Studija mogućnosti mjerenja ESSuSB toka neutrina promatranjem elastičnih raspršenja neutrina na orbitalnim elektronima

> Kaja Krhač¹ Mentor: Budimir Kliček ²

¹Prirodoslovno-matematički fakultet u Zagrebu

²Znanstveni centar izvrsnosti za napredne materijale i senzore, Institut Ruđer Bošković, Zagreb

30. siječnja 2020.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Motivacija

• mjerenje CP narušenja u leptonskom sektoru uspoređujući $\nu_{\mu} \rightarrow \nu_{e}$ i $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscilacije neutrina

 znanje o energiji i čestičnom sastavu snopa neutrina je ograničeno zbog neodređenosti u produkciji hadrona, čijim raspadom nastaju neutrini

Produkcija snopa neutrina

Fluks

$$R(t) = \int_0^\infty \frac{dL(t)}{dE} \sigma(E) dE$$
(3)

- poznavajući udarni presjek i stopu interakcije moguće je odrediti fluks
- neutrini se u Čerenkovljevom detektoru raspršuju na jezgrama vodika i kisika i njihovim orbitalnim elektronima

Elastična raspršenja neutrina na elektronima

- udarni presjek za raspršenje neutrina na elektronima je barem 2000 manji od udarnog presjeka raspršenja neutrina na jezgrama
- pozadina od raspršenja ostalih okusa neutrina:

• dominantni pozadinski proces su $\stackrel{(-)}{\nu_e}N$ raspršenja putem nabijene (eng. charged current) slabe sile

Analiza

- ROOT je programski paket za analizu, procesiranje i vizualizaciju podataka temeljen na C++
- interakcije neutrina simulirane su upotrebom GENIE (Generates Events for Neutrino Interaction Experiments) Monte Carlo generatora baziranog na ROOT-u
- u GENIE su inkomponirani različiti fizikalni modeli potrebni za opis modova raspršenja neutrina i informacije o udarnim presjecima

Analitički izraz za drvasti (eng. tree-level) udarni presjek

$$g_{+} \equiv c_{V}^{e} + c_{A}^{e}, \quad g_{-} \equiv c_{V}^{e} - c_{A}^{e}$$

$$c_{V}^{e} = -\frac{1}{2} + 2\sin^{2}\theta_{W}, \quad c_{A}^{e} = -\frac{1}{2}$$

$$\sin^{2}\theta_{W} = 0.23122(4)$$

$$G_{F} = \frac{1}{4\sqrt{2}}\frac{g^{2}}{m_{W}^{2}} = 1.1663787(6) \cdot 10^{-5} \text{ GeV}^{-2}$$

$$\sigma = \frac{G_{F}^{2}}{2\pi}E_{\nu}m\left[g_{+}^{2}\left(1 - \frac{m}{2E_{\nu} + m}\right) + \frac{g_{-}^{2}}{3}\left(1 - \left(\frac{m}{2E_{\nu} + m}\right)^{3}\right) - 2g_{+}g_{-}\frac{E_{\nu}m}{(2E_{\nu} + m)^{2}}$$

Usporedba GENIE modela udarnog presjeka s drvastim udarnim presjekom

7 / 21

Udarni presjek

Fluks - pozitivni polaritet

イロン イヨン イヨン イヨン

Fluks - negativni polaritet

Mionski neutrini - pozitivni polaritet

Mionski antineutrini - negativni polaritet

12 / 21

Očekivani broj događaja - pozitivni polaritet

Tablica: Očekivani broj događaja u 1 kt vode u 200 dana.

 ν_{l}

 $\bar{\nu}_{\mu}$

	očekivani broj	
	događaja	
$ u_{\mu}$	6 017 320	
ν_e	29 987	
$ar{ u}_{\mu}$	15 896	
$\bar{\nu}_e$	69	

Očekivani broj događaja - negativni polaritet

Tablica: Očekivani broj događaja u 1 kt vode u 200 dana.

	očekivani broj	
	događaja	
$ u_{\mu}$	57 151	
ν_e	390	
$ar{ u}_{\mu}$	1 153 000	
$\bar{\nu}_e$	3 410	

Očekivani broj raspršenja na elektronima

Tablica: Očekivani broj raspšenja na elektronima u 1 kt vode u 200 dana za pozitivni polaritet.

	očekivani broj
	događaja
ν_{μ}	817
ν_e	22
$ar{ u}_{\mu}$	5
$\bar{\nu}_e$	0

Tablica: Očekivani broj raspšenja na elektronima u 1 kt vode u 200 dana za negativni polaritet.

	očekivani broj	
	događaja	
$ u_{\mu}$	9	
ν_e	0	
$ar{ u}_{\mu}$	387	
$\bar{ u}_e$	3	

Pozadinski procesi

Tablica: Mogući procesi raspršenja neutrina u kojima je izlazna čestica elektron. Raspršenje na jezgri označeno je s N, odnosno N'.

proces	vrsta interakcije
$ u_{\mu} + e^- ightarrow u_{\mu} + e^-$	NC
$ u_e + e^- ightarrow u_e + e^-$	CC-NC interferencija
$ u_e + \textit{N} ightarrow \textit{N}' + e^-$	CC
$ar{ u}_{\mu}+e^{-} ightarrowar{ u}_{\mu}+e^{-}$	NC
$ar{ u}_e + e^- o ar{ u}_e + e^-$	CC-NC interferencija
$ar{ u}_{e} + {\it N} ightarrow {\it N}' + e^+$	CC

Raspodjela kuta izlaznog elektrona - pozitivni polaritet

Raspodjela kvadrata kuta izlaznog elektrona - pozitivni polaritet

ロトス団トスヨトスヨト ヨーのへの

$$p_{1} = \underbrace{(E_{\nu}, 0, 0, E_{\nu})}_{\nu} \quad p_{2} = (m, 0, 0, 0) \quad p_{3} = (E'_{\nu}, \vec{E'_{\nu}})$$

Za URL elektrone

$$\Xi_e = rac{m E_
u}{E_
u (1 - \cos heta_e) + m}$$

Ako definiramo $y = E_e/E_{\nu}$, slijedi

$$1 - \cos\theta_e = \frac{m}{E_e}(1 - y) \tag{6}$$

(5)

U URL limesu:

$$E_e \theta_e^2 \approx 2m(1-y) \leqslant 2m \tag{7}$$

Kad $\theta_e = 0$, y = 1, dok za $\theta_e = \pi$, $y = \frac{m}{2E_{\nu}+m} \approx 0$, jer $E_{\nu} \gg m$.

Raspodjela $\theta_e^2 E_e$ - pozitivni polaritet

うせん 加 ・ (四・ (四・ (日・

20 / 21

Zaključak

- omjer pozadine i signala je 3.4 % za ν_{μ} i 3.5 % za $\bar{\nu}_{\mu}$ ako se $\theta_e^2 E_e$ upotrebljava za odbacivanje pozadine
- potrebno je uključiti π^0 pozadinu
- kako bi se zaključilo je li ovakva rekonstrukcija izvediva u praksi, još je potrebno uzeti u obzir odaziv i rezoluciju detektora