)

Rezultati

- Rezultati
 - └─Numerički test: atomska jezgra ²⁰Ne

 osnovno stanje atomske jezgre ²⁰Ne odgovara kvadrupolno deformiranom izduženom elipsoidu bez oktupolne deformacije

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Rezultati
 - └─Numerički test: atomska jezgra ²⁰Ne

- osnovno stanje atomske jezgre ²⁰Ne odgovara kvadrupolno deformiranom izduženom elipsoidu bez oktupolne deformacije
- ima jednu od najvećih snaga oktupolnog prijelaza među lakim jezgrama

- Rezultati
 - └─Numerički test: atomska jezgra ²⁰Ne

- osnovno stanje atomske jezgre ²⁰Ne odgovara kvadrupolno deformiranom izduženom elipsoidu bez oktupolne deformacije
- ima jednu od najvećih snaga oktupolnog prijelaza među lakim jezgrama

optimalan izbor za numerički test konzistentnosti kôda

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

└─Numerički test: atomska jezgra ²⁰Ne

Ovisnost ravnotežne kvadrupolne deformacije atomske jezgre ²⁰Ne o nametnutoj oktupolnoj deformaciji.

└─Numerički test: atomska jezgra ²⁰Ne

Energija vezanja atomske jezgre ²⁰Ne u ovisnosti o oktupolnoj deformaciji.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

Raspodjela gustoće nukleona atomske jezgre $^{20} \rm Ne$ u projiciranim minimumima β_3^+ (lijevo) i β_3^- (desno).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

Raspodjela gustoće nukleona atomske jezgre $^{20} \rm Ne$ u projiciranim minimumima $-\beta_3^+$ (lijevo) i $-\beta_3^-$ (desno).

└─Numerički test: atomska jezgra ²⁰Ne

Raspodjela gustoće nukleona atomske jezgre ²⁰Ne u $\beta_3 = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

Prvih 8 GCM kolektivnih valnih funkcija atomske jezgre ²⁰Ne.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

 potpuna usporedba sa spektroskopskim podacima nije moguća bez ponovnog uspostavljanja dobrog angularnog momenta

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

 potpuna usporedba sa spektroskopskim podacima nije moguća bez ponovnog uspostavljanja dobrog angularnog momenta

 energija pobuđenja E₃, koja odgovara razlici energija prvog neparnog i prvog parnog stanja, iznosi 8.1 MeV

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

 potpuna usporedba sa spektroskopskim podacima nije moguća bez ponovnog uspostavljanja dobrog angularnog momenta

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 energija pobuđenja E₃, koja odgovara razlici energija prvog neparnog i prvog parnog stanja, iznosi 8.1 MeV (exp: 5.6 MeV, th: 6.7 MeV)

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

 potpuna usporedba sa spektroskopskim podacima nije moguća bez ponovnog uspostavljanja dobrog angularnog momenta

- energija pobuđenja E₃, koja odgovara razlici energija prvog neparnog i prvog parnog stanja, iznosi 8.1 MeV (exp: 5.6 MeV, th: 6.7 MeV)
- snaga oktupolnog prijelaza je W(E3) = 9.2 W.u.

Rezultati

└─Numerički test: atomska jezgra ²⁰Ne

- potpuna usporedba sa spektroskopskim podacima nije moguća bez ponovnog uspostavljanja dobrog angularnog momenta
- energija pobuđenja E₃, koja odgovara razlici energija prvog neparnog i prvog parnog stanja, iznosi 8.1 MeV (exp: 5.6 MeV, th: 6.7 MeV)
- snaga oktupolnog prijelaza je W(E3) = 9.2 W.u. (exp: 13 W.u., th: 12 W.u.)

Rezultati

Atomska jezgra ²⁰⁸Pb

prvo pobuđeno stanje atomske jezgre ²⁰⁸Pb je 3⁻ na energiji
2.62 MeV

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Rezultati
 - Atomska jezgra ²⁰⁸Pb

prvo pobuđeno stanje atomske jezgre ²⁰⁸Pb je 3⁻ na energiji
2.62 MeV

■ snaga prijelaza za $3^- \rightarrow 0^+$ je oko 34 W.u.

- Rezultati
 - Atomska jezgra ²⁰⁸Pb

prvo pobuđeno stanje atomske jezgre ²⁰⁸Pb je 3⁻ na energiji
2.62 MeV

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- snaga prijelaza za $3^- \rightarrow 0^+$ je oko 34 W.u.
- važnost oktupolnog stupnja slobode

Atomska jezgra ²⁰⁸Pb

Energija vezanja atomske jezgre ²⁰⁸Pb u ovisnosti o oktupolnoj deformaciji.

└─Atomska jezgra ²⁰⁸Pb

Prvih 8 GCM kolektivnih valnih funkcija atomske jezgre ²⁰⁸Pb.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rezultati

└─Atomska jezgra ²⁰⁸Pb

■ energija pobuđenja *E*₃ iznosi 3.1 MeV

- Rezultati

Atomska jezgra ²⁰⁸Pb

energija pobuđenja E₃ iznosi 3.1 MeV (exp: 2.6 MeV, th: 4.0 MeV)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Rezultati
 - Atomska jezgra ²⁰⁸Pb

energija pobuđenja E₃ iznosi 3.1 MeV (exp: 2.6 MeV, th: 4.0 MeV)

■ snaga oktupolnog prijelaza je 121 W.u.

- Rezultati
 - Atomska jezgra ²⁰⁸Pb

- energija pobuđenja E₃ iznosi 3.1 MeV (exp: 2.6 MeV, th: 4.0 MeV)
- snaga oktupolnog prijelaza je 121 W.u. (exp: 34 W.u., th: 53 W.u.)

- Rezultati
 - Atomska jezgra ²⁰⁸Pb

- energija pobuđenja E₃ iznosi 3.1 MeV (exp: 2.6 MeV, th: 4.0 MeV)
- snaga oktupolnog prijelaza je 121 W.u. (exp: 34 W.u., th: 53 W.u.)

 korišteni kôd je u fazi testiranja i potrebno ga je dodatno optimizirati za stvarnu primjenu na težim jezgrama

- Rezultati
 - Atomska jezgra ¹⁵⁸Gd

 prvo 3⁻ stanje u atomskoj jezgri ¹⁵⁸Gd nalazi se na energiji pobuđenja 1.04 MeV

・ロト・日本・モト・モート ヨー うへで

- Rezultati
 - └─Atomska jezgra ¹⁵⁸Gd

 prvo 3⁻ stanje u atomskoj jezgri ¹⁵⁸Gd nalazi se na energiji pobuđenja 1.04 MeV

• snaga prijelaza za $3^- \rightarrow 0^+$ je oko 12 W.u.

└─Atomska jezgra ¹⁵⁸Gd

Energija vezanja atomske jezgre ¹⁵⁸Gd u ovisnosti o oktupolnoj deformaciji.

◆□> ◆□> ◆三> ◆三> ・三 のへの

└─Atomska jezgra ¹⁵⁸Gd

Prvih 8 GCM kolektivnih valnih funkcija atomske jezgre ¹⁵⁸Gd.

Rezultati

└─Atomska jezgra ¹⁵⁸Gd

■ energija pobuđenja *E*₃ iznosi 1.18 MeV

・ロト・日本・モト・モート ヨー うへで

- Rezultati

Atomska jezgra ¹⁵⁸Gd

energija pobuđenja E₃ iznosi 1.18 MeV (exp: 1.04 MeV, th: 1.7 MeV)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Rezultati
 - └─Atomska jezgra ¹⁵⁸Gd

 energija pobuđenja E₃ iznosi 1.18 MeV (exp: 1.04 MeV, th: 1.7 MeV)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

snaga oktupolnog prijelaza je 15.9 W.u.

- Rezultati
 - └─Atomska jezgra ¹⁵⁸Gd

- energija pobuđenja E₃ iznosi 1.18 MeV (exp: 1.04 MeV, th: 1.7 MeV)
- snaga oktupolnog prijelaza je 15.9 W.u. (exp: 12 W.u., th: 11.6 W.u.)

- Rezultati
 - Atomska jezgra ¹⁵⁸Gd

- energija pobuđenja E₃ iznosi 1.18 MeV (exp: 1.04 MeV, th: 1.7 MeV)
- snaga oktupolnog prijelaza je 15.9 W.u. (exp: 12 W.u., th: 11.6 W.u.)
- teorijske je rezultate moguće približiti eksperimentalnima uzimajući u obzir vezanje kvadrupolnog i oktupolnog stupnja slobode: atomska jezgra ⁶⁴Zn

└─Atomska jezgra ⁶⁴Zn

- Rezultati
 - └─Atomska jezgra ⁶⁴Zn

 teorijske snage oktupolnih prijelaza i do nekoliko redova veličine manje od eksperimentalnih

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Rezultati
 - └─Atomska jezgra ⁶⁴Zn

- teorijske snage oktupolnih prijelaza i do nekoliko redova veličine manje od eksperimentalnih
- mekana ploha srednjeg polja \Rightarrow kvadrupol-oktupol vezanje

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Rezultati
 - └─Atomska jezgra ⁶⁴Zn

- teorijske snage oktupolnih prijelaza i do nekoliko redova veličine manje od eksperimentalnih
- mekana ploha srednjeg polja \Rightarrow kvadrupol-oktupol vezanje
- projekcija na dobar angularan moment poboljšava teorijsku snagu prijelaza 2 – 3 puta

└__Zaključak

 primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama

- ロ ト - 4 回 ト - 4 □ - 4

Zaključak

 primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama

RHB model na razini srednjeg polja

Zaključak

- primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama
- **RHB** model na razini srednjeg polja i kolektivni GCM model

Zaključak

- primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama
- **RHB** model na razini srednjeg polja i kolektivni GCM model
- ponovno uspostavljanje pariteta: korelacijske energije iznose 1 – 2 MeV

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zaključak

- primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama
- RHB model na razini srednjeg polja i kolektivni GCM model
- ponovno uspostavljanje pariteta: korelacijske energije iznose 1 – 2 MeV
- energije pobuđenja prvih 3⁻ stanja reproducirane s vrlo dobrom preciznošću, potpuna usporedba sa spektroskopskim podacima nije moguća
Zaključak

- primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama
- **RHB** model na razini srednjeg polja i kolektivni GCM model
- ponovno uspostavljanje pariteta: korelacijske energije iznose 1 – 2 MeV
- energije pobuđenja prvih 3⁻ stanja reproducirane s vrlo dobrom preciznošću, potpuna usporedba sa spektroskopskim podacima nije moguća
- snage oktupolnih prijelaza odstupaju od eksperimentalnih, potrebna optimizacija kôda

Zaključak

- primijenili smo formalizam energijskih funkcionala gustoće pri opisu oktupolnih deformacija u atomskim jezgrama
- RHB model na razini srednjeg polja i kolektivni GCM model
- ponovno uspostavljanje pariteta: korelacijske energije iznose 1 – 2 MeV
- energije pobuđenja prvih 3⁻ stanja reproducirane s vrlo dobrom preciznošću, potpuna usporedba sa spektroskopskim podacima nije moguća
- snage oktupolnih prijelaza odstupaju od eksperimentalnih, potrebna optimizacija kôda
- u nastavku istraživanja: kvadrupol-oktupol vezanje

Hvala na pozornosti!