Simulacije odziva detektora NeuLAND na nabijene čestice

Ivana Lihtar

PMF, Fizički odsjek

Mentor: dr.sc. Igor Gašparić, Institut Ruđer Bošković

January 30, 2020

NeuLAND

- GSI \rightarrow FAIR \rightarrow R3B
- NeuLAND detektor vremena preleta neutrona
- organske scintilatorske šipke $(5 \times 5 \times 250 \text{ cm}^3)$
- dvostruke ravnine 50 horizontalno + 50 vertikalno orijentiranih šipki
- u izgradnji konačni cilj: 30 dvostrukih ravnina (2.5 × 2.5 × 3 m³)
- Kako se svojstva nuklearnih sustava mijenjaju ovisno o izospinu?

< □ > < □ > < □ > < □ > < □ > < □ >

R3B eksperimentalni postav

Reactions with Relativistic Radioactive Beams

Ivana Lihtar (Fizički odsjek)

TCP-EOS eksperimenti na RIKEN-u

 proučavanje asimetričnog člana nuklearne jednadžbe stanja (EoS) odnosno energije simetrije S(ρ)

$$E(\rho, \delta) = E(\rho, \delta = 0) + S(\rho)\delta^{2}$$
$$\delta = \frac{\rho_{n} - \rho_{p}}{\rho_{n} + \rho_{p}}$$

- opis fenomena poput eksplozija supernova i neutronskih zvijezda
- sudari teških iona postizanje dva do tri puta veće gustoće nuklearne tvari od gustoće saturacije (0.16 fm $^{-1/3}$)
- opservable koje ovise o jačini asimetričnog člana u EoS: omjeri multipliciteta i spektralnih raspodjela izospinskih parova (p/n, t/³He...)

RIKEN eksperimentalni postav

 $^{108}{\rm Sn}$ on $^{112}{\rm Sn}$ and $^{112}{\rm Sn}$ on $^{124}{\rm Sn}$ pri 270 AMeV $^{132}{\rm Sn}$ on $^{124}{\rm Sn}$ and $^{124}{\rm Sn}$ on $^{112}{\rm Sn}$ pri 270 AMeV

Ivana Lihtar (Fizički odsjek)

NeuLAND i VETO na RIKEN-u

- NeuLAND Demonstrator (4 duple ravnine)- detekcija nabijenih čestica
- detektor VETO ispred NeuLAND-a, za identifikaciju nabijenih čestica
 - 8 scintilatorskih ploča dimenzija 15 \times 190 \times 1 $\rm cm^3$
 - orijentirane vertikalno s preklopom od 1 cm
- testiranje odziva detektora!

Interakcije čestica

 ${f \circ}$ teške nabijene čestice - elektromagnetska interakcija \rightarrow Bethe-Blochova formula

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{l^2} \right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

• gubitak energije u NeuLAND-u

$$E = \int_0^L \frac{dE}{dx} dx$$

 neutroni - jaka sila; veza vremena preleta i energije iz izraza za kinetičku energiju

$$E = (\gamma - 1)m_nc^2 = \left(\frac{1}{\sqrt{1 - L^2/(tc)^2}} - 1\right)m_nc^2$$

Svojstva mjernih uređaja

 $\bullet\,$ transmisija svjetlosti $\rightarrow\,$ gubici na površini, apsorpcija u materijalu $\rightarrow\,$ atenuacija

$$L(x) = L_0 \exp\left(-\frac{x}{\lambda}\right)$$

• prolazak čestice \rightarrow ekscitacija \rightarrow scintilacija ili <u>drugi mehanizmi</u> \rightarrow prigušenje (Birkov zakon)

$$\frac{dL}{dx} = S \frac{\frac{dE}{dx}}{1 + kB\frac{dE}{dx} + C\left(\frac{dE}{dx}\right)^2}$$

naboj koji proizvodi signal u PMT-ju nelinearno ovisi o proizvedenoj svjetlosti →saturacija

$$Q = \frac{L}{1 + \kappa L}$$

Simulacije

- $\bullet \ \mathsf{FairRoot} \to \mathsf{R3BRoot}$
 - geometrija detektora
 - primarne čestice generator događaja (engl. event generator)
 - Monte Carlo "stroj" s implementacijom fizikalnih procesa GEANT4 (GEometry ANd Tracking)
- dva stadija procesa: simulacija i digitizacija

- u simulacije implementiran VETO geometrija, digitizer i ostalo
- generirane čestice produkti reakcija i opažene u eksperimentu: p, d, t, $^{3}{\rm He},$ $^{4}{\rm He},$ n, $\gamma,$ μ
- energijski raspon: 0.01 1.5 GeV
- $\theta \in [0^\circ, 6^\circ]$, $\phi \in [0^\circ, 360^\circ]$
- kozmički mioni (kalibracija detektora) u energijskom rasponu: 3.9 -4.1 GeV
- ukupan broj generiranih događaja: 10⁶

Rezultati - geometrija detektora

Rezultati - trag u NeuLAND-u (prva ravnina)

protoni

neutroni

Ivana Lihtar (Fizički odsjek)

NeuLAND - simulacije

January 30, 2020 12 / 18

Rezultati - usklađivanje s eksperimentom

- × točke probijanja
- \times točke maksimalnog vremena preleta
- \times mionski vrh

Rezultati - NeuLAND

Vrijeme preleta [ns] i energija [a.u.]								
Čestica	ToF _{pt,exp}	ToF _{pt,sim}	$ToF_{max,exp}$	$ToF_{max,exp}$	E _{pt,exp}	E _{pt,sim}		
proton	71.5	69.5	103	101	35	36		
deuteron	84.5	82.5	122	120	40.8	41		
triton	93.5	91.5	136	134	44	44		
³ He	66	65	-	200	59	60		
α	71	69.5	-	93.5	61	62		
γ	28.9	28.9	-	100	9	8.5		

Ivana Lihtar (Fizički odsjek)

January 30, 2020 14 / 18

Image: A matrix and a matrix

Rezultati - VETO

- linije jezgri ³He i α vidljive u simulacijama \rightarrow elektroničko ograničenje na max. vrijednost signala u VETO-u
- lošije slaganje ne možemo koristiti kozmičke mione za kalibraciju

Rezultati - neutroni

- smanjen energijski raspon generiranih neutrona
- izmjena Birkovih koeficijenata

RP408	kB	С	
	$[gcm^{-2}MeV^{-1}]$	$[g^2 cm^{-4} MeV^{-2}]$	
R3BRoot	0.013	$9.6 imes10^{-6}$	
Jian-Fu et al.	0.015	$8.4 imes10^{-6}$	

- EoS eksperimenti iskrišteni za proučavanje odziva detektora NeuLAND
- detektor VETO implementiran u simulacije
- simulacije odziva NeuLAND-a za nabijene čestice usklađene s eksperimentom
- moguća detaljna analiza događaja
- ostaje detaljnije uskladiti odziv neutrona s eksperimentom
- rekonstruirati spektralne raspodjele izospinskih parova koji nastaju u reakcijama u eksperimentu o S(
 ho)

Hvala na odzivu! :D

Image: A matrix

э