

The in- and out-of-plane magnetisation of highly underdoped Y Ba₂Cu₃O_{6+x} single crystals

I. Kokanović^{1,2}, J.R. Cooper¹

¹Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, U.K. ²Department of Physics, Faculty of Science, University of Zagreb, P.O.Box 331, Zagreb, Croatia

Background

In two recent papers [1,2] we have shown how measurements of static magnetic susceptibility $\chi_c(T)$ of YBa₂Cu₃O_{6+x} single crystals for magnetic fields applied along the *c*-axis, and $\chi_{ab}(T)$ for fields in the *ab*-plane, can give useful information about their thermodynamic properties which are still being hotly debated. SQUID magnetometry above the superconducting (s/c) transition temperature T_c is used for larger crystals, while piezolever torque magnetometry gives $\chi_D(T) = \chi_c(T) - \chi_{ab}(T)$ for tiny crystals [2]. Here we present some new data for highly under-doped crystals with hole concentrations per CuO₂ plane p =0.058 to 0.073. This is the region where neutron scattering studies [3,4] give evidence for competition between incommensurate magnetic short-range order and superconductivity. We have studied crystals with three values of x, measuring $\chi_c(T)$ and $\chi_{ab}(T)$ immediately after fixing x by quenching on to a copper block and again after allowing sufficient time at room temperature for the Cu-O chains to order.

FIG. 1: (a) Temperature dependence the static magnetic susceptibility $\chi_c(T)$ and $\chi_{ab}(T)$ for H // the c axis and the ab plane respectively, together with the anisotropy $\chi_c(T) - \chi_{ab}(T)$ for six YBa₂Cu₃O_{6+x} crystals studied in an applied magnetic field of 5 T. The inset to Fig. 1 (b) shows the superconducting transition of the YBa₂Cu₃O_{6+x} crystals measured on warming in 10 Gauss using a Squid magnetometer after matrix is a magnetic field of 5 T. cooling in zero field.

FIG. 3: (a) The static magnetic susceptibility $\chi_c(T)$ versus $\chi_{ab}(T)$ for H = 5 T // the c axis and the ab plane respectively, of YBa₂Cu₃O_{6+x} single crystal UD36. The solid lines show linear fits. (b) The $\chi_c(T) - C/T$ versus $\chi_{ab}(T) - C/T$ for H = 5 T.

FIG. 4: (a) The temperature derivative of $\chi_0(T) = \chi_0(T) + \chi_{ab}(T)$ at H = 5 T for UD36, UD23, UD30, UD15, UD20 and UD13. (b) The temperature derivative of $\chi_c(T)$ for the same crystals . For clarity the data are shifted.

Analysis of the magnetic susceptibility data

Here $\gamma = \xi_{ab}/\xi_c$ is the anisotropy, $\xi_{ab} = \xi_{ab}(0)/e^{1/2}$ and $\xi_c = \xi_c(0)/\epsilon^{1/2}$, $\epsilon = \ln(T/T_c)$ are the T-dependent GL coherence lengths // and _t to the layers, s = 1.17 nm is the distance between CuO_2 bi-layers, Φ_0 is the flux quantum for pairs and k_B is Boltzmann's constant. Eq. 4 is valid when $H \ll \Phi_0/(2\pi \xi_{ab}^{2n})$ and then the susceptibility $\chi_c^{FL} \equiv M_c^{FL}/H$ does not vary with H. For HLc, $\chi_{ab}^{FL} = 0$ in the two-dimensional (2D) limit $\gg \xi_c(T)$ and in the opposite 3D limit $\chi_{ab}^{FL} = |\chi_c^{FL}|_G$. The solid line show the fit of Eq. 1 to the magnetic susceptibility data of the UD36 and UD23 crystals

x	T_c	$10^{4}C$	$10^{4}A$	$10^{4}\chi_{0}$	T_{PG}	ξ_{ab}	p
meas	(K)	emuK mole	emu mole	emu mole	(K)	(nm)	$/CuO_2$
0.42	36.2	28.1 ± 1	1.49	1.52	739	3.51	0.073
0.40	30.1	160.7 ± 3	1.50	1.43	770	4.22	0.069
0.42	23.3	49.5 ± 2	1.86	1.34	796	4.15	0.064
0.37	20.2	150.2 ± 3	1.42	1.59	802	5.28	0.063
0.40	15.7	200.4 ± 3	1.45	1.45	821	6.1	0.060
0.37	13.0	165.3 ± 3	1.55	1.32	833	7.51	0.058

TABLE I: Summary of results. The x values in the first column are determined TABLE 1: Summary of results. The x values in the hist countin are determined from weight loss on annealing and thermogravimentic analysis in flowing argon for the present crystals. The critical temperature T_c was taken as the midpoint of the superconducting transition, as determined by measuring the field-warming magnetisation at 10 Oe after zero-field cooling. C, A, $\chi_0 = \chi_{VV} + \chi_{core}$ and ξ_{ab} are the parameters of Eq. 1 of fit to the magnetic susceptibility data shown in Fig. 1. The T_{PG} is the psudogap temperature. The values of p are obtained from Ref.6.

Conclusion

- The main results of this work are:
- (i) The T-dependent anisotropy well above T_c arises from the pseudogap and the g-factor anisotropy.
- (ii) At lower T, there are Gaussian s/c fluctuations.
- (iii) For all six crystals the $\chi_D(T)$ has a weakly T-dependent linear region at higher T.
- (iv) Isotropic Curie contribution to $\chi(T)$ with the onset temperature below 200 K.
- (v) Ordering the CuO chains reduces the Curie contribution to $\chi(T)$

This work has been fully supported by Croatian Science Foundation under the project No. 6216.

References

- [1] I. Kokanović, et al., Europhys. Lett. 98, 57011 (2012). [2] I. Kokanović, et al., Phys. Rev. B 88, 060505(R) (2013).
- [3] D. Haug, et al., Phys. Rev. Lett. 103, 017001 (2009).
- [4] D. Haug, et al., New J. Phys. 12, 105006 (2010).
 [5] J. Biscaras, et al., Phys. Rev. B 85, 134517 (2012).
- [6] R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 73, 180505 (2006).

